
Open Effects: Programmer-guided Effects for Open World
Concurrent Programs

Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan
TR #13-04

Initial Submission: October 15, 2013

Keywords: type-and-effect, open effects, optimistic concurrency

CR Categories:
D.1.3 [Concurrent Programming] Parallel programming
D.1.5 [Programming Techniques] Object-Oriented Programming
D.2.2 [Design Tools and Techniques] Modules and interfaces,Object-oriented design
methods
D.2.3 [Coding Tools and Techniques] Object-Oriented Programming
D.2.4 [Software/Program Verification] Validation
D.2.10 [Software Engineering] Design
D.3.1 [Formal Definitions and Theory] Semantics,Syntax
D.3.1 [Language Classifications] Concurrent, distributed, and parallel languages,Object-
oriented languages
D.3.3 [Programming Languages] Concurrent programming structures, Language Con-
structs and Features - Control structures
D.3.4 [Processors] Compilers

Copyright (c) 2013, Yuheng Long, and Mehdi Bagherzadeh and Hridesh Rajan.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Open Effects: Programmer-guided Effects for Open
World Concurrent Programs∗

Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

Iowa State University, Ames, Iowa, USA
{csgzlong,mbagherz,hridesh}@iastate.edu

Abstract. The open world assumption makes the design of a type-and-effect sys-
tem challenging, especially in concurrent object-oriented languages. The main
problem is in the computation of the effects of a dynamically dispatched method
invocation, because all possible dynamic types of its receiver are not known stati-
cally. Previous work proposes effect annotations that provide a static upper bound
on the effects of a dynamically dispatched method, conservative enough to cover
the effects of all methods which could possibly be executed upon its invocation.
For two dynamically dispatched methods, a typical type-and-effect system may
disallow concurrent execution of their invocations because their conservatively
specified static effects conflict. However, such a conflict may not actually hap-
pen at runtime, depending on the dynamic types of their receivers. This work
proposes open effects, a sound trust-but-verify type-and-effect system, to better
enable concurrent execution of dynamically dispatched method invocations. If a
programmer annotates the receiver of a certain method invocation as open, then
the type system trusts the programmer and assigns an open effect to the method.
The open effect is supposed, optimistically, not to conflict with other effects. Such
optimistic assumptions are verified statically, if possible, or at runtime otherwise.
Open effects is complementary to previously proposed static and dynamic effect
analyses and combines them such that the accuracy of static analysis could help
decrease the overhead of the dynamic analysis. Performance evaluations of an
implementation of open effects, on various benchmarks, show that: open effects
incurs negligible annotation and runtime overheads such that code with open ef-
fects does almost as well as its manually tuned concurrent version.

1 Introduction

A type-and-effect system [22, 33] helps programmers in analyzing locking disciplines
[4], checked exceptions [6,30], detecting race conditions [12], etc, by adding an encod-
ing of computational effects into semantic objects of a language and a discipline for
controlling these effects into its type system [45]. These effects describe how the state
of a program will be modified by expressions in the language, e.g. a field expression
may have a read or write effect to represent reading from or writing into memory [45].

The open world assumption [36], which says class hierarchies are extensible, makes
the design of a type-and-effect system challenging, especially in concurrent object-
oriented languages that support dynamic dispatch. The main problem is in the compu-
tation of the effects of a dynamically dispatched method invocation, because all possible
∗ This work was supported in part by the NSF under grants CCF-08-46059, and CCF-11-17937.

2 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

Library
1 class Pair {
2 int fst, snd;
3 @open Op f;
4 Pair init() { fst = 1; snd = 2; this }
5 Op setOp(Op f) { this.f = f }
6 int apply() {
7 fork{
8 fst = f.op(fst),
9 snd = f.op(snd)

10 }
11 }
12 }

14 class Op {
15 int res;
16 Op init() { res = 0; this }
17 int op(int o) {
18 0
19 }
20 }

Prog1
21 class Prefix extends Op {
22 int op(int o) {// Effects: writes res
23 res += o
24 }
25 }
26 Pair pr = new Pair().init();
27 Op pf = new Prefix().init();
28 pr.setOp(pf);
29 pr.apply()

Prog2
31 class Hash extends Op {
32 int op(int o) {// Effects: None
33 int key = o;
34 // Hash computation
35 key = ..
36 }
37 }
38 Pair pr = new Pair().init();
39 Op ha = new Hash().init();
40 pr.setOp(ha);
41 pr.apply()

Fig. 1. Library class Pair with open field f and clients Prog1 and Prog2 extending Op.

dynamic types of its receiver may not be known statically. To address this problem, pre-
vious work [10, 24] proposes static effect annotations that provide an upper bound on
the effects of a dynamically dispatched method. This upper bound should be conserva-
tive enough to cover the effect of all methods which could be possibly executed as the
result of invocation of the dynamically dispatched method.

To illustrate, consider computation of the effects of the dynamically dispatched
method op in Figure 1. The code contains the library classes Pair and Op which repre-
sent a pair of integers and operations carried out on pair elements, respectively. It also
contains client programs Prog1 and Prog2 that extend the library class Op and override
its method op, in the Prefix and Hash classes. Prefix computes a prefix sum in its
effectful overriding of op with the effect of writing into the field res, shown as wr(res),
whereas Hash computes a hash in its pure method op with no memory effects, i.e. /0.
To specify the effects of the method op, in a typical type-and-effect system, its effects
should be broad enough to conservatively cover the effects of its overriding methods
in all of its subtypes, i.e. Prefix and Hash. This results in the effect wr(res) for the
dynamically dispatched method op which is the union of the effects of its overriding
methods, i.e. union of wr(res) and /0, in all of its subtypes.

For two dynamically dispatched methods, a typical type-and-effect system may dis-
allow the concurrent execution of their invocations, because their broadly specified
static effects may conflict. However, such a conflict may not actually happen at run-
time, depending on the dynamic types of their receivers. To illustrate, consider the two
invocations of the method op, on lines 7–10 of Figure 1, in the fork expression of the
apply method. This, somewhat nontraditional, fork expression fork{e1,e2} [9] exe-

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 3

cutes the expressions e1 and e2 concurrently if their effects do not conflict, and sequen-
tially otherwise. For a memory location, writing into the location conflicts with other
reads and writes of the same location. A typical type-and-effect system would serialize
the execution of these invocations of the method op, because their static effects wr(res)
conflict with each other. Such serialization of these method invocations makes sense
when their receiver f is of dynamic type Prefix, however, these invocations could run
concurrently, for example when they have empty effects at runtime when their receiver
f has the dynamic type of Hash. A typical type-and-effect system fails to expose such
safe concurrency opportunities.

This work, in the spirit of hybrid type checking [27], proposes open effects, a sound
trust-but-verify type-and-effect system, which uses programmer’s knowledge to better
expose and enable safe concurrent execution in the presence of dynamically dispatched
method invocations. If a programmer annotates the receiver of certain method invoca-
tions as @open, the type system trusts the programmer and assigns an open effect to
the method invocation, which supposedly does not conflict with other effects. Such opti-
mistic assumptions are verified statically, if enough static information is available, or at
runtime otherwise. Our effect system has two kinds of effects: open and concrete effects.
An open effect represents the effects of a dynamically dispatched method invocation
where the dynamic type of its receiver is not known statically, but the receiver is qual-
ified with an open annotation @open, i.e. the receiver is an open reference. A concrete
effect represents standard memory effects, which are reads and writes of memory [45].
An open effect is concretized at runtime when the dynamic type of its receiver is known.
Open effects’s type-and-effect system is complementary to previously proposed static
and dynamic effect analyses [18, 37, 38], and combines them in such a way that the ac-
curacy of the static analysis could decrease the overhead of the dynamic analysis. That
is, in open effects, similar to typical type-and-effect systems, we statically compute the
effects of each expression, however, unlike these systems which use conservative effect
specifications for a dynamically dispatched method with the unknown dynamic type of
its receiver, we use placeholder open effects to produce effect equations with unknown
terms.

Our type-and-effect system has two parts:

– Static part, that (i) computes the effects of the methods, one method at a time
and independent of the dynamic types of the receivers of dynamically dispatched
method invocations; and (ii) possibly verifies the optimistic assumption that open
effects do not conflict with other effects, i.e. disjointness assumption.

– Dynamic part, that (iii) concretizes the statically computed open effects and up-
dates them by tracking open references and their values, and (iv) verifies, using
runtime checks, the disjointness assumptions that could not be verified statically.

Basically, in open effects the responsibility of deciding the disjointness of effects is
divided between the static and dynamic parts.

To illustrate, imagine that a programmer marked the field f of class Pair as open
using @open annotation, on line 3 of Figure 1. Doing so, the programmer is hinting
the type-and-effect system that there may be parallelism opportunities when invoking
dynamically dispatched methods on the receiver f. The static part of our system trusts
the programmer and assigns the open effects open(f op γ1) and open(f op γ2) to the

4 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

method invocations f.op(fst), on line 8, and f.op(snd), on line 9, respectively. The
open effect open(f op γ1) is the effect of the invocation of the dynamically dispatched
method op on the open receiver f with the statically unknown effect of γ1. The open
effect open(f op γ2) is similar. These open effects are assumed to not conflict with each
other and other effects.

The static part continues by computing the effect of the expression fst = f.op(fst)

to be writing and reading fields fst and f plus the effect of the invocation of the method
op on the open receiver f, i.e. σ1 = {wr(fst),rd(f), open(f op γ1)}1. Similarly, the ef-
fects of snd = f.op(snd) is σ2 = {wr(snd),rd(f), open(f op γ2)}. These two expres-
sions, of the fork expression on lines 7–10 could be executed concurrently if their effects
σ1 and σ2 do not conflict, which in turn boils down to the verification of their open ef-
fects not conflicting, since wr(fst) and wr(snd) do not conflict. This could be verified
statically if there is enough static information about the unknown effects of the method
op or otherwise dynamically. Different modular static analyses could be integrated into
the open effects’ type-and-effect system to boost its static analysis. In this work, we il-
lustrate the integration of a modular alias analysis [18]. Our implementation integrates
other static analyses such as purity analysis [37] and array effect analysis [38].

Open effects better enables exposure of safe concurrency opportunities, in the pres-
ence of dynamically dispatched method calls, as follows: for two subexpressions of a
fork expression with their statically computed effects, which may contain open effects,
there are three answers for the question of do their effects conflict statically?: yes (con-
flict), no (disjoint), and unknown (may or may not conflict). Using open effects and
depending on the disjointness of the effects of its subexpressions, a fork expression is
soundly and statically translated to:

(1) Yes (conflict): an unconditional sequential execution of its subexpressions.
(2) No (disjoint): an unconditional parallel execution of its subexpressions.
(3) Unknown (may or may not conflict): a conditional in which the unknown open

effects of subexpressions are concretized and tested for conflicts. If the concretized
effects conflict then run sequentially, i.e. (1), else in parallel, i.e. (2).

In Figure 1, there is not enough static information to decide if σ1 and σ2, especially
their open effects, conflict and thus the case (3) above applies and the fork expression,
lines 7–10, translates to a conditional. This brings into the picture the dynamic part
of our type-and-effect system that decides the disjointness of effects that could not be
decided statically.

