
A Case for Explicit Join Point Models for Aspect-Oriented
Intermediate Languages

Hridesh Rajan
Iowa State University
hridesh@iastate.edu

Abstract
Aspect-oriented languages mostly employ implicit language-
defined join point models, wherewell-definedpoints in the program
are called join points and declarative predicates are used to quan-
tify them. The primary motivation for using an implicit join point
model is obliviousness and ease of quantification. A design choice
for aspect-oriented intermediate languages is to mirror the source
language model. In this position paper, I argue that an explicit join
point model is better suited at the intermediate language level and
sketch a preliminary solution.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features - Control structures;
D.3.4 [Programming Languages]: Processors-runtime environ-
ments

General Terms Languages

Keywords Aspect-oriented intermediate languages, explicit join
point models, implicit join point models, Nu AO intermediate lan-
guage

1. Introduction
Aspect-oriented (AO) languages based on static compilation mod-
els such as AspectJ [17], Eos [23], etc have shown the poten-
tial to provide significant modularity benefits. Support for aspect-
orientation in virtual machines and intermediate languages open
new avenues. A key benefit is to preserve separation of concerns
beyond compilation [21], which in turn promises to simplify devel-
opment processes such as incremental compilation, debugging, etc.
More optimization opportunities also open up as shown by Bock-
isch et al in their recent work [4].

The design of AO intermediate languages has also received
some attention recently. Abstractions provided by enhanced inter-
mediate language designs promise to preserve the separation of
concerns achieved by AO source languages at the object code level.
For example, one such language design discussed in our previous
work [21,22] onNuextends existing intermediate languages to in-
clude two new AO invocation primitives. We demonstrated that the
Nu AO intermediate language allowed design modularity to main-
tained even at the object code level. All common advising struc-
tures in prevalent aspect-oriented (AO) mechanisms [9, 15] could

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Workshop VMIL ’07 March 12-13, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 1-59593-661-5/07/03. . . $5.00.

be modeled as simple combinations of these two invocation primi-
tives.

The purpose of this position paper is to direct attention at an-
other important aspect of the intermediate language design: the join
point model. A point in the execution of a program is called a join
point in the popular terminology of aspect-oriented languages. A
method for selecting a subset of these join points is called quan-
tification. The notion of quantifiable join points [10, 12] is central
to the notion of aspect-orientation [9, 16]. The AspectJ program-
ming guide [3], for example, defines a join point as a new concept
and explains that it is awell-definedpoint in the execution of the
program. Others often define a join point as an implicitlanguage-
definedpoint in the execution of the program. I argue that an ex-
plicit join point model is more suitable for an AO intermediate lan-
guage design, instead of an implicit language-defined model.

2. Rationale for a Language-Defined Implicit
Join Point Model

The primary rationale for a language-defined join point model is
obliviousness[10,11]. Obliviousness is a widely accepted tenet for
aspect-oriented software development. In an oblivious AOSD pro-
cess, the designers and developers of base code need not be aware
of, anticipate or design code to be advised by aspects. This crite-
rion, although attractive, has been questioned by others for vari-
ous reasons and there is at least some consensus among researchers
that complete obliviousness between base and aspect designers and
developers may be a mirage [2, 5, 6, 8, 13, 18, 25]. Tools such as
AspectJ Development Tools (AJDT) alleviate the problem [1] but
do not completely solve it. Nevertheless, the notion of oblivious-
ness appears to have significant influence on the design of aspect-
oriented languages. A language-defined implicit join point model
promotes obliviousness in that it allows aspect developers to quan-
tify join points without requiring the base code developers to de-
clare them.

The implicit language-defined join point model wins hands
down with respect to the ease of the first time implementation. It
is definitely much easier compared to manual join point selection
(e.g. by placing annotation on join points) for the programmer to
select join points for advising. By just writing simple declarative
expression, they can select join points throughout the code base.
In the next section, I discuss the design rationale for employing an
explicit join point model in the intermediate language design.

3. Rationale for Explicit Join Point Models
In this section, I discuss the rationale for an explicit join point
model in AO intermediate languages. In particular, I describe two
important goals: extensibility, and the need for a mechanism to
make reflective information available at a join point.

