
What Do Developers Ask About ML Libraries? A
Large-scale Study Using Stack Overflow

Abstract—Modern software systems are increasingly including
machine learning (ML) as an integral component. However, we do
not yet understand the difficulties faced by software developers
when learning about ML libraries and using them within their
systems. To that end, this work reports on a detailed (manual)
examination of 3,280 highly-rated Q&A posts related to ten
ML libraries, namely Tensorflow, Keras, scikit-learn, Weka, Caffe,
Theano, MLib, Torch, Mahout, and H2O, on Stack Overflow, a
popular online technical Q&A forum. We classify these questions
into seven typical stages of an ML pipeline to understand the
correlation between the library and the stage. We also perform
inter- and intra-library analyses to understand broad trends.
Our findings reveal the urgent need for software engineering
(SE) research in this area. Both static and dynamic analyses
are mostly absent and badly needed to help developers find
errors earlier. While there has been some early research on
debugging, much more work is needed. API misuses are prevalent
and API design improvements are sorely needed. Enabling reuse
of trained models across libraries needs attention. Last and
somewhat surprisingly, a tug of war between providing higher
levels of abstractions and the need to understand the behavior of
the trained model is prevalent. These findings suggest new paths
for SE researchers to help improve the engineering of software
that includes ML components.

Index Terms—Machine learning, Q&A forums, API misuses

I. INTRODUCTION

Machine learning (ML) is gradually becoming an essential
computational tool in a software developer’s toolbox for
solving problems that defy traditional algorithmic approach.
Software developers are fulfilling this need by development
and refinement of a number of new ML libraries [18]. Recently
it has also been suggested that ML can introduce unique
software development problems [29], [28], [8]. However, we
do not yet know about the problems that users of ML libraries
face and those that they choose to ask about publicly.

Prior work has shown that studying question and answer
(Q&A) forums such as Stack Overflow can give significant
insights into software developer’s concerns about a technol-
ogy [32], [33], [35], [17], [19], [26], [5], [34], [25], [37], [27],
[30], [20], [4], [16], but has not focused on ML libraries. More
details of related work are discussed in Section V.

This work presents a study of the problems faced by
developers while using popular ML libraries. Our study also
leverages the posts on Stack Overflow. Since 2015, there has
been growing interest and significant increase in ML related
questions and distinct users making Stack Overflow a repre-
sentative source of dataset for our study. We selected 10 ML
libraries to study, identified by a survey [18] and confirmed
by counting the number of posts on Stack Overflow related
to those libraries. These libraries are Caffe [15], H2O [10],

Keras [12], Mahout [23], MLlib [22], scikit-learn [24], Ten-
sorflow [1], Theano [6], Torch [13], and Weka [14].

Caffe [15] is a deep learning library for Python and C++.
H2O [10] is a deep learning library for Java, R, Python
or Scala and its key feature is to provide a workflow-like
system for building ML models. Keras [12] is a deep learning
library for Python whose key feature is to provide higher-level
abstractions to make creating neural networks easier. Keras
also uses Tensorflow or Theano as the backend. Mahout [23] is
aimed at providing scalable ML facilities for Hadoop clusters.
MLlib [22] is aimed at providing scalable ML facilities for
Spark clusters. scikit-learn [24] is a Python library that uses
Tensorflow or Theano as the backend. This library provides a
rich set of abstract APIs [9] to hide complexity of ML from
the user in an effort to make ML features widely accessible.

Tensorflow [1] provides facilities to represent a ML model
as data flow graphs. Theano [6] and Torch [13] are aimed
at scaling ML algorithms using GPU computing. A unique
aspect of Theano is that it provides some self-verification and
unit testing to diagnose some runtime errors. Weka [14] is a
ML library for Java. It provides API support for data prepara-
tion, classification, regression, clustering and association rules
mining tasks and a GUI for making models easier.

All in all, this set is both representative and provides variety.
We selected a total of 3,280 highly-rated Stack Overflow posts
for this study. A team of three Ph.D. students, with experience
in coursework on AI and ML, and using ML libraries, inde-
pendently read and labeled each of the posts producing 9,840
labels that were then compared for consistency producing 177
conflicting labels on 177 different posts. All of these conflicts
were resolved using mediated, face-to-face conflict resolution
meetings between all three participants. The results of our
study on this data, described in Section III and Section IV,
suggest several directions for software engineering research.

Debugging and program analyses support is badly needed to
detect errors earlier. Interestingly, API misuses are prevalent
suggesting the need for API design improvements. Reuse of
trained models across libraries is sought after. Lastly, it turns
out, abstractions provided by some ML libraries can, in fact,
make understanding a ML model’s behavior difficult.

The contributions of this work include: (1) a labeled and ver-
ified, dataset of ML library-related Q&A on Stack Overflow,
(2) a classification scheme for ML-related Q&A, (3) an intra-
library analysis to identify strengths and weaknesses of ML
libraries, and (4) an inter-library analysis to identify relative
strengths and weaknesses.

1

TABLE I: Numbers of posts having different score (S) about
ML libraries. The bold column represents selected posts.

Library S ≥ 0 S ≥ 1 S ≥ 2 S ≥ 3 S ≥ 4 S ≥ 5
Caffe 2,339 1,320 620 318 192 135
H2O [10] 771 452 167 73 34 20
Keras [12] 5,708 3,323 1,751 953 568 385
Mahout [23] 1,186 610 293 160 103 64
MLlib [22] 1,688 929 498 272 173 123
scikit-learn [24] 9,246 5,302 2,898 1,759 1,188 849
Tensorflow [1] 21,115 10,109 4,962 2,769 1,827 1,318
Theano [6] 2,332 1,341 711 421 265 198
Torch [13] 1,226 640 312 161 91 61
Weka [14] 2,512 1,216 568 293 181 127
Total 48,123 25,242 12,780 7,179 4,622 3,280

II. METHODOLOGY

Our study uses Q&A posts on Stack Overflow, a popular
platform used by developers. Our first step was to find the
total number of questions asked about all 15 ML libraries
highlighted by a recent survey [18]. Out of these, we selected
10 ML libraries for the study as shown in Table I. We excluded
the other five libraries because the numbers of questions about
them were too few (less than 20).

On Stack Overflow, each question is rated by the commu-
nity. The score of a question is computed as S = |NU |−|ND|
where |NU | is the number of upvotes and |ND| is the
number of downvotes. The higher score is an indicator of
the higher quality of the question, which has been used in
prior works [21]. Table I shows the entire distribution of the
questions for each library based on the score S.

We selected questions with the score of 5 or higher (bold
column in Table I) to focus on high-quality questions while
keeping the workload of manually labeling each question
manageable.

Next, we manually classified each Stack Overflow question
into categories to study them further. We first discuss the
classification of categories and then our labeling process.

A. Classification of Questions

We classify the questions in Stack Overflow into several
categories. First, we classify the questions into two top-level
categories based on whether the question is related to ML or
not. Questions related to installation problems, dependency,
platform incompatibility, Non-ML APIs, overriding the built-
in functionality, adding custom functionality fall into Non-
ML category as shown in Fig. 2. We classify the ML-related
questions into six categories based on the stages of a typical
ML pipeline [36], also reproduced in Fig. 1. Among those
seven stages, data collection is out of the scope of this study
because ML libraries do not provide this functionality which
leaves us with six categories. The full classification is shown
in Figure 2. Next, we discuss the categories in more detail.

