
1

On Accelerating Source Code Analysis At
Massive Scale

Ganesha Upadhyaya, Member, IEEE, and Hridesh Rajan, Member, IEEE

Abstract—Encouraged by the success of data-driven software engineering (SE) techniques that have found numerous applications
e.g. in defect prediction, specification inference, the demand for mining and analyzing source code repositories at scale has
significantly increased. However, analyzing source code at scale remains expensive to the extent that data-driven solutions to certain
SE problems are beyond our reach today. Extant techniques have focused on leveraging distributed computing to solve this problem,
but with a concomitant increase in computational resource needs. This work proposes a technique that reduces the amount of
computation performed by the ultra-large-scale source code mining task, especially those that make use of control and data flow
analyses. Our key idea is to analyze the mining task to identify and remove the irrelevant portions of the source code, prior to running
the mining task. We show a realization of our insight for mining and analyzing massive collections of control flow graphs of source
codes. Our evaluation using 16 classical control-/data-flow analyses that are typical components of mining tasks and 7 Million CFGs
shows that our technique can achieve on average a 40% reduction in the task computation time. Our case studies demonstrates the
applicability of our technique to massive scale source code mining tasks.

Index Terms—Source code analysis, Mining Software Repositories, Ultra-large-scale Mining, Data-driven Software Engineering.

F

1 INTRODUCTION

There has recently been significant interest and success in
analyzing large corpora of source code repositories to solve
a broad range of software engineering problems includ-
ing but not limited to defect prediction [1], discovering
programming patterns [2], [3], suggesting bug fixes [4],
[5], specification inference [6], [7], [8], [9]. Approaches that
perform source code mining and analysis at massive scale
can be expensive. For example, a single exploratory run to
mine API preconditions [8] of 3168 Java API methods over a
dataset that contains 88,066,029 methods takes 8 hours and
40 minutes on a server-class CPU, excluding the time taken
for normalizing, clustering and ranking the preconditions.
Often multiple exploratory runs are needed before settling
on a final result, and the time taken by experimental runs
can become a significant hurdle to trying out new ideas.

Fortunately, extant work has focused on leveraging dis-
tributed computing techniques to speedup ultra-large-scale
source code mining [10], [11], [12], but with a concomitant
increase in computational resource requirements. As a re-
sult, many larger scale experiments have been attempted
that perform mining over abstract syntax trees (ASTs), e.g.,
[13]. While mining ASTs is promising, many software engi-
neering use-cases seek richer input that further increases
the necessary computational costs, e.g. the precondition
mining analyzes the control flow graph (CFG) [8]. While it
is certainly feasible to improve the capabilities of the under-
lying infrastructure by adding many more CPUs, nonprofit
infrastructures e.g. Boa [10] are limited by their resources

• The authors are with the Department of Computer Science, Iowa State
University, Ames, IA 50011.
E-mail: {ganeshau, hridesh}@iastate.edu

and commercial clouds can be exorbitantly costly for use in
such tasks.

In this work, we propose a complementary technique
that accelerates ultra-large-scale mining tasks without de-
manding additional computational resources. Given a min-
ing task and an ultra-large dataset of programs on which the
mining task needs to be run, our technique first analyzes
the mining task to extract information about parts of the
input programs that will be relevant for the mining task,
and then it uses this information to perform a pre-analysis
that removes the irrelevant parts from the input programs
prior to running the mining task on them. For example, if
a mining task is about extracting the conditions that are
checked before calling a certain API method, the relevant
statements are those that contains API method invocations
and the conditional statements surrounding the API method
invocations. Our technique automatically extracts this infor-
mation about the relevant statements by analyzing the min-
ing task source code and removes all irrelevant statements
from the input programs prior to running the mining task.

Prior work, most notably program slicing [14], has used
the idea of reducing the input programs prior to analyz-
ing them for debugging, analyzing, and optimizing the
program. Program slicing removes statements that do not
contribute to the variables of interest at various program
points to produce a smaller program. Our problem requires
us to go beyond variables in the programs to other program
elements, such as method calls and loop constructs. More-
over, we also require a technique that can automatically
extract the information about parts of the input program
that are relevant to the mining task run by the user.

Source code mining can be performed either on the
source code text or on the intermediate representations
like abstract syntax trees (ASTs) and control flow graphs
(CFGs). In this work, we target source code mining tasks

2

that perform control and data flow analysis on millions of
CFGs. Given the source code of the mining task, we first
perform a static analysis to extract a set of rules that can
help to identify the relevant nodes in the CFGs. Using these
rules, we perform a lightweight pre-analysis that identifies
and annotates the relevant nodes in the CFGs. We then
perform a reduction of the CFGs to remove irrelevant nodes.
Finally, we run the mining task on the compacted CFGs.
Running the mining task on compacted CFGs is guaranteed
to produce the same result as running the mining task on
the original CFGs, but with significantly less computational
cost. Our intuition behind acceleration is that, for source
code mining tasks that iterates through the source code parts
several times can save the unnecessary iterations and com-
putations on the irrelevant statements, if the target source
code is optimized to contain only the relevant statements
for the given mining task.

We evaluated our technique using a collection of 16
representative control and data flow analyses that are often
used in the source code mining tasks and compilers. We also
present four case studies using the source code mining tasks
drawn from prior works to show the applicability of our
technique. Both the analyses used in the evaluation and the
mining tasks used in the case studies are expressed using
Boa [10] (a domain specific language for ultra-large-scale
source code mining) and we have used several Boa datasets
that contains hundreds to millions of CFGs for running the
mining tasks. For certain mining tasks, our technique was
able to reduce the task computation time by as much as
90%, while on average a 40% reduction is seen across our
collection of 16 analyses. The reduction depends both on
the complexity of the mining task and the percentage of
the relevant/irrelevant parts in the input source code for
the mining task. Our results indicate that our technique is
most suitable for mining tasks that have small percentage of
relevant statements in the mined programs.

Contributions. In summary, our paper makes the fol-
lowing contributions:

• We present an acceleration technique for scaling
source code mining tasks that analyze millions of
control flow graphs.

• We present a static analysis that analyzes the mining
task to automatically extract the information about
parts of the source code that are relevant for the
mining task.

• We show that by performing a lightweight pre-
analysis of the source code that identifies and re-
moves irrelevant parts prior to running the mining
task, the overall mining process can be greatly accel-
erated without sacrificing the accuracy of the mining
results.

• We have implemented our technique in the Boa
domain-specific language and infrastructure for
ultra-large-scale mining [10].

• Our evaluation shows that, for few mining tasks, our
technique can reduce the task computation time by
as much as 90%, while on average a 40% reduction is
seen across our collection of 16 analyses.

Organization. The remainder of this paper is organized
as follows. §2 provides a motivation for our technique and

§3 describes the technique in detail. §4 and §5 presents our
empirical evaluation and case studies respectively, and we
discuss the related work in §6 before concluding in §7.

2 MOTIVATION

Many source code mining tasks require performing control
and data flow analysis over CFGs of a large collection of
programs: API precondition mining [8], API usage pattern
mining [7], [9], source code search [15], discovering vulner-
abilities [16], to name a few. These source code mining tasks
can be expensive. For example, consider the API precon-
dition mining [8] that analyzes the control flow graphs of
millions of methods to extract conditions that are checked
before invoking the API methods and uses these conditions
to construct specifications for API methods.

To measure how expensive this mining task can get,
we mined all 3168 API methods in the Java Development
Kit (JDK) 1.6 using three datasets: D1 (contains 6,741,465
CFGs), D2 (88,066,029 CFGs), D3 (161,577,735 CFGs). Larger
the dataset, the API precondition mining task can produce
more accurate preconditions. Running the task on D1 took
36 minutes and D2 took 8 hours and 40 minutes. We expect
the task to take several days on D3, hence we choose to run
the task onD3 using a distributed computing infrastructure,
where the task took 23 minutes. From this experiment
we can observe that, source code mining at massive scale
without a parallel infrastructure can be very expensive.
While, the parallel infrastructures can reduce the mining
time significantly, the mining task may occupy the cluster
for a significant amount of time leading to the unavailability
of the resources for other tasks. So, does there exists other
avenues to reduce the computational needs of the massive
scale source code mining tasks?

Our work explores one such avenue, where the source
code mining task is analyzed to identify the parts of the
input programs that are relevant for the mining task, such
that the mining task can be run on only the relevant parts
to reduce the computational needs without sacrificing the
accuracy of the mining results.

1 public void body(String namespace, String name, String text)
2 throws Exception {
3 String namespaceuri = null;
4 String localpart = text ;
5 int colon = text . indexOf(’ : ’) ;
6 if (colon >= 0) {
7 String prefix = text .substring(0,colon);
8 namespaceuri = digester.findNamespaceURI(prefix);
9 localpart = text .substring(colon+1);

10 }
11 ContextHandler contextHandler = (ContextHandler)digester.peek

();
12 contextHandler.addSoapHeaders(localpart,namespaceuri);
13}

Fig. 1: Code snippet from Apache Tomcat GitHub project.

To elaborate, let us revisit the API precondition min-
ing example. Let us consider that we want to mine the
API preconditions of substring(int,int) API method.
Figure 1 shows an example client method that invokes
substring(int,int) API method at line 7. This API

3

Fig. 2: When API precondition mining analysis is run on
the CFG of the code shown in Figure 1, it visits every node
in the CFG and queries whether the nodes have predicate
expression or substring(int,int) API method call. If
so, such nodes are relevant for API precondition mining.

method invocation is guarded by the condition colon >=
0 at line 6, hence the condition is considered as precondition.
To extract this precondition, the mining task first builds
the CFG of the method as shown in Figure 2 (CFG node
numbers corresponds to the line numbers in Figure 1). The
task performs several traversals of the CFG. In the first
traversal, it identifies the API method call nodes as well
as the conditional nodes that provide conditions. In the next
traversal, the mining task performs a dominator analysis to
compute a set of dominator statements for every statement
in the program (A statement x dominates another statement
y, if every execution of statement y includes the execution of
statement x). In the final traversal, the mining task uses the
results from the first two traversals to extract the conditions
of all the dominating nodes of the API method invocation
nodes. For this analysis the relevant nodes are: i) the nodes
that contain substring(int,int) API method invoca-
tions and ii) the conditional nodes. In the client method
shown in Figure 1, only line 6 & 7 are relevant (node 6 &
7 in the corresponding CFG shown in Figure 2). All other
nodes are irrelevant and any computation performed on
these nodes is not going to affect the mining results.

In the absence of our technique, the API precondition
mining task would traverse all the nodes in the CFG in
all the three traversals, where the traversal and the com-
putation of the irrelevant nodes (computing dominators
and extracting conditions of the dominators of the API
invocation nodes) can be avoided to save the unnecessary
computations. For instance, if the mining task is run on a re-
duced CFG as shown in Figure 2 that contains only relevant
nodes, the mining task can be accelerated substantially. As
we show in our case study (§5.1), for the API precondition
mining task, we were able to reduce the overall mining task
time by 50%.

3 APPROACH

Figure 3 shows an overview of our approach. The main
three components of our approach are: i) a static analysis
to extract rules, ii) a pre-analysis traversal to identify the
analysis relevant nodes, and iii) a reduction to remove the
analysis irrelevant nodes.

Fig. 3: An overview of our approach.

Given a mining task and an input CFG, instead of
running the mining task directly on the input CFG,
we perform a lightweight pre-analysis that identifies
the relevant nodes for the mining task and prunes the
irrelevant nodes to obtain a reduced CFG. The pre-analysis
stage is helped by a static analysis that provides a set of
rules to identify relevant nodes. The rules set contains
predicate expressions on the CFG node, which when
evaluated on the nodes of the input CFG helps to identify
relevant nodes. For example, consider the following
rule: [(node.expression == METHODCALL) &&
(node.expression. method == ‘‘substring’’)].
This rule evaluates to true for all CFG nodes that contain
substring method invocation expression. Inputs to the
pre-analysis stage are: a CFG and a set of rules computed
by our static analysis. The pre-analysis stage contains a
traversal of the input CFG that runs the rules and annotates
the analysis relevant nodes, and a reduction phase that
prunes the analysis irrelevant nodes. Output of the pre-
analysis stage is a reduced CFG. We run the analysis on the
reduced CFG to produce the output.