3.1 Extensibility

Virtual machines and intermediate language designs are often sub-
ject to standardization, which makes it extremely hard to change
them. On the other hand, language designs often evolve to incor-
porate experimental ideas and constructs. For example, new join
points are proposed to address use cases that the traditional join
point model was not able to address [14, 24]. Other use cases are
also documented, where desirable join points were not quantifiable
in the current models: for example, in the context of the AO design
of the Hypercast system, Sullivanet al [25] observed thatmany join
points that have to be advised in the same way cannot be captured
by a quantified PCD, e.g., using wild-card notations. A separate
PCD is required for each join point. There were about 180 places
in the base code where logging was required. Most of the join points
do not follow a common pattern. Not only is there a lack of mean-
ingful naming conventions across the set of join points, but also
variation in syntax: method calls, field setting, etc.[25, pp. 170]
These use cases will serve to fuel the evolution of the join point
model at the source language level.

Adopting an implicit language model at the intermediate lan-
guage level will restrict the design space of aspect-oriented source
languages. Either the language designer will have to wait for the
intermediate language designs to evolve to support new join points
or they will emulate them using existing models thereby sacrificing
the benefits of deeper support at the virtual machine and interme-
diate language level. Therefore, a key goal for an intermediate lan-
guage design is extensibility. An explicit join point model, where
join points in the intermediate code are precisely marked by the
compiler, is likely to be more extensible compared to an implicit
model. Such an implicit model will also need a precisely defined
semantics and enforcement mechanism to rule out locations in the
object code that may not be marked as join points.

3.2 Uniform Reflective Information

Current aspect languages provide an interface for accessing con-
textual (or reflective) information about a join point. An aspect can
access the contextual information at the join point using pointcuts
such asthis to access the executing object (this), targetto access the
target object (such as thetargetof a call),args to access the argu-
ments at a join point, etc. Alternatively, one can explicitly marshal
this information from animplicit argument, often calledthisJoin-
Point, available to the advice, where other miscellaneous informa-
tion such as source code location, name, etc, is also available.

This interface between the join point and the aspects is fixed
in current AspectJ-like languages. There are rational reasons for
such design decisions. This interface introduces coupling between
the classes and the aspects. The thinner this interface is the lower
the coupling will be, resulting in perhaps easier and independent
evolution of classes and aspects. Extending the set of language
constructs to include access to more primitives also takes away
regularity from the language design [20]. As it is, current language
constructs for retrieving contextual information are not completely
regular, e.g. this, target, and arguments are not available at all join
points [3].

In addition, others have shown that this rather limited interface
does not satisfy all usage scenarios. For example, in some cases
access to a local variable is needed [25, pp. 170] in others access
to other information such as join point specific messages for log-
ging is needed at the join points. Therefore, the source language
design may evolve to include additional reflective information. It
is therefore imperative that a more flexible method to access con-
textual information at the join point is provided at the intermediate
language level that can support these evolutions.

ExplicitJP
: .joinpoint modifier type

identifier([arguments])block
block

: {[instruction list]}

Figure 1. Abstract Syntax of Explicit Join Points

1 class Point: FigureElement {
2 ...
3 public void SetX(int x) {
4 if(this.x != x){
5 this.x = x;
6 }
7 }
8 }

Figure 2. An Example Code Snippet

1 .method public hidebysig instance
2 void SetX(int32 x) cil managed
3 {
4 // Code size 17 (0x11)
5 .maxstack 2
6 .joinpoint public void ExecutionSetX(int32 x)
7 {
8 IL_0000: ldarg.0
9 IL_0001: ldfld int32 Point::x

10 IL_0006: ldarg.1
11 IL_0007: beq.s IL_0010
12 IL_0009: ldarg.0
13 IL_000a: ldarg.1
14 IL_000b: stfld int32 Point::x
15 IL_0010: ret
16 } // end of join point execution(public void Point.SetX(int x))
17 } // end of method Point::SetX

Figure 3. An Explicitly Declared Execution Join Point

4. An Explicit Join Point Model for Intermediate
Languages

The proposed intermediate language design has two key character-
istics that serve to satisfy the goals set in the previous section. First,
it explicitly labels sections in the intermediate code that correspond
to the join point shadows, and second, it explicitly defines the types
of reflective information exposed at the join point. The view is sim-
ilar to that of Ligattiet al [19] and Clifton and Leavens [7] in their
semantics but has not appeared in language designs. Figure 1 shows
the abstract syntax.