1) Data Preparation: This top-level category includes
questions concerning about converting the raw data into the
input data format needed by the ML library.

Data adaption. Questions under this category are about
reading raw data into the suitable data format required by the
library. Data reader provided by the library usually provides

Data
Collection

Data
Preparation Modelling Training Evaluation

Parameter TuningPrediction

Fig. 1: Stages in a typical ML pipeline [36]

this functionality. Questions about converting data, encoding,
etc., also fall under this subcategory.

Featuring. Questions under this category are about feature
extraction and selection. Feature extraction is a process to
reduce dimensionality of the data where existing features are
transformed into a lower dimensional space. Feature selection
is another strategy of dimensionality reduction where infor-
mative features that have impact on the model are selected.

Type mismatch. Type mismatch happens when the type of
data provided by the user doesn’t match the type required by
the ML API. For example, if an API needs floating point

data as input but the client provides a String then the ML
API will throw an exception due to type incompatibility.

Shape mismatch. Shape mismatch occurs when the di-
mension of the tensor or matrix provided by a layer doesn’t
match the dimension needed by the next layer. These kinds of
errors are very common in deep learning libraries.

Data cleaning. Data cleaning phase, sometimes also called
data wrangling, includes removal of null values, handling
missing values, encoding data, etc. Without proper data clean-
ing the training may throw exceptions, and accuracy may be
suboptimal. Data cleaning often perplexes developers because
it has a direct impact on the performance of the trained model.

2) Modelling: The subcategories of this category include:
Model selection. This subcategory includes questions

related to the choice of the best model and choice of the API
version (e.g. whether to chose SVM or decision tree).

Model creation. This subcategory includes questions re-
lated to creating the model using the APIs, given a problem
scenario how the APIs can be pipelined to create the model.

Model conversion. This subcategory includes questions
related to conversion of a model trained using one library and
then using the trained model for prediction in an environment
using another library. For example, a model trained in Torch
can be used for further training or prediction using Theano.

Model load/store. This subcategory contains questions
about storing models to disk and loading them to use later.

3) Training: The subcategories of this category include:
Error/Exception. Questions about errors faced by users in

the training phase fall into this subcategory. The errors may
appear due to various reasons. If the errors are due to shape
mismatch or type mismatch we put them into data preparation
category. Otherwise, all errors are placed into this subcategory.

Parameter selection. Some frameworks have optional
parameters, and developers have to choose appropriate values
for these parameters and also pass relevant values to the
compulsory parameters. Questions related to these problems
fall into this subcategory.

2

Non-ML ML

Data Preparation Modelling Training Evaluation Tuning Prediction

B
ug

C
us

to
m

 C
od

e

S
et

up

N
on

 M
L

A
P

I

S
ha

pe
 m

is
m

at
ch

Ty
pe

 m
is

m
at

ch

Fe
at

ur
in

g

D
at

a
ad

ap
tio

n

D
at

a
cl

ea
ni

ng

M
od

el
 c

on
ve

rs
io

n

M
od

el
 s

el
ec

tio
n

M
od

el
 c

re
at

io
n

M
od

el
 lo

ad
/s

to
re

O
ut

pu
t i

nt
er

pr
et

at
io

n

M
od

el
 v

is
ua

liz
at

io
n

M
et

ho
d

se
le

ct
io

n

P
ar

am
et

er
 s

el
ec

tio
n

E
rr

or
/E

xc
ep

tio
n

P
er

fo
rm

an
ce

O
pt

im
iz

er

Lo
ss

 fu
nc

tio
n

A
cc

ur
ac

y

P
ar

am
et

er
 s

el
ec

tio
n

S
tra

te
gy

 s
el

ec
tio

n

M
od

el
 re

us
e

P
re

di
ct

io
n

ac
cu

ra
cy

R
ob

us
tn

es
s

Fig. 2: Classification used for categorizing ML library-related Stack Overflow questions for further analysis

Loss function. Questions related to choosing and creating
loss functions fall into this category, e.g., whether to use cosine
distance, mean square error, etc. for an algorithm.

Optimizer. Questions related to the choice of optimizer
are placed into this subcategory, e.g., which optimizer to use
among Adam, AdaGrad, AdaDelta, etc.

Performance. In this subcategory, questions related to long
training time and/or high memory consumptions are placed.

Accuracy. Questions related to training accuracy and/or
convergence are placed into this subcategory.

4) Evaluation: The subcategories of this category include:
Evaluation method selection. Question related to the prob-

lems in the usage of APIs for doing validation fall into this sub
category. For example, a question asked “which of the eight
APIs for eight different types of validations in scikit-learn,
namely KFold, LeaveOneOut, StratifiedKFold, RepeatedStrat-
ifiedKFold, RepeatedKFold, LeaveOneGroupOut, GroupKFold
and ShuffleSplit, should be used?”

Visualizing model learning. The developers sometime
need to visualize the behavior of the model to get better
understanding of the training process and also to know the
effects of evaluation on the change of loss function and
accuracy. Those questions are placed in this subcategory.

5) Hyper-parameter Tuning: Hyperparameter tuning is
used to improve the model’s performance. The values of
hyperparameters affect model accuracy. For example, a bad
learning rate may cause a model to learn poorly and give low
accuracy. The subcategories of this category include:

Tuning strategy selection. Questions about choosing
among APIs for different tuning methodologies are placed
into this subcategory. For example, one question asked about
three APIs of scikit-learn for doing parameter tuning using
grid search or randomized search or parameter sampling.

Tuning parameter selection. This subcategory covers dis-
cussions related to the selection of parameters for tuning.
Some parameters may not have an effect on the model
accuracy other than increasing the training time while some
might have a significant effect on the accuracy, e.g. the code
below specifically selects the parameters to tune at line 4.

1 from sklearn import svm, datasets
2 from sklearn.model selection import GridSearchCV
3 iris = datasets.load iris()

4 parameters = {’kernel’:(’linear’,’rbf’), ’C’:[1,10]}
5 svc = svm.SVC()
6 clf = GridSearchCV(svc, parameters)

The user is trying to tune the kernel and C parameter of
the support vector machine algorithm. So, in this case the
hyper parameter tuning stage will find the best combination
of parameters from values given at line 4.

6) Prediction: After the model is trained and evaluated,
the model is used to predict new input data. Questions in this
category are about problems faced by the developers during
prediction and include the following subcategories.

Prediction accuracy. The discussions related to prediction
accuracy, e.g. due to overfitting, are placed into this category.

Model reuse. Developers might have difficulty in reusing
existing models with their own datasets for prediction to make
use of the state of the art models from well-known providers.

Robustness. Questions in this subcategory concern with the
stability of the models with slight changes, which could be
noise, in the datasets.

B. Manual Labeling

Manual labeling of the Q&A dataset was the most important
(and time-consuming) step before our analysis. To make
the manual labeling bias-free we recruited three participants.
Each participant had coursework in both AI and ML and
had experience using ML libraries to solve problems. Each
participant labeled all the questions producing 9,840 labels.

Participant Training. Before the labeling, the participants
were provided with the classification shown in Fig. 2. Then, a
training session was conducted where each (sub)category was
discussed and demonstrated using examples.

Labelling Efforts. First, each participant gave each ques-
tion one of the labels from top-level categories namely Non-
ML, Data Preparation, Modelling, Training, Evaluation, Tun-
ing, Prediction. Then, (s)he assigned a subcategory.

