Typestate-based Fault Localization of API Usage
Violations in a Deep Learning Program

Fraol Batole*, Ruchira Manke *, Robert Dyer T Tien N. Nguyen ¥, and Hridesh Rajan*
* Department of Computer Science, Tulane University, New Orleans, Louisiana, USA*
{fbatole, rmanke, hrajan}@tulane.edu
t University of Nebraska—Lincoln, Lincoln, NE, USA, rdyer@unl.edu
Y Computer Science Department, The University of Texas at Dallas, Dallas, TX, USA, tien.n.nguyen@utdallas.edu

Abstract—Deep Learning (DL) applications have become essen-
tial in numerous domains, yet they remain plagued by subtle bugs
that cause 66% of crashes in production systems. These failures
primarily stem from API usage violations in complex frameworks
like TensorFlow, Keras, and PyTorch, where APIs lack formal
specifications and interdependencies between operations remain
undocumented. Traditional static analysis tools fail to address
DL-specific constraints, such as data dependency between layers.
To bridge this critical gap, we propose NEURALSTATE, an
approach to detect performance and program crash bugs in
a DL program. NEURALSTATE follows a four-step process: (i)
gather specifications for Deep Learning operations from different
sources; (ii) introduce abstract states to represent these Deep
Learning operations; (iii) design formal rules for transitioning
between states based on the specifications; (iv) utilize a combi-
nation of standard analysis techniques (i.e., typestate and value
propagation) to identify bugs in a DL program. Our evaluation
on real-world benchmarks demonstrates NEURALSTATE’s effec-
tiveness, achieving a 25% improvement in precision and 63%
improvement in recall compared to state-of-the-art tools. Most
importantly, NEURALSTATE successfully detects 18 subtle bugs
in 45 real-world programs that existing techniques miss entirely.

Index Terms—Fault localization, Deep learning, Program anal-
ysis

I. INTRODUCTION

Deep Learning (DL) programs are increasingly popular [1],
typically developed using APIs from libraries such as Tensor-
Flow, Keras, and PyTorch, which offer predefined operations
for designing and configuring neural networks. Despite their
maturity, developers face persistent challenges—Keras-related
questions account for 20-35% of all Stack Overflow activity in
2024 [2]. These challenges have significant implications; API
misuse causes program crashes in 66% of cases, terminating
model training and wasting computational resources [3]. Tra-
ditional static analysis tools like PyLint [4] cannot detect these
structural flaws due to the complexities of DL APIs, leaving
developers vulnerable to subtle but critical errors.

These bugs, detectable before training, manifest as (1)
layer compatibility violations, where the sequence of layers
violates DL architectural constraints (e.g., missing a Flatten
layer before Dense), (2) API protocol violations where re-
quired function calls are missing or incorrectly ordered, or (3)
parameter inconsistencies between interdependent layers [3].
Moreover, popular frameworks like TensorFlow, Keras, and
PyTorch offer rich but complex APIs with numerous distinct
operations, each with several configurable parameters. For

instance, configuring the ‘Conv2D’ layer in Keras involves set-
ting multiple parameters such as filter size, kernel size, strides,
and padding type, all of which must be chosen appropriately to
ensure correct model behavior [5]. However, the relationships
between these operations often lack formal specifications,
creating a significant cognitive burden for developers.

Given the complexity and frequency of these DL API
bugs, automated detection approaches are essential. Traditional
program analysis techniques, such as PyLint [4], fall short
as they lack an understanding of DL-specific constraints,
such as the correct ordering of operations and parameter
compatibility, as well as the complex relationships between
DL operations. For instance, while they can detect undefined
variables or type mismatches, they cannot verify whether
a Dense layer’s activation function is compatible with the
model’s loss function. Additionally, they cannot determine
whether necessary reshaping operations are performed before
feeding convolutional features into dense layers.

Current State-of-the-Art in DL Bug Detection and their
Limitations. To address these challenges, researchers have
proposed several specialized techniques for detecting bugs
in DL programs [6, 7, 8]. While some focus on runtime
performance issues or tensor shape errors [9, 10], they re-
quire access to training data and model training procedures.
Thus, these techniques detect bugs during training. Our work
aligns with bug detection tools that can detect issues before
training begins. In this category, approaches can be broadly
categorized into formal analysis-based techniques and LLM-
based techniques. A more recent direction leverages Large
Language Models (LLMs), such as LLMAPIDet [11], which
uses an LLM to build a knowledge base of API misuse
rules from code commits and applies few-shot prompting
to generate patches. While powerful, LLM-based approaches
rely on probabilistic knowledge of pre-trained models, which
can be non-deterministic and act as black boxes. Among
formal analysis approaches, NeuraLint [8] represents the state-
of-the-art. NeuraLint models DL programs as graphs and
defines verification rules to detect violations of common DL
programming patterns. Using graph transformation techniques,
it analyzes these program graphs against its rules to identify
potential faults. However, NeuraLint’s graph-based analysis
has several limitations, primarily overlooking three crucial
aspects of DL programs. These include the inability to resolve
data dependencies, track interdependent configurations, and

accurately construct control flow for higher-order functions.
First, NeuraLint treats DL programs as sequential chains of
operations, failing to resolve data dependencies between lay-
ers. This fundamental limitation in tracking data flow becomes
particularly problematic in programs with multiple inputs,
where different operations process different inputs through
parallel branches of the network. Second, when one part
of a DL program is modified (e.g., changing an activation
function), NeuraLint cannot identify other parts that must be
updated correspondingly (e.g., the matching loss function), as
it lacks mechanisms to track these interdependent configura-
tions. Third, DL programs often utilize higher-order functions
where layers and their configurations are passed as parameters,
making it challenging to construct accurate control flow from
an abstract syntax tree (AST).

To illustrate the challenges in analyzing DL programs,
consider the program from Stack Overflow [12] shown in
Figure 1(a). This example exhibits multiple characteristics.
First, the program processes two distinct inputs (lines 2-3), cre-
ating a branching neural architecture. Figure 1(b) shows how
NeuraLint’s analysis flattens this structure into a sequential
chain of operations, losing critical information about data flow
between layers. In contrast, the correct representation should
preserve the branching structure as in Figure 1(c). Second,
it contains an architectural bug where the final layer uses an
incorrect activation function (‘sigmoid’ at line 23). This bug is
particularly subtle as its fix requires modifying interdependent
statements (i.e., changing the activation function to ‘softmax’
and updating the corresponding loss function to ‘categori-
cal_crossentropy’). Such interdependent configurations, which
we refer to as co-changing statements, are common in DL
programs but cannot be detected by approaches that analyze
operations in isolation. Third, DL programs often utilize
higher-order functions where layers and their configurations
are passed as parameters (e.g., passing activations like ‘relu’
or ‘sigmoid’ as arguments to layer constructors), making it
difficult to construct accurate control flow.

NEURALSTATE: Our Approach for DL Bug Detection.
Recognizing that deep learning (DL) APIs implicitly dictate
a protocol—valid transitions between layer types, required
calls before certain configurations, and allowed parameter
combinations—we model these protocols as finite state au-
tomata (FSA) and adopt typestate analysis, a technique proven
effective for verifying API protocols in other domains [13,
14, 15, 16, 17], yet previously unexplored in the DL setting.
Applying typestate to DL introduces unique challenges, such
as capturing data dependency in multi-branch networks and
analyzing parameter co-dependencies across complex, often
higher-order function calls. To address these challenges, NEU-
RALSTATE combines typestate analysis with value propaga-
tion, thereby detecting both performance and program crash
bugs by simultaneously verifying valid sequences of layer
operations and ensuring parameter consistency. Specifically,
we break down each DL operation (e.g., Conv2D, Dense,
Flatten) into abstract states, creating a finite representation
of permissible transitions and constraints. Beyond operation
ordering, we propagate values (such as activation and loss
function types) to uncover incompatibilities across different

layers. Finally, NEURALSTATE constructs a data-dependency-
sensitive graph that preserves the branching input structures,
and higher-order control flows unique to DL code, providing
a more accurate view of real-world program behavior than the
flattened representations used in prior work.

Key Technical Components. Our approach, NEURAL-
STATE consists of three main components:

1) Capturing Data Dependency. We leverage Keras’s layer
inspection API to extract the program’s DL architecture.
Then, we abstract the framework-specific layer informa-
tion into an analyzable form called a NeuralState Se-
quence (NSS) using our defined grammar (Section II-B).

2) Co-changing Statement Analysis. ~While co-changing
patterns are well-studied in traditional software mainte-
nance [18], we identify a previously unrecognized class of
such dependencies in DL programs that manifest between
operation parameters. A common pattern we discover
is the coupling between activation functions and loss
functions, where modifying one requires corresponding
updates to the other. To handle these interdependencies,
we introduce context-sensitive analysis that tracks oper-
ation inputs across dependent layers.