These labels will be generated by the compilers. To model
language-defined implicit join points, the compiler would gener-
ate appropriate labels at all necessary locations (join point shad-
ows) defined by the language semantics. For example, to model
an execution join point shadow in AspectJ-like languages, the
matched method code will be labeled as shown in Figure 3. The
figure shows the intermediate code in Common Intermediate Lan-
guage (CIL) for the source code shown in Figure 2. Here the in-
termediate code for the methodSetX of classPoint is labeled as
the join pointExecutionSetX on line 6. Based on the reflective
information being used in the advice, join point only exposes the
value of the argument. It may also choose to expose reflective in-
formation as in AspectJ-like languages. The scope of the join point
is identified by the block that encompasses instructions from line 8
to line 15.

Note that these labels are not visible to the programmer; there-
fore the source language-level obliviousness is still maintained.
Moreover, explicit join point shadow makes the AO intermediate

1 .method public hidebysig instance
2 void SetX(int32 x) cil managed
3 {
4 // Code size 17 (0x11)
5 .maxstack 2
6 IL_0000: ldarg.0
7 IL_0001: ldfld int32 Point::x
8 IL_0006: ldarg.1
9 IL_0007: beq.s IL_0010

10 .joinpoint public void IfBlockInsideSetX(int32 x)
11 {
12 IL_0009: ldarg.0
13 IL_000a: ldarg.1
14 IL_000b: stfld int32 Point::x
15 } // end of join point IfBlockInsideSetX
16 IL_0010: ret
17 } // end of method Point::SetX

Figure 4. Supporting Finer-grained Join Points

language extensible in that it may now support source languages
with different join point models.

To demonstrate the extensibility of this AO intermediate lan-
guage model, let us now consider an evolutionary scenario, where
the join point model of the source language is enhanced to in-
clude conditional constructs (if, switch) as join points. Using this
enhanced model, the aspect developer chooses to select the exe-
cution of the true block (line 5 in Figure 2) of theif statement
inside the methodSetX. This statement truly represents the state
change of the Point class. The compiler for this enhanced language
model may now generate the intermediate code as shown in Figure
4. In this modified version, only the intermediate code correspond-
ing to line 5 in Figure 2 is within the scope of the new join point
IfBlockInsideSetX.

5. Conclusion
In this position paper, I argued that explicitly declared join points
are better suited for intermediate languages to support extensibil-
ity in source languages in two dimensions. First key dimension is
evolution of join point models of source languages. Second dimen-
sion is extension of the reflective information that is available at
the join point. A preliminary solution was proposed with the ex-
pectation that it will serve to generate exciting discussion during
the workshop.

Acknowledgements
The author is supported in part by National Science Foundation
grant CT-ISG 0627354 and by a generous startup grant provided
by Iowa State University. This paper draws upon the discussions
with my colleague Gary T. Leavens and my students Robert Dyer
and Juri Memmert. Many thanks to the anonymous reviewers of the
AOSD VMIL 2007 reviewers for helpful comments.

References
[1] AJDT:AspectJ development tools.

http://www.eclipse.org/ajdt/.
[2] Jonathan Aldrich. Open modules: Modular reasoning about advice. In

Proc. 2005 European Conf. Object-Oriented Programming (ECOOP
05), pages 144–168, July 2005.

[3] AspectJ programming guide.
http://www.eclipse.org/aspectj/.

[4] Christoph Bockisch, Sebastian Kanthak, Michael Haupt, Matthew
Arnold, and Mira Mezini. Efficient control flow quantification.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object oriented programming, systems, languages,
and applications, 2006.

[5] Curtis Clifton and Gary T. Leavens. Obliviousness, modular
reasoning, and the behavioral subtyping analogy. Technical Report
TR03-01a, Iowa State University, January 2003.

[6] Curtis Clifton and Gary T. Leavens. A design discipline and
language features for modular reasoning in aspect-oriented programs.
Technical Report 05-23, Department of Computer Science, Iowa State
University, December 2005.

[7] Curtis Clifton and Gary T. Leavens. MiniMAO1: Investigating the
semantics of proceed.Science of Computer Programming, 2006.