We found that, at the steady state, a participant could
label around 50-60 questions per hour. For labeling the whole
dataset consisting of 3,280 questions, each participant took
around 1 week time. In total, 168 person-hours were spent on
labeling this dataset.

Reconciling Results. After collecting labels separately from
each participant, a moderator then compared them. If there is

3

R1 R2 R3
R1 1.00 0.94 0.92
R2 0.94 1.00 0.91
R3 0.92 0.91 1.00

(a) Kappa coefficients (κ).

0.00–0.20 slight agreement
0.21–0.40 fair agreement
0.41–0.60 moderate agreement
0.61–0.80 substantial agreement
0.81–1.00 perfect agreement

(b) Interpretation of κ value.

Fig. 3: Cohen’s kappa coefficients for labeling process.

an inconsistency between participants for a question, the mod-
erator created an issue in a repository for resolution. Among
all 3,280 questions, 177 (5%) needed further discussion.

Then, the three participants had two in-person meetings
to discuss those 177 questions. The participants read the
questions carefully again and voted individually. If the votes
matched we accepted those as resolved, otherwise participants
discussed the reasons behind choosing a label and tried to
achieve consensus. In most cases, the opinions differed due
to the ambiguous nature of the questions. For example, for a
question asking about suboptimal accuracy, it was difficult to
say from the question without deeper observation whether it
is talking about accuracy in the prediction stage or accuracy
in the training or evaluation stage. We resolved these type
of questions by carefully analyzing the text and manually
inferring based on the description.

We measured the inter-participant agreements using Cohen’s
kappa coefficient (κ) as shown in Fig. 3a. It measures the
observed level of agreement between raters of a particular
set of nominal values and corrects for agreements that would
appear by chance. The interpretation of κ’s values is shown
in Fig. 3b. From Fig. 3a, we see that the kappa coefficient
between all the raters involved in the labeling process is more
than 0.9 indicating perfect agreements.

III. INTRA-LIBRARY ANALYSIS

In this section, we discuss the potential strengths and
weaknesses of each library w.r.t. our classification in Fig. 2.
The statistics are shown in Table II and Table III.

1) Caffe: As shown in Table II, most of the questions
about Caffe involve modeling (32%) and training (24%).
The third largest category is data preparation (14% of the
total questions). The largest subcategory of questions for
Caffe is model creation with 26.52% questions. Even though
prediction stage has only 6% of the questions at the top-level
category, one of its subcategory, prediction accuracy, is in the
top-5 most concerned problems.

2) H2O: H2O is the library that has the least amount of
data from Stack Overflow among the 10 chosen libraries for
analysis with only 20 questions. 41% of them are about data
preparation that suggests that the design of data preparation
stage can be improved for this library or tools could be made
to ease data preparation. In the subcategories, we see data
adaptation related question appear 35.29% of the time and
the next major subcategory is model creation with 17.64%.
From the outlier analysis, H2O has much more questions in
the output interpretation and tuning strategy selection than
other libraries. That would mean that its library users could

benefit from improved APIs for hyper-tuning strategy and
displaying well-formatted results.

3) Keras: Keras is a popular deep learning library which
uses Tensorflow or Theano as backend. Keras provides a
collection of abstract APIs that hide the details of Tensorflow
or Theano computation. This library has most of the questions
on modeling (28%), followed by training (25%) and data
preparation (16%). In the subcategories, the majority of posts
are on model creation (25.88%), and several others with simi-
lar contributions: data adaptation (7.90%), prediction accuracy
(6.81%), performance (6.27%), shape mismatch (5.50%), er-
ror/exception (5.50%) and parameter selection (5.50%).

The result implies that the abstraction in Keras does not help
reduce the difficulty with modeling in Keras. More research
is needed on the abstraction strategy for ML libraries.

4) Mahout: Apache Mahout is a specialized library for per-
forming ML on clusters. This library has the most questions in
modeling stage with 44%, most of which are in model creation,
followed by data preparation with 17%. This indicates that
creation of model on clusters is comparatively more difficult.
Other than model creation the prominent subcategories for
this library are data adaptation (14.58%), prediction accuracy
(4.2%) and error/exception(4.2%). The result suggests that
much work is still needed in distributed ML.

5) MLlib: MLlib is another prominent library for distributed
ML. This library has the highest percentage of questions on
data preparation (33%). A reason could be that MLlib uses
a special data structure called resilient distributed datasets
(RDD). Most of the time developers need to be comfortable
with this format of data while using this library. Using a new
data format may also create new technical difficulty in data
preparation stage. The other prominent category is modeling
(29%). Among the subcategories, the prominent subcategories
are data adaptation (25.20%), model creation (23.52%) and
error/exception (5.88%).

6) scikit-learn: scikit-learn is a popular ML library in
Python. Though it is not used for deep learning, its use
for regression, supervised and unsupervised learning, and
recommendation related tasks are well known. This library
provides abstract APIs that hides the details of ML. In our
study, the majority of questions about scikit-learn were about
data preparation (26%), modeling (25%), and training (18%).
Here again, we could see that abstractions does not resolve
the problems on modeling, data preparation and training for
this library either. It would suggest that hiding all the details
of ML tasks using abstract APIs might create difficulties
in tracing and debugging when the models are not learning
properly or over-fitting.

We also notice from outlier analysis that scikit-learn has
more questions in model creation and tuning parameter se-
lection than others. scikit-learn provides a lot of optional
parameters to be selected in their APIs, whose values are hard
to select yet affect accuracy. That could be the reason why its
users have more difficulties in selecting parameters. This calls
for research on designing APIs for parametric ML.

4

TABLE II: Percentage of questions in each top-level category across libraries (in %).

Caffe H2O Keras Mahout MLlib scikit-learn Tensorflow Theano Torch Weka Q1 Q3 IQR Median SD
Data preparation 14.0 41.0 16.0 17.0 33.0 26.0 16.0 17.0 23.0 30.0 16.5 29.0 12.5 20.0 8.7
Modelling 32.0 24.0 28.0 ∗44.0 29.0 25.0 27.0 27.0 33.0 20.0 26.5 31.2 4.7 27.0 5.5
Training 24.0 18.0 25.0 8.0 15.0 18.0 21.0 16.0 20.0 12.0 15.0 20.7 5.7 18.0 4.7
Evaluation 1.0 6.0 8.0 4.0 7.0 9.0 9.0 3.0 3.0 10.0 3.5 8.3 4.8 6.0 2.9
Tuning 1.0 ∗6.0 0.0 0.0 2.0 ∗4.0 1.0 1.0 0.0 0.0 0.0 1.5 1.5 1.0 1.9
Prediction 6.0 0.0 10.0 4.0 6.0 7.0 4.0 2.0 2.0 11.0 2.6 6.6 4.0 5.0 3.2
Non-ML 22.0 6.0 13.0 23.0 6.0 11.0 20.0 35.0 20.0 10.0 10.3 21.4 11.1 16.0 8.6

∗ indicates the library in the column is an outlier for the category in the corresponding row. IQR = Q3−Q1: inter-quartile range. SD: standard deviation.
TABLE III: Percentage of questions in each subcategory across libraries (in %).