3) Unified Protocol Verification. Detecting DL bugs re-
quires analyzing both operation sequences and their
configurations. We encode DL specifications as a finite
state automaton with state transitions for DL operations.
These specifications are then verified using a combination
of typestate analysis for operation ordering and value
propagation for parameter consistency. This integration
enables verification of both architectural correctness (e.g.,
required layer orderings) and valid parameters (e.g., com-
patible activation/loss function).

We evaluate NEURALSTATE and NeuraLint on two real-
world benchmarks: (1) NLBench, collected by NeuraLint [8],
and (2) ExternalBench, curated by Humbatova et al. [19].
On NLBench, NeuralState achieves a 35.1% improvement
in precision and 19.4% relative gain in recall compared to
NeuraLint. The improvements are even more significant on
ExternalBench, where NeuralState shows a 15.5% relative
improvement in precision and 107% improvement in re-
call. These results across independently curated benchmarks
demonstrate NeuralState’s effectiveness in detecting DL bugs.
An ablation study further validates that the combination of
typestate analysis and value propagation is integral to Neural-
State’s superior performance. Detailed experimental outcomes
and comparative analyses are presented in Section VI.

This work makes the following key contributions:

1) We introduce NEURALSTATE, a novel approach in the
DL domain that integrates typestate analysis with value
propagation to detect usage protocol violations.

2) We propose a representation of DL programs that ac-
counts for branching architectures, multiple inputs, and
higher-order function calls.

3) We design abstract states for DL operations, along with
formal state transition rules that encode valid usage
sequences and parameter constraints.

4) We evaluate NEURALSTATE against state-of-the-art static

(28, 28, 1), dtype
(28, 28, 1), dtype

'float32')
'float32')

input_1 = Input(shape
input_2 = Input(shape

Conv2D(32, (3, 3), activation = 'relu')(input_1)

NG A WN =
[}
c
g
°
c
-
|

1=
output_1 = MaxPooling2D(pool_size = (2, 2))(output_1)
output_1 = Conv2D(32, (3, 3), activation = 'relu')(output_1)
output_1 = MaxPooling2D(pool_size = (2, 2))(output_1)

9 output_1 = Flatten() (output_1)

11 output_.
12 output_.

Conv2D(32, (3, 3), activation = 'relu')(input_2)

15 output_.
16

Flatten() (output_2)

18 outputs = [output_1, output_2]

19

20 combine = concatenate(outputs)

21

22 output = Dense(64, activation = 'relu')(combine)
23 output = Dense(9, activation = 'sigmoid')(output)

17 inputs = [input_1, input_2] MaxPooling2D

Concatenate(z]o/

Input @ 3/ Input “ Input @ @ Input

2 =
2 = MaxPooling2D(pool_size = (2, 2))(output_2)

13 output_2 = Conv2D(32, (3, 3), activation = 'relu')(output_2) Vs

14 output_2 = MaxPooling2D(pool_size = (2, 2))(output_2) MaxPooling2D \12 1
2= -

MaxPooling2D Conv2D (l) G\D Conv2D

1

MaxPooling2D (6\

T

~

MaxPooling2D MaxPooling2D

Conv2D Conv2D

MaxPooling2D (8 MaxPooling2D

8
\w/'_(}_G\

Flatten Flatten

(> (>

24 Dense(22 Dense(22
25 model = Model(inputs = inputs, outputs = [output])
26 Vs
27 model.compile(optimizer = 'adam', 95"5963 Dense(23
28 loss = 'binary_crossentropy',
29 metrics = ['accuracy'])
0 .. compile @) compile GD
(a) An Example of a Usage Protocol Violation (b) Data-Dependence-insensitive (c) Data-Dependence-sensitive
Control Flow Control Flow

Note: The numbers in the circles represent the line number of an operation.

Fig. 1: Control flow representations: (a) DL program with multiple inputs, (b) NeuraLint’s sequential representation missing
data dependencies, and (c) NEURALSTATE’s data-dependency-sensitive representation

analysis tool on two independently curated DL bug
benchmarks. Our results show substantial improvements
in both precision and recall, affirming the effectiveness
of our approach in detecting real-world DL API misuse.

II. PRELIMINARIES

In this section, we outline the DL bugs supported by
NEURALSTATE and formalize the components necessary for
our analysis. First, we present a grammar for representing
common DL operations. Then, we describe our process for
collecting DL specifications and encoding them as finite state
automata. Finally, we introduce our typestate-based approach
for modeling DL program behavior through abstract states.

TABLE I: Grammar Representing Supported DL Operations

Symbol Definition Description
N w=L:N|L Model composed of one or more layers
L 1= Input(...) Input layer
Conv2D (v, k, af, ...) 2D convolutional layer
ConvlD(v, k, ag, ...) 1D convolutional layer
MaxPooling2D (k) 2D max pooling layer
MaxPoolinglD (k) 1D max pooling layer
Flatten () Layer that flattens input
Dense (v, af, ...) Fully connected layer
Dropout (r) Dropout layer
LayerNormalization () Normalize layer
BatchNormalization() Batch Normalize layers
Concatenate (L :: L) Merge multiple layers
Compile(lf, o, ...) Compile the neural network
af u= linear Activation function
relu Activation function
softmazx Activation function
sigmoid Activation function
tanh Activation function
Iy = binary_crossentropy Loss function of the model
| categorical_crossentropy
o == adam | sgd Optimizer function of the model
v u=zlz € ZT Number of units or neurons
k u=(z,y)r € Zt, ye Zt kernel or pooling size
r u=xlr € Rt Dropout rate

A. Supported DL Bugs

NEURALSTATE aims to identify a wide range of bugs
that commonly occur in DL programs before training starts.

Categorizing these bugs is essential for systematically under-
standing their impact and developing targeted solutions, which
ensures comprehensive detection and resolution of faults.
The categorization adopted in this work is based on prior
research on DL bug characteristics, providing a structured and
empirically validated approach to bug identification [8]. The
categories are outlined below:

Incorrect Model Parameter or Structure (IPS): These
bugs relate to errors in defining the model architecture,
such as incorrect weight or bias initialization, missing
activation functions, or improperly configured activation
layers. Such issues often lead to training instability, high
loss, and low accuracy, significantly reducing the model’s
effectiveness.

Tensor Shape Incompatibility (TSI): DL programs
rely on operations involving tensors (multi-dimensional
arrays) that require shape compatibility for successful
execution. Tensor shape mismatches can disrupt the flow
of data through the network, causing runtime errors or
inefficient memory usage. Ensuring tensor shapes are
aligned is critical for maintaining the correct propaga-
tion of activations and gradients, ultimately allowing
the model to train and infer accurately. Bugs in this
category typically arise from missing reshape layers or
mismatched tensor dimensions, leading to runtime errors
or performance issues.

API Misuse (APIM): API misuse refers to incorrect
configuration choices within the DL framework, such as
selecting the wrong optimizer or an invalid loss function.
Such improper selections can lead to unstable training
dynamics, ultimately hindering model convergence.
Structure Inefficiency (SI): Structural inefficiencies in
DL programs often result from improper architectural

configurations. These can include suboptimal filter sizes,
kernel dimensions, or stride lengths in convolutional
layers, as well as incorrect placement of dropout or batch
normalization layers, or inappropriate dropout rates.

B. Supported DL Operations

We denote deep neural network as N in our grammar,
where N is composed of layers (L) and (“::”) denotes the
concatenation of layers. These layers are fundamental building
blocks that transform input data into an output. As shown in
Table I, our approach supports common deep-learning layers
with real-world applications, such as image recognition and
regression tasks. These common layers are selected following
a related work by Nikanjam et al.[8].

C. Collecting DL Specifications

We collected DL specifications from prior studies [8],
adding an extra rule from the DL library’s official documen-
tation (i.e., high dropout rate) [5]. In total, we encode 24 DL
specifications using finite-state automaton. We have included
all specifications as a supplement for further reading.

D. Finite-State Automaton Based Specification

After collecting the specifications, the next step is to encode
them as a finite-state automaton (FSA). Our FSA is defined as
a six-tuple: (S, so, E, A, L,), where S is the set of abstract
states representing the different phases of a DL program’s
execution, sg is the initial state, E is the error state, A is
the accepting state, L is the set of DL operations, and ¢ is the
transition function.

The transition function § : S x L — S takes the current state
sc € S and a DL operation [€ L as input and determines
the next state s4 € S based on the specification rules. If
the transition is valid, the automaton moves to the new state
Sq; otherwise, it transitions to the error state I, indicating a
specification violation.

Through a comprehensive study of DL specifications and
an analysis of common operations employed in DL models, as
documented in prior work [8], we derived a set of 11 abstract
states that encompass the phases and operations encountered
in DL programs. Table II presents the abstract states with a
brief description.