The dynamic part concretizes, or fills in, the unknown effects of open effects when
the open references are known at runtime. For example, upon the execution of the ex-
pression pr.setOp(pf), on line 28 of Prog1, the open reference f, of static type Op, in
the open effects of open(f op γ1) and open(f op γ2) is set to object pf, of the dynamic
type of Prefix. This causes these two open effects to be concretized to wr(res), be-
cause the method op of type Prefix has the effect of wr(res). With such concretization,
the effects σ1 and σ2 conflict at runtime and thus the fork expression, and the invoca-
tions of the dynamically dispatched method op, lines 7–10, is sequentialized. Unlike
Prog1, in Prog2, assigning the object ha of dynamic type Hash to the open reference f,

1 Write effect of a field, e.g. wr(fst) covers its read effect, e.g. rd(fst).

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 5

via pr.setOp(ha) on line 40, causes the open effects open(f op γ1) and open(f op γ2)
to be concretized to empty set /0, because the method op of type Hash is pure. This in
turn allows the fork expression to be translated to concurrent execution of the invoca-
tions of method op, as their effects σ1 and σ2 do not conflict. Depending on the dynamic
type of the open field f, the fork expression could run sequentially or in parallel.

1.1 Contributions

In summary, the main contributions of this work are the following:

– Open effects: a trust-but-verify hybrid type-and-effect system to expose safe con-
currency in open world concurrent programs with dynamic dispatch;

– Static semantics of open effects, in §2, and its dynamic semantics, in §3;
– Proof of soundness for open effects, in §3;
– OpenEffectJ , an OpenJDK prototype implementation of open effects; and
– Speedup and overhead evaluations of OpenEffectJ , in §4.

Finally, §5 compares open effects with other previous work on reasoning about
effects of programs in three categories of static, dynamic and hybrid techniques; and §6
concludes the paper after discussing some avenues for future work.

2 Open Effects: A Hybrid Type-and-Effect System

prog ::= decl e
decl ::= class c extends d { field meth }
field ::= [@open] t f;
meth ::= t m (arg){ e }
t ::= c | int | bool
arg ::= t var, where var 6= this
e ::= x | null | arg = e;e “Var, Null, Definition”
| x.m(x) | new c() “Call, New”
| x ◦ x | n | loc “Binary, Number, Location”
| if x then e else e “Conditional”
| this.f | this.f = x “Get, Set Field”
| e # e “Disjointness Check”

c ∈ C , set of class names
d ∈ C ∪{Object}
f ∈ F , set of field names

where m ∈ M , set of method names
n ∈ N , set of natural numbers

x,var ∈ V ∪{this}, set of variable names
◦ ∈ {+,−,∗,/}, set of binary operations

loc ∈ L , set of locations

Fig. 2. Syntax for OpenEffectJ .

To encode open effects as a type-and-effect system, we use OpenEffectJ , a core
expression language, shown in Figure 2, which is based on Classic Java [21]. The A-
normal form syntax of OpenEffectJ is standard except for open annotations @open and
the disjoint check expression e1#e2

2. This expression checks if the effects of the ex-
pressions e1 and e2 are disjoint and evaluates to true if they are, and false otherwise3.

2 Expression e1#e2 decides the disjointness of effects of e1 and e2 without evaluating them.
3 False is sugar for 0 and true is any non-zero integer.

6 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

Figure 2 only shows fields annotated with @open, i.e. open fields, however, we also
support open local variables and open parameters [32]. Using the programmer’s knowl-
edge in annotating only certain receiver fields as open is to have as less overhead as
possible compared to other alternatives. One alternative is to annotate types as open,
however, it causes every reference of that type and its subtypes to be treated as open
references which in turn could cause considerable concretization and verification over-
head, especially when all references of a type have to pay the price for one reference
being open. The same applies to another alternative in which every field of every object
is considered open. For simplicity, we assume unique field names, up to alpha renam-
ing, and no method overloading. In Figure 2 the notations term and [term] denote a
finite possibly empty sequence and an optional term, respectively.

2.1 Static Semantics

Our type-and-effect system has static and dynamic parts. The static part encoded in
the typing rules, (i) computes the effects of the methods, one method at a time and
independent of dynamic dispatch; and (ii) verifies optimistic disjointness assumptions
of open effects, if enough static information is available.

Type-and-Effect Attributes Figure 3 shows OpenEffectJ ’s type-and-effect attributes.
The type of a program and its declarations are given as OK, whereas (t → t,σ) in c,
specifies the type of a method defined in class c with parameter types t, return type t
and a latent effect σ [45], which is the effects of the body of the method [46]. Finally,
the attribute (t,σ) specifies an expression of type t with the effects σ .

θ ::= OK “program/decl types”
| (t→ t,σ) in c “method types”
| (t,σ) “expression types”

Π ::= {vari 7→ ti}i∈N “type environments”
A ::= {vari 7→ ei}i∈N “aliasing environments”

σ ,γ ::= /0 | > | σ ∪σ “effects”
| rd(f) “read effect”
| wr(f) “write effect”
| open(f m γ) “open effect”

Fig. 3. Type-and-effect attributes for OpenEffectJ , based on [24, 45].

Figure 3 allows two kinds of effects: concrete and open effects. Concrete effects
are standard read and write memory effects4 rd(f) and wr(f),5 which read and write a
field f, along with the empty effect /0 and the top effect >. The top effect allows read
and write effects of any field [24]. An open effect open(f m γ) represents the effects of
a dynamically dispatched method m invoked on an open receiver f. The placeholder γ

represents the unknown effect of the body of the method m. We slightly misuse the set
notation for presentation purposes.

4 Previous work [24], uses regions as an abstraction to avoid exposure of implementation de-
tails in specifications. In our type-and-effect system there is no explicit specification, and thus
exposure of the implementation details is not a concern.

5 For simplicity, our formalism is not object sensitive, but our compiler implementation is field
and object sensitive both [19].

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 7

Type checking rules are stated using an implicit fixed class table CT which contains
a list of program declarations [21]. Each method in the class table CT has its statically
computed effects as part of its signature. The typing rules use a type environment Π ,
which maps a variable name var to its type t. The typing judgement Π ` e e′ : (t,σ)
says that the expression e is translated to the expression e′ and has the type t and the
effects σ . The semantic preserving translation does not change the type or the effects
of expressions and in spirit is similar to elaboration in languages such as ML [34].
Subtyping is denoted using the relation <: which is the standard reflexive-transitive
closure of the declared subclass relationships [21].

Type-and-Effect Rules This section presents select typing rules which form the novel
basis of our effect computation using open effects in the presence of dynamically dis-
patched methods on open fields. Other omitted rules can be found in our report [32].

(T-DISJOINT)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

↓O (σ1) = ↓O (σ2) = /0 σ
1
c = ↓C (σ1) σ

2
c = ↓C (σ2) σ

1
c # σ

2
c

Π ` e1#e2 true : (bool, /0)

(T-CONFLICT)
Π ` e1 e′1 : (t1,σ1)

Π ` e2 e′2 : (t2,σ2) σ
1
c = ↓C (σ1) σ

2
c = ↓C (σ2) !(σ1

c # σ
2
c)

Π ` e1#e2 f alse : (bool, /0)

(T-UNKNOWN)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

σ
1
c = ↓C (σ1) σ

2
c = ↓C (σ2) σ

1
c # σ

2
c ↓O (σ1) 6= /0 ∨↓O (σ2) 6= /0

Π ` e1#e2 e′1#e′2 : (bool, /0)

Auxiliary Functions:

↓C (σ) = {ε|ε ∈ σ ∧ ε ∈ {rd(f),wr(f),>, /0}} ↓O (σ) = {ε|ε ∈ σ ∧ ε = open(f m γ)}

(READ-READ)
rd(f) # rd(f ′)

(READ-WRITE)
f 6= f ′

rd(f) # wr(f ′)

(WRITE-WRITE)
f 6= f ′

wr(f) # wr(f ′)

(EMPTY)
∀ε ∈ σ

ε # /0

(TOP)
∀ε ∈ σ

!(ε # >)

Fig. 4. Deciding disjointness of the effects of expressions e1 and e2.

Disjointness Two expressions e1 and e2 could safely run in parallel, if their effects
do not conflict, i.e. they are disjoint. Figure 4 shows the typing rules for the disjoint
expression e1#e2. This expression statically checks if the effects of the expressions e1
and e2 conflict and depending on the answer translates into true, false or unknown.
Using open effects, the disjointness can be decided statically, provided enough static

8 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

information is available, as in the rules (T-DISJOINT) and (T-CONFLICT), or otherwise it
is deferred to runtime, as in (T-UNKNOWN). The availability of such static information,
is dependent on the static analyses integrated into the type system. First, we assume no
extra static analysis to focus on the basic ideas behind open effects. Later we discuss
adding a modular alias analysis, as an example, which could be helpful in making some
of the disjointness decisions in (T-UNKNOWN) statically, as shown later in this section.

In (T-DISJOINT), if there exists no open effects in the effects of the expressions, i.e.
↓O (σ1) = ↓O (σ2) = /0, then their effects are disjoint only if their concrete effects are
disjoint, i.e. σ1

c # σ2
c . If the concrete effects of e1 and e2 are disjoint then e1#e2 stati-

cally translates to true. Since e1#e2 does not execute any of the expressions e1 or e2,
its effect is empty. Similar to (T-DISJOINT), the rule (T-CONFLICT) statically decides the
disjointness of the effects of e1 and e2 and translates the expression e1#e1 to f alse, if
their concrete effects conflict, i.e. !(σ1

c # σ2
c). In this rule there is no need to check the

relation between open effects in σ1 and σ2 and such a check could be skipped. More
importantly, the concretization of these open effects, at runtime, could be skipped which
in turn results in less runtime checks and better performance. The auxiliary functions
↓O (σ) and ↓C (σ), return the set of open and concrete effects of the effect set σ , re-
spectively. The function # simply checks for the disjointness of effects, in which a
write and read of a field f, i.e. wr(f) and rd(f), conflict and other effects are disjoint.
The top effect > conflicts with everything. ε is an effect element in the effect set σ .

Decision about disjointness in e1#e2 is deferred to runtime if it cannot be made
statically using (T-DISJOINT) and (T-CONFLICT). The rule (T-UNKNOWN) defers such a
decision by translating e1#e2 to e′1#e′2. In (T-UNKNOWN), existence of open effects in
either σ1 or σ2, i.e. ↓O (σ1) 6= /0 ∨↓O (σ2) 6= /0, prevents static decision making about
disjointness, as their concretizations may cause conflicts. More static analyses, such as
alias analysis, may help (T-UNKNOWN), to make some disjointness decisions statically,
as discussed later in this section.

Without open effects, e1#e2 would translate to false, if either e1 or e2 causes an
invocation of a dynamically dispatched method whose receiver is not an open reference
and the method does not have user-specified effect specifications. This is because a
dynamically dispatched method with a non-open receiver of an unknown dynamic type
and no effect specifications, has the top effect that conflicts with any other effect [9].

Fork: An Example Use Case of Disjointness An example use case of the disjoint
expression e1#e2 is to combine static and runtime decision making about parallel or se-
quential execution of two expressions e1 and e2 in a fork expression, e.g. as in Figure 1,
lines 7–10. The fork expression fork{e1,e2} executes e1 and e2 concurrently if their
effects do not conflict, and sequentially otherwise. The rules (T-FORK-SEQUENTIAL) and
(T-FORK-PARALLEL) statically translate the fork expression to sequential or parallel ex-
ecutions of e1 and e2, respectively. The rule (T-FORK-UNKNOWN) defers such a decision
to runtime, because of the lack of the static information.