Source code mining task. We assume the following
formulation for a source code mining task: a source code
mining task may contain a set of analyses. A source code
analysis such as control flow analysis, data flow analysis,
can be expressed as one or more traversals over the control
flow graphs (CFGs). A traversal visits every node in the CFG
and executes a block of code, often known as an analysis
function. An analysis function takes a CFG node as input
and produces an output for that node (aka analysis fact).1

Figure 4 shows an example source code mining task
written in Boa [10] (a domain-specific language for mining
source code repositories) for mining API preconditions [8].
This source code mining task mainly contains three traver-
sals: mineT (Figure 4a), domT (Figure 4b), and analysisT
(Figure 4c), and a main program (Figure 4d) that invokes the
three traversals on every method visited in the project. Note
that, this source code mining task is run on all the projects in

1. This is a standard formulation of control and data flow analysis
which can be seen in other analysis frameworks such as SOOT and
WALA.

4

(a) The mineT traversal extracts all substring API call nodes
and conditional nodes

1 // stores node ids of nodes with substring API call
2 apiCallNodes: set of int ;
3
4 // stores conditions at nodes
5 conditionsAtNodes: map[int] of string ;
6
7 hasSubstring := function(expr: Expression): bool {
8 // checks if there exists a substring API method invocation
9 }

10
11 isConditional := function(node: CFGNode): bool {
12 // checks if the CFG node has a conditional expression
13 }
14
15 mineT := traversal (node: CFGNode) {
16 if (def(node.expr) && hasSubstring(node.expr)) {
17 add(apiCallNodes, node.id);
18 }
19 if (isConditional (node)) {
20 conditionsAtNodes[node.id] = string(node.expr);
21 }
22 }

(b) The domT traversal computes a set of dominators for every
CFG node

1 domT := traversal(node: CFGNode): set of int {
2 doms: set of int ;
3
4 doms = getvalue(node);
5
6 if (! def(doms)) {
7 if (node.id == 0) {
8 s: set of int ;
9 doms = s;

10 } else {
11 doms = allNodeIds;
12 }
13 }
14
15 foreach (i : int ; def(node.predecessors[i])) {
16 pred := node.predecessors[i];
17 doms = intersection(doms, getvalue(pred));
18 }
19
20 add(doms, node.id);
21 return doms;
22 }

(c) The analysisT traversal computes the preconditions for every
substring API call node

1 analysisT := traversal (node: CFGNode) {
2 preconditions: set of string ;
3
4 if (contains(apiCallNodes, node.id)) {
5 doms := getvalue(node, domT);
6
7 foreach (dom: int = doms) {
8 if (haskey(conditionsAtNodes, dom)) {
9 add(preconditions, conditionsAtNodes[dom]);

10 }
11 }
12 }
13
14 location := ...
15 output[location] << preconditions;
16 }

(d) A visitor that invokes traversals on the CFG of every method
in the project

1 visit (input , visitor {
2 before method: Method −> {
3 cfg := getcfg(method);
4
5 traverse(cfg, ..., mineT);
6
7 if (! isEmpty(apiCallNodes)) {
8 traverse(cfg, ..., domT);
9 traverse(cfg, ..., analysisT);

10 }
11 }
12 }) ;

Fig. 4: API Precondition mining Boa program.

the dataset. We will use this example to describe the details
of our technique.

As described in Figure 3, the first step in our approach
is a static analysis that analyzes the mining task to extract a
set of rules that describes the types of relevant nodes.

3.1 Extracting Rules to Infer Relevant Nodes

Given a mining task that contains one or more traversals,
our static analysis analyzes each traversal by constructing
the control flow graph representation of the traversal and
enumerating all acyclic paths in it.

Definition 1. A Control Flow Graph (CFG) of a program
is defined as G = (N,E,>,⊥), where G is a directed
graph with a set of nodes N representing program state-
ments and a set of edges E representing the control flow
between statements. > and ⊥ denote the entry and exit
nodes of the CFG.2

2. CFGs with multiple exit nodes are converted to structured CFGs
by adding a dummy exit node to which all exit nodes are connected.

We use the notation GA = (NA, EA,>A,⊥A) to represent
the CFG of the analysis traversal, and G = (N,E,>,⊥) to
represent the code corpora CFG that is input to an analysis.
A (control flow) path π of GA is a finite sequence
〈n1, n2, . . . , nk〉 of nodes, such that n1, n2, . . . , nk ∈ NA and
for any 1 ≤ i < k, (ni, ni+1) ∈ EA, where k ≥ 1, n1 = >A

and nk = ⊥A.
A set of paths, Π = {π0, π1, . . .} is a set of acyclic paths
in the control flow graph GA of the traversal (or an anal-
ysis function). An acyclic path contains nodes that appear
exactly once except the loop header node that may appear
twice.

The key idea of our static analysis is to select a subset of
all acyclic paths based on the two conditions: 1) the path
contains statements that provide predicates on the input
variable (a CFG node), and 2) the path contains statements
that contributes to the analysis output.

An input variable of a traversal (or an analysis func-
tion) is always a CFG node as described in the traversal
definition. For example, in the mineT traversal definition,
node is the input variable. Output variables of an analysis

5

Fig. 5: Control flow graphs of the three traversals shown in
Figure 4

function can be one of the three kinds: 1) the variables
returned by the traversals as outputs, for instance, doms
in case of domT traversal, 2) the global variables, for in-
stance, apiCallNodes and conditionsAtNodes in case
of mineT traversal, or 3) the variables that are written to
console as outputs, for instance, preconditions in case of
analysisT traversal.

Every selected path produces a rule that is a path condi-
tion.3 For example, consider the API precondition mining
task shown in Figure 4. This mining task contains three
traversals (mineT, domT, and analysisT), where mineT,
domT, and analysisT contains 4, 6, and 4 acyclic paths re-
spectively as shown in Figure 5. Our static analysis analyzes
each of these paths to select a subset of paths satisfying the
two conditions described above.

Given a set of acyclic paths Π of a traversal (or an
analysis function), and input/output variables of the traver-
sal, Algorithm 1 computes a rules set R that contains path
conditions extracted from the acyclic paths. For each path,
Algorithm 1 visits the nodes in the path and checks if the
node is a branch node. Algorithm 1 then fetches a list of
aliases of the input variable (iv) to check if the branch node
contains the input variable or its aliases (lines 8-9),4 if so,

3. A path condition is a conjunction of all node conditions and it
represents a condition that must be true for the path to be taken at
runtime.

4. Before starting the rules extraction process, we first perform an
alias analysis to determine aliases of input and output variables using
a conservative linear time type-based alias analysis [17].

Algorithm 1: Extract rules from an analysis function
Input: Set of paths Π, String iv, Set<String> ov
Output: Rules set R

1 R← {};
2 foreach π := (n1, n2, . . . , nk) ∈ Π do
3 pc← true;
4 failToExtract← false;
5 hasOutputExpr← false;
6 foreach ni ∈ π do
7 if ni is a branch node then
8 α← getAliasesAt(iv, ni);
9 if getVariables(ni) ∩ α 6= φ then

10 pe← getPredicate(ni);
11 if pe is null then
12 continue;

13 if pe is true then
14 failToExtract← true;
15 continue;

16 if ni+1 is a true successor then
17 pc← pc ∧ pe;
18 else
19 pc← pc ∧ ¬pe;

20 else
21 β ← getAliasesAt(ov, ni);
22 if β ∩ getVariables(ni) 6= φ then
23 hasOutputExpr← true;
24 if failToExtract is true then
25 return {true};

26 if hasOutputExpr is true then
27 R← R ∪ pc;

28 if R is empty then
29 R← R ∪ true;

30 return R;

it gets the predicate expression contained in the node using
an auxiliary function getPredicate (line 7). The getPredicate
auxiliary function can return either null, or true, or the
predicate expression.

The getPredicate function returns null when the predi-
cate expression of the branch node does not contain any
expression that accesses the statement/expression using the
input variable (iv) or its aliases. For example, the predi-
cate expression “contains(apiCallNodes, node.id)”
in line 4 in Figure 4c does not access the statement/expres-
sion, whereas, the predicate expression “def(node.expr)
&& hasSubstring(node.expr)” accesses the expression
using the input variable node. Table 1 provides several
examples of predicate expressions at branch nodes and the
returned values by the getPredicate function for our example
mining task described in Figure 4. When getPredicate returns
null, Algorithm 1 simply ignores the branch node and con-
tinues processing other nodes.

The getPredicate function returns true when there exists
a predicate expression that contains an expression that
accesses the statement/expression using the input variable

6

TABLE 1: Predicate extraction scenarios for getPredicate auxiliary function

Branch Expression Context Description getPredicate
node.id == 0 Accessing the node id null
def(node.expr) Accessing the node expression node.expr

node.id == 0 && def(node.expr) Accessing node id and expression node.id == 0 && def(node.expr)

myfunc(node)
myfunc accesses node statement/expression
but does not contain any non-local access myfunc(node)

myfunc(node)
myfunc accesses node statement/expression
but contains some non-local accesses true

def(expr) expr := node.expr def(node.expr)
def(pred.expr) pred := node.predecessors[i] true

gVar > 10 Accessing a global variable null
def(node.expr) && gVar > 10 Accessing the node expression and a global variable true

def(node.expr) && getvalue(node) Accessing the node expression and querying the node value true
def(expr) if () { expr := node.expr } true

(iv) or its aliases, but not all symbols in the predicate
expression could be resolved. This could happen in several
scenarios, for example, the predicate expression contains a
global variable, or a local variable whose value could not
be resolved, or a function call that in turn is not local (the
invoked function has access to global variables). We have
considered all possible scenarios that could happen in our
analysis language and we list some of the examples in Ta-
ble 1. The getPredicate function returning true is a failure case
and it indicates that there exists a predicate but could not
be extracted. We note this failure using failToExtract
boolean (in Algorithm 1), which is used later in line 24 to
terminate the rules extraction with a sound behavior that
assumes that all nodes in the input CFG are relevant for the
mining task.

The final case is when the getPredicate function is able to
successfully extract the predicate expression from a branch
node. Note that, the predicate expression returned in this
case is fully resolved in terms of symbols and contains only
the input variable-based statements/expressions. In this
case, we determine whether to add the predicate expression
or its negation based on the branch (true or false branch)
that the successor node in the path belongs to. The path
condition is the “logical and” of all predicate expressions in
the path (lines 16-19). If the current visited node is not a
branch node, then we get the aliases of the output variables
ov and check if the node contains the output variable or
its aliases (lines 21-22). The idea here is to keep the path
conditions of only those paths that contributes to the output.
At the end of visiting all nodes in the path, the computed
path condition is added to the rule set R, if the current path
contributes to the output (lines 26-27). We use the rule set R
computed by Algorithm 1 to produce an annotated control
flow graph (ACFG) in the pre-analysis traversal (§3.2).

3.1.1 Example
We provide a running example of our static analysis us-
ing the API precondition mining task shown in Figure 4.
This mining task contains three traversals: mineT, domT,
analysisT and Algorithm 1 is applied to each traversal
individually and the final rules set combines the rules
extracted for each traversal.