Our approach formalizes the DL specifications as a finite-
state automaton (FSA) and abstracts the DL program states
into a finite set of abstract states. This formalization enables
systematic verification of DL programs against the ground
truth specifications. Consequently, we leverage typestate anal-
ysis, which is particularly suitable for enforcing behavioral
constraints and ensuring that an object transitions through a
sequence of valid states defined by a formal specification or
protocol [13, 20].

III. APPROACH

This section presents NEURALSTATE, an approach for de-
tecting bugs in DL programs by combining typestate analysis
and value propagation techniques.

A. Overview

Figure 2 illustrates the workflow of NEURALSTATE, which
consists of three main steps:

« Extracting Layer Information: NEURALSTATE takes

a DL program as input and begins by extracting the
statements and identifying the data dependencies between
them (0). This step is performed using the .1ayers ()
API provided by the Keras library, which allows NEU-
RALSTATE to access layer information before the model
training begins, eliminating the need for the training
dataset or the actual training process.

o Constructing the NeuralState Sequence (NSS): The
extracted data dependencies are used to construct a rep-
resentation of the DL program called the NeuralState
Sequence (9). The NSS serves as an abstract form of
the DL model, capturing the data-dependence sensitive
control flow, where nodes represent states and edges
denote the executed operations.

o Identifying DL Violations: NEURALSTATE applies a
combination of typestate analysis and value propaga-
tion techniques, collectively referred to as NeuralState
Analysis (NSA), to identify DL violations (@)). Type-
state analysis is used to identify invalid sequences of
operations or API calls. Value propagation, in con-
trast, inspects the specific arguments passed to layer
parameters to detect invalid configurations. For exam-
ple, a common bug pattern occurs when all neuron
weights in a layer are initialized to the same constant
value, which prevents the layer from learning effec-
tively. Our analysis uses value propagation to check
the kernel_initializer parameter. It ensures
that the keyword argument kernel_initializer
takes a random value as input (i.e., setting like
kernel_initializer=HeNormal ()) as it allows
each neuron to learn independently. Conversely, in-
correct input of the keyword argument, such as
kernel_initializer=Zeros (), will be flagged as
a violation.

The following sections detail how we realize each com-
ponent of our approach: § IV presents our data-dependence-
sensitive representation, § V explains our integrated verifi-
cation approach, and § V-B describes our handling of co-
changing statements.

IV. DL REPRESENTATION

This section introduces the NeuralState Sequence, a novel
representation that captures a DL program’s data-dependence-
sensitive control flow. The NSS provides a formal abstraction
of the DL model’s structure and enables precise analysis of
its behavior.

A. Preliminary

Definition 1. (NeuralState Sequence) The NeuralState Se-
quence (NSS) is a recursive representation of a DL program’s
execution states. It consists of abstract state nodes, denoted
by s, and layer operations, denoted by l, which represent
transitions between these nodes.

TABLE II: States Representing Phases in a Deep Learning Program

Abstract State

Description

Init The initial state of the program.
Hidden Represents the initial layers of the neural network, involving input data processing.
Dense Represents dense or fully-connected layers in the neural network.
Conv Represents convolutional layers, including both 1D and 2D convolutions.
Pooling Represents pooling layers used in conjunction with convolutional layers.
Reshape Represents reshaping operations, often required after convolutional or pooling layers to match the
input shape for subsequent layers.
Regularize Represents regularization techniques, such as dropout, to prevent overfitting.
Normalize Represents normalization layers, such as batch normalization or layer normalization.
Merge Represents operations that merge or concatenate multiple input tensors.
LastHidden Represents the final dense layer before the output layer, responsible for transforming features into
the desired output format.
Compiled The accepting state, representing the final configuration of the neural network, including the loss
function and optimizer.
9 —
® ik,
A M. ® A=
P B|EE D’ o T o Report Bugs
. Input: Analysis (NSA)
oo Data Dependency and Build Data-Dependence @ ngp; T
eep Learning Layer Information <> Sensitive Representation g
(DL) Extraction Ny P ® ® Specification. (3 Match NSS against \/
Program @ Extracted Layer @ NeuralState Formal(i[ge/:l)ﬁcatlon
Informations Sequence Program is Bug
(NSS) Free
Fig. 2: The workflow of NEURALSTATE
10
Regularize 15 Compiled

AL

NB. The numbers on the edge correspond to the layers of a DL model, following the line numbering in Fig 4. The nodes symbolize states.

Fig. 3: A NeuralState Sequence for the DL program shown in Figure 4, with missing state in red

If a layer operation [exists, it connects the current state
s to the next state in the sequence, producing a concatenated
sequence of states and operations, s [:: NSS. When no further
operations apply, the sequence terminates at a final state s,
marking the completion of the control flow for that program
segment. Here, :: denotes concatenation, linking each state
transition within the sequence.

B. Constructing the NSS

Let P be a DL program defining a neural network N. We
construct the NeuralState Sequence NSS(P) by analyzing the
structure of N and the relationships between its layers. First,
we extract the sequence of layers £ = [l1, 12, ..., 1] from N
using the model.layers attribute provided by the DL library
(e.g., Keras). This attribute allows us to access the layers of
the model in the order they are defined in the program.

To construct the NSS, we iterate over the layers in £ and
perform the following steps for each layer [;:

1) Determine the corresponding abstract state s; € S based
on the type and characteristics of /;. We define a mapping
function F' : L — S, that maps each layer type to
its corresponding abstract state according to the DL
specification. Formally, s; = F(;).

2) Let D(l;) € {l1,...,l;—1} denote the set of layers that
l; directly depends on, i.e., the layers whose outputs are
used as inputs to ;. Check if all the layers in D(l;) have
already been processed and their corresponding state-
operation pairs have been added to the NSS. This ensures
that the data dependencies of [; are satisfied.

3) Based on the dependency analysis in step 2, append the
state-operation pair (s;, ;) to the NSS. This indicates that
the layer operation [; is applicable in the abstract state s;
and transitions the model to the next state.

Example of NSS: Figure 3 illustrates the NSS for the DL
program shown in Figure 4. Each node in the NSS represents
an abstract state (e.g., Hidden, Conv, Pooling), and each

edge represents a layer operation that transitions the program
between states.

1 ...
2 model = keras.Sequential (
3 [
4 keras.Input (shape=(28, 28, 1)),
5 layers.Conv2D (32, kernel_size=(3, 3),
activation="relu"),
6 layers.MaxPooling2D (pool_size=(2, 2)),
7 layers.Conv2D (64, kernel_size=(3, 3),
activation="relu"),
8 layers.MaxPooling2D (pool_size=(2, 2)),
9 layers.Dropout (0.5),
10 + layers.Flatten ()
11 layers.Dense (10, activation="softmax"),
12]
13)
14

15 model.compile (loss="categorical_crossentropy",
optimizer="adam", metrics=["accuracy"])

16 model.fit (x_train, y_train,
batch_size=batch_size, epochs=epochs,
validation_split=0.1)

17

1 NeuralState Error -> You need to flatten the
layer before adding a Dense layer.

Fig. 4: A DL program with a crash bug and its error report

Analyzing the NSS reveals a missing Reshape state between
the Regularize and LastHidden states, indicating a bug in
the program’s structure due to the omission of a required
Flatten() layer at line 10. This insight, provided by NEU-
RALSTATE, offers actionable feedback to guide developers in
fixing the usage protocol violation.

V. DL PROTOCOL VIOLATION DETECTION

This section presents our approach to detecting DL proto-
col violations. We first present an algorithmic overview that
provides an intuitive understanding of how NeuralState detects
violations (§ V-A). We then complement this with a precise
formulation of state transition rules that form the mathematical
foundation of our typestate analysis approach (§ V-B). While
these rules could be explained informally, a formal presenta-
tion eliminates ambiguity and ensures reproducibility, allowing
other researchers to faithfully implement and build upon our
work.