Caffe H2O Keras Mahout MLlib scikit-learn Tensorflow Theano Torch Weka Q1 Q3 IQR Median SD
Data adaptation 9.84 35.29 7.90 14.58 25.2 8.64 9.22 10.41 22.95 20.51 9.37 22.3 12.93 12.5 8.70
Featuring 0 5.88 1.09 0 4.20 9.34 0.74 0.52 0 4.27 0.13 4.3 4.17 0.92 3.03
Type mismatch 1.52 0 1.09 0 2.52 2.92 2.02 2.08 0 1.71 0.27 2.07 1.80 1.61 1.02
Shape mismatch 1.52 0 ∗5.50 0 0 1.86 2.62 2.08 0 0 0 2.03 2.03 0.75 1.70
Data Cleaning 1.52 0 0.55 2.10 2.52 3.62 2.09 1.60 0 3.41 0.79 2.40 1.61 1.82 1.22
Model creation 26.52 17.64 25.88 ∗43.75 23.52 21.37 23.01 23.43 22.95 21.36 21.77 25.30 3.53 23.22 6.70
Model selection 0 0 0.55 0 0.84 ∗2.10 0.60 0 0 0 0 0.58 0.58 0 0.64
Model conversion 3.79 0 0.27 0 0.84 0.33 2.25 2.60 4.91 3.41 0.24 3.21 2.97 1.54 1.71
Model load/store 1.50 5.88 1.63 0 5.04 1.75 1.94 1.01 4.91 1.71 1.55 4.20 2.65 1.73 1.88
Error/Exception 0.76 5.88 5.50 4.20 5.88 4.78 5.32 5.72 1.64 2.56 2.96 5.67 2.71 5.10 1.80
Parameter selction 9.10 5.88 5.50 0 2.52 3.97 3.74 2.60 8.20 5.13 2.89 5.78 2.89 4.50 2.60
Loss function 6.10 0 4.09 0 0.84 1.40 3.74 2.60 3.30 1.71 0.98 3.60 2.62 2.16 1.86
Optimizer 2.30 0 1.09 2.10 0 0.70 2.77 1.04 3.30 0.85 0.74 2.20 1.46 1.07 1.07
Performance 2.30 5.88 6.27 2.10 5.04 3.27 4.87 3.12 1.64 0.85 2.13 5.00 2.87 3.20 1.80
Accuracy 3.78 0 2.45 0 0.84 3.62 0.90 1.04 1.64 0.85 0.84 2.30 1.46 0.97 1.30
Eval. strategy selection 0.75 0 2.18 2.08 5.04 3.85 5.24 0 1.64 8.54 0.84 4.7 3.86 1.86 2.64
Visualization 0 0 1.63 0 0 2.68 1.65 0 0 2.68 0 1.23 1.23 0 0.95
Output interpretation 0 ∗5.88 ∗3.82 2.1 1.68 2.21 2.17 2.60 1.64 1.71 1.69 2.50 0.81 2.13 1.47
Tuning strategy selection 0.75 ∗5.88 0.27 0 1.68 3.50 0.45 1.04 0 0 0.07 1.52 1.45 0.60 1.82
Tuning param. selection 0 0 0 0 0 ∗0.81 0.08 0 0 0 0 0 0 0 0.24
Prediction accuracy 6.10 0 6.81 4.20 5.04 5.25 3.97 2.08 1.64 8.54 2.55 5.85 3.30 4.60 2.44
Model reuse 0 0 ∗1.37 0 0 0.23 0.22 0 0 ∗1.71 0 0.23 0.23 0 0.60
Robustness 0 0 1.65 0 0.84 1.28 0.30 0 0 0.85 0 0.85 0.85 0.15 0.59
Non-ML API 2.27 0 2.72 4.20 2.52 2.80 4.40 2.08 3.27 1.71 2.13 3.15 1.02 2.63 1.19
Setup 16.67 5.88 9.53 18.75 2.52 5.95 14.50 30.72 16.39 7.69 6.39 16.60 10.21 12.05 7.90
Custom code 1.52 0 0.81 0 0.84 1.51 1.05 1.56 0 0.85 0.21 1.40 1.19 0.84 0.60
Bug ∗1.52 0 0 0 0 ∗0.23 0.07 0 0 0 0 0.06 0.06 0 0.45
∗ indicates the library is an outlier for the subcategory in the corresponding row. IQR = Q3−Q1: inter-quartile range. SD: standard deviation.

7) Tensorflow: This library, which is actively maintained by
Google, covers the highest percentage of questions in Stack
Overflow. This library comparatively faces less difficulty in
data preparation (16%) but the issues in modeling and training
take the higher share (27% and 21%, respectively). If we go
deeper into subcategories, we see that model creation (23%),
data adaptation (9.22%), error/exception (5.32%), evaluation
strategy (5.24%), performance (4.87%) and prediction accu-
racy (3.97%) are the dominant subcategories. Our conjecture
is that automatic static analysis and verification would be
helpful in designing tensor networks.

8) Theano: Theano is a deep learning library that shows
major difficulties in modeling stage (27%). Data preparation
(17%) and training (16%) follow next. Among the subcat-
egories, model creation (23.43%), data adaptation (10.41%)
and error/exception (5.72%) are the most problematic sub-
categories. This suggests that, besides tool support for data
processing and data adaptation, runtime checkers/verifiers
for Theano models are also needed.

9) Torch: Torch is also a specialized deep learning library.
For this library, modeling (33%), data preparation (23%)
and training (20%) show the highest levels of difficulties.

Among the subcategories, data adaptation (22.95%) and model
creation (22.95%) are the most problematic subcategories.

10) Weka: Weka is a popular data mining and ML library
for Java. This library has the highest volume of posts about
the data preparation (30%), most of which are about data
adaptation. This is much higher than the median for data
preparation of all the libraries (20%). Weka uses a custom
data format called ARFF. This would suggest that using a
custom data format introduces additional technical difficulty
in the data preparation stage like in MLlib. So when a custom
data format is used automatic conversion with correctness
guarantee should also be provided to the developers. This
can be a direction of research for both software and data
engineering researchers. The next dominant stage is modeling
(20%). Training stage for Weka looks comparatively better:
12% compared to the median among all libraries of 18%.

IV. INTER-LIBRARY ANALYSIS

In this section, we present our analysis and observations
across ML libraries. We study the strengths and weaknesses
of different ML libraries in terms of each of the top-level

5

categories defined in Fig. 2. The distribution of questions over
stages of all libraries are shown in Table II and Table III.

A. Data Preparation

1) Data adaptation: As shown in Table III, the percentages
of questions about data adaptation across libraries have SD
of 8.70% and IQR of 12.93% which indicates a considerable
variation across the libraries. We also see that the libraries like
H2O, Torch and Weka have respectively 35.29%, 22.95% and
20.51% of questions related to using library APIs to adapt data
to pipelines. That shows significant difficulties and would call
for research effort to improve this stage. We also see questions
about Weka’s custom data format to which developers are not
familiar. This leads us to the first finding and implication.

Finding 1: H2O, Torch and Weka have 35.29%, 22.95%
and 20.51% of posts, respectively, about data adaptation.
Implication: The tradeoff in the design of data prepara-
tion APIs, e.g. use of custom formats, needs more study.

2) Featuring: From Table III, percentages of questions
related to feature extraction/selection has SD of 3.03%, median
of 0.92% and IQR of 4.17%. Among the libraries, users of
scikit-learn have the most questions of 9.34% even though
this library has APIs for auto-selecting features. H2O, Weka
and MLlib follow with 5.88%, 4.27% and 4.20%, respectively.
This suggests that existing feature extraction/selection support
might not yet be sufficient to ease the ML practice. Surpris-
ingly, Tensorflow users have comparatively fewer difficulties in
data preparation, especially in feature engineering. The reason
could be attributed to multiple adapters Tensorflow provides
to read and store dataset. The dataset is stored as elements
with the same size and each element can contain one or more
Tensor objects. Each Tensor object also has type and shape
information added to it. Using Tensor objects and providing
functionality to read raw data and forming dataset using Tensor
objects reduces adaptation and data cleaning related errors.