[8] C. Constantinides and T. Skotiniotis. Reasoning about a classification
of cross-cutting concerns in object-oriented systems. In Pascal
Costanza, G̈unter Kniesel, Katharina Mehner, Elke Pulvermüller,
and Andreas Speck, editors,Second Workshop on Aspect-Oriented
Software Development of the German Information Society. Institut
für Informatik III, Universiẗat Bonn, February 2002. Technical report
IAI-TR-2002-1.

[9] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented
programming: Introduction.Commun. ACM, 44(10):29–32, 2001.

[10] R. E. Filman and D. P. Friedman. Aspect-oriented programming
is quantification and obliviousness. InWorkshop on Advanced
Separation of Concerns (OOPSLA 2000), October 2000.

[11] Robert E. Filman and Daniel P. Friedman. Aspect-oriented
programming is quantification and obliviousness. InAspect-oriented
Software Development, pages 21–35. Addison-Wesley Professional,
2004.

[12] Robert E. Filman and Daniel P. Friedman. Aspect-oriented
programming is quantification and obliviousness. pages 21–35.
Addison-Wesley, Boston, 2005.

[13] William G. Griswold, Kevin J. Sullivan, Yuanyuan Song, Macneil
Shonle, Nishit Tewari, Yuanfang Cai, and Hridesh Rajan. Modular
software design with crosscutting interfaces.IEEE Software, Special
Issue on Aspect-Oriented Programming, Jan/Feb 2006.

[14] Bruno Harbulot and John R. Gurd. A join point for loops in aspectj.
In AOSD ’06: Proceedings of the 5th international conference on
Aspect-oriented software development, pages 63–74, New York, NY,
USA, 2006. ACM Press.

[15] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
J. Lindskov Knudsen, editor,ECOOP 2001 — Object-Oriented
Programming 15th European Conference, volume 2072 ofLecture
Notes in Computer Science, pages 327–353. Springer-Verlag,
Budapest, Hungary, June 2001.

[16] Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris
Maeda, Anurag Mendhekar, and Gail Murphy. Open implementation
design guidelines. InProceedings of the 19th International
Conference on Software Engineering, pages 481–90, Boston,
Massachusetts, 17–23 May 1997. IEEE.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. InProceedings of the European Conference
on Object-Oriented Programming (ECOOP), Finland, June 1997.
Springer-Verlag.

[18] Gregor Kiczales and Mira Mezini. Separation of concerns with
procedures, annotations, advice and pointcuts. InECOOP 2005 -
Object-Oriented Programming, 19th European Conference, Glasgow,
UK, July 25-29, 2005, Proceedings, volume 3586 ofLecture Notes in
Computer Science, pages 195–213. Springer, 2005.

[19] Jay Ligatti, David Walker, and Steve Zdancewic. A type-theoretic
interpretation of pointcuts and advice.Science of Computer
Programming, Winter 2005/2006.

[20] Bruce J. MacLennan.Principles of programming languages: design,
evaluation, and implementation (2nd ed.). Holt, Rinehart & Winston,
Austin, TX, USA, 1986.

[21] Hridesh Rajan, Robert Dyer, Youssef Hanna, and Harish
Narayanappa. Preserving separation of concerns through compila-
tion. In Lodewijk Bergmans, Johan Brichau, and Erik Ernst, editors,
In Software Engineering Properties of Languages and Aspect Tech-
nologies (SPLAT 06), A workshop affiliated with AOSD 2006, March
2006.

[22] Hridesh Rajan, Robert Dyer, Harish Narayanappa, and Youssef
Hanna. Nu: Towards an aspect-oriented invocation mechanism.
Technical Report 414, Iowa State University, Department of Com-
puter Science, Mar 2006.

[23] Hridesh Rajan and Kevin J. Sullivan. Eos: instance-level aspects
for integrated system design. InESEC/FSE-11: Proceedings of the
9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 297–306, New York, NY, USA, September 2003.
ACM Press.

[24] Hridesh Rajan and Kevin J. Sullivan. Aspect language features for
concern coverage profiling. InAOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software development,
pages 181–191, New York, NY, USA, 2005. ACM Press.

[25] Kevin J. Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang
Cai, Macneil Shonle, Nishit Tewari, and Hridesh Rajan. Information
hiding interfaces for aspect-oriented design. InThe Joint 10th
European Software Engineering Conference and 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE
2005), pages 166–175, Sept 2005.