Algorithm 1 NS A Analysis

1: procedure N SA(NSS, FSA)

2: I«]

3 sc = NSS.getFirstNode()
4: sq NSS.getNextNode(s.)
5: Violations < []
6:
7
8

> Initialize empty context
> Starting in ‘init’ state

while s; # null do
l <~ NSS.getOperation(sq)
sn FSA.S(se,l) > Determine the next state based on §

9: if s,, = F then > Check if it is an invalid transition
10: Violations <— Violations U {(s¢, sq)}

11: else

12: I’ «+ UpdateContext(T, sc,1) > Update context
13: Sc < 84

14: sq < NSS.getNextNode(sc)

15: return Violations, I

I'é(s,))=5T" I'"FNSS=5"T" s"€cA
I'ksl:NSS=AT"

(NSA)

T, Hidden — True =T"
I'+ §(Init, Input ()) = Hidden, T’

(R1)

I'(Conv) = False I'(Reshape) = False
veZ' ay € {relu,tanh} s. € {Flatten, Dense, Hidden}
T, Dense — True =T"

R
't §(sc,Dense (v, a,f)) = Dense,l" (F2)

T'(Reshape) = True
veZ' ay € {relu,tanh} s. € {Flatten, Dense, Hidden}
T, Dense — True =T"

R
'+ 5(SC,Dense (v, af)) = Dense,F’ (3)

l € {conviD (v, k, ayf),Conv2D (v, k, af)}
veZt keZ' ay=relu s. € {Hidden, Pooling}
I, Conv — True,c, — v =TI"
T'F §(se,l) = Conv, T’

(R4)

le {Conle(v, k, ag),Conv2D (v, k, af)}
veZt keZ' ay=relu s. € {Hidden, Pooling}
T'(Conv) = True T(cw) <w Liepsv=T"

I'+ 6(se, 1) = Conv, T

(Rs)

| € {MaxPoolinglD (k),MaxPooling2D (k) }
kez* T, Pooling + True = T"

R
I'+ 6(Conw,l) = Pooling, T’ (Fe)

I'(Conv) = True s. € {Conv, Pooling}
T', Reshape — True = I

R
I't 6(sc,Flatten()) = Reshape, I (Br)

le {layerNormalization (),batchNormalization () }
sc € {Dense, Conv, Pooling} T', Normalize — True =T

'+ 6(se, 1) = Normalize, T”

i

(Rs)

0.8>r>0 s.¢€ {Dense,Conv, Pooling}
T, Regularize — True =T

R,
I' - 6(sc, Dropout (r)) = Regularize, I’ (Ro)

se € {Dense, Conv, Flatten} I, Merge — True =T’
'+ (5(507 Concatenate (L :: L)) =]V[erge, Ind

(R10)

I'(Conv) = False I'(Reshape) = False
velzt ay € {linear, sigmoid, softmax}
sc € {Reshape, Regularize, Normalize}
T,f—a;=T" T’ LastHidden — True =T"

't §(sc,Dense (v, af)) = LastHidden,F”

(Ra1)

I'(Reshape) = True
vezt ay € {linear, sigmoid, softmax}
sc € {Reshape, Regularize, Normalize}
I frap=T1" T, LastHidden — True =T

T+ 6(sc,Dense (v, af)) = LastHidden,F”

(R12)

(f) € {linear, sigmoid} '+ ly = binary_crossentropy
o € {adam, sgd} I', Compiled + True = T"
T+ §(LastHidden, compile (If, o)) = Compiled, T’

(Fas)

I'(f) = softmax I' - Iy = categorical_crossentropy
o € {adam, sgd} ', Compiled + True = T"

R
I+ §(LastHidden, compile (If, o)) = Compiled,T’ (Faa)

Fig. 5: State Transition Rules for DL Specifications

TABLE III: Summary of Encoded Typestate Rules for Verifying DL API Usage

Rule ID Description

R1 An Input layer must begin the model definition.

R2-R3, R11-R12
for the task (e.g., softmax, sigmoid).

Permits Dense layers for hidden representations and verifies the final Dense layer has a valid activation

R4-RS Allows a Conv layer to be added after the hidden layer or after another feature-extracting layer (e.g.,
Pooling).

R6 Enforces that a Pooling layer must follow a Conv layer to downsample feature maps.

R7 Requires a F1latten operation to transition from multi-dimensional convolutional features to a 1D vector
for Dense layers.

R8 Allows Normalization layers (e.g., BatchNormalization) to be placed after convolutional or dense
layers.

R9 Permits a Dropout layer after convolutional or dense layers to mitigate overfitting.

R10 Allows Concatenate to merge multiple parallel branches, a key step for our data-dependency tracking.

RI13-R14 A co-change rule that verifies the loss function in model.compile () is compatible with the activation

used in the final output layer.

A. NeuralState Analysis Algorithm

The NSA algorithm initializes an empty context (I') to track
the program’s execution history (line 2). It then sets the current
state (s.) to the initial state of the NSS and fetches the next
transition state (sg) from the current state (lines 3-4).

The algorithm iterates through the transitions in the NSS
until there are no more transitions (lines 6- 14). For each
transition, it retrieves the corresponding DL operation (I) from
the NSS and determines the next state (s,,) using the FSA’s 4.

If the next state (s,) is the error state (F), indicating an
invalid transition according to the state transition rules, the
algorithm adds the transition pair (s., s4) to the set of viola-
tions. Otherwise, it updates the context (I') based on the state
transition rules using the UpdateContext function (line 12).
After processing each transition, the algorithm updates the
current state (s.) to the next transition state (sy;) and fetches
the subsequent transition state from the NSS. Finally, after
iterating through all transitions, the algorithm returns the set
of violations and the final context (I").

B. Precise Formulation of State Transition Rules for DL

Figure 5 depicts the state transition rules, which utilize
a context (I') to track the program’s execution history. This
context stores information about previously visited states and
relevant values, enabling the analysis to handle state depen-
dencies and co-changing statements. Table III provides short
descriptions for these rules. Other rules can be defined in a
similar manner.

The NSA rule serves as the entry point, initializing an
empty context and inductively applying the transition function
0 to validate each operation in the DL program’s execution
trace. If a transition is valid according to the defined rules,
the current state is updated, and the analysis proceeds to the
next operation. Otherwise, a violation is reported, indicating
a potential bug in the program. For instance, the R3 rule
enforces constraints on the activation function and the number

of units to a dense layer. To illustrate how the rules are read,
consider the second Rj3: “If the current state s. is Flatten,
Dense, or Hidden, the number of units v is a positive integer,
the activation function ay is non-linear (i.e., relu or tanh) and
both Conv and Reshape has been visited before (based on the
context I'), then the transition to the Dense state is valid, and
the context is updated to reflect that Dense has been visited.”

Handling Co-Changing Layers. We handle these co-
changing statements in the rules Rj;_14. The Ry;_j19 rule
validates the final dense layer’s activation function and the
number of units based on the problem type (binary classifica-
tion, multi-class classification, or regression). It then records
the activation function used during that execution by updating
the context (i.e., f—a le'"). In the Rj3_14 rule, the analysis
consults the recorded activation function f to verify if it
matches the proper loss function based on the specification.

Most importantly, if a violation is detected in the LastHid-
den state, indicating a potential inconsistency between the
activation function and the number of units, the analysis as-
sumes that a fix has occurred. This is a reasonable assumption
because, in the final dense layer, the activation function is
typically either a single-class or multi-class activation function,
each with a specific loss function (binary_crossentropy or
categorical_crossentropy, respectively). Therefore, the analysis
negates the recorded activation function f and matches it
against the corresponding loss function. One of the challenges
in creating our specifications, particularly for co-changing
statements, is that these critical dependencies are often implicit
and undocumented in the official API guides. For instance,
while the coupling between a softmax activation and a
categorical_crossentropy loss function is a well-
known pattern for multi-class classification, this rule is not
formally enforced by the Keras API. Thus, developers learn it
from experience and community examples []. Deriving such
rules requires us to infer the developer’s intent (e.g., binary
vs. multi-class classification) from architectural clues, such

as the number of neurons in the final Dense layer (e.g.,
Dense (1) for binary tasks versus Dense (N) for N-class
tasks). This manual process of identifying tightly-coupled
parameters among a vast combinatorial space introduces a bias
towards the most common patterns.

One of the challenges in creating our specifications,
particularly for co-changing statements, is that these
critical dependencies are often implicit and undocu-
mented in the official API guides. For instance, while
the coupling between a softmax activation and a
categorical_crossentropy loss function is a well-
known pattern for multi-class classification, this rule is not
formally enforced by the Keras API. Thus, developers learn
it from experience and community examples. Deriving such
rules requires us to infer the developer’s intent (e.g., binary vs.
multi-class classification) from architectural clues, such as the
number of neurons in the final Dense layer (e.g., Dense (1)
for binary tasks versus Dense (N) for N-class tasks). A
promising direction for future work could be to investigate
automated techniques to mine these implicit specifications
from large-scale code corpora.

Finally, the Compiled rule represents the accepting state,
verifying that the loss function and optimizer are consistent
with the activation function used in the final layer.

VI. EMPIRICAL EVALUATION

In this section, we describe the evaluation of our approach.
First, we briefly present the research questions. Next, we
describe our experimental methodologies.

A. Research Questions

Our evaluation aims to answer the following questions:

« RQ1: Effectiveness Evaluation.

(A) How effective is NEURALSTATE compared with the

state-of-the-art NeuraLint on their own benchmark?

(B) How effective is NEURALSTATE compared with the

state-of-the-art NeuraLint on an unseen benchmark?

e RQ2: Comparative Analysis of Bug Detection Ca-
pabilities. To what extent does NEURALSTATE’s bug
detection overlap with NeuraLint’s, and what unique bug
detection strengths do NEURALSTATE exhibit?

« RQ3: Impact of Analysis Techniques. How do the two
key analysis techniques (value-propagation and typestate
analysis) in NEURALSTATE impact its effectiveness?