The rule (T-FORK-SEQUENTIAL) statically translates the fork expression to the se-
quential composition e′1;e′2 in which e′1 and e′2 run sequentially. The expressions e′1 and
e′2 are translations of e1 and e2, respectively. This translation is sound because the ef-
fects of expressions e1 and e2 do conflict, i.e. Π ` e1#e2 f alse : (bool,σ). Similarly,

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 9

(T-FORK-SEQUENTIAL)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2) Π ` e1#e2 f alse : (bool, /0)

Π ` fork{e1,e2} e′1;e′2 : (t2,σ1∪σ2)

(T-FORK-PARALLEL)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2) Π ` e1#e2 true : (bool, /0)

Π ` fork{e1,e2} e′1||e′2 : (t2,σ1∪σ2)

(T-FORK-UNKNOWN)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2) Π ` e1#e2 e′1#e′2 : (bool,σ)

σ
1
c = ↓C (σ1) σ

2
c = ↓C (σ2) σ

1
o = ↓O (σ1) σ

2
o = ↓O (σ2)

cond = (concretize(σ1
o) # concretize(σ2

o))∧ (concretize(σ1
o) # σ

2
c)∧ (concretize(σ2

o) # σ
1
c)

Π ` fork{e1,e2} if(cond) then e′1||e′2 else e′1;e′2 : (t,σ)

Fig. 5. Translation of fork{e1,e2}, to concurrent or sequential execution of e1 and e2.

the rule (T-FORK-PARALLEL) translates the fork expression into the parallel composition
e′1||e′2, since the effects of e1 and e2 are disjoint, i.e. Π ` e1#e2 true : (bool,σ)6.

If (T-FORK-SEQUENTIAL) and (T-FORK-PARALLEL) cannot decide about sequential
or parallel execution of the expressions in the fork, the decision is deferred to run time
using the rule (T-FORK-UNKNOWN). This rule translates a fork expression to an if ex-
pression if(cond) then e′1||e′2 else e′1;e′2, which in its condition cond checks for
disjointness of open effects σo

1 and σo
2 of the expressions in the fork, and their concrete

effects σ c
1 and σ c

2 . The unknown open effects should be concretized, using concretize,
before being checked for disjointness. Concretization of open effects is discussed in §3.
More static analyses, such as alias or purity analysis, may help (T-FORK-UNKNOWN) to
make some disjointness decisions statically, as discussed later in this section.

Without open effects, the fork expression will be translated to the sequential com-
position e1;e2, if either the expression e1 or e2 of the fork expression contains an in-
vocation of a dynamically dispatched method on a non-open receiver, mainly because
e1#e2 translates to false.

Alias Analysis: An Example Static Analysis As discussed, our hybrid type-and-effect
system divides the responsibility of checking for the disjointness of the effects into two
phases: static type checking, and runtime concretization and tracking of open effects.
Various modular static analyses could be integrated into the type-and-effects system
to increase the precision of static decision making about disjointness of the effects. In
this section, we show the integration of a modular definite alias analysis [18] into open
effects and illustrate its use. For such integration, we add an aliasing environment A
to the typing judgement which maps a variable to its aliases, in Figure 3. The typing
judgement Π ,A ` e e′ : (t,σ ,A′) takes into account the aliasing environment and
its changes. For readability, variables, which do not cause any effect or changes in

6 Following previous work [9, 35], fork{e1,e2} and e1||e2 are used to illustrate a use case of
the disjoitness expression e1#e2 and are not part of the core syntax, in Figure 2.

10 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

the aliasing, use a shorter typing judgement Π ,A ` e : t. The two rules that are most
concerned with aliasing are (T-DEFINE) and (T-SET). Other omitted rules can be found
in our accompanying technical report [32].

The rule (T-SET) assigns a variable x to a field f and thus makes them aliases,
causing the aliasing relation x = this. f to be added to the aliasing environment A after
discarding older aliasing relations for f in A via the kill operation A\ f . The function
typeOf returns the type t ′ of field f declared in class d. In (T-DEFINE), a variable x is
assigned the expression e′1 in the scope of e′2, causing aliasing which should be taken
into account when evaluating e2. The notation A;x = e′1 stands for extension of the
aliasing environment A with the aliasing relation x = e′1.

(T-SET)
typeOf (f) = (d, t ′) Π ,A ` this : c Π ,A ` x : t c <: d t <: t ′

Π ,A ` this. f = x this. f = x : (t,wr(f),A\ f ∪{x = this. f})

(T-DEFINE)
Π ,A ` e1 e′1 : (t1,σ1,A1) Π ;x : t,A1;x = e′1 ` e2 e′2 : (t2,σ2,A2) t1 <: t

Π ,A ` t x = e1;e2 t x = e′1;e′2 : (t2,σ1∪σ2,A2)

Observational Purity. One use case of the aliasing is in detecting observational
purity [37] in the rule (T-CALL-PURE) which says in an invocation of x0.m(x) if both
the receiver x0 and the parameters x are newly created objects, then the effects of the
invocation of m is empty. The auxiliary function findMeth looks up the class table and
returns the declaration of the method in a type or any of its supertypes. A complete list
of the auxiliary functions and their definitions can be found in our technical report [32].

(T-CALL-PURE)
A ` x0 = new c0() ∀xi ∈ x. A ` xi = new ci()

findMeth(c0,m) = (c′, t,m(t var){e},σ) ∀xi ∈ x. (Π ,A ` xi : t ′i)∧ (t ′i <: ti)
Π ,A ` x0.m(x) x0.m(x) : (t, /0,A)

Tracking Open References. Another use case of the aliasing is in statically track-
ing the open references, in the rule (T-CALL-OPEN). This rule assigns an open effect
open(f m γ), to the method invocation x0.m(x) in which the receiver x0 is an alias of the
open field f, i.e. A ` x0 = this. f .

(T-CALL-OPEN)
A ` x0 = this. f typeOf (f) = (c,@openc0)

findMeth(c0,m) = (c′, t,m(t var){e},σ) ∀xi ∈ x. (Π ,A ` xi : t ′i)∧ (t ′i <: ti)
Π ,A ` x0.m(x) x0.m(x) : (t,open(f m γ),A)

To illustrate use of aliasing in deciding the disjointness of open effects, consider Fig-
ure 6 which shows a simplified example adapted from JavaGrande’s RayTracer [43]. In
this figure, the class RayTracer is responsible for rendering a display, and is extended
by RayTracer2D and RayTracer3D to render two and three dimensional displays.
Both of these subtypes override the method run in their supertype. Using alias and pu-
rity analyses, especially the rules (T-SET) and (T-DEFINE), one would conclude that the

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 11

1 @open RayTracer rt1;
2 rt1 = new RayTracer2D(new Display());
3 fork{
4 { RayTracer rt3D = new RayTracer3D(new Display()); rt3D.run() },
5 { rt1.run() }
6 }

Fig. 6. Concurrent execution of fork, because of observational purity [37].

two expression of the fork, lines 4 and 5 can run concurrently, since the expression on
line 4 has empty effects because of their observational purity, rule (T-CALL-PURE).

Besides the alias analysis [18], other static analyses could be integrated into the type
system to provide more static information. In our prototype implementation of open
effects, besides the alias analysis, a few other static analyses, such as purity analysis [37]
and array effect analysis [38], are integrated into the type system. These analyses are
omitted here to focus on the basic ideas behind the open effects.

2.2 Dynamic Dispatch and Open World Assumption

There are two rules (T-CALL-OPEN) and (T-CALL) in OpenEffectJ ’s type system for dy-
namically dispatched method invocations. The differences between these rules highlight
the contrast between handling of dynamic dispatch in open effects and static analyses
that do not rely on user-specified effect specifications [10, 24]. On one hand, the rule
(T-CALL-OPEN), discussed previously, uses an open effect to represent the unknown
effects of a dynamically dispatched method invocation on an open receiver, and thus
allowing it to run concurrently with other expressions if their effects do not conflict,
or sequentially otherwise. On the other hand, (T-CALL) assigns the top effect > as the
effects of the invocation of a dynamically dispatched method on a non-open receiver, es-
pecially if there are no effect specifications or constraints, such as containment, for the
method [9], and thus sequentializes its execution with any other expression, because the
top effect conflicts with all other effects. The rules (T-CALL-OPEN) and (T-CALL) clearly
showcase how open effects could be useful in exposing safe concurrency opportunities.

(T-CALL)
Π ,A ` x0 : c0 A ` x0 6= new c()

A ` x0 6= this. f ∨ (A ` x0 = this. f ∧ typeOf (f) 6= (d,@open c′′))
findMeth(c0,m) = (c′, t,m(t var){e},σ) ∀xi ∈ x. (Π ,A ` xi : t ′i)∧ (t ′i <: ti)

Π ,A ` x0.m(x) x0.m(x) : (t,>,A)

Method Declaration. A typical type-and-effect system under the open world as-
sumption requires containment between the effects of a class and its subclasses [24],
i.e. the effects of an overriding method in a subclass are required to be contained in the
effects of the superclass method it overrides. However, in open effects, the overriding
and overridden methods are allowed to have effects that are not restricted by the con-
tainment requirement. This is represented in the rule (T-METHOD) by not requiring any
relation between the effects σ of the method m and any other method with effects σ ′ it

12 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

may override. The auxiliary function override only checks for compatibility of the argu-
ment and return types of the overridden and overriding methods and allows their effects
to be independent. The function isType checks for type validity. Not requiring effect
containment in method declarations, improves usage flexibility, especially for libraries
and frameworks in which it is common to define empty abstract methods in a class that
are overridden by various clients to implement application-specific functionalities.

(T-METHOD)
override(m,c,(t→ t)) ∀ti ∈ t. isType(ti)

isType(t) (var : t,this : c), /0 ` e e′ : (t ′,σ ,A) t ′ <: t
` t m(t var){e} t m(t var){e′} : (t→ t,σ ,A) in c

Field Set. There are two rules (T-SET) and (T-SET-OPEN) for setting a field. The
rule (T-SET), shown previously, sets a non-open field which results in a write effect
and updating the aliasing information of the field. The rule (T-SET-OPEN) is similar to
(T-SET) except that it generates a top effect >, instead of a write effect. This is because
setting an open field f results in concretizations of all open effects open(f m γ) with the
open field f and any other open effect open(g m′ γ ′) such that g transitively points to the
object containing f. Concretization of open effects is discussed in more detail in §3.

(T-SET-OPEN)
typeOf (f) = (d,@open t ′) Π ,A ` this : c Π ,A ` x : t c <: d t <: t ′

Π ,A ` this. f = x this. f = x : (t,>,A\ f ∪{x = this. f})

3 A Dynamic Semantics with Open Effects

The dynamic part of open effects which is encoded in OpenEffectJ ’s dynamic seman-
tics, (i) concretizes the statically computed open effects using the typing rules, and
updates the open effects by tracking their open references and changes in their values;
and (ii) verifies, using runtime checks, the disjointness assumptions that could not be
verified statically.

3.1 Dynamic Semantics Objects

The dynamic semantics of open effects transitions from one configuration to another.
A configuration Σ = 〈e,µ〉, shown in Figure 7, consists of an expression e and a global
store µ . The store maps a location loc to an object record of the form o = [c.F.E],
containing the concrete type c of the object loc, a field map F which maps field names
of c to their values, and a new dynamic effect map E which maps the method names
of c to their runtime effects. The effect map is necessary in tracking and updating of
runtime effects of dynamically dispatched methods, for concretization of open effects
and efficient verification of their disjointness, as the values of open references change
during the program execution. Performance efficiency of these mechanisms is shown
in §4. Dynamic semantics rules are presented using a one-step call-by-value reduction
relation and a set of evaluation contexts E [21] which specify the evaluation order.
Omitted semantics rules and auxiliary functions can be found in our report [32].