Finding 2: scikit-learn has the highest number of posts
on feature selection/extraction subcategory (9.34%).
Implication: Blackbox abstraction for feature selec-
tion/extraction APIs may not be suitable for ML libraries.

3) Type mismatch: Type mismatch questions have median
of 1.61%, SD of 1.02%, and IQR of 1.80%. The smaller
IQR indicates that type mismatch appears in most of the
libraries. scikit-learn, MLlib, Theano and Tensorflow have
higher difficulties in type-related problems with 2.92%, 2.52%,
2.08% and 2.02%, respectively. MLlib uses a custom data
format called RDD that seems to make type-related problems
more common to this library. There are also questions about
failures due to type mismatch in scikit-learn, Tensorflow and
Theano as their APIs have type requirements that are not
currently checked. A static analysis tool might be able to
prevent the majority of these problems.

Fig. 4: Question 40430186: An example showing dimension
or shape mismatch problem in training in ML.

Finding 3: Type mismatches appear in most ML libraries.
Implication: Type checkers are desirable for ML libraries.

4) Shape mismatch: Shape mismatch related questions have
median of 0.75%, SD of 1.70%, and IQR of 2.03%. This
problem appears in all deep learning library in which Keras
is an outlier with 5.50%. In these libraries, shapes of neurons
at adjacent layers must be compatible otherwise the library
will throw exceptions during training or fail during prediction.
Such a problem is shown in Fig. 4.

Abstract APIs that hide the details of inner-working of the
deep networks can further complicate matters. To illustrate
consider the following Keras code.

1 def CreateModel(shape):
2 if not shape:
3 raise ValueError(’Invalid shape’)
4 logging.info(’Creating model’)
5 model = Sequential()
6 model.add(LSTM(4, input shape=(31, 3)))
7 model.add(Dense(1))
8 model.compile(loss=‘mean squared error’, optimizer=‘adam’)
9 return model

The error is at line 6 where an invalid value of (31, 3) is
passed to input shape. The accepted answer suggests that
input shape should be (32, 1) instead. The user could not
verify statically whether the built network is matching in shape
or there is any unconnected or extra port while building the
model. If we had the tools that could tell the developer that
using dimension (32,1) can cause 2 out of 3 ports of the next
layer to be unconnected then it would be much easier for
the developer to find these errors by themselves. This kind of
errors could be detected by program analysis and by providing
feedback to the users. In fact, many discussions in these high-
scored posts call for richer analysis features.

Finding 4: Shape mismatch problems appear in higher
percentage in deep learning libraries. Keras is an outlier
in this sub category with 5.5% of posts.
Implication: Tool support for verifying shape and dimen-
sion compatibility is needed for deep learning libraries.
Dependency of data on model architecture needs to be
verified and dynamic modification of the network as per
data shape may be needed.

5) Data Cleaning: As shown in Table III, data cleaning
related questions across the libraries have median of 1.82%,
SD of 1.22% and IQR of 1.61%. Most of the libraries have
questions about data cleaning stage except for H2O and Torch.
In fact, this is obviously needed step in any data science
pipelines. Libraries scikit-learn, Weka and MLlib have the
most questions with 3.62%, 3.42% and 2.52%, respectively.
The abstract APIs in these libraries sometimes make cleaning
fail. For example, the nan values in the dataframe needs

6

https://stackoverflow.com/questions/40430186

Fig. 5: Question 12319454: An example question on model
creation for doing machine learning in cluster using Mahout.

to be converted first into numpy nan type before they can
be cleaned using APIs provided by scikit-learn. Furthermore,
these failures do not clearly indicate the root cause making
diagnostics difficult.

Finding 5: Most libraries have problems in data cleaning.
Implication: Data cleaning needs verification tools to en-
sure that all required steps in the process are performed.

B. Modeling

This category has the most questions in our study with
median of 27%. We now present observations about its sub-
categories.

1) Model creation: As shown in Table III, questions about
model creation has median of 23.22%, SD of 6.70% and IQR
of 3.53% which indicates that all libraries have major problems
in this step. Mahout is an outlier with almost half number of
questions about this. Since Mahout is used for ML on clusters,
this could be attributed to the difficulty in creating models on
clusters or doing distributed ML.

Fig. 5 shows an example question asking about creating a
MapReduce version of a model in Mahout.

Deep learning libraries like Caffe, Keras, Theano and
Tensorflow also have higher percentages of questions about
model creation with 26.52%, 25.88%, 23.43% and 23.01%,
respectively. This shows that model creation for deep neural
networks is difficult as well.

Finding 6: Model creation is the most challenging (yet
critical) in ML pipeline, especially for libraries supporting
distributed ML on clusters like Mahout and MLlib.
Implication: This calls for tool support in creating mod-
els, especially in distributed machine learning.

When we study the questions about Caffe we see that Caffe
users have problems in model creation due to the dependency
of the model on multiple files. To create a model successfully,
one needs to make a schema file in protobuf format, create
a solver file and write code in C++ or Python to build the
model [2]. Having several components complicates matters.
In our study, 36 out of 135 questions about Caffe are about
model creation problems.

Finding 7: Multilingual form complicates model creation.
Implication: Monolingual model form need to be studied.

2) Model selection: This subcategory has fewer questions
than others with median of 0%. scikit-learn is an outlier
with 2.10%. While scikit-learn APIs abstracts the details
of underlying ML algorithms, it does not provide enough
guidelines on which model would be the best for given data.

Finding 8: scikit-learn has abnormally high percentage
of questions about model creation compared to other
libraries due to its lack of guidelines for model selection.
Implication: Recommendation support would be helpful
in selecting models.

3) Model conversion: Converting models trained using one
library and using it with another library is a common problem.
Some libraries provide support to convert model for use with
other libraries but such support is not always adequate. The
developers often have questions about reusing trained models
in other platforms. Percentages of question in this subcategory
have median of 1.54%, SD of 1.71% and IQR of 2.97%.
Torch, Caffe, Weka lead this subcategory with 4.91%, 3.79%
and 3.41%, respectively. This suggests that interoperability of
models across libraries is needed.

4) Model Load/Store: Loading/Storing model has mean of
2.54, SD of 1.87 and IQR of 2.62 across the libraries. H2O and
MLlib leads this category with 5.88% and 5.02% respectively.

C. Training

We now present observations about the training category
that has on average 18% questions across libraries.

1) Error/Exception: Error/Exception subcategory has the
median of 5.10%, SD of 1.80% and IQR of 2.71%. All the
libraries have issues on runtime error/exception. Surprisingly,
though model creation seems problematic in Caffe, runtime
failure is very low in Caffe with 0.76%. MLlib, H2O, Keras,
Tensorflow and scikit-learn have higher percentage of runtime
errors with 5.88% and 5.88%, 5.50%, 5.32% and 4.78%,
respectively. This suggests that debugging and monitoring
facilities for ML needs much improvement to help developers
resolve error/exception independently.

Finding 9: Questions on exceptions/errors are prevalent.
Implication: Deep learning and distributed ML libraries
show more error at training time. This indicates static and
dynamic analysis tools are needed for such libraries.