« RQ4: Time Complexity Comparison. How is the time-
complexity of NEURALSTATE compared to NeuraLint?

B. Experimental Methodology

In this section, we present the two real-world benchmarks
used for evaluation, the evaluation metric, baselines, and
implementation.

1) Benchmarks: To ensure a fair and informative com-
parison, we evaluate the performance of NEURALSTATE on
two benchmarks. The first benchmark, NLBENCH, is from
NeuraLint’s work [8] and contains 26 real-world Keras buggy
programs collected from Stack Overflow (SO). The second

benchmark, EXTERNALBENCH, is taken from a prior study
by Humbatova et al. [19] and consists of 19 real-world buggy
programs with complete Keras code collected from SO posts.
In total, the benchmarks contain 22 bugs with a program
crash symptom, 21 with bad performance, and 2 with incorrect
functionality symptoms.

2) Evaluation Metric: We adopted the same evaluation
metrics as in NeuraLint:

Precisi True Positive 0
recision =
True Positive + False Positive

True Positive
Recall = 2
cea True Positive + False Negative @

We utilize the curve fitting method to evaluate the time
complexity to obtain a model representing the data, as used in
related works [14]. We used the coefficient of determination
(R? € [0,1]) to evaluate the model’s effectiveness in fitting the
data points. The closer the R? value is to 1, the more scalable
the approach is.

3) Baselines: We compared our approach against the state-
of-the-art DL bug detection tool, NeuraLint [8]. NeuraLint
builds a graph representation of DL programs and runs a
graph-based verification tool. It utilizes pre-defined rules to
identify faults and design inefficiencies in these programs.
Each rule is associated with a set of guidelines for resolving
the issue, which is provided to the user if the rule is violated.

4) Implementation: NEURALSTATE is implemented in
Python, leveraging a suite of established libraries and custom
tools to ensure a comprehensive approach to DL bug detection.
Keras is employed for deep learning operations, offering the
necessary flexibility for layer inspection and the analysis of
neural architectures. NetworkX is used to build the NSS,
enabling effective representation of dependencies and relation-
ships within DL models. Typestate analysis is implemented
through custom state management utilities specifically devel-
oped to track the phases of DL program execution, modeled
as finite state automata (FSA). Additionally, value propagation
enhances typestate analysis by leveraging Python’s built-in
data structures (e.g., dictionaries and sets) to accurately track
configuration parameters across multiple operations. Finally,
layer inspection is conducted using Keras’s internal APIs, pro-
viding access to detailed layer metadata, including parameters
and configurations. This deep inspection enables a thorough
analysis of complex, real-world DL models, ensuring that all
components comply with established architectural standards.
All the experiments were conducted on an Intel Core 19 with
64 GB of 2400 MHz DDR4 memory. We use the Python time
library to measure the execution time of detecting bugs.

This section presents the results of our experiments.

C. Effectiveness Evaluation (RQ1)

To evaluate NEURALSTATE’s effectiveness in detecting DL
bugs, we divide our analysis into two parts. First, we compare
it with NeuraLint on their own benchmark to establish a direct
comparison with the state-of-the-art (RQ1-A). Then, to assess

generalizability, we evaluate both tools on an independent
benchmark containing different types of DL bugs (RQ1-B).

TABLE IV: Precision and Recall Results

NLBENCH EXTERNALBENCH
Approach Precision Recall | Precision Recall
NeuraLint [8] 74.0% 62.0% 86.6% 32.5%
NeuralState 100.0% 74.0% 100.0% 67.5%
(our approach) (+20.6%) | (+12.0%) (+13.4%) | (+35.0%)
1) Comparison on NLBENCH (RQ1-A):

Experimental Setup. We initially assessed the effectiveness of
NEURALSTATE on the first benchmark, NLBENCH, which is
also utilized by NeuralLint.

Detailed Analysis. The detailed results of NEURALSTATE’s
performance on NLBENCH are presented in Figure 6. The
results reveal several interesting patterns across different
bug categories. For Incorrect Model Parameter or Structure
(IPS) bugs, NEURALSTATE detected 7 instances compared
to NeuraLint’s 5, representing a 40% improvement. This
enhanced detection capability stems from NEURALSTATE’S
value propagation technique, which enables it to track inter-
dependent configurations across layers, particularly in cases
where activation functions and loss functions must be com-
patible. In the Tensor Shape Incompatibility (TSI) category,
NEURALSTATE identified 6 bugs versus NeuraLint’s 4, a
50% increase. This improvement can be attributed to NEU-
RALSTATE’s data-dependence-sensitive representation, which
maintains the branching structure of neural architectures and
better tracks shape transformations across parallel paths. For
API Misuse (APIM), NEURALSTATE detected 7 instances
compared to NeuraLint’s 5, showing a 40% improvement.
This category particularly highlights the effectiveness of our
typestate analysis in capturing invalid sequences of API calls
and ensuring proper ordering of operations. Interestingly, both
tools identified the same number of Structure Inefficiency
(SI) bugs (17), suggesting that these bugs, which often in-
volve suboptimal architectural choices, are equally detectable
through both graph-based and typestate-based approaches. The
consistent performance across all categories, with improve-
ments in three out of four, demonstrates that NEURALSTATE’S
combined approach of typestate analysis and value propagation
effectively addresses the limitations of purely graph-based
analysis, particularly in scenarios requiring a deeper under-
standing of data dependencies and co-changing statements.

Overview of Results. Table IV presents a summary of the
performance comparison between NEURALSTATE and Neu-
raLint on NLBENCH. NEURALSTATE achieves a precision
of 100% and a recall of 74%, outperforming NeuraLint by
20.6% and 12%, respectively. These improvements translate
to relative gains of 35.1% in precision and 19.4% in recall,
highlighting NEURALSTATE’s bug detection capabilities.

2) Comparison on EXTERNALBENCH (RQ1-B):

Experimental Setup. To evaluate NEURALSTATE’s general-
ization capability, we curated EXTERNALBENCH from estab-
lished DL fault localization benchmarks [6, 10, 19, 21]. Like
the original studies, the dataset contains programs sourced
from Stack Overflow to capture real-world bugs. As NEU-
RALSTATE supports FCNNs and CNNs, we filtered for pro-

grams using these architectures. After removing duplicates
and programs overlapping with NLBench, EXTERNALBENCH
provides a distinct set of validation programs, enabling com-
prehensive evaluation of NEURALSTATE’s bug detection ca-
pabilities.

Detailed Analysis. Figure 6 presents the detailed results
of NEURALSTATE’s performance in detecting usage protocol
violations on EXTERNALBENCH. The results reveal a notably
different detection pattern compared to NLBench, with more
pronounced improvements in certain categories. In the IPS
category, NEURALSTATE detected 6 bugs while Neuralint
failed to identify any, highlighting a significant advancement in
detecting structural and parameter-related issues. This signifi-
cant difference can be attributed to NEURALSTATE’s context-
sensitive analysis, which is particularly effective at identifying
subtle interactions between model parameters that occur more
frequently in EXTERNALBENCH’s diverse benchmark. For TSI
bugs, both tools identified only one instance, suggesting that
shape-related issues were less prevalent in this benchmark.
The APIM category shows another substantial improvement,
with NEURALSTATE detecting 6 cases compared to Neu-
raLint’s 3, a 100% increase. This improvement stems from
NEURALSTATE’s typestate analysis being particularly adept at
identifying API protocol violations in more complex program
flows, which are characteristic of the real-world applications
in EXTERNALBENCH. In the SI category, NEURALSTATE
identified 11 inefficiencies compared to NeuraLint’s 8, rep-
resenting a 37.5% improvement. This enhanced detection of
structural inefficiencies can be attributed to NEURALSTATE’s
ability to track value propagation across layers, enabling it to
identify suboptimal architectural choices that might be missed
by graph-based analysis alone. The overall pattern of im-
provements across EXTERNALBENCH, particularly in IPS and
APIM categories, validates NEURALSTATE’s effectiveness on
independently curated datasets and demonstrates its robustness
in handling diverse, real-world DL bugs.

Overview Results. As illustrated in Table IV, NEURAL-
STATE achieved 100% precision and 67.5% recall on EX-
TERNALBENCH, representing a 13.4% and 35% improvement
over NeuraLint, respectively. This translates to a 15.5% rel-
ative improvement in precision and a notable 107% relative
improvement in recall compared to NeuraLint.

TABLE V: True Positive Overlapping Analysis

Category NLBENCH | EXTERNALBENCH Total

Unique to NeuraLint 0 0 0
Overlap 30 12 42

Unique to NeuralState 6 12 18

D. Comparative Analysis of Bug Detection (RQ2)

Experimental Setup. We conducted a comparative analysis
to examine the bugs detected by both NEURALSTATE and
NeuraLint, as well as the bugs uniquely identified by each tool.
This analysis aimed to understand the strengths and limitations
of the two approaches in detecting deep learning code bugs.