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 13

Evaluation relation: ↪→: Σ 99K Σ

Domains:

Σ ::= 〈e,µ〉 “Configurations”
µ ::= {loci 7→ oi}i∈N “Stores”
o ::= [c.F.E] “Object Records”

F ::= { fi 7→ vi}i∈N “Field Maps”
v ::= null | loc | n “Values”
E ::= {mi 7→ σi}i∈N “Effect Maps”

Evaluation contexts: E ::= − | t var = E;e

Fig. 7. Domains and evaluation contexts.

3.2 Tracking and Updating of Open References

There are several rules in OpenEffectJ ’s dynamic semantics, including the rule for ob-
ject creation and setting a field, that are key in tracking of the open references and
updating the concretization of open effects, which are dependent on these references.

(NEW)
loc /∈ dom(µ)

F = { f 7→ default(f) | f ∈ fields(c)} µ
′ = µ⊕{loc 7→ [c.F.E]}

E = {m 7→ σ | m ∈ methods(c). findMeth(c,m) = (c′, t,m(t var),σ)}
〈E[new c()],µ〉 ↪→

〈
E[loc],µ ′

〉
The rule (NEW), in addition to initializing a new object in the memory, by assigning

a fresh location loc to it, generates and initializes the effect map E for the newly created
object. The effect map E maps the methods m of class c to their statically computed
effects σ which have been computed using the typing rules as discussed in §2. The
auxiliary function findMeth returns the definition of a method m of the class c in the class
table CT . The function default returns the default value for each variable of a type. The
operator ⊕ is an overriding operator such that if µ ′ = µ⊕{loc 7→ o}, then µ ′(loc′) = o
if loc′ = loc, otherwise µ ′(loc′) = µ(loc′). To illustrate, the object record for the newly
created object pr of type Pair in Figure 1 is of the form [Pair.{ f st 7→ 0,snd 7→ 0, f 7→
null}.{setOp 7→ {>},apply 7→ {wr(fst),wr(snd),rd(f),open(f op γ)}}].

(SET)
[c.F.E] = µ(loc) µ0 = µ⊕ (loc 7→ [c.(F⊕ (f 7→ v)).E]) µ

′ = update(µ0, loc, f ,v)
〈E[loc. f = v],µ〉 ↪→

〈
E[v],µ ′

〉
Upon setting the field f of the object loc updates the concretization of all open ef-

fects that are directly or transitively dependent on the open field f , until a fixpoint is
reached. This is done using the auxiliary function update, in Figure 8, that first con-
cretizes the open effects in the effect map E of the object loc. If the effect map E
changes to E ′, i.e. E 6= E ′, then it updates the concretization of all other transitively de-
pendent open effects. The function reverse backward traverses the object graph, starting
from loc, and finds all the open fields dependent on f , directly or transitively. An open
field g is dependent on the open field f , if g, directly or transitively, points to the object
loc containing the field f . In practice, reverse pointers can be used to optimize this [8],
as in our compiler’s implementation.

14 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

Concretization of Open Effects. There are are two variations of concretization,
shown in Figure 8: (i) concretization of an open effect when its open field is set, as
in (SET), by concretize(1) and (ii) concretization of an open effect in use cases such as
translation of the fork in the rule (T-FORK-UNKNOWN) in §2.1, by concretize(2). The
function concretize(1), fills in the placeholder γ in open effects of the form open(f m γ),
upon setting the field f of the object loc. Recall that open(f m γ) represents the effect of
the invocation of the method m on the open field f . If f is set to null, then invocation
of m on f will not have any effects, thus replacing γ in open(f m γ) by the concretized
effect /0, i.e. open(f m /0). If f is set to an object loc′, then the invocation of m on f
will be the invocation of m on the object loc′, thus replacing γ in open(f m γ) with the
union of the concrete effects of the method m in the object loc′, i.e. ↓C (E(m)), and its
concretized open effects, i.e. σ ′′. Note that, the open effect open(f m γ) is concretized
whenever its open field f is set. The function concretize(2) basically returns the effects
concretized by the first variation, rather than directly concretizing them. This is because
concretization of an open effect happens only when its open field is set. For a non-
concretized open effect open(f m γ) with the open field f in the object loc, its effect
map E is searched till a concretized effect open(f m σ) is found and σ is returned as the
result. The current store µ in the configuration and variable this are implicitly passed
to concretize(2) in which this is passed as the value for loc.

update(µ, loc, f ,v) =

µ if E = E ′, where E ′ = updateEff (µ, f ,v,E),
µn if E 6= E ′, µ(loc) = [c.F.E]

µi = update(µi−1, loci, fi, loc)
{〈loci, fi〉}= reverse(µ, loc),1≤ i≤ n
µ0 = µ⊕{loc 7→ [c.F.E ′]}

reverse(µ, loc) = {
〈
loc′, f

〉
| F(f) = loc∧ loc′ ∈ dom(µ)∧µ(loc′) = [c.F.E]}

updateEff (µ, f ,v,E) = { m 7→ {concretize(1)(µ, f ,v,ε ′)} | (m 7→ σ) ∈ E ∧ ε ′ ∈ σ}

concretize(1)(µ, f ,v,ε) =

open(f m /0) if ε = open(f m γ), v = null
open(f m σ ′) if ε = open(f m γ), v = loc′,

[c.F.E]=µ(loc′),
σ ′ = ↓C (E(m)) ∪
{ε ′ ∈ σ ′′| ε ′′ ∈ ↓O (E(m))∧ ε ′′ = open(f ′ m′ σ ′′)}

ε otherwise

concretize(2)(µ, loc,ε) = σ where ε = open(f m γ), [c.F.E] = µ(loc),
∃m′ ∈ dom(E). open(f m σ) ∈ E(m′)

concretize(2)(σ) = (
⋃

concretize(2)(µ,this,ε))∪↓C (σ) where ε ∈ ↓O (σ)

Fig. 8. Auxiliary functions update and concretize

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 15

To illustrate, consider concretization of the open effect open(f op γ) of the method
apply when its open field f is set, by the expression pr.setOp(pf), on line 28 of
Figure 1. In concretize(2), the parameter v will be equal to pf and thus the placeholder
γ in the open effect, will be replaced by wr(res), which is the effect of of method op

of pf. Concretization of the open effect open(f op γ) to open(f op wr(res)) in the effect
of apply causes the update to be invoked which updates all open effects which are
dependent on pr, using reverse. In Figure 1, there is no object pointing to pr and thus
the fixpoint is reached and concretization stops.

3.3 Soundness of Open Effects

The type-and-effect encoding of open effects is proven sound using theorems that say:
(i) statically computed effects are a sound approximation of concretized effects, Theo-
rem 1; and (ii) concretized effects soundly approximate runtime effects, Theorem 2.

Theorem 1. [Concretized effects refine static effects] Given an expression e with the
statically computed effects σs, which could contain open effects, and its dynamic con-
cretization σc, i.e. σc = concretize(σs), if Π ,A ` e e′ : (t,σs,A′) holds statically
and (µ,A) ` e′ : (σc,A′) holds dynamically for the runtime configuration 〈e′,µ〉, then:
σc ⊆ σs.

Theorem 2. [Dynamic effects refine concretized effects] For two configurations Σ =

〈e,µ〉 and Σ ′ = 〈e′,µ ′〉, if Σ transitions to Σ ′ producing runtime effect η , i.e. Σ
η

↪→ Σ ′,
if concretized effects of e is σc, i.e. (µ,A) ` e : (σc,A′), then there is a concretized effect
σ ′c such that:

(a) (µ ′,A1) ` e′ : (σ ′c,A
′
1) and σ ′c ⊆ σc;

(b) η ∈ σc

Proof Sketch: Theorem 1 is proved by structural induction on derivations of Π ,A `
e e′ : (t,σs,A′) and (µ,A) ` e′ : (σc,A′) whereas proof of Theorem 2 is by cases on

transition steps for the transition relation Σ
η

↪→ Σ ′ [32].

4 Evaluation: Speedup and Overhead of Open Effects

We hypothesize that open effects is performance efficient while exposing safe concur-
rency opportunities in frameworks and libraries, that could be extended with possibly
concurrency-unsafe code by clients. To test our hypothesis we implemented open ef-
fects on top of OpenJDK7 and parallelized a representative set of frameworks and li-
braries using open effects and the following widely used concurrency techniques: (i)
Deuce [1], software transactional memory (STM); (ii) Multiverse [2], STM; (iii) Road-
Runner (RR) [19], runtime race detector8; and (iv) Manually tuned concurrency; and
compared their speedups and overheads. Results of our experiments show that: open ef-
fects almost does as well as manually tuned concurrency, with the negligible overhead
of only 0.27% to at most 4.06% and less overhead compared to other techniques.

7 OpenEffectJ ’s compiler and evaluations are available at http://paninij.org/open/.
8 The race detection tool set −tool = T L : RS : LS was used.

http://paninij.org/open/

16 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

4.1 Setup

We use the following frameworks, benchmarks and libraries in our experiments: a
map-reduce framework (MapReduce), adapted from JSR [3], a pipeline framework
(Pipeline) [10], Monte Carlo benchmark (MonteCarlo) [43], JDK’s merge sort (Merge-
Sort) and array list (ArrayList) libraries [3], depth first search graph traversal (DFS), a
numerical integration application (Integrate) [3] and a sequence alignment application
(Alignment) [5]. In terms of annotation overhead, except MapReduce, with 2 @open
annotations, open effects versions of other applications needed only 1 annotation.

Client Code. In the MapReduce, the map phase computes the sum of the magni-
tudes formula Math.sqrt(2∗Math.pow(o,2)) for each element o in a set of 100 million
integers and the reduce step is simply addition of the results. Pipeline models Radix
Sort in which the first stage generates a stream of 8 arrays of 1 million integers each
and subsequent stages sort the arrays on different radixes. MergeSort sorts a list of 10
million randomly generated integers. For ArrayList, we apply the hash (Hash), prefix
sum (Prefix) computations, illustrated in Figure 1, and a heavier computation (Heavy),
which computes the same formula as in the MapReduce, on an array with 20 million
elements. DFS solves an N-queens problem, with n equal to 11. Integration uses a re-
cursive Gaussian quadrature of (2∗ i−1) · x2∗i−1, summing over odd values of i from 1
to 12 and integrating from −5 to 6. Alignment uses a constant function returning -1 if
two characters do not match for aligning two words of sizes 100 and 1 million.

Hardware. All our experiments were run on a system with a total of 4 cores (Intel
Core2 chips 2.40GHz) running Fedora GNU/Linux. For each experiment, an average of
the results over 30 runs was taken and the default JVM parameters were used.