We have observed that the lack of rich and interactive
debugging tools makes building ML models difficult. A num-
ber of problems faced by developers, e.g. when a model
is throwing an exception at training time, a model is not
converging or learning as the iteration of training goes on, a
model is not predicting well, etc, can be minimized to a great
extent with effective debugging tools. Fortunately, some recent
work has started to address these issues [11], [31], but much
more work is needed. Due to the lack of debugging tools to
monitor pipelines causes of failure are hard to identify. More
abstract deep learning libraries throw more runtime exception
during training, e.g. see Figure 6.

7

https://stackoverflow.com/questions/12319454

Fig. 6: Question 45030966: An example question about Keras
showing abstraction in deep learning libraries could lead to
misuse and error-prone development.

2) Parameter selection: Questions about parameter selec-
tion have median of 4.50%, SD of 2.60% and IQR of 2.89%.
This shows a wide variation between libraries. Caffe and Torch
have comparatively more problems with 9.10% and 8.20%,
respectively. Libraries like Keras, Weka, H2O, MLlib shows
larger percentage of questions on choice of parameters.

Finding 10: Parameter selection can be difficult.
Implication: Meta-heuristic strategies can be helpful.

3) Loss function: Choice of Loss function has the median
of 2.16%, SD of 1.86% and IQR of 2.62%. This shows that
the loss function choice varies across the libraries. All deep
learning libraries like Caffe, Keras, Tensorflow and Torch have
the highest percentages of 6.10%, 4.09%, 3.74% and 3.30%,
respectively. This indicates necessity of further research on the
usage of loss function in deep learning libraries.

Finding 11: Choice of loss function is more problematic
in deep learning libraries.
Implication: This indicates the necessity to develop
automatic suggestion algorithms and tools for selecting
function for deep learning.

4) Optimizer: Optimizer subcategory has median of 1.07%,
SD of 1.07% and IQR of 1.46% across libraries. Torch,
Tensorflow, Caffe have respectively 3.30%, 2.77% and 2.30%
of questions about optimizer which is higher compared to
other libraries. This suggests that choice of optimizer is more
relevant for the deep learning libraries.

5) Performance: This subcategory has median of 3.20%,
SD of 1.80% and IQR of 2.87%. We see that the distributed
ML and deep learning libraries like Keras, H2O, MLlib and
Tensorflow, have higher percentage of questions related to
performance having 6.27%, 5.88%, 5.04% and 4.87%, re-
spectively. Performance related problems here appear due to
runtime, memory usage and convergence.

6) Training accuracy: This subcategory has fewer ques-
tions than others with median of 0.97%. Caffe and scikit-learn
have the highest share with 3.78% and 3.62%, respectively.
scikit-learn is a library with highly abstract APIs and large
number of optional parameters to be selected. Due to the ab-
straction, the impact of parameter values on training accuracy
could be unclear to developers.

Fig. 7: scikit-learn issue #4800: An example of hyperparam-
eter tuning problem. The user filed a GitHub issue that the
library probably has a bug. However, a developer of the library
responded that the problem was with hyperparameter tuning.

Finding 12: scikit-learn and Caffe have higher percentage
of questions about training time accuracy and convergence
(3.62% and 3.78% respectively).
Implication: This indicates the necessity to embed dy-
namic analysis of learning behavior along with abstract
APIs and the development of these analysis tools.

D. Evaluation of models

This category has median of 6.0%, SD of 2.9% and IQR of
4.8%. The visualization and output interpretation subcategories
do not have enough data to make meaningful interpretations.

1) Evaluation Strategy: Selection of evaluation strategy has
median of 1.86%, SD of 2.64% and IQR of 3.86%. This
indicates that this functionality varies more across different
libraries. Weka, Tensorflow and MLlib have more questions on
evaluation strategy using the APIs having 8.54%, 5.24% and
5.04%, respectively. We believe that this might be because
these three libraries provide a rich set of features for this task.

E. Tuning

This category involves questions about selection of hyper
parameters and tuning strategies.

1) Tuning strategy selection: This subcategory has median
of 0.60%, SD of 1.82% and IQR of 1.45% suggesting a
variation. H2O is an outline in this subcategory having 5.88%
questions. We believe H2O APIs for tuning strategy selection
are newer and need improvement.

2) Tuning paramater selection: This subcategory has me-
dian of 0, SD of 0.24, and IQR of 0 because not too many
libraries have questions about it. scikit-learn and Tensorflow
are the outliers in tuning parameter category. This was ex-
pected as scikit-learn has a lot of optional parameters to be
selected and those parameters have effect on the convergence
and accuracy.

As an example, consider the API below to create
AdaBoostClassifier with 5 optional parameters initial-
ized to some default values.

1 c l a s s s k l e a r n . ensemble . A d a B o o s t C l a s s i f i e r (
2 b a s e e s t i m a t o r =None , n e s t i m a t o r s =50 , l e a r n i n g r a t e = 1 . 0 ,

a l g o r i t h m = ’SAMME. R ’ , r andom s ta t e =None)

The base estimator is set to None but the user may
need to choose an estimator to get the best performance.
Learning rate is by default set to 1.0. At this learning rate,
it is highly likely that the model will not learn anything. So
the user may often use these APIs incorrectly and wonder
why ML model is not producing the useful result. Since these

8

https://stackoverflow.com/questions/45030966
https://github.com/scikit-learn/scikit-learn/issues/4800

are optional parameters, the user will not even get any error
or warning. Finding good values for these parameters and
tuning them to make the best model, avoiding over-fitting are
frequent questions among developers using scikit-learn. There
have been some GitHub issues filed to the repository of scikit-
learn as bugs (See Fig. 7 for an example) but the underlying
problem was that the developer was not able to trace why the
model is not showing expected accuracy, and unable to tune
hyperparameters. We have found 36 questions out of 849 in
scikit-learn asking help about hyperparameter tuning.

Finding 13: scikit-learn has more difficulty in hyper
parameter tuning compared to other libraries
Implication: Due to the presence of a lot of optional
parameters in the APIs, the tuning of these parameters is
more problematic than other libraries. This gives intuition
of having tools to suggest parameters that may have effect
on a particular model and particular problem.

F. Prediction

1) Prediction Accuracy: Questions about prediction accu-
racy across the libraries have median of 4.60%, SD of 2.44%
and IQR of 3.30%. Libraries with abstract APIs like Weka,
Keras, Caffe, scikit-learn and MLlib have the highest volume
of questions with 8.54%, 6.81%, 6.10%, 5.25% and 5.04%,
respectively. Though Caffe has fewer questions in model
creation, it has higher difficulties in prediction stage.

2) Model reuse: This subcategory has median of 0%, SD
of 0.60% and IQR of 0.23%. Keras and Weka are outliers with
1.37% and 1.71% of questions about model reuse.

3) Robustness: This subcategory has median of 0.15%, SD
of 0.59%, and IQR of 0.85%.

For both model reuse and robustness subcategories, devel-
opers are just becoming aware of the possibility and seeking
clarifications about it.

G. API Misuses in All the Stages of ML Pipelines

The ML libraries have APIs that are very often misused.
API misuse is seen across all the stages of ML pipeline. The
general guideline of API misuse happens in the APIs at almost
all stages of the ML pipeline.