Results. Table V presents the results of the comparative
analysis. NEURALSTATE detected 18 unique bugs, demon-
strating its superior bug detection capabilities. In contrast,

10

Bug Detection Performance Comparison Across Benchmarks

NLBench-NeuraLint
NLBench-NeuralState
ExternalBench-NeuralLint
ExternalBench-NeuralState

- = = =
N > o [ee]
L L L s

fury
o
L

Number of Bugs Detected
©

IPS TSI

17 17

APIM Sl

Bug Categories

Fig. 6: Effectiveness of various approaches in detecting bugs across four bug sub-categories

NeuraLint did not detect any unique bugs beyond those found
by NEURALSTATE, highlighting its limitations in handling
data dependency and co-changing features. The table further
reveals that both tools overlapped in detecting 42 bugs across
the two benchmarks, indicating a common set of bugs that
both approaches could effectively identify.

The discrepancy in bug detection capabilities, where
NEURALSTATE identified 18 unique bugs, can be attributed
to two key factors. First, NeuraLint’s inability to identify
co-changed statements hindered its ability to detect bugs
that need multiple fixes. Second, out of the 18 cases where
NEURALSTATE uniquely reported bugs, NeuraLint exhibited
false positives or false negatives in 3 cases due to unresolved
data dependencies.

—

2 model = Sequential ()

3 model.add (ConvlD (filters=20,
kernel_size=4,activation=’'relu’,
padding=’"same’, input_shape=(600,1)))

model.add (MaxPoolinglD (pool_size = 2))

model.add (Dropout (0.3))

model.add (Flatten())

model.add (Dense (50,
= 600))

model.add (Dense (1, activation=’softmax’))

9 model.compile (loss="binary_crossentropy",

optimizer="nadam", metrics=[’accuracy’])

~ o U1

activation='relu’, input_dim

fee]

Fig. 7: NeuraLint false positive report from NLBench

To illustrate the limitations, we examine concrete examples:

1) Case study with a buggy DL program (Program
Crash): Figure 7 shows a buggy program from the NL-
BENCH [8] benchmark. It uses the sequential API to define
6 layers of convolutional and dense operations. During exe-
cution, the program crashes due to incompatibility between
activation and loss function. To fix the bug, a developer
should change ‘softmax’ to ‘sigmoid’ (line 8). Both tools
accurately identify this bug. However, NeuraLint reports an
additional false positive. It incorrectly identifies an issue with
the loss function ‘binary_crossentropy’ on line 9 since it
does not consider the relation with the activation function in
the statement on line 8. This highlights the significance of
dependencies and co-changes in DL bug detection.

2) Evaluation of the motivating example.: Here, we
evaluated NEURALSTATE and NeuraLint using the example
in Section 1. NEURALSTATE correctly identifies two bugs
at line 23 (‘sigmoid’ — ‘softmax’) and on line 28 (‘bi-
nary_crossentropy’ — ‘categorical’). Additionally, NEURAL-
STATE did not report any false positives. NeuraLint reports 1
false positive and O true positives because it does not consider
the data dependencies among the layers and considers that
all hidden layers are applied to the second input. Our results
validate two key observations: (1) resolving data dependencies
and (2) identifying co-changed statements is important for
effective bug detection in a DL program.

E. Impact of Analysis Techniques (RQ3)

Experimental Setup. To validate our third observation (Sec-
tion I) and investigate the individual contributions of value
propagation (VP) and typestate analysis (TSA) to NEU-
RALSTATE’s effectiveness, we conducted an ablation study

with two variants: (1) NEURALSTATE without TSA, and
(2) NEURALSTATE without VP. Since VP incorporates co-
change analysis, the second variant’s results help validate its
impact on our approach. The dependence-sensitive analysis
is core to NEURALSTATE, and removing it would reduce
NEURALSTATE to the baseline NeuraLint.

TABLE VI: Impact of Analysis Techniques on NeuralState

NLBENCH EXTERNALBENCH

Approach | Precision | Recall | Precision | Recall
NeuralState 100.0% | 74.0% 100.0% | 67.5%
- w/o TSA 100.0% | 38.7% 100.0% | 42.1%
- w/o VP 83.7% | 42.8% 84.0% | 31.5%

NB. TSA stands for typeState analysis, and VP stands for value propagation.

Results. Table VI presents the results of the ablation study,
comparing the performance of NEURALSTATE with its two
variants on both benchmarks, NLBENCH and EXTERNAL-
BENCH. The full NEURALSTATE implementation, incorporat-
ing both value propagation and typestate analysis, achieved
the highest precision and recall across both benchmarks.

When evaluating the variant without typestate analysis (w/o
TSA), a significant decrease in recall was observed on both
benchmarks: a 35.3% decrease on NLBENCH and a 25.5%
decrease on EXTERNALBENCH. This finding highlights the
substantial contribution of the typestate analysis technique in
detecting bugs related to control flow violations.

Conversely, the variant without value propagation (w/o VP)
exhibited a more substantial decline in recall on EXTER-
NALBENCH (36%) compared to NLBENCH (31.2%). This
discrepancy can be attributed to the higher prevalence of
bugs related to value violations and statements that co-change
together in EXTERNALBENCH, which the VP technique is
particularly adept at handling.

The ablation study reveals the distinct contributions of each
component (i.e., removing either typestate analysis or value
propagation reduced recall). These results demonstrate that
both techniques positively contribute to NEURALSTATE bug
detection performance.

F. Time Complexity Comparison (RQ4)

Experimental Setup. To evaluate the scalability of NEURAL-
STATE and compare it with NeuraLint, we followed a similar
procedure as the one used in the NeuraLint study. We created
a set of DL programs with varying numbers of layers: 10, 15,
20, 25, 30, and 35 layers. We then executed these programs
using both NEURALSTATE and NeuraLint and measured their
respective execution times. The coefficient of determination
(R?) was employed to quantify the goodness of fit, with a
value closer to 1 indicating better scalability as the number of
layers increases.

Results. NEURALSTATE demonstrates a more efficient ex-
ecution than NeuraLint, as illustrated in Figure 8. As seen
in the figure, NEURALSTATE shows around 12% increase
in R? value when compared with NeuraLint. The enhanced
scalability of NEURALSTATE can be attributed to its approach
of using an abstract representation for DL programs, called
the NeuralState Sequence. In contrast, NeuraLint relies on
the external GROOVE tool for graph checking, as mentioned

in their publication [8]. This dependence on an external tool
introduces additional computational overhead and communi-
cation costs, leading to longer execution times, as the codebase
size increases.

VII. DISCUSSION AND THREATS TO VALIDITY
A. Real-World Bug Detection Capabilities

Evaluating a static analysis tool against open-source reposi-
tories, such as GitHub, is a valuable method for demonstrating
real-world utility. However, this approach presents a unique
challenge for the types of bugs that NEURALSTATE detects.
Because our tool identifies structural and API usage violations
that often cause program crashes or prevent training to start,
developers tend to discover and fix these issues locally before
committing their code. This makes finding such faults in
version histories difficult. Therefore, to rigorously evaluate
NEURALSTATE on real-world faults, we turned to established
benchmarks curated from Stack Overflow developer ques-
tions [8, 19]. On these two independent benchmarks, our
approach identified 18 unique bugs that the state-of-the-art
tool, NeuraLint, missed entirely. This result confirms that
NEURALSTATE is effective in locating real-world bugs that
developers struggle with and that existing tools cannot detect.

B. Generalizability to Other Frameworks

Currently, NEURALSTATE supports Keras-based DL pro-
grams. While our framework is general, adapting it to other
DL frameworks, for instance, to include PyTorch, demands
engineering effort. Our tool’s initial step involves a precise
extraction of layer information from the given DL program.
This structural analysis (parsing) component must understand
the conventions of each DL framework. For example, Keras
provides a convenient .layers() API to extract model struc-
ture, whereas PyTorch relies on .named_modules (). Adapt-
ing our extraction mechanism to accurately interpret and
translate these distinct framework-specific representations into
our tool’s abstract model requires looking into the semantic
differences of how each DL framework defines and connects
computational layers. While our core analytical engine, which
employs typestate analysis and value propagation, remains
broadly applicable, the component responsible for understand-
ing these varied program structures requires re-engineering.
Furthermore, our current version only supports fully connected
and convolutional neural networks. Expanding its analysis
capabilities to encompass a broader range of network architec-
tures will significantly enhance NEURALSTATE’s usefulness
for developers and researchers exploring diverse models.

C. Framework Version Compatibility

Our evaluation uses programs developed with Keras 2.x.
While newer versions of Keras are available, our findings
remain relevant as Keras 3.0 maintains backward compatibility
with Keras 2.x [22]. Given that core APIs remain largely
consistent, the architectural patterns and bugs identified are
fundamental to deep learning [22]. Future investigations could
apply these findings to newer or evolving codebases.