Let us first consider the application of Algorithm 1 to
mineT traversal. Figure 5 shows the CFG of mineT traver-
sal, where the node numbers corresponds to the source line
numbers in Figure 4. We can see that the mineT CFG con-
tains 4 acyclic paths. For example, one such path is START

→ 16 → 17 → 19 → END. Similarly, other three paths

can be enumerated. The input variable to mineT traversal is
node and the output variable set contains apiCallNodes
and conditionsAtNodes. Algorithm 1 visits paths one-
by-one and every node in the path is visited one-by-one.
Consider the path described above (START → 16 → 17 →
19 → END), node 16 is a branch node and the expression
in the branch node (line 16 in Figure 4a) contains the input
variable, hence getPredicate is invoked. As the expression in
the branch node can be fully resolved, getPredicate success-
fully returns the predicate expression “def(node.expr)
&& hasSubstring(node.expr)”. Also, the next node in
the path is 17, a true successor, the predicate expression is
added to pc. The next node visited is 17 and it contains an
output variable apiCallNodes (line 17 in Figure 4a), hence
hasOutputExpr is set to true. The next node visited is
19, a branch node and it also contains the input variable,
hence getPredicate is invoked, which returns the predicate
expression “isConditional(node)”. As the next node in
the path is END, a false successor, the negation of the pred-
icate expression is added to pc, which now becomes true
∧ def(node.expr) && hasSubstring(node.expr) ∧
¬isConditional(node). As the path contains no more
nodes and hasOutputExpr is true, pc is added to R. Sim-
ilarly, all other three paths are processed and the final rules
set after processing all four paths in the mineT traversal is:

{
true ∧
def(node.expr) && hasSubstring(node.expr) ∧
¬isConditional(node),

true ∧
¬def(node.expr) && hasSubstring(node.expr) ∧
isConditional(node),

true ∧
def(node.expr) && hasSubstring(node.expr) ∧
isConditional(node)
}

Fig. 6: Rules set R produced by our static analysis for the
API precondition mining task shown in Figure 4

Running Algorithm 1 on paths of domT and analysisT
does not add more rules to set R because all the branch
conditions contain no expression that accesses statement/-

7

expression using the input variable node and getPredicate
returns null for such cases. So, at the end of static analysis
on the API precondition mining task we obtain a rules set
R as provided above. Intuitively, the rules set R contains
three rules that describes that an input CFG node is relevant
if it contains: a substring method call, or a conditional
expression, or both.

3.1.2 Soundness
The soundness of our static analysis (Algorithm 1) concerns
the ability of the analysis to capture all analysis relevant
nodes. Missing any analysis relevant node may lead to
the removal of such node, which in turn leads to invalid
analysis output. Hence, it is important that our static anal-
ysis extracts rules that can capture all analysis relevant
nodes. Using the soundness arguments presented below, we
argue that the rules collected by Algorithm 1 are sufficient
to identify all analysis relevant nodes. We first define the
analysis relevant nodes.

Definition 2. A node is relevant for an analysis, if it takes a
path in the analysis that produces some output. If Π is
the set of all analysis paths, Πo ⊆ Π is the set of all paths
such that ∀π := (n1, n2, . . . , nk) ∈ Πo,∃ni that produces
some output.

For Algorithm 1 to ensure that all analysis relevant
nodes will be collected later in the pre-analysis stage, it
must ensure that all paths that produces some output are
considered.

Lemma 1. All output producing paths (Πo) are considered
in Algorithm 1.
Proof sketch. Algorithm 1 iterates through every path
and checks if there exists a statement/expression that
writes to the output variable ov to determine if the
path should be considered. Provided that getAliasesAt
is a sound algorithm [17], we can see that any path
that contains statements/expressions that writes to the
output variable or its aliases are considered.

We know that, a path is taken if the path conditions
along the path are satisfied [18]. So, to ensure that all paths
that produces some output are considered, Algorithm 1
must ensure that all path conditions along these paths are
captured.

Lemma 2. All conditions of the output producing paths (Πo)
are included in R.
Proof sketch. Given a set of paths that produce output
(Πo), the input variable iv, a sound algorithm getAlias-
esAt, the Algorithm 1 extracts all path conditions that
involve the input variable iv or its aliases using getPred-
icate and adds to the rules set R. We argue that no path
condition is missed. There are three cases to consider:

• Case 1. When no path contains path conditions (se-
quential traversal function code), then true is added
as a rule to ensure that all paths are considered (lines
28-29).5

5. It is not possible that some paths contain path conditions and other
don’t. It is either all paths contain path conditions or none because if
a path condition along one path exists then the negation of that path
condition also exists along other paths.

• Case 2. When there exists no path that contains
conditions on the input variable iv or its aliases, or
in other words, no path condition could be added to
set R (the case where line 9 evaluates to false for all
branch nodes in the path), true is added to ensure
that all paths are considered (lines 26-27).

• Case 3. The cases where there exists some path condi-
tions that involve the input variable iv or its aliases,
but could not be extracted (when failToExtract is
true), Algorithm 1 returns true (lines 24-25) to ensure
that everything is considered relevant.

In all other cases, the path conditions that involves the
input variable iv or its aliases are added to the rules set R.
We can see that, we do not miss any path that generates
output and we collect either the path conditions on the
input variable iv or true. Since we do not miss any path
that generates output, the relevant nodes which takes the
paths that generates output will also be not missed. This is
presented as our soundness theorem next.

Theorem 3. (Soundness). If NR ⊆ N is a set of all relevant
nodes, ∀n ∈ NR,∃r ∈ R, such that evaluates(r, n) is
true, where the auxiliary function evaluates given a rule
r (which is a predicate) and a CFG node, checks the
satisfiability to return true or false. As it can be seen in
evaluates is invoked in Algorithm 2, which is a dynamic
evaluation step that simply runs each rule on the input
CFG node to determine if the node is relevant or not.
Since all the rules in the set R contain only the input
variable evaluates function can never fail.
Proof sketch. By Lemma 1 and Lemma 2, the theorem
holds.

3.1.3 Time Complexity
The time complexity of Algorithm 1 is O(p ∗ n), where p is
the number of acyclic paths in the CFG of the analysis func-
tion (can grow exponentially, but finite) and n is the number
of nodes in the CFG of the analysis function (the number
of nodes can be considered nearly equal to the number of
program statements). Prior to Algorithm 1 there are two key
steps: computing the acyclic paths and computing the alias
information. Our acyclic path enumeration step performs a
DFS traversal of the CFGs of the analysis functions that has
O(n+e) time complexity in terms of number of nodes n and
number of edges e. The alias analysis used in our approach
is a type-based alias analysis [17] that has a linear time
complexity in terms of the number of program statements.
Overall, our static analysis overhead includes: 1) time for
building the CFG of the analysis functions, 2) time for
enumerating all acyclic paths, 3) time for alias analysis, and
4) time for extracting the rules (Algorithm 1). We present the
static analysis overheads for all our 16 mining tasks used in
our evaluation in §4.5.

3.1.4 Effectiveness
While the soundness of our static analysis (Algorithm 1) is
guaranteed by both the sound alias analysis and the get-
Predicate auxiliary function, getPredicate requires that input-
related predicates are expressed in the free form in analyses
to be effective. In other words, getPredicate can effectively

8

TABLE 2: Pruning-effective predicates for various control
and data flow analyses

Analysis Pruning-Effective Predicates

Available Expression (AE)

1) Node has expression, expression is not a method call, and
expression contains variable access
- Return the expression and accessed variables
2) Node has variable definition
- Return the defined variable

Common Sub.Expr Elim (CSE) Same as AE

Constant Propagation (CP)

1) Node has variable definition
- Return the defined variable
2) Node has variable access
- Return the accessed variables

Copy Propagation (CP’) Same as CP
Dead Code (DC) Same as CP

Loop Invariant (LI)

1) Node has variable definition and node is part of a loop
- Return the defined variable
2) Node has variable access and node is part of a loop
- Return the accessed variables
3) Node has a loop statement such as FOR, WHILE, etc.
- Return the node id

Local May Alias (LMA) 1) Node has variable definition
- Return the defined variable

Local Must Not Alias (LMNA) Same as LMA
Live Variables (LV) Same as CP

Precondition Mining (PM)

1) Node has a call to the input API
- Return the node id
2) Node has a condition
- Return the conditional expression (or predicate)

Reaching Definitions (RD) Same as CP

Resource Leak (RL) 1) Node has a call to Java resource-related API
- Return the variable holding the resource

Safe Synchronization (SS)

1) Node has a call to Java Locking API
- Return the variable holding the lock
2) Node has a call to Java Unlocking API
- Return the variable holding the lock

Taint Analysis (TA)

1) Node has a call to Java input related API that
reads external input to program variables
- Return the affected variables
2) Node has a call to Java output related API that
writes program variables to external output
- Return the variables written to external output
3) Node has a variable copy statement
- Return the copied variables

Up Safety (UP) Same as AE
Very Busy Expression (VBE) Same as AE

extract the input-related predicates, if they are (or can be)
expressed in terms of the input variable (a CFG node).
While this is a limitation of our static analysis, however
we argue that it does not impose severe restrictions on the
expressibility of code analyses. Often, the control and data
flow analyses follow a well-defined lattice-based analysis
framework in which a function that generates output for
the given node is defined that depends on the statement or
expression contained in the CFG node and outputs of neigh-
bors (predecessors or successors). The part that extracts
some information from the node is most likely check the
type or kind of statement/expression contained in the node.
For instance, to extract variable defined in a CFG node, the
analysis will first check if the node contains a definition
statement. If so, it extracts the defined variable. Table 2 list
the input-related predicates for various analyses used in our
evaluation along with the information extracted at nodes.
As it can be seen in Table 2, for all the analyses the pruning-
effective predicates are expressed on the statement and
expression contained in the CFG node. It is quite possible
to write an arbitrary control/data flow analysis where are
approach can be ineffective in that Algorithm-1 considers
every node relevant, but we have ensured soundness.

3.2 Annotated Control Flow Graph
In §3.1 we described our static analysis to extract rules. The
output of our static analysis is a set of rules that contains
predicate expressions on the CFG nodes. For instance, the
rules set for API Precondition mining contains three rules
as shown in Figure 6. Using the rules set, we perform a pre-
analysis traversal that visits every node in the CFG, checks

if there exists a rule r ∈ R such that evaluates(r, n) is true,
and creates a set NR ⊆ N of nodes that contains nodes
for which at least one rule in the rules set R evaluates to
true. The auxiliary function evaluates given a rule r (which
is a predicate) and a CFG node, checks the satisfiability to
return true or false. The set NR represents the probable set
of analysis relevant nodes. Note that some special nodes are
also added to the set NR as shown in Algorithm 2. These
are the entry and exit nodes, and the branch nodes.6 Finally,
the newly created set NR is added to the CFG to create a
modified CFG which we call and annotated control flow
graph (ACFG).

Algorithm 2: Pre-analysis traversal
Input: Control flow graph (CFG) G, Rules set R
Output: Annotated control flow graph (ACFG) G′

1 NR := {};
2 foreach node n in G′ do
3 if n is > or ⊥ then
4 NR := NR ∪ n;

5 if n is a branch node then
6 NR := NR ∪ n;

7 foreach r ∈ R do
8 if evalutes(r, n) then
9 NR := NR ∪ n;

10 break;

11 add NR to G′;
12 return G′;

Definition 4. An Annotated Control Flow Graph (ACFG) of
a CFG G = (N,E,>,⊥) is a CFG G′ = (N,E,NR,>,⊥)
with a set of nodes NR ⊆ N computed using Algo-
rithm 2.

Definition 5. Given an ACFG G′ = (N,E,NR,>,⊥), a node
n ∈ N is an analysis relevant node if:

• n is a > or a ⊥ node,
• n is also in NR, but not a branch node,
• n is a branch node with at least one branch that has

an analysis relevant node.

3.2.1 Example
Figure 7 shows the generated pre-analysis traversal for API
precondition mining task. The pre-analysis mainly contains
all the rules in the rules set R (shown in Figure 6) and a
default rule to include the special nodes (START, END, and
branch nodes). If any of the rules in the rules set R or the
default rule is true, the current node is added to rnodes (a
list of relevant nodes in the CFG).

3.3 Reduced Control Flow Graph

Using the annotated control flow graph (ACFG) that con-
tains a set NR of probable analysis relevant nodes, we

6. At the time of pre-analysis, we consider all branch nodes as
relevant for the analysis and later refine them to include only those
branch nodes that have relevant nodes in at least one of the branches.

