
Nu: Towards an Aspect-Oriented Invocation Mechanism

Technical Report, Dept. of Computer Sc., Iowa State University

Hridesh Rajan Robert Dyer Harish Narayanappa Youssef Hanna
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA, 50010, USA

{hridesh, rdyer, harish, ywhanna}@cs.iastate.edu

ABSTRACT
The contribution of this work is the design, implementation
and evaluation of a new aspect-oriented invocation mecha-
nism for preserving design modularity in object code. We
call our mechanism Bind. We make three basic claims. First,
it is feasible to realize a programming model that supports
Bind to preserve design modularity in object code. Second,
the new invocation mechanism further improves the concep-
tual integrity of the aspect-oriented programming models by
allowing advising and runtime properties of aspect-like con-
structs to be modeled as simple combinations of invocation
primitives as opposed to new language constructs. Third,
it brings new possibility for structuring aspect-oriented sys-
tems, removing the commitment to a single aspect-language
model, and expanding the program design space to include
arbitrary combinations of language models and advising
structures. To support these claims, we present the design
and implementation of Nu, a programming model based on
the .NET Framework that supports Bind as an invocation
mechanism. We show that Nu supports aspect-oriented pro-
gram designs where multiple aspect-language models can be
emulated using Bind, and used in arbitrary combinations
without compromising the design modularity in the object
code.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features —Control structures; Procedures,
functions, and subroutines; D.3.4 [Programming Lan-
guages]: Processors — Code generation; Incremental com-
pilers; Run-time environments

General Terms
Design, Human Factors, Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Keywords
Bind, Nu, invocation, incremental, weaving

1. INTRODUCTION
Today’s aspect-oriented programming (AOP) languages

[16, 24] provide software engineers with new possibilities
for keeping conceptual concerns separate at the source code
level [53, 13]. For a number of reasons1, aspect weavers sac-
rifice this separation in transforming source to object code
(and thus the very term weaving)(see Figure 1). The imple-
mentations of the crosscutting concerns are scattered and
tangled again with the base code. The level of scattering
and tangling in the object code varies with the underlying
weaving approach. Some approaches instrument the code
to insert calls at compile time [23], some only insert hooks
at compile time so that at runtime observer like aspects can
register with these hooks [47], yet another kind insert flags
and/or meta information at compile time so that instrumen-
tation can occur at load time [26], etc.

In this paper, we argue that sacrificing modularity has
significant costs, especially in terms of the speed of incre-
mental compilation and in testing. We argue that design
modularity can be preserved through the mapping to object
code, and that preserving it can have significant benefits in
these dimensions.

The contribution of this work is a new aspect-oriented in-
vocation mechanism for preserving design modularity in ob-
ject code, that we call Bind. Two complementary primitives,
bind and remove, enable our novel invocation mechanism.
The bind and remove primitives are atomic operations that
create and destroy the associations between program points
and a delegate. By association between program points and
delegate, we mean that the associated delegate is invoked at
these program points. Bind is supported in a new aspect-
oriented programming model, that we call Nu.

We claim and show that, first, it is feasible to realize
a programming model that supports Bind to preserve de-
sign modularity in object code. Second, the new invoca-
tion mechanism further improves the conceptual integrity of
the programming model by allowing advising and runtime
properties of aspect-like constructs to be modeled as sim-

1For example, to generate object code that is compliant with
the existing virtual machines (VM), such as Java Virtual
Machine (JVM) [35] for AspectJ [23] and .NET Framework
[38] for Eos [52], to lower the barrier to entry.

1

Figure 1: Tracing Concerns through the Life Cycle: In this figure C1 to Cn and C′
1 to C′

n are the base
and the crosscutting concerns respectively. The figure shows that the concerns are separate in the domain,
requirement, design and implementation phases. During compilation, to realize the crosscutting behavior
C1 − Cn are modified by inserting calls to and fragments from C′

1 − C′
n.

ple combinations of invocation primitives as opposed to new
language constructs. Third, it brings a new possibility for
structuring aspect-oriented systems, removing the commit-
ment to a single aspect-language model, and expanding the
program design space to include arbitrary combinations of
language models and advising structures.

We present two alternatives to incorporate this invocation
mechanism in existing programming models, first, through
an extension of the intermediate language, the language for
object code, and second, through an application program-
ming interface (API). Extending the intermediate language
with these primitives has significant costs in terms of com-
piler and virtual machine redesign as well as adoption; how-
ever, we argue that the new possibilities offered by this ab-
straction might potentially outweigh the costs.

To evaluate the feasibility of our ideas and to support our
evaluation, we have designed and developed an extension of
the .NET Framework [38]. The extension is in the form of an
additional layer on top of the existing virtual machine that
adds support for the bind/remove primitives. The extension
is fully backward compatible with existing assemblies.

The rest of this paper is organized as follows. Section 2
describes the problem in detail. Section 3 discusses our ap-
proach. Section 4 - 6 discuss emulation of existing language
models and advising structures using bind/remove primi-
tives and support our claims. Section 7 assesses the nature
and potential importance of our results. Section 8 discusses
related work. Section 9 concludes.

2. DETAILED PROBLEM STATEMENT
To motivate our approach, we demonstrate in the next

subsection the problem with common weaving techniques
through a simple example application.

2.1 Scattering and Tangling in Object Code
Figure 2 shows the code for a HelloWorld application. We

have implemented this application using Eos [18, 48]. Eos
is an aspect-oriented extension of C# for Microsoft .NET

Figure 2: A Simple Aspect-Oriented Application

Framework [38] that implements the unified-aspect model
proposed by Rajan and Sullivan [52]. Rajan and Sullivan
showed that the AspectJ notions of aspect and class can
be unified in a new module construct that they called the
classpect, and that this new model is significantly simpler
and able to accommodate a broader set of requirements for
modular solutions to complex integration problems [56].

The binding construct in this model allows modularization
of crosscutting concerns. A binding is a mechanism to select
a subset of join points2 in the execution of the program and
associate a method to execute at those points. The subset of
join points selected by the binding are called subjects of the
join point. The method that is associated by the binding
to execute at these join points is called the handler of the
binding.

Our application has two classpects: Hello (shown inside
the white box) and Trace (shown inside the grey box). The
classpect Hello declares a method Main that prints the string
Hello on the screen and exits. The classpect Trace declares

2In the terminology of existing aspect-oriented languages, a
join point is a language-defined point in the execution of a
program.

2

Figure 3: Disassembled HelloWorld

a pointcut traceMethods to select all method execution join
points in the program and a static binding. The effect of
declaring the binding is that the handler method trace is
invoked at all the subject join points selected by the pointcut
traceMethods and prints the string trace() called. As a result,
after the execution of the method Main the string trace()
called is printed.

We compiled this simple application using the Eos com-
piler [50]. We disassembled the assembly 3 using ildasm,
the disassembler for .NET Framework. Figure 3 shows the
disassembled code. We have used the common intermedi-
ate language (CIL) notations to represent the disassembled
code. Please note that the weaving techniques for static
bindings is similar to that of AspectJ-like languages [23], so
the intermediate code shown in Figure 3 is a representative
of the current weaving techniques.

Figure shows the disassembled code of Hello in the white
box and the disassembled code of Trace in the grey box.
As can be observed, the intermediate code to invoke Trace
at join points is inserted into the class Hello in the method
Main. As a result, the concern modularized by the classpect
Trace ends up being scattered and tangled with the Hello
concern. The separation of Hello and Trace concerns is thus
lost during the compilation phase.

2.2 Effects of Scattering and Tangling
At the minimum, this problem makes efficient incremental

compilation and unit testing of AO programs challenging.
The best AO compilers available today take significantly
more time compared to their object-oriented counterparts
for incremental compilation. A recent report on the appli-
cation of AspectJ [23] to the development of a J2EE web ap-
plication for Video Monitoring Services of America showed
that incremental compilation using the AspectJ compiler
usually takes at least 2-3 seconds longer than near instant
compilation using a pure Java compiler [30]. It also showed

3Assembly is a .NET Framework term for an executable.

that if an aspect is changed the incremental compilation re-
sorts to full compilation.

The report observed that due to the increase in incremen-
tal compilation time, human attention can wander and it
can take time to re-contextualize after the compilation. This
problem is particularly pronounced for the full builds, which
tempt the programmer to switch to another task entirely (e.g.
email, Slashdot headlines).

The significant increase in incremental compilation time
is because when there is a change in a crosscutting concern,
the effect ripples to the fragmented locations in the compiled
program forcing their re-compilation. For example, let us
assume that the source code for the classpect Trace changes,
so that it now selects all execution join points where the
method name begins with a Set, for example SetX, SetY,
etc. The method Main in the Hello class is no longer selected
by this pointcut for advising.