> NeuralState 1.7E-04*x + -9.81E-04 R*=0.983 x NeuralLint
9.2E-04*x + 0.158 R* = 0.872

0.25

0.20 ~

X XX

0.15 X

0.10

0.05

0.00 =< AVA ASAR4A x

10 15 20 25 30 35

#Layer

Fig. 8: Time complexity of NEURALSTATE and NeuraLint on detecting DL bugs. The x-axis represents the number of layers

and the y-axis represents the time cost (sec)

D. Specification Completeness and Bias

A fundamental challenge in our approach lies in ensuring
specification completeness, which has two dimensions. First,
regarding the infernal completeness of our formal model, for
every abstract state and every supported DL operation in our
grammar (Tables I and II), the Finite State Automaton (FSA)
explicitly defines a transition. This ensures that our analysis
is deterministic and will always yield a result (either a valid
next state or a transition to the explicit error state), avoiding
undefined behaviors in the analysis itself.

Second, regarding external completeness, our 24 specifica-
tions were derived from official Keras documentation and prior
empirical studies [8] to cover the most prevalent API protocols.
However, we acknowledge that this manual process cannot
cover all APIs or newly introduced API constraints. This
represents a trade-off: our method provides sound, verifiable
detection for a critical set of known bug patterns, at the
cost of potentially missing violations of unspecified rules. A
promising direction for future work is should focus on semi-
automated techniques for mining specifications to improve
coverage. Similarly, a limitation of our current FSA is its
single error state. We recognize that some specifications, such
as the preference for Max-pooling (R6), represent best practice
rather than strict, crash-causing violations. In the future, we
will enhance our automaton to support multiple fault states
(e.g., ‘warning’ for best practices and ‘error’ for definite vio-
lations), which would provide better context-specific feedback
for developers.

E. Soundness

Our approach prioritizes soundness over completeness. This
means that when our method identifies a violation, there is,
in fact, a violation. However, there may be instances where
our approach fails to detect existing violations, leading to
false negatives. Continuous refinement and expansion of the
specifications are crucial to improve its ability to detect a wider
range of bugs.

F. Internal Threats

Our results indicate a higher false negative (FN) rate for
bugs that cause program crashes compared to other bug types.
A closer analysis of FN reports reveals that 46% were caused
by a mismatch between the input shape expected by the DL
model and the actual shape of the training dataset, as observed
from Stack Overflow code fixes. This issue arises due to a lack
of information about the training dataset, such as the number
of classes or the type of task (e.g., classification, regression).

Consider the bug from Stack Overflow shown in Fig. 9.
Here, a developer wanted to map 5-element input arrays to
3-element outputs, but they incorrectly configured the first
layer to expect one input (input_dim=1) and the final layer
to produce one output (Dense (1)). Our tool, NEURALSTATE,
misses this bug entirely because from an architectural view,
a sequence of pense layers is valid. The actual error is not
in the layer sequence itself, but in the mismatch between the
architecture and the data array later passed to model.fit ().

2 model =

Sequential ()
3 model.add(Dense (10, input_dim=1
, activation=’'relu’))

4 model.add(Dense (10, activation=’relu’))

5 model.add (Dense (10, activation=’relu’))

6 model.add (Dense (1))

7 model.compile(loss='mse’, optimizer=’adam’)
8 data = np.array([x for x in range(0,1000)17)
9
10 for i in range (0, 1000):
11 model.fit ([np.array([datalil]l),

np.array([datal[i]l]l)], nb_epoch=1,
batch_size=1, verbose=0)
12

Fig. 9: A Stack Overflow bug that NEURALSTATE cannot
detect due to its data-agnostic design.

This case reveals a design trade-off we made in NEURAL-

STATE. It was designed to be light-weight and data-agnostic,
ensuring that it does not need access to potentially large or
sensitive training data. However, the consequence is that the
tool is blind to the data-shape mismatches shown in the exam-
ple. This points to a direction for future work on incorporating
data characteristics without trading off efficiency.

VIII. RELATED WORK
A. Detecting Deep Learning Bugs

Various techniques have been proposed to detect and prevent
bugs in DL models [4, 6, 8, 9, 23, 24, 25, 26]. Among
these methods, [6, 10] focus on detecting performance-related
bugs at runtime. Similarly, other approaches, such as [7,
24, 25] monitor the model’s training to detect performance
bugs on specific symptoms. Recently, machine learning-based
approaches like DEfault [27] have extended this by using
dynamic runtime features to classify a wide range of both
training and model faults.

In contrast, NEURALSTATE employs an analysis that does
not require the dataset or model training, thus examining a DL
program without running it. Pytee [28] is a static analysis tool
designed specifically to detect shape mismatches in PyTorch
programs. It converts the Pytorch program into a custom inter-
mediate representation and runs an SMT-solver to detect the
bugs. While we recognize the value of Pytee, comparing our
tool to it presents some challenges. Pytee specifically supports
PyTorch programs, which are not included in our benchmark.
Additionally, it addresses only a portion of the bug types that
our tool comprehensively covers. Amimla [29] constructs an
abstract representation of a DL program and ML pipeline. It
then builds a database of DL constraints for symbolic analysis
to pinpoint issues like dimension mismatches and incorrect
API calls. A direct comparison with Amimla is challenging
due to the tool’s unavailability. Theoretically, Amimla and
NeuralState differ in three aspects: program representation,
the specification design, and the type of analysis to identify
bugs. First, Amimla separately represents different stages of
model-building using graph representation and hash tables
without data dependencies. Second, Amimla uses a key-value
pair to store valid API usage, whereas NeuralState encodes
the specification as a finite state automaton. Lastly, Amimla
uses symbolic analysis to identify bugs, and NeuralState uses
typestate and value-propagation. The closest openly available
work to ours is Neuralint [8]. Neuralint is a static analysis tool
proposed by Nikanjam et al. [8]. It utilizes a meta-modeling
and graph transformation technique to identify DL bugs. While
Neuralint can detect common DL bugs, it reports a high rate
of false positives and negatives due to its inability to resolve
data dependencies and co-change statements. In comparison,
NEURALSTATE runs the analysis on top of a DL representation
that accounts for data dependence between statements and uses
context-sensitive typestate and value propagation to handle the
co-changing statement.

A more recent direction in DL bug detection and repair
leverages Large Language Models (LLMs). For example,
LLMAPIDet [11] uses an LLM to build a knowledge base of
API misuse rules from a large corpus of code commits. Then,

for a new code snippet, it uses a few-shot prompting technique
to check if any of these natural-language rules apply and, if so,
generates a patch. While powerful, this LLM-based approach
relies on the probabilistic knowledge of a massive, pre-trained
model, which can be non-deterministic and acts as a black
box. NEURALSTATE offers a different set of guarantees.
Our approach is grounded in formal methods using typestate
analysis, thus making our analysis verifiable and deterministic.
However, we see these approaches as complementary. The
primary manual effort in our work is defining the specification,
abstract states, and transition rules for our finite state automa-
ton. The LLMAPIDet paper demonstrates a direct solution to
infer specification. A promising direction for future work is to
leverage their strategy to extract these rules and then translate
them into the formal transitions for our typestate automaton.
This would create a hybrid approach, combining the broad
knowledge-mining of LLMs with verifiable guarantees of our
formal analysis.

B. Typestate Analysis

Strom and Yemini [20] first introduced the concept of type-
state as a refinement to type systems. CrySL [15] is a notable
tool that uses typestate analysis and data-flow analysis to
specify usage protocols of cryptographic APIs. While CrySL
is shown to be effective at detecting misuse of cryptographic
APIs, it cannot be directly applied to languages other than
Java as it requires a compiler to convert the rules. Recent
studies [16, 17, 30] have also used typestate analysis to detect
traditional software vulnerabilities, cloud APIs, and OS bugs.
However, none of these approaches consider DL bugs, which
exhibit distinct data dependency characteristics.

C. Value analysis

Several approaches [14, 31, 32, 33, 34] use a value-flow
analysis technique to detect traditional software bugs. One
recent example is the Canary [14] approach, which employs
a thread-modular algorithm to capture data and interference
dependencies within a value-flow graph, addressing bugs in
concurrent programs.

IX. CONCLUSION

In this paper, we present NEURALSTATE, an approach for
detecting bugs in deep learning programs that address the
limitations of state-of-the-art tools. The key insights behind
NEURALSTATE include capturing data dependencies among
DL layers, reasoning about complex bug patterns that require
simultaneous modifications to multiple statements, and com-
bining typestate analysis with value propagation. Empirical
evaluations on two benchmarks containing real-world Keras
bugs demonstrate NEURALSTATE’s significant improvement
over the state-of-the-art tool, NeuraLint. The contributions of
this work include the introduction of the NeuralState Sequence
(NSS) representation and the development of a technique for
handling co-changing statements. Future work aims to explore
techniques for automating the construction of automaton spec-
ifications and its integration with bug detection tools.