9

1 pre analysis := traversal (node: CFGNode) {
2 // three rules from the rules set R
3 if (true && (def(node.expr) && hasSubstring(node.expr)) &&
4 ! isConditional (node)) {
5 add(cfg.rnodes, node);
6 }
7 if (true && !(def(node.expr) && hasSubstring(node.expr)) &&
8 isConditional (node)) {
9 add(cfg.rnodes, node);

10 }
11 if (true && (def(node.expr) && hasSubstring(node.expr)) &&
12 isConditional (node)) {
13 add(cfg.rnodes, node);
14 }
15
16 // rule to add default nodes
17 if (node.name == ”START” || node.name == ”END” || len(node.

successors) > 1) {
18 add(cfg.rnodes, node);
19 }
20}

Fig. 7: The generated pre-analysis traversal for evaluating
rules in the rules set for API precondition mining task

perform a sound reduction that refines the set NR
7 and also

removes the analysis irrelevant nodes8 to create a reduced
or compacted CFG called a reduced control flow graph
(RCFG). An RCFG is a pruned CFG that contains only
the analysis relevant nodes. An RCFG is constructed by
performing a reduction on the ACFG.
Definition 6. A Reduced Control Flow Graph (RCFG) of

an ACFG G′ = (N,E,NR,>,⊥) is a pruned ACFG with
analysis irrelevant nodes pruned. A RCFG is defined
as G′′ = (N ′, E′,>′,⊥′), where G′′ is a directed graph
with a set of nodes N ′ ⊆ N representing program
statement and a set of edges E′ representing the control
flow between statements. > and ⊥ are the entry and exit
nodes. The edges E − E′ are the removed edges and
E′ − E are the newly created edges.

3.4 ACFG To RCFG Reduction
Algorithm 3 describes the reduction from ACFG to RCFG.
The algorithm visits the nodes in the ACFG and checks if the
node exists in NR. The nodes that does not exists in NR are
pruned (lines 2-5). Before removing an analysis irrelevant
node, new edges are created between the predecessors and
the successors of the node that is being removed (line 4 and
Algorithm 4). After removing all analysis irrelevant nodes,
we pass through the RCFG and remove irrelevant branch
nodes (lines 6-11). Irrelevant branch nodes are those branch
nodes that have only one successor in the RCFG (this node is
no longer a valid branch node). Note that, our definition of
analysis relevant nodes (Definition 5) includes branch nodes
with at least one branch that has an analysis relevant node.

Figure 8 shows several examples of the reduction. For in-
stance, in the first example, where node j is being pruned,

7. Refining the set NR involves removing those branch nodes that
were added in Algorithm 2 but do not contain analysis relevant nodes
in at least one branch. This is one of the conditions for analysis relevant
nodes as defined in Definition 5.

8. Analysis irrelevant nodes are those nodes in N that don’t satisfy
Definition 5.

Algorithm 3: Build RCFG

Input: Annotated control flow graph (ACFG) G′ :=
(N,E,NR,>,⊥)

Output: Reduced control flow graph (RCFG) G′′

1 G′′ ← G′;
2 foreach node n in G′′ do
3 if n /∈ NR then
4 Adjust(G′′, n);
5 remove n from G′′;

6 foreach node n in G′′ do
7 if n is a branch node then
8 if SuccOf(n) contains n then
9 remove n from SuccOf(n);

10 if n has only one successor then
11 Adjust(G′′, n);
12 remove n from G′′;

13 return G′′;

Algorithm 4: A procedure to adjust predecessors and
successors of a node being removed

1 Procedure Adjust(CFG G, CFGNode n)
2 foreach predecessor p of n in G do
3 remove n from SuccsOf(p);
4 foreach successor s of n in G do
5 remove n from PredsOf(s);
6 add p to PredsOf(s);
7 add s to SuccsOf(p);

a new edge between i and k are created. Consider our
second example, in which a node k that is part of a branch
is being removed. Removing k leads to removing j ,
which is a branch node with only one successor (an invalid
branch). Next, consider an interesting case of removing node
l in our fifth example. The node l has a backedge to loop

condition node i and there are two paths from j to l
(j → l and j → k → l). Removing node l leads to
an additional loop. This is because there existed two paths
in the CFG from j to i . Similarly, other examples show
reductions performed by Algorithm 3.

3.5 Soundness of Reduction
We claim that our reduction from CFG to RCFG is sound,
where soundness means that the analysis results for the
RCFG nodes are same as the analysis results for the cor-
responding CFG nodes.

For flow-insensitive analysis, the analysis results de-
pends only on the results produced at nodes. For flow-
sensitive analysis, the analysis results depends on the results
produced at nodes, and the flow of results between nodes.

It is easy to see that, for flow-insensitive analysis, the
analysis results of RCFG and CFG should match, because
all the nodes that produce results are retained in the RCFG.

For flow-sensitive analysis, the result producing nodes
in RCFG and CFG are same. For the flow of results between

10

Fig. 8: ACFG to RCFG reduction examples.

nodes in RCFG and CFG to be same, the flow between nodes
in the CFG should be retained for the corresponding nodes
in the RCFG and no new flows should be created.

Definition 7. Given any two nodes n1 and n2 of a CFG G,
the analysis results can flow from n1 to n2, iff there exists
a path n1 → n2. This flow is represented as n1 →∗ n2.

Lemma 3. The flow between analysis relevant nodes in the
CFG should be retained for the corresponding nodes in
the RCFG. That is, for any two analysis relevant nodes
n1 and n2 in the CFG G, if n1 →∗ n2 exists in G, then
n1 →∗ n2 should also exists in RCFG G′′.

Proof sketch. For ensuring flows in the CFG is retained
in the RCFG, every path between any two analysis rele-
vant nodes in the CFG should have a corresponding path
between those nodes in the RCFG. This is ensured in our
reduction algorithm (Algorithm 3), where for removing a
node, an edge from each predecessors to each successors is
established (lines 4 and 10). If there existed a flow n1 →∗ n2
for a path n1 → nk → n2 via an intermediate node nk,
the Algorithm 3, while removing nk, establishes a path

n1 → n2 by creating a new edge (n1, n2), and hence the
flow n1 →∗ n2 is also retained.

Lemma 4. No new flows should be created between nodes in
the RCFG that does not exists between the corresponding
nodes in the CFG. For any two analysis relevant nodes
n1 and n2 in the CFG G, if n1 →∗ n2 does not exists in
G, n1 →∗ n2 should not exists in G′′.

Proof sketch. For ensuring no new flows are created, every
path between any two nodes in the RCFG should have a
corresponding path between those nodes in the CFG. This
is ensured in our reduction algorithm (Algorithm 3), where
for removing a node, an edge from each predecessors to
each successors is established, iff there exists a path from
the predecessor to the successor in the CFG. For any two
analysis relevant nodes n1 and n2, a flow n1 →∗ n2 does
not exists, if there is no path n1 → n2. Algorithm 3 ensures
that, while removing a node nk in a path n1 → nk → n2, a
new edge between n1 → n2 is created in G′′, if there exists
a path n1 → n2 in G. This way Algorithm 3 guarantees
that no new paths are created, and hence no new flows are
created.

Theorem 8. For flow-sensitive analysis, the analysis results
for RCFG and CFG are same.

Proof sketch. For flow-sensitive analysis, the fact that the
result producing nodes in RCFG and CFG are same, and by
Lemma 3 and Lemma 4, it follows that analysis results for
RCFG and CFG are same.

3.6 Efficiency of Reduction

Our reduction algorithm has linear time complexity in terms
of the CFG size. The reduction has two pass over the CFG
nodes, where in the first pass the analysis irrelevant nodes
are pruned (lines 2-5 in Algorithm 3) and in the second pass
the irrelevant branch nodes are removed (lines 6-11).

4 EMPIRICAL EVALUATION

We evaluate effectiveness, correctness, and scalability of our
approach, specifically our evaluation addresses the follow-
ing research questions:

1) How much reduction in the analysis time can be
achieved by our technique that performs a pre-
analysis to remove irrelevant code parts prior to
running the analysis, when compared to a baseline
that runs the analysis on the original source code?
(§4.2)

2) How does our approach scale when the dataset size
is increased uniformly? (§4.3)

3) What is the runtime overhead of our approach
for performing a pre-analysis that identifies and
removes the irrelevant nodes? (§4.4)

4) What is the compile-time overhead of the static
analysis component of our approach that computes
a rules set to identify relevant nodes? (§4.5)

Henceforth, we refer to our technique as RCFG and baseline
as Baseline.

11

TABLE 3: Reduction in analysis time and reduction in graph size for DaCapo and SourceForge datasets over 16 analysis.
The column CFG provides the analysis time in Baseline approach and the column RCFG provides the analysis time in
our approach. RCFG analysis time includes the annotation and reduction overheads. Column R provides the reduction
in the analysis time and % R provides the percentage reduction in the analysis time. Under Graph Size (% Reduction),
the columns N, E, B, L represents nodes, edges, branches, and loops. The table also provides the minimum, maximum,
average, and median for both reduction (R) and percentage reduction (%R) in the analysis time.

Analysis Time (seconds) Graph Size (%Reduction)
DaCapo SourceForge DaCapo SourceForge

Analysis CFG RCFG R %R CFG RCFG R %R N E B L N E B L
1 Available Expressions (AE) 13.31 6.37 6.93 52.09 137.93 68.83 69.10 50.10 41.45 46.94 39.01 36.15 41.83 47.01 37.22 35.85
2 Common Sub. Elimination (CSE) 13.96 6.25 7.72 55.26 157.90 75.66 82.24 52.08 41.45 46.94 39.01 36.15 41.83 47.01 37.22 35.85
3 Constant Propogation (CP) 9.84 10.31 -0.47 -4.75 315.59 316.09 -0.50 -0.16 18.03 20.27 13.40 4.74 16.04 17.42 8.01 2.62
4 Copy Propogation (CP’) 13.29 13.29 0.00 0.00 380.33 380.04 0.29 0.08 18.03 20.27 13.40 4.74 16.04 17.42 8.01 2.62
5 Dead Code (DC) 13.66 15.52 -1.86 -13.64 501.96 494.94 7.02 1.40 18.03 20.27 13.40 4.74 16.04 17.42 8.01 2.62
6 Live Variables (LV) 4.83 5.20 -0.37 -7.70 173.42 172.35 1.07 0.62 18.03 20.27 13.40 4.74 16.04 17.42 8.01 2.62
7 Local May Alias (LMA) 5.83 2.41 3.42 58.72 177.73 72.11 105.62 59.42 42.28 47.93 40.31 38.92 42.47 47.80 38.61 38.29
8 Local Must Not Alias (LMNA) 5.80 2.08 3.72 64.18 158.49 54.37 104.12 65.69 42.28 47.93 40.31 38.92 42.47 47.80 38.61 38.29
9 Loop Invariant (LI) 11.57 4.23 7.34 63.42 318.17 122.66 195.51 61.45 42.58 48.28 40.74 39.27 42.66 48.04 38.91 38.68
10 Precondition Mining (PM) 41.49 2.25 39.24 94.58 912.26 34.12 878.14 96.26 62.42 70.27 57.90 56.27 63.98 71.90 59.25 56.91
11 Reaching Definitions (RD) 9.80 10.47 -0.67 -6.87 289.84 283.13 6.71 2.32 18.03 20.27 13.40 4.74 16.04 17.42 8.01 2.62
12 Resource Leak (RL) 0.03 0.00 0.03 93.33 0.36 0.29 0.07 19.10 63.34 74.72 70.02 73.82 67.66 78.09 74.30 70.27
13 Safe Synchronization (SS) 0.02 0.01 0.01 61.11 0.02 0.00 0.02 95.45 52.40 61.23 52.98 68.75 59.95 68.71 62.50 73.80
14 Taint (TA) 0.97 0.55 0.42 43.49 20.54 5.31 15.23 74.17 50.56 57.10 47.19 44.87 51.87 58.22 46.50 44.14
15 Upsafety (UP) 13.24 5.99 7.25 54.76 139.07 69.89 69.18 49.75 41.45 46.94 39.01 36.15 41.83 47.01 37.22 35.85
16 Very Busy Expressions (VBE) 14.15 7.79 6.36 44.95 266.88 141.26 125.62 47.07 38.62 43.60 35.08 22.02 39.38 43.99 32.94 22.08

Min -1.86 -13.64 Min -0.50 -0.16
Max 39.24 94.58 Max 878.14 96.26
Avg 4.94 40.81 Avg 103.72 42.18
Med 1.92 53.43 Med 42.17 49.93

4.1 Experimental Setup

4.1.1 Analyses
Table 3 shows a collection of 16 flow analyses used to
evaluate our approach. This collection mainly contains anal-
yses that are used either in the ultra-large scale source
code mining tasks or in the source code optimizations in
compilers. For example, Precondition Mining (PM) is used
for mining API preconditions in [8]. Similarly, RD, RL, SS,
TA are used in source code mining tasks, whereas analyses
AE, CSE, CP, CP’, DC, LV, LMA, LMNA, UP, and VBE are
mainly used in the compilers for optimizing source code,
however LMA and LMNA are also used in source code mining
tasks. We have used two main criterias to select analyses:
complexity of analysis and amount of relevant code parts
for the analysis. For example, RD is the simplest in terms of
complexity that performs a single traversal, whereas, PM is
the most complex analysis in our collection that performs
three traversals (to collect API and conditional nodes, to
perform dominator analysis, and to compute preconditions).
For RD, program statements that define or use variables are
relevant (which can be a major portion of the program)
and for PM, statements that invoke APIs or conditional
statements are relevant. We have also made sure to include
analyses to obtain maximum coverage over the properties of
flow analysis such as flow direction (forward and backward),
merge operation (union and intersection), and the complexity
of the data structures that store analysis facts at nodes
(single value, set of values, multisets, expressions, set of
expressions). Analyses are written using Boa [10], a domain
specific language (DSL) for ultra-large-scale mining. While
adopting the analyses, we have used optimal versions to the
best to our knowledge.