This change will trigger the incremental compilation of
Trace. In addition, it will also trigger the compilation of
Hello to reflect the changes in the pointcut. If the separa-
tion of concerns would have been preserved in the interme-
diate code, it would have been sufficient to just recompile
the changed concern, e.g. Trace, in the system. The full
re-compilation of this simple system is not a huge burden
on the program; however, in nontrivial systems the over-
head of compilation can be significant enough to disrupt the
build-test-debug cycle common in current agile software de-
velopment processes.

The re-compilation time is affected by two factors. First,
increase in the number of crosscutting concerns in a large-
scale system. Second, increase in the number of modular
concerns that these crosscutting concerns are scattered and
tangled with. For a change in a crosscutting concern such
as tracing or logging, recompilation of the entire system will
be necessary. The system studied by Lesiecki [30] can be
classified as a small to medium scale system with just 700
classes and around 70 aspects. In a large-scale system, slow-
down in the development process can potentially outweigh
the benefits of separation of concerns.

Besides incremental compilation, loss of separation of con-
cerns also makes unit testing of AO programs difficult. The
dependence of aspects on other classes and vice versa makes
it harder to test them separately. AOSD has shown real ben-
efits in its ability to achieve a separation of some tradition-
ally non-modular concerns. In order to continue receiving
these benefits in large-scale systems without impeding the
design-build-test cycle common in agile development pro-
cesses, it is essential to address these issues effectively.

2.3 Learning from the History of Separation
of Concern Techniques

This problem is not unique to AOSD; rather it pertains in
general to the mechanisms for separation of concerns (SoC)
(See Figure 4) [49]. Consider an analogy in the procedural
abstraction world. In an instruction set architecture (ISA)
that does not support method calls, one could still decom-
pose a program into a set of procedures in the analysis, de-
sign and implementation phases. The compiler would then
translate these programs into a monolithic set of instructions
by in-lining the procedure bodies.

For these programs, benefits of procedural abstraction
such as modular reasoning, parallel development, etc., are
observed in analysis, design and implementation phases. In

3

Separation of Concerns (SoC) Technique Abstract Invocation mechanism
Procedural Abstraction Method Call as instruction in ISA
Object-Orientation Objects and Virtual Method Calls
Aspect-Orientation An Open Question

Figure 4: Separation of Concern Techniques and Corresponding Abstract Invocation Mechanism

later phases, however, we no longer get the same benefits
because there is no clear separation anymore. For exam-
ple, changes in the source code of a procedure affect all call
sites of the procedure, because it is in-lined. Incrementally
compiling these procedures was thus harder and more time
consuming. Unit testing of such procedures was also a chal-
lenge. The support for method call in ISAs, along with the
invention and refinement of linking technology has more or
less solved these problems for procedural decomposition.

Consider another analogy in the object-oriented world.
Like procedural abstraction, object-orientation can be em-
ulated in the analysis, design and implementation phases
without the support for objects and dynamic dispatch
by translating the OO program into a procedural pro-
gram that uses methods and structures; however, loosing
the traceability of concerns during compilation does affect
post-compilation phases. The support for objects and vir-
tual method calls in the runtime environments improved
the intermediate code level design modularity for object-
orientation.

For both SoC techniques, emergence of an abstract in-
vocation mechanism at the interface between the language
compilers and execution models extended the benefits of SoC
techniques to post compilation phases. These mechanisms
pushed the decoupling between concerns further down the
execution model, abstracting it behind the interface. The
nature of the concerns modularized by aspect-oriented tech-
niques dictates that they execute at scattered and tangled
points in the execution of the program. The loss of separa-
tion at runtime thus seems unavoidable; however, in the rest
of the paper we show that a better separation of concerns
at the object code level is achievable.

3. THE NU PROGRAMMING MODEL
To preserve the separation of concerns through aspect-

oriented compilation, we propose in this work a new pro-
gramming model that we call Nu. We hypothesize that to
achieve separation of concern at the object code level it is
necessary to provide a precisely specified invocation mech-
anism that allows representation of crosscutting concerns
as modular units in object code. The aspect-oriented con-
structs in the high-level languages can be expressed in terms
of this invocation mechanism without compromising their
expressiveness.

Rajan and Sullivan’s work on unified aspect model [52]
and Eos [18] motivates this hypothesis. The binding con-
struct in the unified aspect model enables modularization of
crosscutting concerns. A binding construct uses pointcuts to
select join points in the execution of the program and spec-
ifies a list of methods to execute at these join points. These
bindings allow both type and instance-level advising struc-
tures [50] to be represented in AO programs. In principle, if
these bindings are provided as an abstraction by the execu-
tion model, separation of concerns at the object code level
could be enabled for AspectJ and Eos programs. However,

the binding abstraction would still be too high-level to be
able to model other aspect language models. For instance,
runtime-advising structures cannot be modeled. The ba-
sic primitive of AspectJ-like language, the advice construct,
presents an even higher-level of abstraction. In the rest of
this section, we present the new concepts in our program-
ming model.

3.1 Join Point Model
Like most aspect-oriented models, Nu adds only one new

concept to the underlying language semantics (also called
base language [29]) – join points. A join point is defined as
a well-defined point in the execution of a program. Instead
of AspectJ’s join point model, we adopt a finer-grained join
point model proposed by Endoh et al. [17]. Endoh et al.
call the join point model of AspectJ-like languages a region-
in-time model because a join point in these languages repre-
sents duration of an event, such as a call to a method until
its termination. They propose a join point model called
point-in-time model in which a join point represents an in-
stance of an event, such as the beginning of a method call
and the termination of a method call [17]. They show that
this model is sufficiently expressive to represent common
advising scenarios.

In the point-in-time model corresponding to AspectJ’s call
join point, there are three join points call, reception, and fail-
ure. These three join points eliminate the need for three dif-
ferent types of advice: namely before, after, and after throw-
ing advice. The before call, after call, and after throwing call
become equivalent to call, reception, and failure respectively.
Similarly, corresponding to AspectJ’s execution join point,
there are three join points execution, return, and throw. For
more details about the point-in-time model, please see En-
doh et al. [17].

Please note that we define a join point as a well-defined
point in the program, as opposed to a language-defined point
in the program. This distinction allows us to emulate lan-
guages with implicitly defined join point models such as As-
pectJ, Eos, etc as well as languages and approaches that
allow explicitly defined join point models such as SetPoint
[4] and annotation based join point models [25] such as JBoss
[11]. This requirement puts the burden on the implementer
of the Nu model to provide a mechanism to define join points
to the execution model.

3.2 Bind: An AO Invocation Mechanism
The basis of our approach is an invocation mechanism,

that we call Bind. Bind is enabled by two primitives: bind
and remove. Both these primitives expect two arguments,
a pattern and a delegate. The pattern serves to select the
subset of the join points in the program. The delegate or
the delegate chain specifies a list of methods that provide
the additional code that is to execute at these join points.
The bind primitive associates the supplied delegate with the
join points matched by the pattern. As a result, the delegate

4

bind
1. Pops top two values from the stack: pat-
tern and delegate
2. Semantics: After this atomic instruction is
complete, a set of associations are created be-
tween the delegate chain and every join point
that matches the pattern.

remove
1. Pops top two values from the stack: pat-
tern and delegate
2. Semantics: After this atomic instruction
is complete, if there was a binding between
the delegate and the pattern, it is removed.

Figure 5: Extensions to the combined intermediate
language (ECIL)

chain is invoked when the program execution reaches the join
point. The remove primitive eliminates this association.

Please note that at this time we have explicitly decided not
to support static crosscutting mechanisms such as inter-type
declarations in AspectJ [23]. There are two reasons behind
this design decision. First, in most inter-type declarations
there is a one-to-one explicit mapping between the classes
and the aspects. Therefore, the scattering and tangling of
the crosscutting object code is also limited to the class that
the aspect affects. Second, inter-type declarations can be
emulated using partial classes in C# version 2.0 [15], and
mix-ins [8].

3.3 Specificity of bind/remove
Our model does not impose any restrictions on the order

and the combination of bind and remove. In a program
execution path, a bind may never be followed by a remove
and vice versa. This allows us to model associations that
once created last for the entire execution of the program.
As we will show, AspectJ-style [23] advising relationships
are modeled using this pattern. Our model also does not
require that if a bind is followed by a remove they provide the
reference to the same pattern object. This allows us to model
the difference operation on the set of associations. A remove
primitive might eliminate just a subset of the associations
that was created by an earlier bind. The pattern object itself
is mutable.

3.4 ECIL: An Instantiation of Nu
The bind and remove primitives can be included in the

intermediate language (language for object code) as instruc-
tions. The intermediate code is essentially an interface be-
tween the programming language compiler and the runtime
environment. This interface governs the intermediate code
that the compiler can generate and the semantics of in-
structions that it can expect. If included in the interme-
diate language, these primitives will provide a crosscutting
abstraction between the HLL compiler implementation and
the runtime environment. This interface will then abstract
the realization of the crosscutting behavior at run-time from
the HLL compiler implementations. The interface will also
govern the semantics of the crosscutting primitives that
the compiler implementation can expect for code generation
purposes.