X. DATA-AVAILABILITY

A replication package and benchmark of our tool is available
at [35].

XI. ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation under Grants: 2512857 and 2512858. All opinions are
those of the authors and do not reflect the views of sponsors.

(1]

(2]

(3]

(4]
(5]
(6]

(7]

(8]

(9]

[10]

REFERENCES

Y. Yang, X. Xia, D. Lo, and J. Grundy, “A survey on
deep learning for software engineering,” ACM Comput.
Surv., vol. 54, no. 10s, sep 2022. [Online]. Available:
https://doi.org/10.1145/3505243
StackOverflow, “Stackoverflow
for keras,” 2024. [Online].
https://trends.stackoverflow.co/?tags=keras
M. J. Islam, G. Nguyen, R. Pan, and H. Rajan,
“A comprehensive study on deep learning bug
characteristics,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019.
New York, NY, USA: Association for Computing
Machinery, 2019, p. 510-520. [Online]. Available:
https://doi.org/10.1145/3338906.3338955

Pylint, “Pylint 2.16.0b1 documentation,” 2003. [Online].
Auvailable: https://pylint.readthedocs.io/en/latest/

A. Gulli and S. Pal, Deep learning with Keras. Birm-
ingham, United Kingdom: Packt Publishing Ltd, 2017.
M. Wardat, B. D. Cruz, W. Le, and H. Rajan, “Deep-
diagnosis: Automatically diagnosing faults and recom-
mending actionable fixes in deep learning programs,”
in Proceedings of the 44th International Conference on
Software Engineering. New York, NY, USA: Associa-
tion for Computing Machinery, 2022, pp. 561-572.

J. Cao, M. Li, X. Chen, M. Wen, Y. Tian,
B. Wu, and S.-C. Cheung, “Deepfd: Automated
fault diagnosis and localization for deep learning
programs,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing
Machinery, 2022, p. 573-585. [Online]. Available:
https://doi.org/10.1145/3510003.3510099

A. Nikanjam, H. B. Braiek, M. M. Morovati, and
F. Khomh, “Automatic fault detection for deep learning
programs using graph transformations,” ACM Trans.
Softw. Eng. Methodol., vol. 31, no. 1, sep 2021.
[Online]. Available: https://doi.org/10.1145/3470006

J. Dolby, A. Shinnar, A. Allain, and J. Reinen, “Ariadne:
Analysis for machine learning programs,” in Proceedings
of the 2Nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, ser.
MAPL 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1-10. [Online].

Available: https://doi.org/10.1145/3211346.3211349
M. Wardat, W. Le, and H. Rajan, “Deeplocalize: Fault lo-

calization for deep neural networks,” in 2021 IEEE/ACM

trend
Available:

[14]

[18]

43rd International Conference on Software Engineering
(ICSE), IEEE. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 251-262.

M. Wei, N. S. Harzevili, Y. Huang, J. Yang, J. Wang,
and S. Wang, “Demystifying and detecting misuses of
deep learning apis,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering,
2024, pp. 1-12.

eforkin, “Keras Python Multi Image Input shape error,”
https://stackoverflow.com/questions/44399299, 2017.

K. Bierhoff and J. Aldrich, “Modular typestate checking
of aliased objects,” in Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications,
ser. OOPSLA °07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 301-320. [Online].
Auvailable: https://doi.org/10.1145/1297027.1297050

Y. Cai, P. Yao, and C. Zhang, “Canary: Practical static
detection of inter-thread value-flow bugs,” in Proceedings
of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation,
ser. PLDI 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1126-1140. [Online].
Auvailable: https://doi.org/10.1145/3453483.3454099

S. Kriiger, J. Spith, K. Ali, E. Bodden, and M. Mezini,
“Crysl: An extensible approach to validating the correct
usage of cryptographic apis,” IEEE Transactions on
Software Engineering, vol. 47, no. 11, pp. 2382-2400,
2019.

M. Emmi, L. Hadarean, R. Jhala, L. Pike, N. Rosner,
M. Schif, A. Sengupta, and W. Visser, “Rapid:
Checking api usage for the cloud in the cloud,” in
Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE
2021. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1416-1426. [Online]. Available:
https://doi.org/10.1145/3468264.3473934

T. Li, J.-J. Bai, Y. Sui, and S.-M. Hu, “Path-sensitive
and alias-aware typestate analysis for detecting os
bugs,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing
Machinery, 2022, p. 859-872. [Online]. Available:
https://doi.org/10.1145/3503222.3507770

Y. Li, S. Wang, and T. N. Nguyen, “Fault localization to
detect co-change fixing locations,” in Proceedings of the
30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 659-671.

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio,
A. Stocco, and P. Tonella, “Taxonomy of real faults in
deep learning systems,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering,
ser. ICSE °20. New York, NY, USA: Association for

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Computing Machinery, 2020, p. 1110-1121. [Online].
Available: https://doi.org/10.1145/3377811.3380395

R. E. Strom and S. Yemini, “Typestate: A programming
language concept for enhancing software reliability,”
IEEE Transactions on Software Engineering, vol. SE-12,
no. 1, pp. 157-171, Jan 1986.

A. Ghanbari, D.-G. Thomas, M. A. Arshad, and H. Rajan,
“Mutation-based fault localization of deep neural net-
works,” in 2023 38th IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE). 1EEE,
2023, pp. 1301-1313.
Keras, “Keras 3.0 documentation,” 2023. [Online].

Available: https://www.keras.io/keras_3

S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and
Y. Smaragdakis, “Static Analysis of Shape in TensorFlow
Programs,” in 34th European Conference on Object-
Oriented Programming (ECOOP 2020), ser. Leibniz
International Proceedings in Informatics (LIPIcs),
R. Hirschfeld and T. Pape, Eds., vol. 166. Dagstuhl,
Germany: Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, 2020, pp. 15:1-15:29. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/13172

E. Schoop, F. Huang, and B. Hartmann, “Umlaut:
Debugging deep learning programs using program
structure and model behavior,” in Proceedings of the
2021 CHI Conference on Human Factors in Computing
Systems, ser. CHI °21. New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445538

X. Zhang, J. Zhai, S. Ma, and C. Shen, “Autotrainer:
An automatic dnn training problem detection and repair
system,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE). New York, NY,
USA: Association for Computing Machinery, 2021, pp.
359-371.

R. Manke, M. Wardat, F. Khomh, and H. Rajan, “Lever-
aging data characteristics for bug localization in deep
learning programs,” ACM Transactions on Software En-
gineering and Methodology, vol. 34, no. 6, pp. 1-29,
2025.

S. Jahan, M. B. Shah, P. Mahbub, and M. M. Rahman,
“Improved detection and diagnosis of faults in deep
neural networks using hierarchical and explainable clas-
sification,” arXiv preprint arXiv:2501.12560, 2025.

H. Y. Jhoo, S. Kim, W. Song, K. Park, D. Lee, and K. Yi,
“A static analyzer for detecting tensor shape errors in

deep neural network training code,” in Proceedings of the
ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings. New York, NY,
USA: Association for Computing Machinery, 2022, pp.
337-338.

M. J. Islam, “Towards understanding the challenges faced
by machine learning software developers and enabling
automated solutions,” Ph.D. dissertation, Iowa State Uni-
versity, 2020.

H. Wang, X. Xie, Y. Li, C. Wen, Y. Li, Y. Liu,
S. Qin, H. Chen, and Y. Sui, “Typestate-guided

fuzzer for discovering use-after-free vulnerabilities,”
in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 999-1010. [Online]. Awvailable:
https://doi.org/10.1145/3377811.3380386

Q. Shi, R. Wu, G. Fan, and C. Zhang, “Conquering the
extensional scalability problem for value-flow analysis
frameworks,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser.
ICSE °20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 812-823. [Online].
Available: https://doi.org/10.1145/3377811.3380346

Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang,
“Pinpoint: Fast and precise sparse value flow analysis
for million lines of code,” SIGPLAN Not., vol. 53,
no. 4, p. 693-706, jun 2018. [Online]. Available:
https://doi.org/10.1145/3296979.3192418

S. Cherem, L. Princehouse, and R. Rugina,
“Practical memory leak detection using guarded
value-flow analysis,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI ’07. New
York, NY, USA: Association for Computing
Machinery, 2007, p. 480-491. [Online]. Available:

https://doi.org/10.1145/1250734.1250789

Y. Sui, D. Ye, and J. Xue, “Static memory leak
detection using full-sparse value-flow analysis,” in
Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ser. ISSTA 2012.
New York, NY, USA: Association for Computing
Machinery, 2012, p. 254-264. [Online]. Awvailable:
https://doi.org/10.1145/2338965.2336784

Anonymous, “NeuralState implementation and bench-
marks,” https://zenodo.org/records/14931679, 2025.