4.1.2 Dataset
We have used two Boa datasets: DaCapo and
SourceForge. The DaCapo dataset contains 304,468
control flow graphs extracted from the 10 GitHub Java

projects [19], and SourceForge dataset contains over
7 million control flow graphs extracted from the 4,938
SourceForge Java projects.9 The rationale for using two
datasets is that, the DaCapo dataset contains well-crafted
benchmark programs, whereas SourceForge contains
arbitrary Java open-source programs. These two diverse
datasets helps us validate the consistency of our results
better.

4.1.3 Methodology

We compare the execution time of our approach (RCFG)
against the execution time of the Baseline. The execution
time of Baseline for an analysis is the total time for
running the analysis on all the control flow graphs (CFGs)
in the dataset, where the execution time of our approach
for an analysis is the total time for running the analysis on
all the reduced control flow graphs (RCFGs) in the dataset
along with all the runtime overheads. The various runtime
overheads in our approach includes the time for identifying
and annotating relevant nodes and the time for performing
the reduction of the control flow graph (remove irrelevant
nodes) to obtain reduced control flow graphs (RCFGs). Note
that the individual runtime overhead component times are
reported separately in §4.4. We also discuss the compile-
time overhead (for extracting rules) in §4.5. For measuring
the execution times for Baseline and RCFG approaches,
we use the methodology proposed by Georges et al. [20],
where the execution times are averaged over three runs,
when the variability across these measurements is minimal
(under 2%). Note that, the compared execution times are for
the entire dataset for each analysis and not for individual
CFGs. Our experiments were run on a machine with 24
GB of memory and 24-cores, running on Linux 3.5.6-1.fc17
kernel.

9. Both DaCapo and SourceForge datasets contain all kinds of
arbitrary CFGs with varying graph sizes, branching factor, loops, etc.

12

4.2 Reduction In Analysis Time

We measured reduction in the analysis time of RCFG over
Baseline. The results of our measurement is shown in
Table 3. For example, running the Available Expressions
(AE) analysis on DaCapo dataset that contains 304,468 CFGs
took 13.31s in the Baseline approach and 6.37s in the RCFG
approach. The reduction in the analysis time for AE is 6.93s
and the percentage reduction in the analysis time is 52.09%.

Table 3 also shows the minimum, maximum, average,
and median values of both reduction and % reduction in
the analysis time. From these values it can be seen that, on
average (across 16 analyses) our approach was able to save
5s on the DaCapo dataset and 104s on the SourceForge
dataset. In terms of percentage reduction, on average, a 41%
reduction is seen for the DaCapo dataset and a 42% reduc-
tion is seen for the SourceForge dataset. Our approach
was able to obtain a maximum reduction for the Precon-
dition Mining (PM) analysis, were on the DaCapo dataset,
39s (a 95%) was saved and on the SourceForge dataset,
878s (a 96%) was saved. Across DaCapo and SourceForge
datasets, for 11 out of 16 analysis, our approach was able
to obtain a substantial reduction in the analysis time. For 5
analysis (highlighted in gray in Table 3), the reduction was
either small or no reduction was seen. We first discuss the
favorable cases and then provide insights into unfavorable
cases.

Reduction in the analysis time stems from the reduction
in the graph size of RCFG over CFG, hence we measured the
graph size reduction in terms of Nodes, Edges, Branches,
and Loops for understanding the analysis time reductions.
We accumulated these metrics over all the graphs in the
datasets. The results of the measurement is shown in Table 3
under Graph Size (% Reduction) column. The reduction in
graph size is highly correlated to the reduction in analysis
time. Higher the reduction in graph size, higher will be the
reduction in analysis time. For instance, consider the Pre-
condition Mining (PM) analysis that had 95% and 96% re-
duction in the analysis time for DaCapo and SourceForge
datasets respectively. For PM, the reduction in the graph
size in terms of Nodes, Edges, Branches, Loops, were
62.42%, 70.27%, 57.9%, 56.27% for DaCapo, and 63.98%,
71.9%, 59.25%, 56.91% for SourceForge dataset. As it can
be seen, for the Precondition Mining (PM) analysis, our
approach was able to reduce the graphs substantially and
as a result the analysis time was reduced substantially. To
summarize the favorable results, it can be seen that for
11 of 16 analysis, our technique was able to reduce the
analysis time substantially (on average over 60% reduction
for 11 analyses, over 40% reduction over all analyses). This
reduction can be explained using the reduction in graph size
in terms of Nodes, Edges, Branches, and Loops. Further,
Table 4 lists the relevant parts of the code for various anal-
ysis to give more insights into the reduction. The analysis
that contains common statements as relevant parts sees less
reductions. For instance, CP has variable definitions and
variable accesses as relevant statements, which are very
common in majority of the source code, hence sees very
less reductions. Whereas, PM has String.substring API
method calls and conditional expressions as relevant state-
ments, which are not very common in majority of the source

code, hence sees very high reductions.

TABLE 4: Relevant source code parts for various analyses.

AE
1) Assignment statements with RHS contains variables,
but not method call or new expression
2) Variable definitions

CSE Same as AE

CP 1) Variable definitions
2) Variable accesses

CP’ Same as CP
DC Same as CP
LV Same as CP

LMA Variable definitions
LMNA Same as LMA

LI
1) Variable definitions of loop variables
2) Variable accesses of loop variables
3) Loop statements (FOR, WHILE, DO)

PM 1) String.substring API method calls
2) Predicate expressions

RD Same as CP
RL Contains read, write or close method calls from InputStream
SS Lock.lock or Lock.unlock method calls

TA

1) Variable definitions with RHS contains
Console.readLine or FileInputStream.read method calls
2) Variable definitions with RHS contains variable access
3) System.out.println(), FileOutputStream.close() calls

UP Same as AE

VBE
1) Binop expression that have variable access,
but are not method calls
2) Variable definitions

For 5 analysis, the reduction in analysis time was small
or no reduction is seen. The reduction in graph sizes for
these 5 analysis are also low. These analysis are: constant
propagation (CP), copy propagation (CP’), dead code (DC),
live variables (LV), and reaching definitions (RD). One
thing to notice is that, for all these five analyses, the set
of relevant statements are same: variable definitions and
variable accesses, which are frequent in any source code.
Hence, for these analysis the graph size of the RCFG is
similar to the CFG, and our technique could not reduce
the graph size much. Since the graph size for RCFG and
CFG are similar, their analysis times will also be similar (not
much reduction in the analysis time). For some analysis, the
RCFG approach time exceeds the Baseline approach time
due to the additional overheads that RCFG approach has for
annotating and reducing the CFG to produce RCFG. From
these unfavorable results we can conclude that for analyses
for which the reduction in graph size is not substantial
(or the relevant statements are common statements), RCFG
may incur overheads leading to larger analysis time than
Baseline. However, the overhead is not substantial. For
instance, for DaCapo, CP: -4.75%, CP’: 0.005%, DC: -13.64%,
LV: -7.7%, and RD: -6.87%. For a larger dataset, such as
SourceForge, the overheads are further small: CP: -0.16%,
CP’: 0.08%, DC: 1.4%, LV: 0.62%, RD: 2.32%. This indicates
that, the analysis that are unfavorable to the RCFG approach,
do not incur substantial overheads. Further, it is possible to
detect whether an analysis will benefit from our pre-analysis
that reduces the CFG size prior to running the analysis by
computing the amount of relevant nodes during the pre-
analysis traversal that evaluates the rules (extracted from
our static analysis) to mark relevant nodes. We compute
a ratio of number of relevant nodes to all nodes in our
pre-analysis traversal and decide whether to prune prior to
running the analysis or skip the pruning and simply run the
analysis. Details of this experiment is reported in §4.6.

13

1 public void rtrim () {
2 int index = text . length() ;
3 while ((index \> 0) && (text.charAt(

index − 1) <=’’)) {
4 index−−;
5 }
6 text = text.substring(0, index);
7}

1 private static Color parseAsSystemColor(
String value)

2 throws PropertyException {
3 int poss = value.indexOf(”(”) ;
4 int pose = value.indexOf(”)”) ;
5 if (poss != -1 && pose != -1) {

6 value = value.substring(poss + 1, pose);
7 } else {
8 throw new PropertyException(”Unknown

color format: ” + value
9 + ” . Must be system−color(x)”);

10 }
11 return colorMap.get(value);
12}

1 private int [] parseIntArray(Parser p)
throws IOException {

2 IntArray array = new IntArray() ;
3 boolean done = false;
4 do {
5 String s = p.getNextToken();
6 if (s.startsWith(”[”))

7 s = s.substring(1);

8 if (s.endsWith(”]”)) {

9 s = s.substring(0, s.length() - 1);
10 done = true;
11 }
12 array.add(Integer.parseInt(s)) ;
13 } while (!done);
14 return array. trim () ;
15}

Fig. 9: Three methods from the DaCapo dataset. Highlighted parts are the relevant statements for PM analysis.

Same set of methods can demonstrate different amounts
of relevant statements for various analyses. For example,
consider the three methods shown in Figure 9. For PM anal-
ysis, the statements that invoke substring API method
and conditional statements are the relevant statements. As
highlighted in Figure 9, for PM, there are less relevant
statements, hence more opportunity for reduction. Whereas,
if we consider LV analysis, for which all statements that con-
tain variable definitions and variable accesses are relevant,
all statements in the three methods shown in Figure 9 are
relevant, hence no reduction can be performed. The amount
of reduction varies from analysis to analysis and it is mainly
dependent on the kinds of relevant statements for the input
analysis and the percentage of such statements in the input
corpus.

Fig. 10: Box plots of % reduction in analysis time, and
graph size metrics across 16 analysis for DaCapo and
SourceForge datasets.

Figure 10 shows a boxplot of percentage reduction and
graph size reduction for all our 16 analyses. As it can be
seen, for DaCapo dataset, the % reduction in analysis time
is in between -2.37 to 62.26 (first and third quartiles) with
median 53.42. For SourceForge dataset, the reduction in
analysis time is in between 1.86 to 63.57 with median 49.92.
We can draw following conclusions from the boxplots: i)
for most analysis the reduction in the analysis time is
substantial (indicated by the median and third quartile),

and ii) for the analyses that does not benefit from the RCFG
approach, do not incur too much overhead (indicated by the
first quartile).