Figure 5 shows these primitives as an extension of the
common intermediate language (CIL), the intermediate lan-
guage for the .NET Framework. We call this extension
ECIL. The bind instruction expects a reference to a dele-

Figure 6: ECIL version of HelloWorld

gate and the reference to a pattern to select join points as
the top two items on the stack. The pattern is equivalent to
a pointcut expression. When the instruction is complete an
association between the join points selected by the pattern
and the delegate is created. The effect is that the delegate
is invoked at all join points selected by the pattern. The re-
move instruction also takes the reference to a delegate and
a pattern and eliminates the association.

3.5 Revisiting HelloWorld
To illustrate, let us revisit our HelloWorld example. The

intermediate code for the application in the ECIL is shown
in Figure 6. Like before, the disassembly of classpect Hello
is shown in the white box and the disassembly of classpect
Trace is shown in the grey box.

Instead of explicit callbacks in the intermediate code for
Hello, bind and remove instructions are generated in the
intermediate code for Trace. Note that we are translating a
static binding that affects all instances of Hello. To model
the semantics of static binding, a bind instruction is inserted
in the static constructor of Trace. The constructor pushes a
delegate to the method trace on to the stack followed by the
string execution (any.any(..)). The bind instruction follows
these two push instructions. As a result, when the type
Trace is initialized, the handler trace is associated to execute
at the selected subject join points.

At this time, we are using a string to represent the pat-
tern. One might argue that this design decision gives away
the type safety. We agree that this might be a problem; how-
ever, we would like to emphasize that ECIL code will not
be hand-written. A compiler will translate the code from a
high-level language to ECIL. This high-level language can
include a sub-language such as the pointcut sublanguage of
AspectJ to express the patterns. The compiler would then
check the syntax and the semantics of the patterns and then
generate a string corresponding to the checked pattern. Nev-
ertheless, for this and other reasons such as verification of
pointcut description by the runtime and the runtime’s effi-
ciency of interpreting the pointcut, we provide a language

5

Figure 7: Implementing Runtime Advising in ECIL

for expressing the pattern in our alternative instantiation of
Nu that we will discuss later in this paper.

Our example demonstrates that the separation of concerns
is preserved for modules represented in ECIL. The code for
Hello is free of the callbacks to the trace method in the
Trace classpect. As a result a change in Hello, which is not
a crosscutting concern, will only affect the intermediate code
representation of the Hello module. Similarly, a change in
Trace, which is a crosscutting concern, will only affect the
intermediate code representation of the trace module. The
changes are thus traceable to a limited number of modules at
the intermediate code level, resulting in an improved incre-
mental compilation time compared to existing approaches.

3.6 Emulating Runtime Advising
The example we presented above demonstrates static ad-

vising. The bind/remove primitives can also be used for
runtime advising (See Figure 7). The figure shows a varia-
tion of our HelloWorld application. Now we want to enable
and disable tracing at runtime. To do that, the modified
classpect Trace provides two methods, On and Off. The
ECIL representation of method On consists of instructions
to push the delegate to the handler and the pattern on the
stack followed by the bind instruction (similar to the static
constructor implementation in the static tracing example).
The method Off also consists of instructions to push the
delegate and the pattern followed by the remove instruc-
tion. The semantics of bind and remove ensure that calling
On activates the tracing and calling Off deactivates it.

3.7 Bind API: Another Instantiation of Nu
An alternative instantiation of Nu is to provide the in-

vocation mechanism Bind as an application-programming
interface (API). Our realization of the bind/remove prim-
itives as an API is shown in the Figure 8. The seman-

1 void Bind(IPointcut pcut, SimpleDelegate delegate);
2 void Bind(IPointcut pcut, JPDelegate delegate);

3 Semantics: After this atomic method returns,
4 a set of associations are created between
5 the delegate chain and every join point that
6 matches the pattern.

7 void Remove(IPointcut pcut, SimpleDelegate delegate);
8 void Remove(IPointcut pcut, JPDelegate delegate);

9 Semantics: After this atomic method returns, all
10 associations between the delegate chain and every
11 join point that matches the pattern are removed.

Figure 8: The Bind API

1 public interface IPointcut {
2 bool Match(IJoinpoint thisJP);
3 }

Figure 9: The IPointcut Interface

tics of Bind/Remove methods of the API are similar to the
bind/remove instructions of the ECIL. The only difference
is that instead of using strings to represent the pattern,
this API provides a library of patterns that implement the
IPointcut interface. The IPointcut interface is shown in the
Figure 9. This interface obligates the implementer to pro-
vide a method to match an object of type IJoinpoint. An
object of type IJoinpoint represents a join point at runtime.

At this time, we have implemented two variations of del-
egate chains: SimpleDelegate and JPDelegate. The dele-
gatees in the delegate chain of type SimpleDelegate cannot
receive any arguments. For some use cases, however, the
delegatees might need some reflective information about the
join point. We provide the delegate chain type JPDelegate
for this purpose. The delegatees in the delegate chain of
type JPDelegate may receive an argument of type IJoin-
point. The reflective information can be marshaled from
this argument. This is a limitation of the current model
that sacrifices static type checking on delegatees arguments.
We plan to fix this problem in future versions of the Bind
API. The recent support for generics in both Java and C#
appears to be a promising direction to address this issue.

3.8 Emulating Instance-Level Advising
The examples we presented in the context of ECIL demon-

strate emulation of static and runtime advising structures
using our model. The bind/remove primitives can also be
used for instance-level advising (See Figure 10). Rajan and
Sullivan define instance-level advising as the ability to differ-
entiate between two instances of a class, while advising, and
to advise them differently if needed [51]. The figure shows a
variation of our HelloWorld application. To demonstrate, we
have re-factored the functionality to print the string hello

to a new class Hello. The main program now creates three
instances of the class Hello: h1, h2, and h3. We now want
to add the functionality of printing the string world after
the string hello only when the method Say is called on the
instance h2.

To achieve that we add a new class World (lines 14-26).
The class defines a method Add (lines 15-22) for the main
program to specify which Hello instance is to be advised.

6

1 class HelloWorld {
2 ...
3 static void Main(string[] args) {
4 /* Create h1, h2, h3, 3 instances of Hello*/
5 World.Add(h2); /* Add saying world only to h2 */
6 ...
7 }
8 }
9 class Hello {

10 public void Say() {
11 System.Console.WriteLine("Hello");
12 }
13 }
14 class World {
15 static void Add (Hello h) {
16 Bind(
17 And(
18 new Return(
19 new MethodPattern(Public,"Hello.Say")),
20 new This(h)),
21 new SimpleDelegate(World.Say));
22 }
23 public static void Say() {
24 System.Console.WriteLine("World");
25 }
26 }

Figure 10: Implementing Instance-Level Advising

This method calls the bind primitive (lines 16-21) supplying
it a pattern and a delegate. The delegate (line 21) is a Sim-
pleDelegate containing only one method Say (lines 23-25) of
the class World. The pointcut provided as pattern (lines
17-20) is a composition of two sub-pointcuts using the bi-
nary And operator (line 17). The And operator is similar to
AspectJ’s && operator, except that our operator is a first-
class construct. A join point is matched by the result of the
And operator, if and only if it is matched by both operands
supplied as arguments. Our pattern library also provides Or
and Not operators.

The two operands to the And operator are a Return point-
cut (lines 18-19) and a This pointcut (line 20). The Return
pointcut matches the return join point of the method Say of
the class Hello. The This pointcut (line 20) matches any join
point where the executing instance is h. The combination of
these two pointcuts using And matches join points that are
return join points where the executing instance is h. This
is precisely the definition of selectively advising instance h.
Our Bind API was thus able to emulate instance-level ad-
vising as well. In addition, the compiled code for the class
HelloWorld, Hello and World remain separate. The API ab-
stracts the scattering and tangling. Thus, our Bind API also
preserves the design modularity at the object code level.

3.9 Summary
In this section, we presented a new programming model

called Nu for preserving design modularity at object code.
The separation of concerns at the object code level is pre-
served by abstracting scattering and tangling behind a new
aspect-oriented invocation mechanism called Bind. This in-
vocation mechanism is enabled by two primitives bind and
remove. We showed that the unified model implemented
by Eos can be supported using Bind. We also showed that
static, runtime as well as instance-level advising can be ex-
pressed in terms of Bind, supporting our claim that our in-
vocation mechanism allows advising and runtime properties
of aspect-like constructs to be modeled as simple combina-
tion of invocation primitives as opposed to new language

Figure 11: Current Nu Implementation

constructs.

4. EVALUATION
In Section 1, we made three claims about our approach.

First, it is feasible to realize a programming model that sup-
ports Bind to preserve design modularity in object code.
Second, the new invocation mechanism further improves
the conceptual integrity of the aspect-oriented program-
ming models by allowing advising and runtime properties
of aspect-like constructs to be modeled as simple combina-
tions of invocation primitives, as opposed to new language
constructs. Third, it brings a new possibility for structur-
ing aspect-oriented systems, removing the commitment to a
single aspect-language model, and expanding the program
design space to include arbitrary combinations of language
models and advising structures.