For example, see Figure 8 where a user is asking that their
training takes much time or longer number of iterations to get
a certain training accuracy. When they use one API they are
able to achieve the desired accuracy in 5 iterations where in the
other API they need 60 iterations to reach the same accuracy.
The second API works fine, without any error and eventually
reaches the same accuracy. But still, the user is puzzled that
almost 12 times higher number of iterations are required when
using the second API. The answer in Figure 8b suggests
that the second API needs the data to be shuffled properly
before passing to the API in every iteration. Making that
change solves the performance problem. This is an example of
API misuse where the precondition of the second API is not
satisfied which leads to a performance bottleneck. For another
example, let’s consider a problem related to the creation of a

(a) Question

(b) Best accepted answer

Fig. 8: Question 24617356: An example showing the API
misuse problem in ML libraries. Code snippets are omitted.

NaiveBayes model. Only a part of the code snippet where API
misuse occurred is shown below:

1 def convert to csr matrix(vectors):
2 logger.info(”building the csr sparse matrix representing tf−idf”)
3 row = [[i] ∗ len(v) for i, v in enumerate(vectors)]
4 row = list(chain(∗row))
5 column = [j for j, in chain(∗vectors)]
6 data = [d for , d in chain(∗vectors)]
7 return csr matrix((data, (row, column)))

The code failed to work successfully giving dimension
mismatch error in some parts of the code. The solution to
the problem is to properly use the API csr matrix(). This
API needs to have a shape parameter defined explicitly and
the correct way to use the API is to explicitly define the shape
shown in the code below.

1 return csr matrix((data, (row, column)), shape=(len(vectors), dimension))

We have observed another kind of API misuse due to API
update by the library provider. To illustrate, consider the code
below that worked well in Apache Spark MLlib version <
2.0. For Apache Spark version >= 2.0, this API doesn’t work.
This is one of the top voted questions on Apache Spark MLlib
category.

1 from pyspark.mllib.clustering import KMeans
2 spark df = sqlContext.createDataFrame(pandas df)
3 rdd = spark df.map(lambda data: Vectors.dense([float(c) for c in data]))
4 mdl = KMeans.train(rdd, 2, maxIterations=10, runs=30, initializationMode=”random”)

Since version 2.0 the code at Line 3 became invalid and the
valid API call is the following

1 rdd = spark df.rdd.map(lambda data: Vectors.dense([float(c) for c in data]))

We have found that similar version incompatibility problems
are also prevalent in other ML libraries.

Besides, the API misuse scenarios discussed above, many
other kinds of API misuse are common in ML libraries,
and a more detailed analysis and categorization of errors is
needed (much like MUBench [3]). Some common problems
include failure to find important features, improperly preparing
the dataset, performance, over-fitting problems, suboptimal
prediction performance, etc. A detailed analysis of API misuse
is beyond the scope of this work.

9

https://stackoverflow.com/questions/24617356

H. Grouping Libraries

We studied the libraries to see if there is some similarity of
patterns among the libraries compared by the distribution of
problems at different stages.

Fig. 9: Correlation between distributions of percentage of
questions over stages of the libraries.

From the chart in Fig. 9, we group the libraries into the
following categories:

Group 1. Weka, H2O, scikit-learn, and MLlib form a
strongly correlated group with correlation coefficient greater
than 0.84 between the pairs. Other than H2O, other libraries in
this category are not used for deep learning. This suggests that
the problems appearing in these libraries have some correlation
and the difficulties of one library can be described by the
difficulty of other libraries in the group.

Finding 14: Weka, H2O, scikit-learn, MLlib form a strong
correlated group with correlation coefficient greater than
0.84 between the pairs.
Implication: Analysis framework for one library can be
reused in other library in this group.

Group 2. Torch, Keras, Theano, and Tensorflow form
another group with strong correlation of more than 0.86
between the pairs. These libraries are specialized for deep
learning. This suggests that deep study of one library can also
be useful in the analysis for other deep learning libraries. It
means that the problems are cross related to the libraries for
this category.

Finding 15: Deep learning libraries
Torch, Keras, Theano and Tensorflow form another
group with strong correlation of more than 0.86 between
the pairs
Implication: Problems of deep learning libraries currently
follow a common pattern which can be leveraged by
developing analysis framework for one library and
studying how much solution is transferable from one
library to another library.

V. RELATED WORK

Stack Overflow is the widely used platform to study the
software engineering practice from the developer’s perspective.
Meldrum et. al. [21] studied 266 papers using Stack Overflow
platforms to show the growing impact of Stack Overflow
on software engineering research. Treude et. al. [32] did a
manual labeling of 385 questions to manually classify 385
questions into 10 different categories (how-to, discrepancy,
environment, error, decision help, conceptual, review, non-
functional, novice, and noise) to identify the question types.
This study is useful to learn the general categories of questions
asked by developers. Kavaler et. al. [17] used Stack Overflow
data to study the queries on APIs used by Android developers
and showed the correlation between APIs used in producing
Apps in the market and the questions on APIs asked by
developers. Linares-Vásquez et. al. [19] studied the effect of
the changes in Android API on the developer community. They
used the discussions arising on Stack Overflow immediately
after the API is changed and behavior of the API is modified
to study the impact of the change among the developers. Barua
et. al. [5] studied the Stack Overflow posts and used LDA topic
modeling to extract topics to study the trend of different topics
over time. Rebouças et. al. [25] studied the usage pattern of
swift programming language among developers using Stack
Overflow data. Schenk et. al. [27] studied the geographical
distribution of usage and knowledge of different skills using
Stack Overflow posts and users data. Stanley et. al. [30]
proposed a technique based on the Bayesian probabilistic
model to predict the tags of a Stack Overflow post. McDonnel
et. al. [20] presented a study of API stability using Stack
Overflow data and as a test case they used Android Ecosystem.
Baltadzhieva et. al. [4] proposed a technique to predict the
quality of a new Stack Overflow question. Joorabchi et. al. [16]
studied the challenges faced by computer science learners in
different topics and subjects using the Stack Overflow data.
However, existing work has not studied the usage of ML
libraries using Stack Overflow.

VI. CONCLUSION

This work is motivated by the need to improve the usage
of ML libraries in practice. To understand the problems, we
retrieved a significant dataset of Q&A from Stack Overflow,
classified these questions into categories and subcategories and
performed analysis within a library and across libraries. We
came across some expected findings, e.g. static and dynamic
analysis are needed debugging support is sorely missed, and
API misuse is prevalent. Somewhat surprisingly, higher-level
of abstractions, at least in their traditional form, seem to com-
plicate matters for ML developers. Initial evidence suggests
that visibility into the abstractions is often necessary, and
thus opaque abstractions could be problematic, but further
study is needed to understand the phenomenon, and to suggest
the remedy. Last but not least, model reuse across libraries
is needed. We call SE researchers to action to solve these
problems as development and refinement of software with ML
components is likely to be routine in the next decade.

10

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Alexandr Honchar. Using Caffe with your own
dataset, 2017. https://medium.com/machine-learning-world/
using-caffe-with-your-own-dataset-b0ade5d71233.

[3] Sven Amann, Sarah Nadi, Hoan A. Nguyen, Tien N. Nguyen, and
Mira Mezini. Mubench: A benchmark for api-misuse detectors. In
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, pages 464–467, New York, NY, USA, 2016.
ACM.

[4] Antoaneta Baltadzhieva and Grzegorz Chrupała. Predicting the quality
of questions on stackoverflow. In Proceedings of the International
Conference Recent Advances in Natural Language Processing, pages
32–40, 2015.