To summarize, our set of 16 analyses showed great
variance in terms of the amount of reduction in the analysis
time that our approach was able to achieve. The actual
reduction in the analysis times were between several sec-
onds to several minutes (the maximum was 15 minutes),
however the percentage reduction in the analysis times were
substantial (the maximum was 96% and average was 40%).
Though, the reduction seems small, as we show in our case
study of several actual ultra-large-scale mining tasks that
uses several of these foundational analyses, when run on an
ultra-large dataset (containing 162 million CFGs, 23 times
larger than our SourceForge dataset) can achieve substan-
tial reduction (as much as an hour). Further, the ultra-large-
scale mining tasks that we target are often the exploratory
analysis which requires running the mining tasks several
times, where the results of the mining task are analyzed
to revise the mining task and rerunning it, before settling
on a final result. The time taken by the experimental runs
becomes a real hurdle to trying out new ideas. Moreover,
the mining tasks are run as part of the shared infrastructure
like Boa [10] with many concurrent users (Boa has more than
800 users), where any time/computation that is saved has
considerable impacts, in that, many concurrent users can be
supported and the response time (or the user experience of
users) can be significantly improved.

In terms of which analyses can benefit from our ap-
proach, we can see that the reduction in the analysis time
depends both on the complexity of the analysis and the
percentage of the program that is relevant for the analysis.
For those analysis for which most of the program parts are
relevant (or in other words, an input program cannot be
reduced to a smaller program), our technique may not be
very beneficial. For those analysis for which the relevant
program parts are small, our technique can greatly reduce
the analysis time. Also, for analysis that have simple com-
plexity, for instance, analysis that perform single traversal
(or parses the program once) may not benefit from our
approach. Ideal scenarios for our technique to greatly help

14

Fig. 11: Scalability of 16 analyses for Baseline and RCFG approaches. Each chart contains two lines, Baseline (blue) and
RCFG (red). Each line contains 20 data points representing 20 datasets.

is when the analysis requires multiple traversals over the
program (or program graphs) and the analysis relevant
parts are small in the input programs.

4.3 Scalability
In this section, we measure the scalability of Baseline
and RCFG approaches over increasing dataset sizes for our
16 analyses. For simulating the increasing dataset sizes,
we have divided our 7 million CFGs of SourceForge
dataset into 20 buckets, such that each bucket contains equal
number of graphs with similar characteristics in terms of
graph size, branches, and loops. Using the 20 buckets, we
created 20 datasets of increasing sizes (D0 to D19), where
Di contains graphs in bucket0 to bucketi.

We measure the analysis time of the Baseline and the
RCFG approaches for all 16 analyses and plot the result
in Figure 11. Our results shows that, as the dataset size
increases, for both Baseline and RCFG, the analysis time
increases sub-linearly. Our results also shows that, for in-
creasing dataset sizes, RCFG performs better than Baseline
for 11 of 16 analyses (where RCFG line is below Baseline
line in the charts). For 5 analyses Baseline is better than
RCFG. These analyses are the unfavorable candidates that
we discussed previously (CP, CP’, DC, LV, and RD).

4.4 Accuracy & Efficiency of Reduction
We evaluate the accuracy of the reduction by comparing the
results of the RCFG and the Baseline approaches. We used

DaCapo dataset for running the analyses and comparing the
results. We found that, for all the analysis, the two results
match 100%. This was expected, as RCFG contains all the
nodes that produce output, RCFG retains all flows between
any two nodes, and RCFG does not introduce new flows.

Fig. 12: Distribution of RCFG analysis time into i) traversal,
ii) reduction, and iii) analysis for DaCapo and SourceForge
datasets. X-axis: 16 analyses, Y-axis: % Reduction, DataLa-
bels: RCFG time in seconds.

15

For evaluating the efficiency of reduction, we measured
time for different components of the RCFG approach. The
RCFG approach has three components: 1) traversal that anno-
tates analysis relevant nodes, 2) reduction that prunes anal-
ysis irrelevant nodes, and 3) the actual analysis. Figure 12
shows the distribution of the RCFG time over these three
components for DaCapo and SourceForge datasets over
16 analysis. The data labels provide the numbers for the
RCFG time in seconds. From the results shown in Figure 12,
it can be seen that, majority of the RCFG time is contributed
by the actual analysis and not the overheads. We see, for
some analysis, the traversal (that annotates the relevant
nodes) contributes more than the actual analysis (RL in
DaCapo, SS in SourceForge), however, for all analysis the
reduction time is negligible, when compared to the actual
analysis time. Further, we measured the time for each of the
three components and aggregated it for all 16 analysis for
all the graphs in the DaCapo and SourceForge datasets.
For DaCapo, the traversal, reduction, and analysis times
were 0.398, 0.047, and 92.268 seconds respectively, and for
SourceForge, the traversal, reduction, and analysis times
where 1.702, 1.055, 2288.295 seconds respectively. As we can
see, the reduction time for both DaCapo and SourceForge
datasets is very negligible when compared to the analysis
time for all 16 analysis. In summary, analysis results of RCFG
and Baseline match 100%, indicating the soundness of the
reduction. The negligible time for reduction when compared
to actual analysis time, indicates that our reduction is effi-
cient.

4.5 Overhead of Static Analysis
We presented our static analysis in section §3.1 and dis-
cussed its time complexity. In this section, we present our
measurements of the overhead of the static analysis for all
the 16 analyses. Table 5 presents these overheads along with
some characteristics of the analyses, such as number of lines
of code (Boa program LOC), number of analysis functions
(or the CFGs), and number of paths (total number of paths
in all the CFGs that are analyzed). Table 5 also presents the
total overhead (Ttotal) of our static analysis along with the
overheads of each of its components: CFG building time
(T1), path generation time (T2), alias analysis time (T3), and
rules extraction time (T4).

Based on the median value over 16 analyses, the over-
head is around 300ms. What this means is that, the com-
pilation time of the analysis program is increased by 300
milliseconds. A majority of this overhead is contributed by
the path enumeration phase. We can see the worst case over-
heads for two analyses: LMA and TA. In both the cases, the
overheads are large due to the large amount of time required
for path enumeration. These analyses have deeply nested
branches and loops as part of their analyses functions which
increases the number of paths and the path enumeration
time. In summary, as our static analysis explores paths in
the analysis, analysis with many paths may incur a non-
negligible overhead, however this overhead is an one-time
compilation overhead.

4.6 Configurable Pruning
Our performance results described in §4.2 showed that for
five analyses (CP, CP’, DC, LV, RD) our approach underper-

TABLE 5: Static analysis overheads. #LOC: Number of lines
of code of the analysis, #F: Number of analysis functions
(or CFGs), #P: Number of paths analyzed, T1: CFG building
time, T2: Path enumeration time, T3: Alias analysis time, T4:
Rules extraction time, Ttotal = T1+T2+T3+T4. The unit of T1
- T4 and Ttotal is milliseconds

Analysis #LOC #F #P T1 T2 T3 T4 Ttotal

AE 168 3 58 27 169 34 73 303
CSE 189 3 154 52 1032 49 117 1250
CP 188 5 102 24 547 29 62 662
CP’ 110 3 98 6 650 59 96 811
DC 104 2 40 3 201 22 56 282
LV 101 2 16 15 28 19 16 78

LMA 118 2 1890 17 143476 32 541 144066
LMNA 121 2 53 31 193 29 39 292

LI 155 4 174 6 817 72 89 984
PM 102 3 28 24 100 15 66 205
RD 108 3 98 10 442 39 64 555
RL 133 2 27 5 48 19 15 87
SS 132 2 27 16 72 48 21 157
TA 106 1 936 28 29607 38 1077 30750
UP 185 3 58 7 194 27 52 280

VBE 159 3 58 7 188 33 62 290
Median 15.5 197.5 32.5 63 297.5

formed with respect to the Baseline and our rationale for
this behavior was that, for these five analyses, the relevant
statements were common statements (variable definitions
and variable uses) and input CFGs could not be reduced
significantly. We performed an experiment to skip reduction
when the amount of irrelevant nodes is less than a config-
urable threshold (10% and 20%).

The methodology of this experiment was as follows.
We augmented our pre-analysis traversal that marks the
relevant nodes to also compute the percentage of irrelevant
nodes. When the percentage of irrelevant nodes is less than
a predefined threshold, we skip the reduction phase and di-
rectly run the analysis. We performed this experiment using
two threshold values 10% and 20%, and we used DaCapo
dataset for this experiment. The goal of this experiment
was to evaluate whether skipping the reduction phase when
there is not enough reduction opportunity can improve the
overall analysis time of our approach. We experimented
with only two values of the threshold because we suspect
that higher threshold values will be not beneficial, as the
reduction phase is very lightweight and has low overheads
(as shown in Figure 12), skipping the reduction when there
exists a decent amount of nodes could lead to a missed
opportunity.

The result of this experiment is shown in Table 6. The
table shows original Baseline and RCFG analysis times
(in seconds) and analysis times for two variants of RCFG
that skips reduction when the amount of irrelevant nodes
is less than 10% and 20%. The table also shows the total
number of CFGs on which the reduction was skipped in
the two RCFG variants. The results clearly indicates that this
enhancement to our approach is beneficial when we skip
the reduction if the amount of irrelevant nodes is less than
10% (all the values under RCFG (0.1) column are less than
RCFG column). While there were many graphs on which
the reduction was skipped (the column G (0.1)), the benefit
obtained was less, mainly because the reduction phase itself
is lightweight and less time consuming. The column RCFG
(0.2) is variant of RCFG that skips reduction if the amount
of irrelevant nodes were less than 20%. As we suspected,

16

TABLE 6: Reduction in the analysis time at reduction thresh-
olds of 0.1 and 0.2.

CFG RCFG RCFG (0.1) RCFG (0.2) #G (0.1) #G (0.2)
AE 13.31 6.37 4.94 ↓ 6.44 ↑ 33941 45959
CSE 13.96 6.25 5.91 ↓ 5.89 ↓ 33941 45959
CP 9.84 10.31 9.92 ↓ 10.36 ↑ 107945 133573
CP’ 13.29 13.29 12.99 ↓ 13.16 ↑ 107945 133573
DC 13.66 15.52 15.49 ↓ 16.10 ↑ 107945 133573
LI 4.83 5.20 4.52 ↓ 4.71 ↑ 107945 133573

LMA 5.83 2.41 2.39 ↓ 2.33 ↓ 33602 42661
LMNA 5.80 2.08 2.05 ↓ 2.27 ↑ 34129 44602

LV 11.57 4.23 4.20 ↓ 5.11 ↑ 107945 133573
PM 41.49 2.25 2.12 ↓ 2.14 ↑ 10271 10271
RD 9.80 10.47 10.40 ↓ 10.54 ↑ 107945 133573
RL 0.03 0.00 0.00 ↓ 0.00 ↓ 75 93
SS 0.02 0.01 0.00 ↓ 0.02 ↑ 2 2
TA 0.97 0.55 0.54 ↓ 0.56 ↑ 659 782
UP 13.24 5.99 5.72 ↓ 5.96 ↑ 33941 45959

VBE 14.15 7.79 7.71 ↓ 5.40 ↓ 33941 45959

for this threshold, the RCFG analysis times were more than
RCFG (0.1) for most analyses. This indicates that, skipping
the reduction when the amount of irrelevant nodes were less
than 20% was not beneficial. In summary, our approach can
be augmented with a lightweight check-and-act step that
skips reduction when the amount of irrelevant nodes is not
substantial. This step can help to improve the performance
of RCFG, however the threshold that decides whether to skip
the reduction or not should not be too high (upto 10% was
beneficial).

4.7 Summary and Discussions

In summary, our evaluation showed that across 16 represen-
tative analyses, 11 analyses could benefit significantly from
our approach and 5 analyses could not benefit from our
approach. On average our approach was able to reduce the
analysis time by 40%. The two factors that decide whether
an analysis benefits from our approach are the kinds of
statements that are relevant for the analysis and the com-
plexity of the analysis. The analyses for which the relevant
statements are frequently occurring statements like variable
definitions and variable accesses, our approach is not suit-
able. Our results also shows that a lightweight check-and-act
step can help to detect and skip the reduction to mitigate
the reduction overheads in case of unfavorable analyses.
Our evaluation also studied the compile-time and runtime
overheads of our technique, where the runtime overhead
of the pre-analysis stage that marks relevant nodes and
reduces the input graph is minimal, whereas the compile-
time overhead can be non-trivial for analyses that have
large number of nested conditions, however most analyses
in our evaluation set did not suffer from the compile-time
overhead.