We have already supported our second claim in Section
3, by showing how a variety of advising structures can be
implemented using intuitive patterns that uses our proposed
invocation mechanism. To validate the first claim, we de-
scribe a prototype implementation of the proposed invoca-
tion mechanism in Section 5. To confirm the third claim,
the implementation of common advising structures in preva-
lent aspect language models using the proposed invocation
mechanism is demonstrated in Section 6.

5. IMPLEMENTATION
To support our first claim that it is feasible to build sup-

port for Nu in a runtime environment, we implemented the
Bind API as an additional layer on top of the .NET Frame-
work [38]. This layer can be added to the shared source
common language infrastructure [2], an open implementa-
tion of the .NET Framework, however, for the purpose of
this evaluation we will consider it separately.

Figure 11 shows the current implementation of the Nu
model. The two key components of the layer are the IL
transformer and the runtime infrastructure. The IL trans-
former can be considered as an extension of the just-in-time
compiler to support Bind. It prepares the input assembly to
execute inside the existing .NET framework. The runtime
infrastructure provides the supporting functionality.

5.1 IL Transformer
As of this writing, the IL transformer is implemented as

a post processor for the .NET Framework. It takes a .NET
assembly and instruments all join points in the assembly

7

to construct an object of type Nu.Runtime.Joinpoint. This
object represents the reflective information about the join
point. A call to the Join Point Dispatcher is also inserted
at all join points. Instrumenting all join points is inefficient
compared to the techniques used by AspectJ and Eos com-
pilers. These compilers only instrument the join points that
are potentially of interest to bindings. In the future, we will
implement optimizations to reduce this overhead.

The IL transformer uses the program executable file
reader/writer application programming interface (PER-
WAPI) [21] to manipulate .NET assemblies. PERWAPI
provides an API to read and construct assemblies on .NET
Framework [38]. This API is used to instrument an input
assembly, to include a trigger mechanism at every joint point
in the program. An alternative implementation can also use
the System.Reflection API of the .NET Framework [38] to
read and write assemblies on the fly.

5.2 Runtime Infrastructure
Figure 12 shows the runtime infrastructure that imple-

ments the core of the Bind API. In Nu, all join points invoke
a join point dispatcher as shown in Figure 12. A join point
dispatcher is similar to event dispatcher used in the mod-
eling of implicit invocation systems [14]. There is only one
instance of the dispatcher in an application’s address space.
The figure shows join points J0 .. Jn being dispatched.

The current implementation of the dispatcher also stores
the patterns and corresponding delegates. On a bind call,
which is equivalent to the bind instruction execution in
ECIL, the argument pattern and delegate are stored. On a
remove call, if the pattern and delegate pair are present they
are removed from the store. On a join point dispatch, the
dispatcher attempts to match the join point with the stored
patterns. On finding a match, the corresponding delegate
chain is invoked.

5.3 Summary
The current implementation of our model is prelimi-

nary and somewhat inefficient; however, it still suffices to
show the feasibility of supporting Bind as an invocation
mechanism. There are several promising directions to ad-
dress the efficiency issues such as set-based storage of (pat-
tern,delegate) so that a match becomes equivalent to set-
membership that is faster to compute. There are also op-
portunities to learn from other systems. For example, in the
context of implicit invocation systems, several algorithms
exist for efficient and fast matching of events to subscribers.
Pereira et al. [44] proposed a semi-structured event model
and a predicate matching algorithm in the context of their
Publish/Subscribe system Le Subscribe. Campailla et al.
[12] propose an efficient event-matching algorithm based on
binary decision diagram. A combination of these approaches
can also be used for efficient matching of join points.

6. EMULATING OTHER AOP MODELS
We claimed in Section 1 that Nu brings new possibility

for structuring aspect-oriented systems, removing the com-
mitment to a single aspect-language model, and expand-
ing the program design space to include arbitrary combina-
tions of language models and advising structures. In this
section, we present realizations of prevalent aspect-oriented
language models using Bind to support that claim. The
aspect-language models that we discuss in this section in-

clude HyperJ [41], Composition Filters [3], Adaptive Pro-
gramming [34], and AspectJ [23]. We have already shown in
Section 3 that the unified aspect model of Eos [52] can be re-
alized using the Bind API. To make this work self-contained,
we present a brief overview of these AOP models.

6.1 Emulating the HyperJ Model
HyperJ [57] supports multi-dimensional separation of con-

cerns through the use of hyperslices [58] and hypermodules.
[41] A hyperslice represents a single concern in a system.
It may be composed of multiple classes and span multiple
packages. The concerns are identified in a concerns file which
maps portions of a system to the concerns those portions im-
plement. Multiple concerns may then be composed together
to form a hypermodule. A hypermodule usually consists of
multiple hyperslices and states how HyperJ should compose
the various concerns implemented by those hyperslices to
create the final system. Units with the same name can be
merged, override each other, or have no correspondence at
all. A hypermodule defines the default method of compo-
sition and may then specify exceptions for units by using
Merge, Override, NoMerge, etc. A hypermodule may also
state that a method x() will bracket after or bracket before
method y(), meaning that x() will be executed after or be-
fore the method y() executes, respectively.

6.1.1 HelloWorld in HyperJ
Figure 13 shows an example of a HyperJ program. This

program consists of three hyperslices: Feature.Main, Fea-
ture.Hello, and Feature.World. The concerns in these hy-
perslices are defined based on the operations Main, Hello,
and World. These three hyperslices are then composed
in the HelloWorldHM hypermodule. This hypermodule
states that there is a specific order such that the Fea-
ture.Hello hyperslice should occur before the Feature.World
hyperslice. This hypermodule also states that the methods
Feature.Hello.Hello() and Feature.World.World() should be
bracketed after the method matching the pattern Main in
any package.

If we assume that the semantics of the Feature.Hello con-
cern states that the string Hello will be printed on the con-
sole and the Feature.World concern states that the string
World will be printed on the console, it should be clear that
the expected behavior of this HyperJ program would be to
print the string Hello followed by the string World on the
console.

6.1.2 HyperJ-Style HelloWorld using the Bind API
Figure 14 shows what the example program might look

like if compiled from HyperJ to the Bind API. The classes
HelloWorld, Hello, and World represent the three hyper-
slices Feature.Main, Feature.Hello, and Feature.World re-
spectively. The class HelloWorldHM represents the hyper-
module HelloWorld. The class makes use of the Bind API to
bracket the methods Hello.Hello() and World.World() after
the method Main. The ordering between the Feature.Hello
and Feature.World hyperslices is maintained by the seman-
tics of the Bind API.

This simple example demonstrates how one could simu-
late constructs in the HyperJ model using the Bind API.
The semantics of the Bind instruction guarantees that af-
ter it is called in the example, for all join points match-
ing the return of a static method named Main, the del-

8

Figure 12: The Supporting Runtime Infrastructure

Figure 13: HyperJ version of HelloWorld

egatee HelloWorldHM.HelloHS is invoked and for all join
points matching the constructor of Hello, the delegatee Hel-
loWorldHM.WorldHS will be invoked. These in turn cre-
ate new objects of type Hello and World respectively. The
Hello and World classes fulfill our semantic requirements of
the Feature.Hello and Feature.World concerns by outputting
the strings Hello and World respectively to the console.

HyperJ has three default composition strategies: merge-
ByName, nonCorrespondingMerge, and overrideByName.
nonCorrespondingMerge is obviously supported. override-
ByName (and of course Override) could be simulated by
providing empty methods for each class. A return point-cut
on those methods would then use the appropriate method
(the overriding method) as advice. mergeByName (and of
course Merge) could be simulated in a similar manner. In-
stead of the advice only calling the overriding method how-
ever, it would call all matching methods.

HyperJ summary functions could be supported by the ad-
dition of the skip construct defined by Endoh et al. [17] The
results of each merged operation could be stored in an array
and sent to the summary function, who’s result would be
used as the final return value. Equate and Match simply set
up join point aliases and could be supported. Rename op-
erates on the composed names and also could be supported.
Order and Bracket were shown in the example above and
NoMerge is obviously supported.

6.2 Emulating the Composition Filter Model

Figure 14: HelloWorld Using Bind API

The composition filters (CF) model [3] extends the object-
oriented model by introducing a new layer called interface
between an object and its clients. This layer consists of input
and/or output filters as well as internal and possibly external
objects. The behavior of an object is composed with the
behavior of these objects. The composition is performed by
manipulating the messages received and sent by the object
using input and output filters respectively.

This model creates a first-class representation of a mes-
sage for manipulation by a set of ordered filters until it is
either discarded or dispatched. A filter may define the ac-
tual semantics for accepting or rejecting a message. A filter
specification follows:

<name>:<filter-type>={filter-elem, filter-elem, . . . }
A filter element is of the form:
< condition >=> [< match − target > . < match − sel >] <

target > . < sel >

or < condition >=>< match− target > . < match− sel >

Note that the model evaluates the filter elements from
left to right. The condition is a boolean value determined
at run-time. match-target and match-sel are used to match
a message against the specified pattern. If target and sel
are specified, they are used to re-dispatch the message as a
parameter to the event(s) specified by target and sel.