4.2 Performance Evaluation

Application Serial Manual RoadRunner [19] Deuce [1] Multiverse [2] OpenEffectJ Pattern
time(s) time time overhead time overhead time overhead time overhead speedup

Hash 0.13 0.12 0.85 585.5% 44.11 35400.0% 8.57 6801.0% 0.12 0.3% 1.07 Forall
Heavy 1.31 0.39 1.12 203.2% 34.87 8952.3% 12.43 3128.0% 0.39 0.09% 3.39 Forall
Prefix 0.12 × × × × × × × 0.12 1.62% 0.98 Forall

Alignment 2.44 1.86 21.50 1054.7% 14.91 700.9% 8.34 348.0% 1.93 4.07% 1.26 Forall
MonteCarlo 3.87 1.22 2.04 67.3% 10.52 762.7% 1.33 8.9% 1.25 2.68% 3.10 Forall

Pipeline 2.25 2.11 3.48 64.7% ↑ ↑ 2.21 4.5% 2.12 0.62% 1.06 Pipeline
MergeSort 2.71 1.32 3.39 156.1% 9.61 626.3% 16.00 1109.6% 1.34 1.67% 2.02 Recursive

DFS 18.83 9.20 17.88 94.3% 9.79 6.5% 12.23 32.9% 9.23 0.28% 2.04 Recursive
MapReduce 7.03 1.94 3.81 96.8% 5.25 170.6% 10.76 454.5% 1.91 -1.46% 3.68 Recursive

Integrate 2.13 0.59 1.53 158.9% 1.46 146.2% 2.42 309.7% 0.61 2.36% 3.50 Recursive

Fig. 9. Performance Experiments.× indicates result discrepancies because of sequential
inconsistencies and ↑ shows running out of memory after a considerably long time.

Definition 1. (Runtime Overhead and Speedup) For a program p, with its sequential,
open effects and manually tuned parallel versions, which respectively take T1, T2, and
T3 seconds for their execution, the speed up is T1 / T2 and overhead is (T2 - T3) / T3.

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 17

0.
0

1.
0

2.
0

3.
0

Hash Alignment Montecarlo MergeSort Integrate

lo
g

(T
im

e)

OpenEffectJ
Manual
Serial
RR
Multiverse
Deuce

Fig. 10. Open effects are almost as good as manually tuned concurrency.

Figure 9 and Figure 10 show the performance results of running our experiments in
terms of speedup and runtime overhead, as defined in Definition 1. Our results show that
the open effect (OpenEffectJ) versions of the evaluation applications are almost as fast
as the manually tuned concurrent versions and incur very small overhead, ranging from
0.27% to 4.06% at most, which is significantly less compared to other effect analysis
techniques used in our experiments. In Figure 9, Multiverse or Deuce versions of the
applications, run slower especially for ArrayList, because Multiverse creates a separate
runnable object for each transaction which causes a slow down in applications with
large number of transactions; Deuce, besides the transaction creation overhead, stores
array access effects in a fine-grained manner, which could cause slow down for large
arrays. OpenEffectJ , instead, uses an indexed array effect [9, 38] and a purity analysis,
to decide about disjointness of effects. It is conceivable that using similar techniques,
performance for Multiverse or Deuce’s versions could be improved.

4.3 Concretization of Open Effects for Nested Objects

One may argue that concretization of open effects at runtime may not be efficient
enough especially for deeply-nested data structures such as trees, mainly because set-
ting an open field could cause updating various other open effects dependent on that
field, as discussed in §3.2. However, this may not be always the case, especially when
the benefits of the open effects outweigh its overheads. To investigate, we implemented
a Fibonacci algorithm, adapted from OpenJDK’s fork/join framework [3], using both
open effects and techniques in Figure 9. To compute the n-th Fibonacci number Fib(n),
the algorithm uses a binary tree in which right and left subtrees represents Fib(n− 1)
and Fib(n− 2) respectively, and the root adds them together to compute Fib(n) =
Fib(n− 1)+Fib(n− 2). This algorithm has two phases of (i) construction of the tree
and (ii) computation of the Fibonacci numbers for the nodes. We ran experiments on
trees of depths from 6 to 14, which can have up to 214-1 nodes, and the same number
of open effects’ concretizations, to compute Fib(45).

Figure 11 shows the time each technique takes to compute the Fibonacci numbers,
for the construction and computation phases as well as their total. It shows that for
nested objects, open effects does almost as well as the manually tuned concurrent ver-
sion and better than other concurrent approaches, which is consistent with the results in
Figure 9. This is despite the fact that the construction of the Fibonacci trees may take
more time compared to other techniques, because of the concretization of open effects.
However, benefits of open effects in the computation phase outweigh this overhead.

18 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

6 7 8 9 10 11 12 13 14

4

5

6

7

8

9

10

11

12

13

14

15

●
●

●
●

●

●

●

● ●
●

●
● ●

●

●

●

Total

6 7 8 9 10 11 12 13 14

0.1

0.2

● ● ●
●

●

●

●

● ● ●
●

●

●

●

●

●

Tree Depth

T
im

e
(s

ec
on

d)

●

●

serial
manual
RoadRunner
Multiverse
Deuce
OpenEffectJ

Construction

6 7 8 9 10 11 12 13 14

4

5

6

7

8

9

10

11

12

13

14

15

●
●

●
●

●

●

●

● ●
●

●
● ●

●

●

●

Computation

Fig. 11. Building Fibonacci tree and computation of n-th Fibonacci number.

5 Related Work

In this section, we compare open effects with related works on reasoning about effects
of programs, in three categories of hybrid, static and dynamic techniques.

Hybrid. Open effects is closest in spirit to the ideas of gradual typing [41] and hy-
brid type checking [27] that blend advantages of static and dynamic type checking. Sim-
ilarly, open effects blends the advantages of static and dynamic effect systems. Similar
to Open Type Switch (Mach7) [44], which allows users to choose between type hierar-
chy openness and efficiency, open effects lets programmer choose the openness of the
effects of dynamically dispatched method invocations. Synchronization via scheduling
(SVS) [8] computes effects of concurrent tasks as their reachable object graph, for pro-
grams written in a simple C-like language, with no dynamic dispatch. However, open
effects support a full OO language with the support for overriding and dynamic dis-
patch, which makes accurate effect computation more challenging [20], and use smaller
effect sets compared to reachability graphs for effect computations. TWEJava [26] lets
the programmer specify the effect of each task and has a scheduler that coordinates
these concurrent tasks. However, open effects require only open annotations, compared
to task specifications. In concurrent revisions [13], programmers annotate shared ob-
jects tasks could conflict on and provide their merge functions, and each task keeps a
local copy of these objects to avoid data races, using copy-on-write. In contrast, open
effects check for effect conflicts before the execution, either statically or at runtime.

Static. Boyapati et al. [12] propose an ownership type system for deadlock and
data race detection, Gordon et al. [23] use uniqueness and reference immutability to
provide safe parallelism, Deterministic Parallel Java (DPJ) [10] provides determinism
for parallel programs using effect parameters and effect constraints, such as effect con-
tainment. There are also other works on effect systems [24] for sequential programs
such as data groups [29], ownership type systems [14] and heap representation tech-
niques [14]. However, open effects is a hybrid technique that combines static and dy-
namic type-and-effect to better handle invocation of dynamically dispatched methods,
without restrictions of effect containment between a type and its subtypes.

Dynamic. FastTrack [17], Goldilocks [16], Pacer [11], and the work of Smarag-
dakis et al. [42] are data race detection techniques which monitor memory accesses.
Transactional memory techniques [7, 15, 25, 31, 39, 40, 47] optimistically execute tasks
concurrently, while also monitoring memory accesses, and rollback whenever effects of

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 19

the tasks conflict. These techniques monitor memory footprints of a program, for all of
its references. However, open effects only monitors open references and decide before
execution of tasks, either statically or dynamically, if they need to be executed sequen-
tially, because of conflicting effects, and thus do not roll back. In Galois [28], user
provided commutativity specifications for methods are checked dynamically at runtime
and the execution is rolled back if they are violated. However, open effects does not
need commutativity specifications and does not roll back the execution.

6 Conclusion and Future Work

We proposed open effects, a trust-but-verify hybrid type-and-effect system to safely
expose concurrency opportunities in invocations of dynamically dispatched methods in
concurrent programs with open world assumption. Open effects trusts the programmer’s
knowledge in the form of open annotations which represent optimistic assumptions
about disjointness of effects, and verifies them statically or dynamically. Our perfor-
mance evaluations show that our prototype implementation of open effects is quite effi-
cient in exposing concurrency, by combining static and dynamic analyses, and performs
as well as manually tuned concurrency, with negligible overhead of only 0.27 – 4.06%.
Since open effects is complementary to previous static and dynamic analyses, we be-
lieve this overhead could be decreased even more by integrating more sophisticated
static and dynamic analyses, which is one venue for future work. Another direction for
future work, is to explore a logical extreme, in which all references are implicitly open
and a static analysis systematically eliminates ones causing unacceptable overheads.

References

1. https://sites.google.com/site/deucestm/
2. http://multiverse.codehaus.org/
3. JSR-166y for Java 7. http://gee.oswego.edu/dl/concurrency-interest/
4. Abadi, M., Flanagan, C., Freund, S.: Types for safe locking: Static race detection for Java.

TOPLAS ’06 28
5. Aluru, S., Futamura, N., C, K.M.: Parallel biological sequence comparison using prefix com-

putations. Journal of Parallel and Distributed Computing (2003)
6. Benton, N., Buchlovsky, P.: Semantics of an effect analysis for exceptions. In: TLDI ’07
7. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: safe multithreaded programming for

C/C++. In: OOPSLA ’09
8. Best, M.J., Mottishaw, S., Mustard, C., Roth, M., Fedorova, A., Brownsword, A.: Synchro-

nization via scheduling: techniques for efficiently managing shared state. In: PLDI ’11
9. Bocchino, R., Adve, V., Dig, D., Adve, S., Heumann, S., Komuravelli, R., Overbey, J., Sim-

mons, P., Sung, H., Vakilian, M.: A type and effect system for Deterministic Parallel Java.
In: OOPSLA ’09

10. Bocchino, R.L., Adve, V.S.: Types, regions, and effects for safe programming with object-
oriented parallel frameworks. In: ECOOP ’11

11. Bond, M., Coons, K., McKinley, K.: Pacer: proportional detection of data races. In: PLDI’11
12. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: preventing data

races and deadlocks. In: OOPSLA ’02

https://sites.google.com/site/deucestm/
http://multiverse.codehaus.org/
http://gee.oswego.edu/dl/concurrency-interest/

20 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

13. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revisions and isola-
tion types. In: OOPSLA ’10

14. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple ownership. In: OOPSLA ’07
15. Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., Zhang, C.: Software behavior oriented

parallelization. In: PLDI ’07
16. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware Java runtime. In:

PLDI ’07
17. Flanagan, C., Freund, S.: FastTrack: efficient and precise dynamic race detection. In: PLDI

’09
18. Flanagan, C., Freund, S.: Redcard: Redundant check elimination for dynamic race detectors.