[5] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are
developers talking about? an analysis of topics and trends in stack
overflow. Empirical Software Engineering, 19(3):619–654, 2014.

[6] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin,
Razvan Pascanu, Olivier Delalleau, Guillaume Desjardins, David Warde-
Farley, Ian Goodfellow, Arnaud Bergeron, et al. Theano: Deep learning
on gpus with python. In NIPS 2011, BigLearning Workshop, Granada,
Spain, volume 3. Citeseer, 2011.

[7] Joshua Bloch. How to design a good api and why it matters. In
Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications, pages 506–507.
ACM, 2006.

[8] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley.
What’s your ml test score? a rubric for ml production systems. In NIPS
Workshop on Reliable Machine Learning in the Wild, 2016.

[9] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa,
Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer,
Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas,
Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pages 108–122, 2013.

[10] Arno Candel, Viraj Parmar, Erin LeDell, and Anisha Arora. Deep
learning with h2o. H2O. ai Inc, 2016.

[11] Aleksandar Chakarov, Aditya Nori, Sriram Rajamani, Shayak Sen, and
Deepak Vijaykeerthy. Debugging machine learning tasks. arXiv preprint
arXiv:1603.07292, 2016.

[12] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
[13] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular

machine learning software library. Technical report, Idiap, 2002.
[14] Geoffrey Holmes, Andrew Donkin, and Ian H Witten. Weka: A machine

learning workbench. In Intelligent Information Systems, 1994. Proceed-
ings of the 1994 Second Australian and New Zealand Conference on,
pages 357–361. IEEE, 1994.

[15] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings
of the 22nd ACM international conference on Multimedia, pages 675–
678. ACM, 2014.

[16] Arash Joorabchi, Michael English, and Abdulhussain E Mahdi. Text
mining stackoverflow: An insight into challenges and subject-related
difficulties faced by computer science learners. Journal of Enterprise
Information Management, 29(2):255–275, 2016.

[17] David Kavaler, Daryl Posnett, Clint Gibler, Hao Chen, Premkumar
Devanbu, and Vladimir Filkov. Using and asking: Apis used in the
android market and asked about in stackoverflow. In International
Conference on Social Informatics, pages 405–418. Springer, 2013.

[18] kdnuggets. Top 15 Frameworks for Machine Learn-
ing Experts, 2016. https://www.kdnuggets.com/2016/04/
top-15-frameworks-machine-learning-experts.html.

[19] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Denys Poshyvanyk. How do api changes trigger stack

overflow discussions? a study on the android sdk. In proceedings of
the 22nd International Conference on Program Comprehension, pages
83–94. ACM, 2014.

[20] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study
of api stability and adoption in the android ecosystem. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on,
pages 70–79. IEEE, 2013.

[21] Sarah Meldrum, Sherlock A Licorish, and Bastin Tony Roy Savarimuthu.
Crowdsourced knowledge on stack overflow: A systematic mapping
study. In Proceedings of the 21st International Conference on Evaluation
and Assessment in Software Engineering, pages 180–185. ACM, 2017.

[22] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, et al. Mllib: Machine learning in apache spark. The Journal
of Machine Learning Research, 17(1):1235–1241, 2016.

[23] Sean Owen and Sean Owen. Mahout in action. Manning Shelter Island,
NY, 2012.

[24] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. Journal of machine learning research, 12(Oct):2825–2830,
2011.

[25] Marcel Rebouças, Gustavo Pinto, Felipe Ebert, Weslley Torres, Alexan-
der Serebrenik, and Fernando Castor. An empirical study on the usage
of the swift programming language. In Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd International Conference
on, volume 1, pages 634–638. IEEE, 2016.

[26] Tirath Prasad Sahu, Naresh Kumar Nagwani, and Shrish Verma. Se-
lecting best answer: An empirical analysis on community question
answering sites. IEEE Access, 4:4797–4808, 2016.

[27] Dennis Schenk and Mircea Lungu. Geo-locating the knowledge transfer
in stackoverflow. In Proceedings of the 2013 International Workshop
on Social Software Engineering, pages 21–24. ACM, 2013.

[28] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Cre-
spo, and Dan Dennison. Hidden technical debt in machine learning
systems. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15, pages 2503–2511,
Cambridge, MA, USA, 2015. MIT Press.

[29] D Sculley, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael
Young. Machine learning: The high-interest credit card of technical debt,
2014.

[30] Clayton Stanley and Michael D Byrne. Predicting tags for stackoverflow
posts. In Proceedings of ICCM, volume 2013, 2013.

[31] Tensorflow. Debugging TensorFlow Programs, 2016. https://www.
tensorflow.org/programmers guide/debugger.

[32] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do
programmers ask and answer questions on the web?: Nier track. In
Software Engineering (ICSE), 2011 33rd International Conference on,
pages 804–807. IEEE, 2011.

[33] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study
on developer interactions in stackoverflow. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pages 1019–1024.
ACM, 2013.

[34] Wei Wang and Michael W Godfrey. Detecting api usage obstacles: A
study of ios and android developer questions. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages 61–
64. IEEE Press, 2013.

[35] Jie Yang, Ke Tao, Alessandro Bozzon, and Geert-Jan Houben. Sparrows
and owls: Characterisation of expert behaviour in stackoverflow. In
International Conference on User Modeling, Adaptation, and Personal-
ization, pages 266–277. Springer, 2014.

[36] Yufeng Guo. The 7 Steps of Machine
Learning, 2017. https://towardsdatascience.com/
the-7-steps-of-machine-learning-2877d7e5548e.

[37] Yang Zhang, Gang Yin, Tao Wang, Yue Yu, and Huaimin Wang. Evalu-
ating bug severity using crowd-based knowledge: An exploratory study.
In Proceedings of the 7th Asia-Pacific Symposium on Internetware, pages
70–73. ACM, 2015.

11

https://medium.com/machine-learning-world/using-caffe-with-your-own-dataset-b0ade5d71233
https://medium.com/machine-learning-world/using-caffe-with-your-own-dataset-b0ade5d71233
https://github.com/fchollet/keras
https://www.kdnuggets.com/2016/04/top-15-frameworks-machine-learning-experts.html
https://www.kdnuggets.com/2016/04/top-15-frameworks-machine-learning-experts.html
https://www.tensorflow.org/programmers_guide/debugger
https://www.tensorflow.org/programmers_guide/debugger
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e

	Introduction
	Methodology
	Classification of Questions
	Data Preparation
	Modelling
	Training
	Evaluation
	Hyper-parameter Tuning
	Prediction

	Manual Labeling

	Intra-Library Analysis
	Caffe
	H2O
	Keras
	Mahout
	MLlib
	scikit-learn
	Tensorflow
	Theano
	Torch
	Weka

	Inter-Library analysis
	Data Preparation
	Data adaptation
	Featuring
	Type mismatch
	Shape mismatch
	Data Cleaning

	Modeling
	Model creation
	Model selection
	Model conversion
	Model Load/Store

	Training
	Error/Exception
	Parameter selection
	Loss function
	Optimizer
	Performance
	Training accuracy

	Evaluation of models
	Evaluation Strategy

	Tuning
	Tuning strategy selection
	Tuning paramater selection

	Prediction
	Prediction Accuracy
	Model reuse
	Robustness

	API Misuses in All the Stages of ML Pipelines
	Grouping Libraries

	Related Work
	Conclusion
	References