9

1 class Log interface
2 conditions
3 Debug;
4 methods
5 Exception(String) returns Nil;
6 Warning(String) returns Nil;
7 DebugOn returns Nil;
8 inputfilters
9 disp: Dispatch = {Debug=>inner.*,

10 True=>inner.Exception,inner.DebugOn};
11 queue: Wait = {Debug=>inner.Warning};
12 end;

Figure 15: Composition Filters Logger

6.2.1 Logger in CF Model
Figure 15 shows an example of a Composition Filter pro-

gram. For this example we are only concerned with the
classe’s interface. The interface defines one condition on
line 3 named Debug. The interface also defines three meth-
ods on lines 5-7: Exception, Warning, and DebugOn. On
lines 9-11, the interface defines two input filters disp and
queue.

The disp input filter is of type Dispatch. This filter type
states that upon acceptance of a message, the message will
be dispatched to the target. Upon rejection of a message,
the filter will forward the message on to the next filter. If
there are no more filters then an exception will be thrown.
[3] The filter has two filter events. The first filter event will
match when the condition Debug is true on any messages
from the Log implementation. The second filter event will
match on the messages Exception and DebugOn (since the
condition is always true).

The queue input filter is of type Wait. This filter type
states that upon acceptance of a message, the message will
be forwarded to the next filter (if one is available). Upon
rejection of a message, the filter will queue the message and
try to accept it at a later time. [3] The filter has one filter
event that will match when the condition Debug is true on
the message Warning.

The purpose of this module is to provide selective logging.
If the system is in a debug state then clearly all messages
should be logged. However, if the system is in a production
state then only the most extreme messages (such as excep-
tions) need to be logged. This is accomplished by the first
filter always accepting Exception and only accepting Warn-
ing when Debug is true. The second filter stops the exception
that would be thrown if the Warning message was sent while
Debug is false.

6.2.2 CF-Style Logger using the Bind API
Figures 16 and 17 show how the example program in Fig-

ure 15 might look if compiled from Composition Filters to
the Bind API. Please note that these figures only show the
most important portions of the program.

Examining Figure 16, lines 10-16 show the creation of each
filter and their respective filter events. Each filter event’s
condition gets a method generated (lines 19-20) and a del-
egate (lines 24-25). The module’s condition (Debug) is de-
fined on line 22. The base Filter class (which is abstract)
is defined on lines 44-64. It does not define the Accept or
Reject methods. The class makes use of the Bind API to
advise the execution of the Send method of each Message.
It will then try to accept or reject the message based on the

1 class Logger {
2 static void Main(string[] args) {
3 Log logger = new Log("console");

4 logger.Warning("Something may be wrong.");
5 logger.Exception("Something most definitely is wrong.");
6 } }

7 class Log {
8 private bool isDebug = false; private Filter disp, queue;

9 public Log(string path) {
10 // create the filters in reverse order
11 queue = new WaitDispatchFilter();
12 queue.AddFilterElem(new FilterElem(new Check(disp_Check_1),
13 "Log", new string[] {"Warning"}));

14 disp = new DispatchFilter(queue);
15 ...

16 disp.Enable(); // *first* filter gets a call to enable
17 }

18 // condition checks
19 private bool disp_Check_1() { return Debug(); }
20 private bool disp_Check_2() { return true; }

21 // conditions
22 public bool Debug() { return isDebug; }

23 // delegate declarations
24 private delegate void logDel1(string s);
25 private delegate void logDel2();

26 // body definitions
27 private void ExceptionBody(string s) { ... }
28 private void WarningBody(string s) { ... }
29 private void DebugOnBody() { ... }

30 // message invocations
31 public void Exception(string s) {
32 Message m = new Message("Log", "Exception",
33 new logDel1(ExceptionBody), new object[] {s});
34 m.Send();
35 }
36 public void Warning(string s) { ... }
37 public void DebugOn() { ... }
38 }

39 public class Message {
40 ...

41 public void Send() { }
42 public object Dispatch() { return body.DynamicInvoke(args); }
43 }

44 abstract public class Filter : IFilter {
45 ...

46 public void Enable() {
47 Dispatcher.Bind(Pointcut.Execution(
48 Pattern.MethodPattern(Pattern.Modifiers.Any, "Send")),
49 Delegate.JPDelegate(TrackMessage));
50 }

51 public void TrackMessage(IJoinpoint thisJP) {
52 Match((Message)thisJP.This);
53 }

54 public void Match(Message m) {
55 foreach (FilterElement element in filterElements)
56 if (element.condition() && m.Target.Equals(element.Target))
57 foreach (string s in element.Selections)
58 if (s.Equals(m.Selection)) {
59 Accept(m);
60 return;
61 }

62 Reject(m);
63 }
64 }

Figure 16: Logger using Bind API

10

1 public class DispatchFilter : Filter {
2 ...

3 public override void Accept(Message m) {
4 m.Dispatch();
5 }

6 public override void Reject(Message m) {
7 if (nextFilter == null) throw new FilterException(...);

8 nextFilter.Match(m);
9 }

10 }

Figure 17: The Dispatch Filter

filter elements it contains. If a message is dispatched, the
Dispatch method (line 42) is called which invokes the body
of the message. Note that the Send method does not actu-
ally do anything and is used for defining a join point for the
message.

Figure 17 shows how to implement the Dispatch filter.
The semantics of the filter state to dispatch a message if it
is accepted (line 4). If the message is rejected, pass it on
to the next filter (line 8). If there are no more filters then
throw an exception (line 7).

Support for the three target types (inner, internal object,
and external object) is available using the Bind API. Support
for the inner target was shown in the example. Support
for internal object and external object targets is straight-
forward using standard object oriented techniques such as
sub-classing and composition, respectively.

Although only some of the standard filter types (Dis-
patch, Error, Wait, and Meta) are currently supported, it
is straight-forward to add new filter types since the filters
define the semantics of accept and reject.

Superimposition is not directly supported at this time,
however this concept could be simulated in the future us-
ing the Bind API. The selectors could be simulated by the
addition of the skip construct defined by Endoh et al. [17]
The advice of the aspects would then create the appropriate
filters and fire the appropriate message. Only if the message
is dispatched would the advice call proceed.

6.3 Emulating Adaptive Programming
The adaptive programming (AP) model is an extension

to object-oriented model. The main idea behind the AP
model is to separate the program text and the class struc-
ture [43]. The adaptive program is a collection of propaga-
tion patterns, which encapsulates the behavior of a concern.
Each propagation pattern is composed of traversal strate-
gies and code wrappers. The former selects the objects that
will be affected by the concern according to their classes,
thus the AP model defines the join points as instance of the
class. The objects are selected by traversing the class graph,
which is a graph representing the relations (is-a, has-a re-
lationships) between the different classes of the system. As
for the latter (i.e. code wrappers), they associate actions to
the selected objects [42] (similar to advices in AspectJ).

6.3.1 An Example in Adaptive Programming
An example adaptive program is shown in Figure 18 [32].

This example is written in Java using the DJ library, a li-
brary in the Demeter project [39]. The purpose of the code
is to sum the values of all the Salary objects reachable by

1 class Company {

2 // class structure
3 static ClassGraph cg = new ClassGraph();
4 Double sumSalaries() {

5 // traversal strategy
6 String s = "from Company to Salary";
7 Visitor v = new Visitor() {

8 // adaptive visitor
9 private double sum;

10 public void start() { sum = 0.0 };
11 public void before(Salary host)
12 { sum += host.getValue(); }
13 public Object getReturnValue()
14 { return new Double(sum); }
15 };
16 return (Double) cg.traverse(this, s, v);
17 }
18 // ... rest of Company definition ...
19 }

Figure 18: sumSalaries Adaptive Method [32]

1 class AdaptiveSalarySum {
2 static Double sum;
3 static bool FromEncountered = false;
4 static AdaptiveSalarySum() {
5 Dispatcher.Bind(
6 new And(
7 new Pointcut.Execution(
8 new Pattern.MethodPattern(
9 Pattern.Modifiers.Public, "Traverse")),

10 new Pointcut.Args(
11 System.Type.GetType("Payroll.Company"))),
12 new Delegate.SimpleDelegate(AdaptiveSalarySum.from));

13 Dispatcher.Bind(
14 new And(
15 new Pointcut.Execution(
16 new Pattern.MethodPattern(
17 Pattern.Modifiers.Public, "Traverse")),
18 new Pointcut.Args(
19 System.Type.GetType("Payroll.Salary"))),
20 new Delegate.JPDelegate(AdaptiveSalarySum.to));
21 }
22 public static void from(){
23 FromEncountered = true;
24 sum = 0.0;
25 }
26 public static void to(IJoinpoint thisJP) {
27 if (FromEncountered){
28 Payroll.Salary sal = (Payroll.Salary)thisJP.Args[0];
29 sum += sal.getValue();
30 }
31 }
32 }

Figure 19: Emulating Adaptive Programming

11

1 aspect Tracing {
2 pointcut tracePointcut():
3 execution(* *.SayHello());
4 after(): tracePointcut() {
5 System.out.println("World");
6 }
7 }

Figure 20: Tracing Aspect in AspectJ

has-a relationships from a Company object. In the Demeter
project, a propagation pattern is called an adaptive method,
and the code wrapper is implemented using the Visitor pat-
tern, and thus called an adaptive visitor.