In: ECOOP’ 13
19. Flanagan, C., Freund, S.: The roadrunner dynamic analysis framework for concurrent pro-

grams. In: PASTE ’10
20. Flanagan, C., Freund, S.: Type-based race detection for Java. In: PLDI ’00
21. Flatt, M., Krishnamurthi, S., Felleisen, M.: A Programmer’s Reduction Semantics for Classes

and Mixins. In: Formal Syntax and Semantics of Java. Springer (1999)
22. Gifford, D., Lucassen, J.: Integrating functional and imperative programming. In: LFP ’86
23. Gordon, C., Parkinson, M., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness and reference

immutability for safe parallelism. In: OOPSLA ’12
24. Greenhouse, A., Boyland, J.: An object-oriented effects system. In: ECOOP ’99
25. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-free data

structures. In: ISCA ’93
26. Heumann, S., Adve, V., Wang, S.: The tasks with effects model for safe concurrency. In:

PPoPP ’13
27. Knowles, K., Flanagan, C.: Hybrid type checking. TOPLAS ’10, 32
28. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic

parallelism requires abstractions. In: PLDI ’07
29. Leino, K.R.M.: Data groups: specifying the modification of extended state. In: OOPSLA ’98
30. Leroy, X., Pessaux, F.: Type-based analysis of uncaught exceptions. TOPLAS ’00, 22(2)
31. Lesani, M., Palsberg, J.: Communicating memory transactions. In: POPL ’11
32. Long, Y., Bagherzadeh, M., Rajan, H.: Open Effects: Programmer-guided Effects for Open

World Concurrent Programs. Tech. rep., Iowa State Univ. (2013)
33. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL ’88
34. Milner, R.: A theory of type polymorphism in programming (17), 348–375 (1978)
35. Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.: Contextual effects for version-consistent

dynamic software updating and safe concurrent programming. In: POPL ’08
36. Reiter, R.: On closed world data bases. Springer (1978)
37. Ru, S., Rinard, M.: Purity and side effect analysis for Java programs. In: VMCAI ’05
38. Rugina, R., Rinard, M.: Automatic parallelization of divide and conquer algorithms. In:

PPoPP ’99
39. Shavit, N., Touitou, D.: Software transactional memory. In: PODC ’95
40. Shpeisman, T., Menon, V., Adl-Tabatabai, A.R., Balensiefer, S., Grossman, D., Hudson, R.,

Moore, K., Saha, B.: Enforcing isolation and ordering in STM. In: PLDI ’07
41. Siek, J., Taha, W.: Gradual typing for objects. In: ECOOP ’07
42. Smaragdakis, Y., Evans, J.M., Sadowski, C., Jaeheon, Y., Flanagan, C.: Sound predictive race

detection in polynomial time. In: POPL ’12
43. Smith, L., Bull, J., Obdrizalek, J.: A parallel Java Grande benchmark suite. In: SC ’01
44. Solodkyy, Y., Dos Reis, G., Stroustrup, B.: Open and efficient type switch for C++. In: OOP-

SLA ’12
45. Talpin, J.P., Jouvelot, P.: Polymorphic type, region and effect inference. JFP ’92, 2(3)
46. Talpin, J.P., Jouvelot, P.: The type and effect discipline. Inf. Comput. ’94, 111
47. Welc, A., Jagannathan, S., Hosking, A.: Safe Futures for Java. In: OOPSLA ’05

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 21

A Open Parameters and Local Variables

So far, open effects have been discussed only in terms of open fields. However, open
effects are not limited to open fields and can support open parameters and open local
variables as well, especially when object fields flow into parameters or local variables,
as illustrated in Figure 12. In this figure, the method Apply, on the left, has an open
parameter g, used as the receiver for the invocation of the method op. This causes the
effects of the method Apply to be open(g op γ). Later this open effect is concretized to
open(f op γ), lines 5–7 where this.f is passed to Apply as the parameter g. For the
open variable var, line 2 on the right, the open effect open(var op γ) is generated for
each method invocation on lines 4 and 5 which is concretized to open(par op γ) later
because the local variable var is set to the value par, on line 2.

1 private final int Apply (@open Op g, int x) {
2 g.op(x)
3 }
4 int apply() {
5 // f and g are aliases.
6 fst = Apply(this.f, fst);
7 snd = Apply(this.f, snd)
8 }

1 int apply(Op par) {
2 @open Op var = par;
3 fork {
4 var.op(1),
5 var.op(2)
6 }
7 }

Fig. 12. Open parameter g, on the left, and open variable var, on the right.

B Static Semantics: Omitted Details

Figure 13 shows the rest of the OpenEffectJ ’s typing rules omitted from §2.1. The rule
(T-PROGRAM) says that a program type checks if all its declarations type check. The rule
(T-CLASS) says that a class declaration type checks if all, all the newly declared fields
are not fields of its super class, checked by the auxiliary function validF, its super class
d is defined in the class table CT , checked by the auxiliary function isClass; and finally,
all its declared methods type check.

Figure 14 shows the auxiliary functions used in the typing rules. The auxiliary func-
tion override, used in (T-METHOD) requires that an overriding and overriden method in
a subtype and its supertype have compatible types for their parameters and return val-
ues. As discussed previously, because of the flexibility of open effects, this function
puts no restriction on the effects of the overriding and overriden methods. The oper-
ation u computes the intersection of two aliasing environments, i.e. A1 uA2 returns a
map containing the aliasing information that exists in both A1 and A2.

C Dynamic Semantics: Omitted Details

Figure 15 shows the dynamic semantics rules that were omitted from §3 along with

their auxiliary functions in Figure 16. The evaluation relation Σ
η

↪→ Σ ′ says that during

22 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

(T-PROGRAM)
∀decl ∈ decl. ` decl decl′ : OK ` e e′ : (t,σ ,A)

` decl e decl′ e′ : (t,σ ,A)

(T-CLASS)
∀[@open] t f ∈ f ield. validF(f ,d)

isClass(d) ∀meth ∈ meth. ` meth meth′ : (t ′,σ ,A) in c

` class c extends d { f ield meth } class c extends d { f ield meth′ } : OK

(T-GET)
Π ,A ` this : c

typeOf (f) = (d, [@open] t) c <: d

Π ,A ` this. f this. f : (t,rd(f),A)

(T-BINARY)
Π ,A ` x1 : int
Π ,A ` x2 : int

Π ,A ` x1 ◦ x2 : int

(T-VAR)
(x : t) ∈Π

Π ,A ` x : t

(T-NULL)
isClass(t)

Π ,A ` null : t

(T-NUM)
Π ,A ` n : int

(T-NEW)
isClass(c)

Π ,A ` new c() : c

(T-LOC)
(loc : t) ∈Π

Π ,A ` loc : t

(T-CONDITION)
Π ,A ` x : bool Π ,A ` e1 e′1 : (t,σ ,A1) Π ,A ` e2 e′2 : (t,σ ′,A2)

Π ,A ` if x then e1 else e2 if x then e′1 else e′2 : (t,σ ∪σ
′,A1uA2)

Fig. 13. OpenEffectJ ’s omitted type-and-effect rules

the evaluation, a configuration Σ transitions to another configuration Σ ′ producing the
runtime memory read and write effects of η . The field and object sensitive runtime
effect read(loc, f) repesents reading the field f of an object loc whereas write(loc, f)
shows writing into the field. The transition relation Σ ↪→ Σ ′ represents a transition with
no memory effects.

C.1 Proof of Effect Refinement

To prove the type-and-effect system of OpenEffectJ sound, we should prove that the
dynamic runtime effects of a program refine its static effects, that are computed by the
typing rules. We prove this using two theorems which say that:

(i) concretized effects are a sound approximation of statically computed effects, The-
orem 1; and

(ii) concretized effects soundly approximate runtime effects, Theorem 2.

Preliminary Definitions We first present some definitions used in the proofs of Theo-
rem 1 and Theorem 2.

Definition 2. [Dynamic Trace] A dynamic trace η for an execution of a program is the
sequence of dynamic effects η happening during its execution, where η can be a read
effect read(loc, f) for field f of the object loc, or a write effect write(loc, f).

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 23

CT (c) = class c extends d { f ield meth }
@meth ∈ meth. meth = t σ m(v var){e} override(m,d, t→ t)

override(m,c, t→ t)

(d, t,m(t var){e},σ) = findMeth(c,m)

override(m,c, t→ t)
override(m,Ob ject, t→ t)

CT (c) = class c extends d { f ield meth }
∃meth ∈ meth . meth = (t,σ ,m(t var){e})

findMeth(c,m) = (c, t,m(t var){e},σ)

CT (c) = class c extends d { f ield meth }
@meth ∈ meth . meth = (t,σ ,m(t var){e}) findMeth(d,m) = l

findMeth(c,m) = l

CT (c) = class c extends d { f ield meth }
@ f ield ∈ f ield . f ield = [@open] t f ; validF(f ,d)

validF(f ,c)
validF(f ,Ob ject)

class c extends d { f ield meth } ∈CT

isClass(c)

isClass(t)∨ (t = int)∨ (t = bool)

isType(t)

class c extends d{ field meth } ∈ CT ∃[@open] t f ∈ field

typeOf (f) = (c, [@open] t)

A1uA2 = {x = e | (A1 ` x = e)∧ (A2 ` x = e)}

Fig. 14. Rest of OpenEffectJ ’s auxiliary functions.

Definition 3. [Static effect inclusion] A static effect ε is included in an effect set σ ,
which may contain open effects, written as ε∈σ , if:

– either ε ∈ ↓C (σ);
– or ∃ open(f m σ ′) ∈ ↓O (σ) ∧ ε ∈ σ ′.

Definition 4. [Dynamic effect refines static effect] A dynamic runtime effect η refines
a static effect ε , written as η ∝ε , if:

– either η = read(loc, f)∧ ε ∈ {rd(f),wr(f)};
– or η = write(loc, f)∧ ε = wr(f).

In this definition, a write effect covers a read effect.

Definition 5. [Static effect refinement] An effect set σ ′ refines another effect set σ if
σ ′⊆σ .

24 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

Evaluation relation:
η

↪→: Σ
η

99K Σ

(SET)
[c.F.E] = µ(loc)

µ0 = µ⊕ (loc 7→ [c.(F⊕ (f 7→ v)).E])
µ
′ = update(µ0, loc, f ,v)

〈E[loc. f = v],µ〉
write(loc,f)
↪−−−−→

〈
E[v],µ ′

〉
(GET)
µ(loc) = [c.F.E] v = F(f)

〈E[loc. f],µ〉
read(loc,f)
↪−−−−→ 〈E[v],µ〉

(CALL)
(c′, t,m(t var){e},σ) = findMeth(c,m) [c.F.E] = µ(loc) e′ = [loc/this,v/var]e

〈E[loc.m(v)],µ〉 ↪→
〈
E[e′],µ

〉
(BINARY)

v = v1 ◦ v2

〈E[v1 ◦ v2],µ〉 ↪→ 〈E[v],µ〉

(DEFINE)
〈E[t var = v;e],µ〉 ↪→ 〈E[[v/var]e],µ〉

(CONDITION-TRUE)〈
E[if true then e else e′],µ

〉
↪→ 〈E[e],µ〉

(CONDITION-FALSE)〈
E[if false then e else e′],µ

〉
↪→
〈
E[e′],µ

〉

Fig. 15. OpenEffectJ ’s dynamic semantics rules.

CT (c) = class c extends d { field meth }
methods(c) = methods(d)∪{m | (t,σ ,m(t var){e} ∈ meth}

CT (c) = class c extends d { field meth }
fields(c) = fields(d)∪{ f | ([@open]t f) ∈ field}

typeOf (f) = (d, [@open] int)

default(f) = 0
typeOf (f) = (d, [@open] bool)

default(f) = false

typeOf (f) = (d, [@open] c)

default(f) = null

Fig. 16. Rest of OpenEffectJ ’s auxiliary functions its dynamic semantics.

Definition 6. [Effect equivalent stores] Two stores µ and µ ′ are effect equivalent, writ-
ten as µ ∼= µ ′, if:

– dom(µ)⊆ dom(µ ′); and
– ∀loc ∈ µ,µ(loc) = [c.F.E]⇒ µ ′(loc) = [c.F ′.E], for some F ′.