There exists several software engineering (SE) tasks that
require deeper analysis of the source code such as specifi-
cation inference, API usage mining, discovering vulnerabil-
ities, discovering programming patterns, defect prediction,
bug fix suggestion, code search. The proposed technique can
scale these SE tasks to large code base, which was found
to be difficult previously. Moreover, exploratory analyses
involving SE tasks requires multiple iterations of running SE
tasks on large code bases and revising them before accept-
able results are obtained. Such exploratory analyses were

very time consuming in the past. The proposed technique
can help to reduce the overall turnaround time of the run-
revise-analyze cycle.

The proposed technique can help SE practitioners reduce
the resource requirements of their infrastructure. In case
of paid infrastructures, more tasks can be performed for
the same infrastructure cost. For public free infrastructure
providers, such as Boa, that supports running simultaneous
tasks from several users, where slow running queries of
certain user can impact the experience of all other users,
the proposed technique can help to increase the number
of simultaneous users. Also, many software engineering
firms, e.g. Microsoft (CodeMine), ABB (Software Engineer-
ing Team Analytics Portal), deploy data-driven software
analytics techniques to track and improve the various stages
of the software development lifecycle within their organi-
zation. Running these analytics on thousands of developer
data and activities over several days/months/years can
be both time and resource consuming. The key concepts
of our work can help to reduce the size of the input for
various software analytics techniques by understanding and
analyzing the task performed in them. As a result, more
analytics can be deployed within the organizations for lesser
cost.

The general idea of the proposed technique can also be
used in other domains such as data-mining, where optimiz-
ing the data-mining queries is one way to accelerate data-
mining, analyzing the data-mining queries and preprocess-
ing the data to reduce the input space before running the
data-mining queries could help to accelerate data-mining.
Similarly, other domains could use the core ideas proposed
in our work.

4.8 Threats to Validity

A threat to validity is for the applicability of our results. We
have studied several source code mining tasks that perform
control- and data-flow analysis and showed that significant
acceleration can be achieved (on average 40%). However,
these results may not be true for mining tasks that have com-
pletely different characteristics than the studied subjects. To
mitigate this threat, we have included the tasks that have
varying complexities in terms of the number of CFG traver-
sals they require and the operations performed by them. We
did not had to worry about the representativeness of our
dataset that contains CFGs, because the dataset is prepared
using the open source code repositories with thousands of
projects and millions of methods, which often includes all
kinds of complex methods. Further, the amount of reduction
that our technique is able to achieve shows significant vari-
ations validating our selection of mining tasks. We haven’t
considered the mining tasks that requires global analysis
such as callgraph analysis or inter-procedural control flow
analysis. We plan to investigate them as part of our future
work.

5 CASE STUDIES

In this section, we show the applicability of our technique
using several concrete source code mining tasks. We run
these tasks on a humongous dataset containing 162 million

17

CFGs drawn from the Boa GitHub large dataset. We use the
distributed computing infrastructure of Boa to run the min-
ing tasks. We profile and measure the task time and compare
the two approaches, Baseline and RCFG, to measure the
acceleration10.

5.1 Mining Java API Preconditions
In this case study, we mined the API preconditions of all
the 3168 Java Development Kit (JDK) API methods. The
mining task contained three traversals. The first traversal
collects the nodes with API method invocations and predi-
cate expressions. The second traversal performs a domina-
tor analysis on the CFG. The third traversal combines the
results of the first two traversals to output the predicate
expressions of all dominating nodes of the API method
invocation nodes. The Baseline approach took 2 hours,
7 minutes and 40 seconds and the RCFG approach took 1
hour, 6 minutes and 51 seconds to mine 11,934,796 client
methods that had the JDK API method invocations. Overall,
a 47.63% reduction in the task computation time was seen.
For analyzing the results, we also measured the percentage
graph size reductions in terms of Nodes, Edges, Branches,
and Loops. The values were, 41.21, 46.10, 37.91, and 37.57
respectively. These numbers indicate a substantial reduction
in the graph size of RCFG when compared to CFG. The nodes
that are relevant for the task are the nodes that had API
method invocations and the conditional nodes that provide
predicate expressions. All other nodes are irrelevant and
they do not exist in RCFGs. One can expect that, in the
client methods that invoke the JDK API methods, there are
significant amount of statements not related API method in-
vocations or predicate expressions, as we show an example
client method in Figure 1. This explains the reduction in the
task time.

5.2 Mining Java API Usage Sequences
In this case study, we mined the API usage sequences of
all the 3168 Java API methods. An example API usage se-
quence is Iterator.hasNext() and Iterator.next().
For mining the usage sequences, the mining task traverses
the CFGs to identify API method invocations. If a CFG
contains two or more API method invocations, the mining
task performs a data-flow analysis to determine the data-
dependence between the API method invocations [9], [15].
Finally, the task outputs the API method call sequences that
are data-dependent for offline clustering and determining
the frequent API call sequences (the API methods that
are used together). For this mining task, the Baseline
approach took 1 hour, 33 minutes and 5 seconds and the
RCFG approach took 1 hour, 16 minutes and 20 seconds to
mine 24,479,901 API usage sequences. The API sequences
generated as output by the mining task can be used for
clustering and computing the frequently occurring API se-
quences. Overall, a 18% reduction in the task computation
time is observed. The nodes that are relevant for this mining
task are: the API method call nodes and the nodes that

10. The task time excludes the distributed job configuration time and
the CFG building times, because these are same for both Baseline
and RCFG approaches. However, the RCFG time includes all runtime
overheads (annotation and reduction overheads).

define the variables used by the API method calls. All other
nodes are irrelevant. Here, the opportunity for reduction is
less, as all the statements that contains variable definitions
are relevant along with the API method call statements
and the variable definitions are quite common in source
codes. The percentage graph size reduction metrics supports
our reasoning, where the values were: (Nodes, Edges,
Branches, Loops) = (17.99, 18.32, 11.12, 5.21), which were
on the lower side.

5.3 Mining Typically Synchronized Java APIs

In this case study, we mined the typically synchronized
Java API method calls to help inform when the API meth-
ods are used without synchronization. In other words,
the mining task determined which Java API method
calls are protected using the lock primitives in prac-
tice by mining a large number of usage instances. The
task first traverses the CFGs to determine if there ex-
ists safe synchronization using Java locking primitives
(java.util.concurrent.locks). There exists a safe
synchronization, if all the locks acquired are release along all
program paths within the method. In the next traversal, the
task identifies all API method calls that are surrounded with
safe synchronization and output them to compute the most
synchronized Java APIs. According to our mined results, the
top 5 synchronized Java API method calls were:

1) Condition.await()
2) Condition.signalAll()
3) Thread.start()
4) Iterator.next()
5) Iterator.hasNext()

We were surprised to see Thread.start() in the top 5,
however manually verifying many occurrences indicated
that the source code related to the project’ test cases often
surround Thread.start() with locks.

For this mining task, nodes that are relevant are: lock()
and unlock() API method call nodes, and the Java API
method call nodes. For this task, the Baseline approach
took 11.1 seconds and the RCFG approach took 8.45 seconds,
i.e., a 23.72% reduction in the task computation time. The
% graph size reduction metrics Nodes, Edges, Branches,
and Loops were 32.12, 35.33, 25.21, and 18.46 respectively,
which supports the reduction in the task time.

5.4 Mining Typically Leaked Java APIs

In this case study, we mined the typically leaked Java
APIs. There exists 70 APIs for managing the system re-
sources in JDK, such as InputStream, OutputStream,
BufferedReader. A resource can be leaked if it is not
closed after its use11. The mining task performs a resource
leak analysis that captures if a resource used is not closed
along all program paths. The task collects all the resources
that are used in the program (as analysis facts), propagates
them along the program using flow analysis, and checks
if any resource is not closed at the program exit point.

11. Note that, both lock/unlock and resource leaks may go beyond a
single method boundary. Such cases are not considered, as we do not
perform an inter-procedural analysis.

18

According to our mined results, the top 5 Java resources
that often leaked were:

1) java.io.InputStream
2) java.sql.Connection
3) java.util.logging.Handler
4) java.io.OutputStream
5) java.sql.ResultSet

The nodes that are relevant for this mining task are the
resource related API method call nodes. All other nodes
are irrelevant. For this task, the Baseline approach took
6 minutes and 30 seconds and the RCFG approach took 6
minutes and 18 seconds, i.e., only a 2.97% reduction in the
task computation time. We expected significant reduction in
the task time using RCFGs, however the results were contra-
dictory. For further analysis, we measured the % graph size
reduction metrics: Nodes, Edges, Branches, and Loops,
whose values were, 42.31, 44.91. 38.81, 37.23 respectively,
shows significant reduction only added to our surprise.
Further investigation indicated that, although the RCFGs
were much smaller than CFGs, the complexity of the mining
task was small enough, such that the benefit obtained by
running the task on the RCFGs were overshadowed by the
overhead of the pre-analysis traversals and the reductions
in our approach.

6 RELATED WORK

There has been works that accelerates points-to analysis
by performing pre-analysis and program compaction [21],
[22]. Allen et al. [21] proposed a staged points-to analysis
framework for scaling points-to analysis to large code bases,
in which the points-to analysis is performed in multiple
stages. In each stage, they perform static program slicing
and compaction to reduce the input program to a smaller
program that is semantically equivalent for the points-to
queries under consideration. Their slicing and compaction
can eliminate variables and their assignments that can be
expressed by other variables. Smaragdakis et al. [22] pro-
posed an optimization technique for flow-insensitive points-
to analysis, in which an input program is transformed by
a set-based pre-analysis that eliminates statements that do
not contribute new values to the sets of values the program
variables may take. In both the techniques, reduction in
the number of variables and allocation sites is the key to
scaling points-to analysis. The pre-analysis stage of both the
techniques tracks the flow of values to program variables.
Any analysis requiring analyzing program variables may
benefit from these techniques. In contrast, our technique
is more generic and it goes beyond analyses that track
program variables and their values, e.g., tracking method
calls, tracking certain patterns. The main advantage in our
technique is that the relevant information for an input
analysis is extracted automatically by performing a static
analysis, making our technique applicable to a larger set of
analyses that analyze different informations.

The concept of identifying and removing the irrelevant
parts has been used in other approaches to improve the
efficiency of the techniques [23], [24]. For example, Wu et
al. [23] uses the idea to improve the efficiency of the call
trace collection and Ding et al. [24] uses the idea to reduce

the number of invocations of the symbolic execution in
identifying the infeasible branches in the code. Both Wu et
al.and Ding et al.identify the relevant parts of the input for
the task at hand. The task in these approaches is fixed. In
Wu et al.the task is call trace collection and in Ding et al.the
task is infeasible branch detection using symbolic execution,
while in our technique the task varies and our technique
identifies the relevant parts of the input for the user task by
analyzing the task.

There have been efforts to scale path sensitive analysis
of programs by detecting and eliminating infeasible paths
(pruning the paths) before performing the analysis [25], [26].
Such a technique filters and retains only relevant paths that
leads to unique execution behaviors. In their technique a
path is relevant if it contains event nodes and events are
specified by the path sensitive analysis. For example, safe
synchronization path-sensitive analysis has lock and unlock
as events and any path that contains lock or unlock will
be considered relevant. Compared to this approach, our
approach is not limited to just event-based path sensitive
analysis, but can be beneficial to flow-sensitive and path-
insensitive analysis. Unlike the prior work that requires a
user specify the list of events in their event-based path
sensitive analysis, our technique can automatically derive
the information with respect to what is relevant to the
analysis by performing a static analysis.

Our work can also be compared to work in accelerating
program analysis [27], [28], [29], [30]. Kulkarni et al. [27]
proposed a technique for accelerating program analysis in
Datalog. Their technique runs an offline analysis on a corpus
of training programs and learns analysis facts over shared
code. It reuses the learned facts to accelerate the analysis
of other programs that share code with the training corpus.
Other works also exists that performs pre-analysis of the
library code to accelerate analysis of the programs that make
use of the library code exists [28], [29], [30]. Our technique
differs from these prior works in that, our technique does
not precompute the analysis results of parts of the pro-
gram, but rather identifies parts of the program that do not
contributes to the analysis output and hence can be safely
removed. While prior works can benefit programs that share
some common code in the form of libraries, our technique
can benefit all programs irrespective of the amount of shared
code.