In this example, the ClassGraph constructor (line 3) con-
structs the class structure. The traversing of the class graph
(line 16) starts from this object, traverses the path from
Company to Salary and executes the applicable visitor meth-
ods along the way. The adaptive visitor (lines 7-15) initial-
izes the sum upon starting, adds the value to the sum when
reaching each Salary object, and returns the value upon fin-
ishing.

6.3.2 Emulating Adaptive Programming in Bind API
Figure 19 shows the emulation of the adaptive program-

ming example shown in Figure 18 using the Bind API.
Like the original example, the classgraph is created and
traversed. The first Bind instruction (lines 5-12) checks
whether the Traverse method is executed and that the first
parameter is of type Payroll.Company. If so, the delegate
method from (lines 22-25) is invoked. The latter sets the flag
FromEncountered to true, thus indicating the traversal was
started from the Company node in the class graph and ini-
tializes the sum. The second Bind instruction (lines 13-20)
checks whether the Traverse method is executed and that
the first parameter is of type Payroll.Salary. If so, the dele-
gate method to (lines 26-31) is called. This method retrieves
the first parameter of the join point (which is an instance of
the salary) and adds the value of it to the sum only when
FromEncountered is true, thus making sure that the class
graph is traversed starting from Company before reaching
the instance of Salary.

The experiment above showed that to a certain extent,
adaptive programming structures can be expressing using
the Bind API. There is still a need for building and travers-
ing class graphs, however, these functionalities can be pro-
vided as a re-usable component.

6.4 Emulating the AspectJ Model
AspectJ [23] is an aspect oriented extension to Java

[20]. It is a representative language in the broader class
of Pointcut-Advice-based AO languages [36]. Other lan-
guages in this class include AspectC++ [55], AspectR [10],
AspectWerkz [7], AspectS [22], Caesar [37], etc. Please note
that these languages use a region-in-time join point model
as opposed to a point-in-time model.

A simple aspect in AspectJ is shown in Figure 20. The
aspect uses the pointcut (lines 2-3) to select the execution
of any method named SayHello() during the execution of
the program. An advice (see lines 4-6) executes at all join
points selected by tracePointcut and writes the string World

on the screen.
In Nu, this programming style can be emulated as shown

1 class Tracing {
2 static IPointcut tracePointcut =
3 new Return(new MethodPattern(Any,"SayHello"))
4 static Tracing () {
5 aspectInstance = new Tracing();
6 Dispatcher.Bind(
7 tracePointcut,
8 new SimpleDelegate(aspectInstance.SayWorld));
9 }

10 public static Tracing aspectInstance;
11 ...
12 public void SayWorld() {
13 System.Console.WriteLine("World");
14 }
15 }

Figure 21: Emulating AspectJ-Style AOP

in Figure 21. In this figure, the aspect Tracing is modeled
as a class. This aspect is a singleton aspect. Under the
hood, the AspectJ compiler implements the singleton de-
sign pattern [19, pp. 127] and makes two methods hasAspect
and aspectOf available to programmers. Every advice exe-
cutes on the singleton instance, aspectInstance. We emu-
late the programming style using the Bind API. We pro-
vide a method SayWorld to write the string World on the
screen and a singleton instance aspectInstance on which this
method is called. The static constructor of the Tracing class
initializes this instance and calls the bind primitive to create
an association between all join points selected by the trace-
Pointcut and the delegate. For this emulation, the knowl-
edge of the singleton design pattern and the bind primitive
is enough. AspectJ’s language model is by far the most ex-
pressive model of aspect-oriented languages. Our current
implementation cannot emulate the entire language because
some constructs like cflow and within and join points like ex-
ception handler are not currently supported. Nevertheless,
the current experiments suggest that at least the core con-
structs, namely advice, pointcut, and aspect, in the AspectJ
language model can be emulated using the Bind API.

6.5 Summary of Results
In this section, we showed how different language models

can be emulated using the Bind API. A part of the AspectJ
model was emulated using the Singleton design pattern [19,
pp. 127]. The adaptive programming was emulated using
the propagation pattern [33]. A subset of the features of the
composition filters model and the HyperJ model were also
emulated similarly.

Some emulation examples were not so straightforward.
In particular, emulating the composition filter and adap-
tive programming models required developing code for class-
graphs and filters. However, most of the code we developed is
reusable. For example, the code to construct the classgraph
is generic and can be used to write other programs in the
adaptive programming style using the Bind API. Similarly,
the abstract class Filter, Message, etc is also reusable. In
future, we will provide libraries to emulate these prevalent
programming models using Bind.

The key property of this result is that emulating one pro-
gramming model and utilizing design structures that comes
with it does not restrict the designer from using another
programming model. For example, using adaptive program-
ming to separate the salary summation concern doesn’t rule
out the possibility of using perhaps AspectJ-style design

12

structures for method execution tracing, or HyperJ style
composition for composing Employee’s functionality with a
Person’s functionality to construct a more humane payroll
system that accounts for gender based necessities while com-
puting the net salary. Due to pragmatic reasons such as
commitment to a set of compatible tool support, such de-
sign structures have been difficult to realize so far [59].

With new possibilities come new problems. Being able to
reason about a system that uses two or more AOP models
at once is possibly more complicated then just the sum of
the efforts required to reason about them individually. The
integration between the language models also need to be
accounted for. Fortunately, research results have started
to emerge to address these issues. For example, recently
Kojarski and Lorenz [27] proposed a semantic framework to
compose multiple domain-specific AO extensions together.
To a certain extent, their results apply to our programming
model as well.

7. DISCUSSION
It is perhaps very common in aspect-oriented program-

ming research literature to provide language extensions to
support new properties of aspect-like constructs e.g. in-
stantiation, instance-level advising, runtime advising, etc.
For example, Rajan and Sullivan [50] provided modifiers
instance-level to model instance-level weaving, later Saku-
rai et al. provided similar extensions using target pointcuts
[54], AspectJ [23] has added numerous extensions such as
perthis, pertarget, etc, to model similar properties. Extend-
ing the language every time to provide new constructs to
model these properties works, however, it increases the con-
ceptual burden on the programmer. In this work, we viewed
these properties as patterns that provide effective represen-
tation of certain design structures in terms of a more funda-
mental primitive. This view decreased the conceptual bur-
den, requiring programmers to learn only one new primitive
well at first and learning other available patterns on a need
basis.

The notion of conceptual integrity in design provides a
basis for these observations. Brooks wrote:

...that conceptual integrity is the most impor-
tant consideration in system design. It is better
to have a system omit certain anomalous features
and improvements, but to reflect one set of de-
sign ideas, then to have one that contains many
good but independent and uncoordinated ideas.
... Simplicity and straightforwardness proceed
from conceptual integrity. Every part must re-
flect the same philosophies and the same balanc-
ing of desiderata. Every part must even use the
same techniques in syntax and analogous notions
in semantics. Ease of use, then, dictates unity of
design, conceptual integrity.” [9, pp. 42-44].

By providing a simple set of primitives, and allowing other
higher-level constructs to be derived from it using similar
techniques, our programming model improves the concep-
tual unity of aspect-oriented programming models.

We finish this section by addressing the rationale to main-
tain compliance with existing virtual machines. The goal
was adoptability. Allowing users to be able to use aspect-
oriented techniques and not having to throw away their vir-
tual machine implementations was a valid reason for early

adopters. Aspect-oriented techniques have gained signifi-
cant visibility since then, and shown potential [53]. Small
to medium scale software systems are built using these tech-
niques. The cost of not preserving design modularity in ob-
ject code is not yet a commonly visible impediment because
the scale is small, however, traces are becoming evident [30].

The benefits of aspect-oriented modularity are attractive
at a large scale; in fact, the majority of the benefits only
become apparent during a large-scale use such as IBM Web-
Sphere [13]. However, large-scale usage does come with
unique performance requirements such as design-build-test
cycle time, full build time, etc. The best AO compilers avail-
able today have pushed the performance limits and delivered
significant improvements compared to early versions, how-
ever, there is only so far they can go without addressing the
underlying fundamental problem. Once these issues become
apparent to the large-scale adopters, tough decisions on the
tradeoff of separation of concern vs. performance will have
to be made. It is too risky to leave such decisions in possibly
incapable hands. Perhaps this may be why Dave Thomas
wrote: J2EE desperately needs an industry standard Aspect
Library to provide a simpler programming model [59, slide
13].