Definition 7. [Well-formed object] An object record o=[c.F.E] is a well-formed in µ ,
written as µ `o, if for all open effects open(f m σ0)∈σ ∈rng(E):

– either (F(f)= loc)∧ (µ(loc)=[c′.F ′.E ′])∧ (E ′(m)⊆σ0);

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 25

– or (F(f)=null)∧ (σ0= /0);
– or (typeOf (f) = (c, int));
– or (typeOf (f) = (c,bool)).

Definition 8. [Well-formed location] A location loc is well-formed in the store µ , writ-
ten µ ` loc, if:

– either µ(loc)= [c.F.E], ∀m∈ dom(E) . findMeth(c,m) = (c′, t,m(t var){e},σ ′)∧
(µ, /0) ` [loc/this]e :(σ ,A), then σ⊆E(m);

– or µ(loc)=null.

Definition 9. [Well-formed store] A store µ is well-formed, written as µ ` �, if ∀o ∈
rng(µ) . µ ` o and ∀loc ∈ dom(µ) . µ ` loc.

Effect Concretization. Figure 17 shows the rules for computation of concretized
effects for OpenEffectJ ’s expressions. In this figure, the effect judgement (µ,A)` e :
(σ ,A′) says that the expression e in a runtime configuration 〈µ,e〉 with store µ and
the aliasing environment A, has the concretized effect σ . The rule (E-CALL-OPEN) uses
the concretize auxiliary function in Figure 8 for concretization of effects of a dynam-
ically dispatched method invocation x0.m(x). The rules (E-GET) and (E-SET) assign a
concretized effect read(loc, f) and write(loc, f) to the field read and write expressions.
For other expressions, e.g. (T-DEFINE), their concretized effects is the union of the con-
cretized effects of their subexpressions.

Theorem 1: Concretized effects refine static effects. Given an expression e with
statically computed effects σs, which could contain open effects, and its dynamic con-
cretization σc, i.e. σc = concretize(σs), if Π ,A ` e e′ : (t,σs,A′) holds statically and
(µ,A) ` e′ : (σc,A′) dynamically for the runtime configuration 〈e′,µ〉, then σc ⊆ σs.

Proof: The proof is by a straightforward structural induction on the derivation of
Π ,A ` e e′ : (t,σ ,A′) and (µ,A) ` e′ : (σ ′,A′).

1. For the base cases (GET), (SET), (SET-OPEN), (VAR), (NULL), (GET), (NUM), (NEW),
(LOC), (BINARY), (CALL-PURE), (CALL), with no subexpressions, it is obvious that
the effects are the same in the typing rules, §2 and Figure 13, and the effect judg-
ment rules, Figure 17.

The remaining cases cover the induction step. The induction hypothesis (IH) is that
the claim of the lemma holds for all sub-derivations of the derivation being considered.

2. (IF).

Π ,A ` x x : (bool, /0,A)
Π ,A ` e0 e′0 : (t,σ0,A0) Π ,A ` e1 e′1 : (t,σ1,A1)

Π ,A ` if x then e0 else e1 if x then e′0 else e′1 : (t,σ0∪σ1,A0uA1)

(µ,A) ` x : (/0,A) (µ,A) ` e′0 : (σ ′0,A0) (µ,A) ` e′1 : (σ ′1,A1)

(µ,A) ` if x then e′0 else e′1 : (σ ′0∪σ
′
1,A0uA1)

By IH, σ0 ⊆ σ ′0 and σ1 ⊆ σ ′1. Therefore (σ ′ = σ ′0∪σ ′1)⊆ (σ0∪σ1 = σ).

26 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

(E-CALL-OPEN)
A ` x = loc. f

open(f m σ) = concretize(µ, loc,open(f m γ)) typeOf (f) = (d,@open c0)

(µ,A) ` x.m(x) : (σ ,A)

(E-CALL-LOC)
µ(loc) = [c.F.E] E(m) = σ

(µ,A) ` loc.m(x) : (σ ,A)

(E-CALL)
(µ,A) ` x.m(x) : (>, /0)

(E-GET)
(µ,A) ` x. f : (rd(f),A)

(E-GET-LOC)
(µ,A) ` loc. f : (rd(f),A)

(E-SET-OPEN)
typeOf (f) = (c,@open c0)

(µ,A) ` x. f = x′ : (>, /0)

(E-SET-OPEN-LOC)
typeOf (f) = (c,@open c0)

(µ,A) ` loc. f = x : (>, /0)

(E-SET)
typeOf (f) = (c, t)

(µ,A) ` x. f = x′ : (wr(f),A\ f ∪{x′ = x. f})

(E-SET-LOC)
typeOf (f) = (c, t)

(µ,A) ` loc. f = x : (wr(f),A\ f ∪{x = loc. f})

(E-NEW)
(µ,A) ` new c() : (/0,A)

(E-VAR)
(µ,A) ` var : (/0,A)

(E-NULL)
(µ,A) ` null : (/0,A)

(E-LOC)
(µ,A) ` loc : (/0,A)

(E-DEFINE)
(µ,A) ` e1 : (σ1,A1) (µ,A1;x = e1) ` e2 : (σ2,A2)

(µ,A) ` t var = e1;e2 : (σ1∪σ2,A2)

(E-BINARY)
(µ,A) ` x1 ◦ x2 : (/0,A)

(E-BINARY-LOC)
(µ,A) ` v1 ◦ v2 : (/0,A)

(E-NUMBER)
(µ,A) ` n : (/0,A)

(E-CONDITION)
(µ,A) ` e0 : (σ0,A0) (µ,A) ` e1 : (σ1,A1)

(µ,A) ` if x then e0 else e1 : (σ0∪σ1,A0uA1)

Fig. 17. OpenEffectJ ’s effect concretization rules.

3. (DEFINE).

Π ,A ` e1 e′1 : (t1,σ1,A1)
Π ;x : t,A1;x = e′1 ` e2 e′2 : (t2,σ2,A2)

t1 <: t
Π ,A ` t x = e1;e2 t x = e′1;e′2 : (t2,σ1∪σ2,A2)

(µ,A) ` e′1 : (σ ′1,A1)
(µ,A1;x = e′1) ` e′2 : (σ ′2,A2)

(µ,A) ` t var = e′1;e′2 : (σ ′1∪σ
′
2,A2)

By IH, σ ′1 ⊆ σ1 and σ ′2 ⊆ σ2. Therefore (σ ′ = σ ′1∪σ ′2)⊆ (σ1∪σ2 = σ).

Theorem 2: Dynamic effects refine concretized effects. 9 For two configurations
Σ = 〈e,µ〉 and Σ ′ = 〈e′,µ ′〉, if Σ transitions to Σ ′ producing runtime effect η , i.e.

Σ
η

↪→ Σ ′, if the store µ is well-formed, i.e. µ ` �, and concretized effects of e is σc, i.e.
(µ,A) ` e : (σc,A′), then there is a concretized effect σ ′c such that:

(a) (µ ′,A1) ` e′ : (σ ′c,A
′
1) and σ ′c ⊆ σc;

9 The theorem stated in §3 is the simplified version of the theorem presented here.

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 27

(b) η ∝ σc

We first state few lemmas which are used in the proof of the theorem.

Lemma 1. [Store preservation] Let the initial configuration of a program with a main

expression e be Σ?=〈e,•〉. If 〈e,•〉
η

↪→
∗
〈e′,µ ′〉, then µ ′ ` �.

Proof: The proof is by cases on the reduction step. In each case we show that µ ` �
implies that µ ′ ` �.

1. The cases (CONDITION-TRUE), (CONDITION-FALSE), (DEFINE), (CALL), (BINARY)
and (GET), are trivial, because they do not change the store, i.e., µ ′ = µ .

For all the remaining cases, to see µ ′ ` loc, consider the definition of initE. It returns
the effects computed by the static type-and-effect system, while the effect judgment is
more accurate (Figure 17), i.e., by observation if ((var : t,this : c), /0) ` e : (u,σ ,A)
and (µ, /0)` [loc/this]e :(σ ′,A), then σ ′ ⊆ σ , therefore µ ′ ` loc. Therefore, it suffices
to show all the objects o are well-formed, i.e., µ ′ ` o.

2. (NEW). Here e = E[new c()], e′ = E[loc], where loc /∈ dom(µ), µ ′ = µ ⊕{loc 7→
[c.{ f 7→ default(f) | f ∈ fields(c)}.{m 7→ σ ∈ initE(c)}]}. The only change to the
store µ is the new object o created: [c.{ f 7→ default(f) | f ∈ fields(c)}.{m 7→ σ ∈
initE(c)}]. All the fields are initiated to the default values, i.e., { f 7→ default(f) |
f ∈ fields(c)}. By the definition of initE (§3.2), all the open effects are initiated to
null. Therefore, µ ′ ` o.

3. (SET). Here e = E[loc. f = v], e′ = E[v], µ ′= µ⊕(loc 7→o), and o = [u.F⊕(f 7→
v).E], where µ(loc)=[u.F.E] and typeOf (f) = (c, t) for some c and t. The field f
is not an open field, and by the function update, it does not update any effect, and
µ ′ ` o.

4. (SET OPEN), Here e=E[loc. f = v], e′=E[v], where µ0 = µ⊕ (loc 7→ [c.(F⊕ (f 7→
v)).E]), and µ ′ = update(µ0, loc, f ,v). The proof is by observation/construction of
the update function. Each time it updates an object, it copied the corresponding
effects of updated object and put it in the open effect (see the concretize function).

Lemma 2. [Stationary effect] Let e be an expression, and µ and µ ′ two effect equiva-
lent stores, i.e. µ ∼= µ ′, then the expression e has the same effects in the two stores µ

and µ ′. In other words if (µ,A) ` e : (σ ,A′), then (µ ′,A) ` e : (σ ,A′).

Proof: The proof is by induction on the structure of the expression e.

1. Cases of (NEW), (NULL), (LOC), (NUMBER), (BINARY) and (VAR) are trivial, since
in these cases, σ ′ = σ = /0.

For the remaining steps, the induction hypothesis (IH) says that the claim of the lemma
holds for all sub-derivations of the derivation being considered.

2. The cases for (CONDITION), (DEFINE), (GET) and (SET) follow directly from IH.

28 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

3. (IF).