Reusing analysis results to accelerate interprocedural
analysis by computing partial [31] or complete procedure
summaries [32], [33] has also been studied. These techniques
first run the analysis on procedures and then compute either
partial or complete summaries of the analysis results to
reuse them at the procedure call sites. The technique can
greatly benefit programs in which procedures contain multi-
ple similar call sites. In contrast, our technique can accelerate
analysis of individual procedures. If the analysis requires
inter-procedural context, our technique can be combined
with the prior works, hence we consider our approach to
be orthogonal to prior works with respect to accelerating
inter-procedural analyses.

Program slicing is a technique for filtering a subset of
the program statements (a slice) that may influence the
values of variables at a given program point [14]. Program
slicing has been shown to be useful in analyzing, debugging,

19

and optimizing programs. For example, Lokuciejewski et
al. [34] used program slicing to accelerate static loop anal-
ysis. Slicing cannot be used for our purpose, because the
program points of interest (program statements) are not
known. We require a technique like our static analysis that
computes this information. Even if the statements of interest
are known, slicing may include statements (affecting the
values of variables at program points of interest) that may
not contribute to the analysis output. Our technique only
includes statements that contributes to the analysis output.
Moreover, a program slice is a compilable and executable
entity, while a reduced program that we produce is not. In
our case, the original and the reduced programs produce the
same result for the analysis of interest.

7 CONCLUSION

Data-driven software engineering demands mining and an-
alyzing source code repositories at massive scale, and this
activity can be expensive. Extant techniques have focused
on leveraging distributed computing techniques to solve
this problem, but with a concomitant increase in the com-
putational resource needs. This work proposes a comple-
mentary technique that reduces the amount of computation
performed by the ultra-large-scale source code mining tasks
without compromising the accuracy of the results. The key
idea is to analyze the mining task to identify and remove
parts of the source code that are irrelevant to the mining
task prior to running the mining task. We have described
a realization of our insights for mining tasks that performs
control and data flow analysis at massive scale. Our eval-
uation using 16 classical control and data flow analyses
has demonstrated substantial reduction in the mining task
time. Our case studies demonstrated the applicability of our
technique to massive-scale source code mining tasks.

While the proposed technique has shown to scale large-
scale source code mining tasks that perform method-level
control and data flow analysis, an immediate avenue of
future work is to extend our technique to scale mining tasks
that perform cross-method control and data flow analysis
(or project-level analysis). Source code mining tasks based
on other source code intermediate representations like ab-
stract syntax trees (ASTs), callgraphs (CGs), and program
dependence graphs (PDGs) may also benefit from the core
ideas of our technique. In our evaluation we observed
that a large number of reduced control flow graph (RCFG)
representations of programs in our datasets looked similar
in terms of nodes and edges. This provokes an interesting
investigation whether this similarity can be used to run the
mining task on only unique reduced control flow graphs
and reuse the results. We plan to investigate such future di-
rections to further our overarching goal of scaling massive-
scale source code mining tasks.

ACKNOWLEDGMENTS

This work was supported in part by the National Sci-
ence Foundation (NSF) under grants CCF-15-18789, CCF-15-
12947, and CCF-14-23370. The views expressed in this work
are those of the authors and do not necessarily reflect the
official policy or position of the NSF. The authors would like

to thank the anonymous reviewers of TSE, ESEC/FSE 2017,
and Dr. Wei Le for constructive comments and suggestions
for improving the manuscript.

REFERENCES

[1] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating
defect prediction approaches: A benchmark and an extensive
comparison,” Empirical Softw. Engg., vol. 17, no. 4-5, pp. 531–577,
Aug. 2012. [Online]. Available: http://dx.doi.org/10.1007/s10664-
011-9173-9

[2] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ser. ESEC-FSE ’07.
New York, NY, USA: ACM, 2007, pp. 35–44. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287632

[3] S. Thummalapenta and T. Xie, “Alattin: Mining alternative
patterns for detecting neglected conditions,” in Proceedings
of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 283–294. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2009.72

[4] B. Livshits and T. Zimmermann, “Dynamine: Finding common
error patterns by mining software revision histories,” in
Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ESEC/FSE-13. New
York, NY, USA: ACM, 2005, pp. 296–305. [Online]. Available:
http://doi.acm.org/10.1145/1081706.1081754

[5] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding
copy-paste and related bugs in large-scale software code,” IEEE
Trans. Softw. Eng., vol. 32, no. 3, pp. 176–192, Mar. 2006. [Online].
Available: http://dx.doi.org/10.1109/TSE.2006.28

[6] H. Rajan, T. N. Nguyen, G. T. Leavens, and R. Dyer,
“Inferring behavioral specifications from large-scale repositories
by leveraging collective intelligence,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 2, ser. ICSE
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 579–582. [Online].
Available: http://dl.acm.org/citation.cfm?id=2819009.2819107

[7] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim,
“Are code examples on an online q&a forum reliable? a study of
api misuse on stack overflow,” in Proceedings of the 40th Interna-
tional Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: ACM, 2018.

[8] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan,
“Mining preconditions of apis in large-scale code corpus,” in
Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 166–177. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635924

[9] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining api patterns
as partial orders from source code: From usage scenarios
to specifications,” in Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering,
ser. ESEC-FSE ’07. New York, NY, USA: ACM, 2007, pp. 25–34.
[Online]. Available: http://doi.acm.org/10.1145/1287624.1287630

[10] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa:
A language and infrastructure for analyzing ultra-large-scale
software repositories,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 422–431. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486844

[11] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An
infrastructure for large-scale collection and analysis of open-
source code,” Sci. Comput. Program., vol. 79, pp. 241–259, Jan. 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2012.04.008

[12] G. Gousios, “The ghtorent dataset and tool suite,” in
Proceedings of the 10th Working Conference on Mining
Software Repositories, ser. MSR ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 233–236. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487132

20

[13] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen,
“Mining billions of ast nodes to study actual and potential
usage of java language features,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 779–790. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568295

[14] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. Piscataway,
NJ, USA: IEEE Press, 1981, pp. 439–449. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800078.802557

[15] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and
Q. Xie, “Exemplar: A source code search engine for
finding highly relevant applications,” IEEE Trans. Softw. Eng.,
vol. 38, no. 5, pp. 1069–1087, Sep. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2011.84

[16] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling
and discovering vulnerabilities with code property graphs,”
in Proceedings of the 2014 IEEE Symposium on Security
and Privacy, ser. SP ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 590–604. [Online]. Available:
http://dx.doi.org/10.1109/SP.2014.44

[17] A. Diwan, K. S. McKinley, and J. E. B. Moss, “Type-based alias
analysis,” in Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, ser. PLDI ’98.
New York, NY, USA: ACM, 1998, pp. 106–117. [Online]. Available:
http://doi.acm.org/10.1145/277650.277670

[18] G. Snelting, T. Robschink, and J. Krinke, “Efficient path conditions
in dependence graphs for software safety analysis,” ACM Trans.
Softw. Eng. Methodol., vol. 15, no. 4, pp. 410–457, Oct. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1178625.1178628

[19] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann, “The dacapo benchmarks: Java
benchmarking development and analysis,” in Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, ser. OOPSLA
’06. New York, NY, USA: ACM, 2006, pp. 169–190. [Online].
Available: http://doi.acm.org/10.1145/1167473.1167488

[20] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically
rigorous java performance evaluation,” in Proceedings of the
22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications, ser. OOPSLA ’07. New
York, NY, USA: ACM, 2007, pp. 57–76. [Online]. Available:
http://doi.acm.org/10.1145/1297027.1297033

[21] N. Allen, B. Scholz, and P. Krishnan, “Staged points-to analysis for
large code bases,” in Compiler Construction. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 131–150.

[22] Y. Smaragdakis, G. Balatsouras, and G. Kastrinis, “Set-based
pre-processing for points-to analysis,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA
’13. New York, NY, USA: ACM, 2013, pp. 253–270. [Online].
Available: http://doi.acm.org/10.1145/2509136.2509524

[23] R. Wu, X. Xiao, S.-C. Cheung, H. Zhang, and C. Zhang,
“Casper: An efficient approach to call trace collection,” in
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’16. New
York, NY, USA: ACM, 2016, pp. 678–690. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837619

[24] S. Ding, H. Zhang, and H. B. K. Tan, “Detecting infeasible branches
based on code patterns,” in 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse En-
gineering (CSMR-WCRE), Feb 2014, pp. 74–83.

[25] A. Tamrawi and S. Kothari, “Projected control graph for accurate
and efficient analysis of safety and security vulnerabilities,” in
2016 23rd Asia-Pacific Software Engineering Conference (APSEC), Dec
2016, pp. 113–120.

[26] S. Kothari, A. Tamrawi, J. Sauceda, and J. Mathews, “Let’s
verify linux: Accelerated learning of analytical reasoning through
automation and collaboration,” in Proceedings of the 38th
International Conference on Software Engineering Companion, ser.
ICSE ’16. New York, NY, USA: ACM, 2016, pp. 394–403. [Online].
Available: http://doi.acm.org/10.1145/2889160.2889192

[27] S. Kulkarni, R. Mangal, X. Zhang, and M. Naik, “Accelerating
program analyses by cross-program training,” in Proceedings of

the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA
2016. New York, NY, USA: ACM, 2016, pp. 359–377. [Online].
Available: http://doi.acm.org/10.1145/2983990.2984023

[28] A. Rountev, M. Sharp, and G. Xu, “Ide dataflow analysis
in the presence of large object-oriented libraries,” in
Proceedings of the Joint European Conferences on Theory
and Practice of Software 17th International Conference on
Compiler Construction, ser. CC’08/ETAPS’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 53–68. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1788374.1788380

[29] D. Yan, G. Xu, and A. Rountev, “Rethinking soot for
summary-based whole-program analysis,” in Proceedings of
the ACM SIGPLAN International Workshop on State of
the Art in Java Program Analysis, ser. SOAP ’12. New
York, NY, USA: ACM, 2012, pp. 9–14. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259053

[30] K. Ali and O. Lhoták, “Application-only call graph construction,”
in Proceedings of the 26th European Conference on Object-Oriented
Programming, ser. ECOOP’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 688–712.

[31] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D.
Tetali, “Compositional may-must program analysis: Unleashing
the power of alternation,” in Proceedings of the 37th
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’10. New York,
NY, USA: ACM, 2010, pp. 43–56. [Online]. Available:
http://doi.acm.org/10.1145/1706299.1706307

[32] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of
the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’95. New York,
NY, USA: ACM, 1995, pp. 49–61. [Online]. Available:
http://doi.acm.org/10.1145/199448.199462

[33] M. Sharir and A. Pnueli, Two approaches to interprocedural data flow
analysis. New York University. Courant Institute of Mathematical
Sciences. ComputerScience Department, 1978.

[34] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A fast
and precise static loop analysis based on abstract interpretation,
program slicing and polytope models,” in Proceedings of the 7th
Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 136–146. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2009.17

Ganesha Upadhyaya is a doctoral candidate at
Iowa State University. His research interests in-
clude program analysis, mining software repos-
itories, and concurrent programming. He has
published and presented several works at OOP-
SLA, ICSE, MSR, Modularity, and AGERE. He is
a member of the IEEE.

Hridesh Rajan is the Kingland Professor in the
Computer Science Department at Iowa State
University (ISU) where he has been since 2005.
His research interests include programming lan-
guages, software engineering, and data sci-
ence. He founded the Midwest Big Data Sum-
mer School to deliver broadly accessible data
science curricula and serves as a Steering Com-
mittee member of the Midwest Big Data Hub
(MBDH). He has been recognized by the US
National Science Foundation (NSF) with a CA-

REER award in 2009 and by the college of LAS with an Early Achieve-
ment in Research Award in 2010, and a Big-12 Fellowship in 2012. He
is a senior member of the ACM and of the IEEE.