8. RELATED WORK
Three closely related and complimentary research ideas

are run-time weaving, load-time weaving and virtual ma-
chine support for aspect-oriented programming. We will
discuss these ideas in detail below.

8.1 Run-time and Load-Time Weaving Ap-
proaches

There are several approaches for run-time weaving such
as PROSE [47], Handi-Wrap [5], Eos [50], etc. A typical
approach to runtime weaving is to attach hooks at all join
points in the program at compile-time. The aspects can
then use these hooks to attach and detach at run-time. An
alternative approach is to attach hooks only at potentially
interesting join points. In the former case, aspects can use
all possible join points, excluding those that are created dy-
namically so the system will be more flexible. The disad-
vantage is the high overhead of unnecessary hooks. In the
latter case, only those aspects that utilize existing hooks can
be deployed at run-time, but the overhead will be minimal
for a runtime approach.

Eos uses the second model, i.e. only instrument the join
points that may potentially be needed. Handi-Wrap uses the
first model, making all join points available through wrap-
pers. PROSE indirectly uses the first model, exposing all
join points through the debugger interface. PROSE allows
aspects to be loaded dynamically without restarting the sys-
tem. An additional advantage of indirectly exposing join
points through debugger interface is that new join points
(created by reflection) are registered automatically.As ob-
served by Popovici et al. [47] and Ortin et al. [40], however,
performance in both cases is a problem.

A load-time weaving approach delays weaving of crosscut-
ting concerns until the class loader loads the class file and
defines it to the virtual machine [31]. Load-time weaving ap-
proaches typically provide weaving information in the form
of XML directives or annotations. The aspect weaver then
revises the assemblies or classes according to weaving direc-
tives at load-time. Often a custom class loader is needed.

13

There are load-time weaving approaches for both Java and
the .NET framework. For example, AspectJ [23] recently
added load-time weaving support. Weave.NET [28] uses a
similar approach for the .NET framework. The JMangler
framework can also be used for load-time weaving [26]. It
provides mechanisms to plug-in class-loaders into the JVM.

A benefit of the load- and run-time weaving approaches is
that they delay weaving of aspect-oriented programs. It may
be possible to improve incremental compilation using these
approaches, although we do not currently have any evidence
to confirm or to deny. A contribution of our approach might
also be perceived as delaying weaving, however, we view the
interface and corresponding contracts between the language
designs and execution model designs as the main contribu-
tion of our work. The load-time weaving approaches do not
provide these benefits.

8.2 Aspect Support in Virtual Machine
Steamloom [6] and PROSE2 [46] both aim to achieve an

aspect-aware Java Virtual Machine, to enhance the runtime
performance of AOP. Steamloom extends the Jikes Research
Virtual Machine (RVM), an open source Java virtual ma-
chine [1]. Traditional approaches for supporting dynamic
crosscutting involve weaving aspects into the program at
compilation. Steamloom moves weaving into the Virtual
Machine (VM), which allows preserving the original struc-
ture of the code after compilation and shows performance
improvements of 2.4 to 4 times when compared to AspectJ.
It accomplishes this by modifying the Type Information
Block to point methods to a stub that modifies the exist-
ing bytecode to weave in the advice. On the other hand,
PROSE2 proposes an enhanced implementation for the orig-
inal PROSE approach, by incorporating an execution moni-
tor for joint points into the virtual machine. This execution
monitor is then responsible for notifying the AOP engine
which in turn executes the corresponding advices

Our approach and Steamloom are in some sense com-
plimentary. Similar to Steamloom, our approach also ad-
vocates support for crosscutting in the execution models.
Steamloom investigates techniques to improve the perfor-
mance of these crosscutting mechanisms provided by the
execution model, whereas, our approach focuses on sepa-
rating the compiler implementations and execution model
implementations by defining an interface between the two.
Our focus is on providing the basic mechanisms at the in-
terface that can be used as primitives by compiler imple-
mentations. Our approach thus potentially allows multiple
language models to use the same VM and/or multiple VMs.
Each of these VMs may have their own method of weaving.
With respect to PROSE2, our approach does not require an
extension to the virtual machine.

Steamloom and PROSE2, however, restrict the type hi-
erarchy of aspects. An aspect must inherit from a special
class. In languages like Java, this restriction burns the only
available inheritance link. Our approach does not impose
any restrictions on programming language constructs, leav-
ing those design decisions to programming language design-
ers and compiler implementers.

8.3 Other Related Work
Masuhara and Kiczales’s work on modeling four aspect-

oriented programming mechanism is related to the results
that we demonstrated in Section 6. They model AspectJ,

Adaptive Programming, HyperJ, and Open Classes. The
main idea is to provide a semantics for these mechanisms
by modeling the weaving process. Our work does not claim
to provide any formal semantics for these aspect-oriented
mechanisms; rather we show that a simple primitive can
model these techniques. Our work can be a basis of devel-
oping a formal semantics for aspect-oriented languages. One
could start by developing the precise semantics of the Bind
invocation mechanism. The semantics of the Bind and the
model of these aspect-oriented techniques in terms of bind
can then be used to develop an operational semantics [45]
for these mechanisms.

9. CONCLUSION
In this paper, we presented the design, implementation

and evaluation of an aspect-oriented programming model
that we call Nu. Nu provides Bind as an invocation mech-
anism for preserving design modularity in object code.
The new invocation mechanism improves the conceptual in-
tegrity of the aspect-oriented programming models. Vari-
ous advising and runtime properties of aspect-like constructs
such as static, runtime, and instance-level advising can be
implemented using Bind and simple patterns. We further
showed that common advising structures in the HyperJ,
Adaptive Programming, Composition Filters, AspectJ and
Eos models can also be implemented in terms of this new in-
vocation mechanism. This advance expands the useful pro-
gram design space to include important styles: in particular,
one involving the use of more then one language model to
separate crosscutting concerns in a system.

We hypothesize, but haven’t systematically investigated,
that our approach promises to solve many other problems
in AO approaches today such as compatibility with the ex-
isting tool chain, better run-time performance, cross AO-
language compatibility, improved pointcut expressivity, ef-
ficient run-time weaving support, etc. The decoupling be-
tween language compilers and the virtual machine achieved
by the interface provided by our invocation mechanism also
has the potential to enable independent research in these
areas. Simpler aspect language designs and compiler imple-
mentations might be realized without spending significant
time on the optimization of the underlying AO execution
models. Novel optimization mechanisms for the underlying
execution models can be developed independent of the lan-
guage design as long as it conforms to the interface.

[Notes to reviewers: The current version of
Nu and the complete code for the examples pre-
sented in this paper are freely available from
http://www.cs.iastate.edu/∼nu/]

10. ACKNOWLEDGEMENTS
We thank the anonymous reviewers of the SPLAT 2006

workshop for their helpful comments. The author Hridesh
Rajan would like to thank Gary T. Leavens, John Lefor and
Eric Van Wyk for helpful discussions, Kevin J. Sullivan for
comments on the early draft of the workshop version of this
paper, and Gregor Kiczales for raising the virtual machine
adoption issue.

11. REFERENCES

14

[1] The Jikes research virtual machine (RVM).
http://jikesrvm.sourceforge.net/.

[2] The shared source common language infrastructure
(SSCLI). http://research.microsoft.com/sscli/.

[3] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting Object Interactions Using
Composition Filters. In R. Guerraoui, O. Nierstrasz,
and M. Riveill, editors, Proceedings of the ECOOP’93
Workshop on Object-Based Distributed Programming,
volume 791, pages 152–184. Springer-Verlag, 1994.

[4] R. Altman, A. Cyment, and N. Kicillof. On the need
for setpoints. In EIWAS 2005: European Interactive
Workshop on Aspects in Software,
http://prog.vub.ac.be/events/eiwas2005/, 2005.

[5] J. Baker and W. Hsieh. Runtime aspect weaving
through metaprogramming. In AOSD ’02: Proceedings
of the 1st international conference on Aspect-oriented
software development, pages 86–95, New York, NY,
USA, 2002. ACM Press.

[6] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann.
Virtual machine support for dynamic join points. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 83–92, New York, NY, USA, 2004. ACM Press.

[7] J. Bonér. What are the key issues for commercial
AOP use: how does AspectWerkz address them? In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 5–6, New York, NY, USA, 2004. ACM Press.

[8] G. Bracha and W. Cook. Mixin-based inheritance. In
OOPSLA/ECOOP ’90: Proceedings of the European
conference on object-oriented programming on
Object-oriented programming systems, languages, and
applications, pages 303–311, New York, NY, USA,
1990. ACM Press.

[9] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering, 20th Anniversary Edition.
Addison Wesley, Reading, Mass., second edition, 1995.

[10] A. Bryant and R. Feldt. AspectR - simple
aspect-oriented programming in Ruby, Jan 2002.