(µ,A) ` x : (/0,A) (µ,A) ` e0 : (σ0,A0) (µ,A) ` e1 : (σ1,A1)

(µ,A) ` if x then e0 else e1 : (σ0∪σ1,A0uA1)

(µ ′,A) ` x : (/0,A) (µ ′,A) ` e0 : (σ ′0,A0) (µ ′,A) ` e1 : (σ ′1,A1)

(µ ′,A) ` if x then e0 else e1 : (σ ′0∪σ
′
1,A0uA1)

By IH, σ ′0 = σ0 and σ ′1 = σ1. Therefore (σ ′ = σ ′0∪σ ′1) = (σ = σ0∪σ1).
4. (DEFINE)

(µ,A) ` e1 : (σ1,A1) (µ,A1;x = e1) ` e2 : (σ2,A2)
(µ,A) ` t var = e1;e2 : (σ1∪σ2,A2)

(µ ′,A) ` e1 : (σ ′1,A1) (µ ′,A1;x = e1) ` e2 : (σ ′2,A2)
(µ ′,A) ` t var = e1;e2 : (σ ′1∪σ

′
2,A2)

By IH, σ ′1 = σ1 and σ ′2 = σ2. Therefore (σ ′ = σ ′1∪σ ′2) = (σ = σ1∪σ2).
5. (GET)

(µ,A) ` loc. f : (rd(f),A) (µ ′,A) ` loc. f : (rd(f),A)

Therefore σ ′ = σ = rd(f).
6. (SET)

(µ,A) ` x : (/0,A) typeOf (f) = (c, t)
(µ,A) ` loc. f = x : (wr(f),A\ f ∪{x = loc. f}})

(µ ′,A) ` x : (/0,A) typeOf (f) = (c, t)
(µ ′,A) ` loc. f = x : (wr(f),A\ f ∪{x = loc. f}})

Thus σ ′ = σ = wr(f).
7. (SET-OPEN)

typeOf (f) = (c,@open t)
(µ,A) ` e0. f = e1 : (>, /0)

typeOf (f) = (c,@open t)
(µ ′,A) ` e0. f = e1 : (>, /0)

Thus σ ′ = σ =>.
8. (CALL-OPEN)

A ` x = loc. f
open(f m σ

′
0) = concretize(µ, loc,open(f m γ)) typeOf (f) = (d,@open c0)

(µ,A) ` x.m(x) : (σ ′0,A)

A ` x = loc. f
open(f m σ

′
1) = concretize(µ ′, loc,open(f m γ)) typeOf (f) = (d,@open c0)

(µ ′,A) ` x.m(x) : (σ ′1,A)

By IH, (σ ′ = σ ′0) = (σ = σ ′1).

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 29

9. (CALL-LOC)

µ(loc) = [c.F.E] E(m) = σ0

(µ,A) ` loc.m(x) : (σ0,A)
µ
′(loc) = [c.F.E] E(m) = σ

′
0

(µ ′,A) ` loc.m(x) : (σ ′0,A)

Since µ ∼= µ ′, the effect maps E are the same and σ0 = σ ′0. Thus (σ ′ = σ ′0) = (σ =
σ0).

10. (CALL)

(µ,A) ` x.m(x) : (>, /0) (µ ′,A) ` x.m(x) : (>, /0)

Thus σ ′ = σ =>.

Lemma 3. [Replacement with subeffect]

If µ ` �, Σ
η

↪→ Σ ′, Σ = 〈E[e],µ〉, Σ ′ = 〈E[e′],µ ′〉, (µ,A) ` E[e] : (σ ,A′), (µ,A) `
e : (σ0,A′0), (µ,A) ` e′ : (σ1,A′0), µ ∼= µ ′, and σ1 ⊆ σ0, then (µ,A) ` E[e′] : (σ ′,A′) ∧
σ ′ ⊆ σ .

For two expression e and e′, in the configurations Σ = 〈E[e],µ〉 and Σ ′ = 〈E[e′],µ ′〉
such that Σ

η

↪→ Σ ′, if the store µ is well-formed, i.e. µ ` �, and the expression e has
the effects σ0, i.e. (µ,A) ` e : (σ0,A′0) and E[e] has the concrete effects σ , i.e. (µ,A) `
E[e] : (σ ,A′), and µ ∼= µ ′, and σ1 ⊆ σ0, then (µ,A) ` E[e′] : (σ ′,A′) ∧ σ ′ ⊆ σ .

Lemma 3 says that given two effect equivalent stores, and the same evaluation con-
text, if the effect of the subsequent expression e′ refines the original expression e, then
the effect of the entire subsequent expression E[e′] refines the entire original expression
E[e].

Proof: The proof is by induction on the size of the evaluation context E. The size of
the E is the number of recursive applications of the syntactic rules necessary to create
E.

1. For the base case E=−, the size of E is zero , and (σ ′ = σ1)⊆ (σ = σ0).

For the induction step we divide the evaluation context into two parts such that E[e1] =
E1[E2[e2]], and E2 has the size one. The induction hypothesis (IH) says that the lemma
holds for all evaluation contexts, which their sizes are smaller than the one (E1) con-
sidered in the induction step. We prove it case by case on the rule used to generate E2.
In each case we show that (µ,A) ` E2[e] : (σ ,A′) implies that (µ ′,A) ` E2[e′] : (σ ′,A′),
for some σ ′ ⊆ σ , and thus the claim holds by the IH.

2. For (E-DEFINE), (E-GET) and (E-SET) the proof follows directly from the IH.
3. (E-SET-OPEN) holds because in this case σ =>.

Lemma 4. [Substitution effect] If (µ,A) ` e : (σ ,A′), then there is some σ ′, such that
(µ,A)` [v/var]e : (σ ′,A′), for all values v in v and free variables var in var, and σ ′⊆σ .

Proof: The proof is by structural induction on the derivation of (µ,A)`e : (σ ,A′) and
by cases, based on the last step in that derivation.

30 Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan

1. Proof for (E-NEW), (E-NULL), (E-LOC) is trivial, since e has no variables, σ ′=σ =
/0.

2. For (E-VAR) case, (µ,A)`v :(/0,A) and (µ,A)`var=(/0,A).

The remaining cases cover the induction step. The induction hypothesis (IH) is that
the claim of the lemma holds for all sub-derivations of the derivation being considered.

3. For (E-CONDITION), (E-BINARY), (E-GET) and (E-DEFINE) the proof follows di-
rectly from the IH.

4. The case for (E-SET-OPEN) and (E-CALL) hold because in these cases > ∈ σ . The
effect of e is > and every effect refines >.

5. (E-CALL-OPEN)

A ` x = loc. f
open(f m σ) = concretize(µ, loc,open(f m γ)) typeOf (f) = (d,@open c0)

(µ,A) ` x.m(x) : (σ ,A)

Let e′i = [v/var]xi for i ∈ {1..n}, [v/var]e = x.m(e′). They result in the same effect
by (E-CALL-OPEN).

6. (E-CALL-LOC)

µ(loc) = [c.F.E] E(m) = σ

(µ,A) ` loc.m(x) : (σ ,A)

Let e′i = [v/var]xi for i∈{1..n}, then [v/var]e= loc.m(v). Clearly (µ,A)` [v/var]e :
(σ ,A).

7. (E-SET)

typeOf (f) = (c, t)
(µ,A) ` loc. f = x : (wr(f),A\ f ∪{x = loc. f})

Now [v/var]e=(loc. f =[v/x]x). (µ,A)` [v/x]x :(/0,A). By the definition of typeOf ,
the result of typeOf (f) remains unchanged, i.e. typeOf (f)=(c, t).

Lemma 5. [Subexpression effect containment] If (µ,A)`e : (σ ,A0) and (µ,A)`E[e] :
(σ ′,A′0), then σ⊆σ ′.

Proof: By the effect rule for each expression, the effect of any direct subexpression is
a subset of the entire expression.

C.2 Proof of Theorem 2

Using Lemma 2 and Lemma 3. To prove Theorem 2, in each reduction case, let
e=E[e0], e′=E[e1], (µ,A)`e0 :(σ0,A′) and (µ ′,A)`e1 :(σ1,A′). Given that (a) µ∼=µ ′,
by Lemma 3 and Lemma 2, to prove (b), it suffices to prove σ1 ⊆ σ0. We divide the
cases into 3 categories: in the first category, some variables (var) will be replaced by
actual values (v); the cases, in the second category, access the store; and the other cases
are listed right below. Here the rule leaves no dynamic trace, and (c) holds.

Open Effects: Programmer-guided Effects for Open World Concurrent Programs 31

– (NEW) Here e = E[new c()], e′ = E[loc], where loc /∈ dom(µ), µ ′ = µ ⊕{loc 7→
[c.{ f 7→ default(f) | f ∈ fields(c)}.{m 7→ σ ∈ initE(c)}]}. Because this rule does
not change any object, µ ∼= µ ′. Also (µ,A) ` new c() : (/0,A) and (µ,A) ` loc :
(/0,A), and (b) holds.

– (BINARY) Here e = E[v1 ◦ v2], e′ = E[v], where v = v1 ◦ v2, µ ′ = µ . It is trivial to
see that (b) holds.

Using Lemma 4. We now present the case for method call and local declaration.

– (CALL) Here e=E[loc.m(v)], (u′, tm,m(t var){e2},σm)=findMeth(u,m), e′=E[e1],
e1=[loc/this,v/var]e2, µ(loc)=[u.F.E]. Let (µ,A)`loc.m(v):(σ0,A), i.e., E(m)=
σ0. Let e3=[loc/this]e2, (µ,A)`e3 :(σ3,A3) and (µ,A)`e1 :(σ1,A1). By Lemma 4,
σ1⊆σ3. By µ `�, Definition 8 and Definition 9, σ3⊆σ0, thus σ1⊆σ0.

– (DEFINE) Here e = E[t var = v;e1], and e′ = E[e′1], where e′1 = [v/var]e1. Let
(µ,A) ` e1 : (σ0,A0), by (E-DEFINE), (µ,A) ` t var = v;e1 : (σ0,A0). (µ,A) `
[v/var]e1 : (σ1,A0), for some σ1 ⊆ σ0, by Lemma 4.

Using Lemma 5. We prove cases for field accesses:

– (GET) Here e = E[loc. f], e′ = E[v], where µ(loc) = [u.F.E], F(f) = v, µ ′ = µ

and µ ∼= µ ′. Because (µ,A) ` loc. f : (rd(f),A), and (µ ′,A) ` v : (/0,A), (b) holds.
Finally, η = (read(loc, f)), and η ∝ rd(f)⊆ σ , by Lemma 5.

– (SET) Here e=E[loc. f = v], e′=E[v], µ ′= µ⊕(loc 7→o), and o= [u.F⊕(f 7→v).E],
where µ(loc)=[u.F.E] and typeOf (f) = (c, t) for some t and c. The field is not an
open field, and by the function update, it does not update any effect, and µ ∼= µ ′.
To see (µ,A) ` E[v] : (σ ′,A′) and σ ′ ⊆ σ , we have (µ,A) ` loc. f = v : (wr(f),A),
and (µ,A)`v :(/0,A), thus σ ′ ⊆ σ . Finally, η = (write(loc, f)), and η ∝ wr(f)⊆ σ ,
by Lemma 5.

– (SET OPEN) Here e=E[loc. f = v], e′=E[v], where µ0 = µ⊕ (loc 7→ [c.(F⊕ (f 7→
v)).E]), and µ ′ = update(µ0, loc, f ,v). The effect of e is > and every effect refines
>.

	
	Yuheng Long and Mehdi Bagherzadeh and Hridesh Rajan
	Introduction
	Contributions

	Open Effects: A Hybrid Type-and-Effect System
	Static Semantics
	Type-and-Effect Attributes
	Type-and-Effect Rules
	Disjointness
	Fork: An Example Use Case of Disjointness
	Alias Analysis: An Example Static Analysis

	Dynamic Dispatch and Open World Assumption

	A Dynamic Semantics with Open Effects
	Dynamic Semantics Objects
	Tracking and Updating of Open References
	Soundness of Open Effects

	Evaluation: Speedup and Overhead of Open Effects
	Setup
	Performance Evaluation
	Concretization of Open Effects for Nested Objects

	Related Work
	Conclusion and Future Work
	References
	Open Parameters and Local Variables
	Static Semantics: Omitted Details
	Dynamic Semantics: Omitted Details
	Proof of Effect Refinement
	Preliminary Definitions

	Proof of Theorem 2