[11] B. Burke. Aspect-oriented annotations.
http://onjava.com article dated Aug 25, 2004.

[12] A. Campailla, S. Chaki, E. Clarke, S. Jha, and
H. Veith. Efficient filtering in publish-subscribe
systems using binary decision diagrams. In ICSE ’01:
Proceedings of the 23rd International Conference on
Software Engineering, pages 443–452, Washington,
DC, USA, 2001. IEEE Computer Society.

[13] A. Colyer and A. Clement. Large-scale aosd for
middleware. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software
development, pages 56–65, New York, NY, USA, 2004.
ACM Press.

[14] J. Dingel, D. Garlan, S. Jha, and D. Notkin.
Reasoning about implicit invocation. SIGSOFT
Software Engineering Notes, 23(6):209–21, Nov. 1998.

[15] ECMA. Standard-334: C# Language Specification,
2002.

[16] T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming: Introduction.

Commun. ACM, 44(10):29–32, 2001.

[17] Y. Endoh, H. Masuhara, and A. Yonezawa.
Continuation join point. In C. Clifton, R. Lammel,
and G. Leavens, editors, In Foundations of
Aspect-Oriented Languages workshop (FOAL 06), A
workshop affiliated with AOSD 2006, mar 2006.

[18] Eos web site.
http://www.cs.iastate.edu/∼eos.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[20] J. Gosling, B. Joy, and G. L. Steele. The Java
Language Specification. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[21] J. Gough and D. Corney. Reading and writing PE-files
with PERWAPI. Technical report, Queensland
University of Technology, Brisbane, Australia, Sep
2005.

[22] R. Hirschfeld. Aspects - aspect-oriented programming
with squeak. In NODe ’02: Revised Papers from the
International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications
for a Networked World, pages 216–232, London, UK,
2003. Springer-Verlag.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, ECOOP 2001 —
Object-Oriented Programming 15th European
Conference, volume 2072 of Lecture Notes in
Computer Science, pages 327–353. Springer-Verlag,
Budapest, Hungary, June 2001.

[24] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda,
A. Mendhekar, and G. Murphy. Open implementation
design guidelines. In Proceedings of the 19th
International Conference on Software Engineering,
pages 481–90, Boston, Massachusetts, 17–23 May
1997. IEEE.

[25] G. Kiczales and M. Mezini. Separation of concerns
with procedures, annotations, advice and pointcuts. In
ECOOP 2005 - Object-Oriented Programming, 19th
European Conference, Glasgow, UK, July 25-29, 2005,
Proceedings, volume 3586 of Lecture Notes in
Computer Science, pages 195–213. Springer, 2005.

[26] G. Kniesel, P. Costanza, and M. Austermann.
Jmangler-a framework for load-time transformation of
java class files. In 1st IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM
2001), 10 November 2001, Florence, Italy, pages
100–110. IEEE Computer Society, 2001.

[27] S. Kojarski and D. H. Lorenz. Pluggable aop:
designing aspect mechanisms for third-party
composition. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 247–263, New York, NY, USA, 2005. ACM
Press.

[28] D. Lafferty and V. Cahill. Language-independent
aspect-oriented programming. In OOPSLA ’03:
Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems,
languages, and applications, pages 1–12, New York,

15

NY, USA, 2003. ACM Press.

[29] J. Lamping. The role of base in aspect-oriented
programming. In C. V. Lopes, A. Black, L. Kendall,
and L. Bergmans, editors, Int’l Workshop on
Aspect-Oriented Programming (ECOOP 1999), June
1999.

[30] N. Lesiecki. Applying AspectJ to J2EE application
development. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, New York, NY, USA, 2005. ACM Press.

[31] S. Liang and G. Bracha. Dynamic class loading in the
java virtual machine. In OOPSLA ’98: Proceedings of
the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 36–44, New York, NY, USA, 1998.
ACM Press.

[32] K. Lieberherr, D. Orleans, and J. Ovlinger.
Aspect-Oriented Programming with Adaptive
Methods. Commun. ACM, 44(10):39–41, 2001.

[33] K. Lieberherr, C. Xiao, and I. Silva-Lepe. Propagation
patterns: Graph-based specifications of cooperative
behavior. Technical Report NU-CCS-91-14,
Northeastern University, September 1991.

[34] K. J. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns. PWS
Publishing Co., Boston, MA, USA, 1995.

[35] T. Lindholm and F. Yellin. Addison-Wesley, Reading,
MA, USA, 1997.

[36] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In L. Cardelli, editor,
ECOOP 2003—Object-Oriented Programming, 17th
European Conference, volume 2743, pages 2–28,
Berlin, July 2003.

[37] M. Mezini and K. Ostermann. Conquering aspects
with caesar. In AOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 90–99, New York, NY, USA, 2003.
ACM Press.

[38] Microsoft Corporation. Microsoft .NET, 2001. URL:
http://www.microsoft.com/net.

[39] D. Orleans and K. Lieberherr. Dj: Dynamic adaptive
programming in java. In Reflection 2001: Meta-level
Architectures and Separation of Crosscutting Concerns
, Kyoto, Japan, September 2001. Springer Verlag.

[40] F. Ortin and J. M. Cueva. Dynamic adaptation of
application aspects. Journal of Systems and Software,
71(3):229–243, 2004.

[41] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns using hyperspaces. IBM Research Report
21452, IBM, Apr. 1999.

[42] J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A
new approach to compiling adaptive programs. In
H. R. Nielson, editor, European Symposium on
Programming, pages 280–295, Linkoping, Sweden,
1996. Springer Verlag.

[43] J. Palsberg, C. Xiao, and K. Lieberherr. Efficient
implementation of adaptive software. ACM
Transactions on Programming Languages and
Systems, 17(2):264–292, March 1995.

[44] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha.
Efficient matching for web-based publish/subscribe

systems. In CooplS ’02: Proceedings of the 7th
International Conference on Cooperative Information
Systems, pages 162–173, London, UK, 2000.
Springer-Verlag.

[45] G. D. Plotkin. A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19,
University of Aarhus, 1981.

[46] A. Popovici, G. Alonso, and T. Gross. Just-in-time
aspects: efficient dynamic weaving for java, 2003.

[47] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In AOSD
’02: Proceedings of the 1st international conference on
Aspect-oriented software development, pages 141–147,
New York, NY, USA, 2002. ACM Press.

[48] H. Rajan. Unifying Aspect- and Object-Oriented
Program Design. PhD thesis, The University of
Virginia, Charlottesville, Virginia, Aug. 2005.

[49] H. Rajan, R. Dyer, Y. Hanna, and H. Narayanappa.
Preserving separation of concerns through
compilation. In L. Bergmans, J. Brichau, and
E. Ernst, editors, In Software Engineering Properties
of Languages and Aspect Technologies (SPLAT 06), A
workshop affiliated with AOSD 2006, mar 2006.

[50] H. Rajan and K. J. Sullivan. Eos: instance-level
aspects for integrated system design. In
ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on
Foundations of software engineering, pages 297–306,
New York, NY, USA, 2003. ACM Press.

[51] H. Rajan and K. J. Sullivan. Need for instance level
aspect language with rich pointcut language. In
L. Bergmans, J. Brichau, P. Tarr, and E. Ernst,
editors, SPLAT: Software engineering Properties of
Languages for Aspect Technologies, mar 2003.

[52] H. Rajan and K. J. Sullivan. Classpects: unifying
aspect- and object-oriented language design. In ICSE
’05: Proceedings of the 27th international conference
on Software engineering, pages 59–68, New York, NY,
USA, 2005. ACM Press.

[53] D. Sabbah. Aspects: from promise to reality. In AOSD
’04: Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 1–2, New
York, NY, USA, 2004. ACM Press.

[54] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura,
and S. Komiya. Association aspects. In AOSD ’04:
Proceedings of the 3rd international conference on
Aspect-oriented software development, pages 16–25,
New York, NY, USA, 2004. ACM Press.

[55] O. Spinczyk, A. Gal, and W. Schroeder-Preikschat.
AspectC++: an aspect-oriented extension to the c++
programming language. In CRPITS ’02: Proceedings
of the Fortieth International Confernece on Tools
Pacific, pages 53–60, Darlinghurst, Australia,
Australia, 2002. Australian Computer Society, Inc.

[56] K. J. Sullivan and D. Notkin. Reconciling environment
integration and software evolution. ACM Transactions
on Software Engineering and Methodology,
1(3):229–68, July 1992.

[57] P. Tarr and H. Ossher. Hyper/J user and installation
manual. Technical report, IBM T. J. Watson Research
Center, 2000.

16

[58] P. Tarr, H. L. Ossher, W. H. Harrison, and S. M.
Sutton, Jr. N degrees of separation: Multi-dimensional
separation of concerns. In Proceedings of the
21st International Conference on Software
Engineering, May 1999.

[59] D. Thomas. Transitioning aosd from research park to
main street, 2005. General Chair-Mira Mezini and
Program Chair-Peri Tarr.

17

