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ABSTRACT
Many programmers find writing and reasoning about concurrent
programs difficult and can benefit from better abstractions for con-
currency. A promising class of such concurrency abstractions com-
bines state and control within a single linguistic mechanism and
uses asynchronous messages for communications, e.g. active ob-
jects or actors. One hurdle is the need to adapt to an asychronous
style of programming. We believe that most benefits of actor-like
abstractions can be brought to sequentially-trained programmers
via a more familiar synchronous model. We call this model capsule-
oriented programming, where programmers describe a system in
terms of its modular structure and write sequential code to imple-
ment the operations of those modules using a new abstraction that
we call capsule. Capsule-oriented programs look like familiar se-
quential programs but they are implicitly concurrent. We present
Panini, a capsule-oriented programming language, and its compiler,
which help programmers avoid two classes of concurrency errors:
sequential inconsistency and data races due to sharing. We have
refactored the Java Grande and NPB benchmarks (>134,000 LOC)
using Panini, leading to simpler and shorter programs that perform
as well as the parallel versions provided with the benchmarks.

1. INTRODUCTION
Modern software systems tend to be distributed, event-driven,

and asynchronous, often requiring components to maintain multi-
ple threads for message and event handling. In addition, there is
increasing pressure on developers to introduce concurrency into
applications in order to take advantage of multicore processors to
improve performance. Yet concurrent programming stubbornly re-
mains difficult and error-prone. First, a programmer must parti-
tion the overall system workload into tasks. Second, tasks must
be associated with threads of execution in a manner that improves
utilization while minimizing overhead; note that this set of deci-
sions is highly dependent on characteristics of the platform, such as
the number of available cores. Finally, the programmer must man-
age the dependence, interaction, and potential interleaving between
tasks to maintain the intended semantics and avoid concurrency
hazards, often by using low-level primitives for synchronization.
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For the programmer to address these issues, better abstractions are
needed that can hide the details of concurrency and allow them to
focus on the program logic.

The significance of better abstractions for concurrency is not
lost on the research community. Some key ideas from the last two
decades include: guardians [25], active objects [23, 32], and ac-
tors [3], all of which combine state and control within a single lin-
guistic mechanism and use asynchronous messages for communi-
cations. We believe that a major gap remains. There is an impedance
mismatch between sequential and implicitly concurrent code writ-
ten using actor-like abstractions that is hard for a sequentially trained
programmer to overcome. These programmers typically rely upon
the sequence of operations to reason about their programs.

Contributions. We present capsule-oriented programming to
address the challenges of concurrent programming. A central goal
of this programming style is to provide tools to enable program-
mers to simply do what they do best, that is, to describe a system
in terms of its modular structure [34] and write sequential code to
implement the operations of those modules. To achieve this, we in-
troduce a new abstraction that we call capsule. A capsule is similar
to a process in CSP [21]; it defines a set of public operations, and
also serves as a memory region for some set of ordinary objects.

One goal in capsule-oriented programming is that the program-
mer should get the benefits of asynchronous execution without be-
ing forced to adapt to an asynchronous, message-passing style of
programming. To the programmer, inter-capsule calls look like or-
dinary method calls. Capsule-oriented programs are implicitly con-
current. There are no explicit threads or synchronization locks; if
necessary or beneficial, concurrency is introduced by the compiler.
Capsule-oriented programming eliminates two classes of concur-
rency errors: sequential inconsistency and race conditions due to
shared data.

We have realized the basic ideas behind capsule-oriented pro-
gramming in an extension of Java that we call Panini (§3) and have
implemented a compiler for Panini by extending the industry stan-
dard javac compiler (§4). Our experience with over 134,000 lines
of capsule-oriented programs shows that they are simpler, shorter,
and have performance comparable to explicitly concurrent versions
written by expert benchmark programmers (§5 and §6).

2. MOTIVATION
To illustrate the challenges of concurrent program design, con-

sider a simplified navigation system. The system consists of four
components: a route calculator, a maneuver generator, an interface
to a GPS unit, and a UI. The UI requests a new route by invok-
ing a calculate operation on the route calculator, assumed to be
computationally intensive. When finished, the route is passed to the
maneuver generator via method setNewRoute. The GPS inter-



Java program with explicit concurrency

1 class ManeuverGen {
2 private Route currentRoute;
3 private Position currentPosition ;
4 private UI ui ;
5 public synchronized void setNewRoute(Route r) {
6 currentRoute = r;
7 }
8 public synchronized void updatePosition(Position p) {
9 currentPosition = p;

10 final Position temp = p;
11 Runnable r = new Runnable() {
12 public void run() {ui .updatePosition(temp);}
13 };
14 SwingUtilities .invokeLater(r) ;
15 final Instruction inst = nextManeuver();
16 if ( inst != null) {
17 r = new Runnable() {
18 public void run() { ui .announceNextTurn(inst); }
19 };
20 SwingUtilities .invokeLater(r) ;
21 }
22 }
23 public synchronized Position getCurrentPosition() {
24 return currentPosition ;
25 }
26 private Instruction nextManeuver() {/∗ ... ∗/}
27 }
28 interface Calculator {void calculate(Position dst) ;}
29 class Shortest implements Calculator {
30 private ManeuverGen mg;
31 public Shortest(ManeuverGen mg) {this.mg = mg;}
32 public void calculate( final Position dst) {
33 Thread t = new Thread(new Runnable() {
34 public void run() {
35 Route r = helper(mg.getCurrentPosition(), dst) ;
36 mg.setNewRoute(r);
37 }
38 }) ;
39 t . start () ;
40 }
41 private Route helper(Position src, Position dst) {/∗ ∗/}
42 }
43 class GPS {
44 private ManeuverGen mg;
45 public GPS(ManeuverGen mg) {this.mg = mg;}
46 public void runLoop() {
47 while (true) mg.updatePosition( readData() );
48 }
49 private native Position readData();
50 }

Java program, con’t
51 class UI { /∗ provides updatePosition, announceNextTurn ∗/ }
52 class Navigation {
53 public static void main(String[] args) {
54 ManeuverGen mg = new ManeuverGen();
55 Calculator rc = new Shortest(mg);
56 final GPS gps = new GPS(mg);
57 Thread t = new Thread(new Runnable() {
58 public void run() { gps.runLoop(); }
59 }) ;
60 t . start () ;
61 //
62 // Also create and start UI, details not shown
63 //
64 }
65 }

Implicitly concurrent Panini program
66 capsule ManeuverGen (UI ui) { // Requires an instance of capsule UI
67 Route currentRoute = null; // A capsule state
68 Position position = null ;
69 void setNewRoute(Route r) { currentRoute = r; } // A capsule procedure
70 void updatePosition(Position p) {
71 position = p;
72 ui .updatePosition(p); // Inter−capsule procedure call
73 Instruction inst = nextManeuver();
74 if ( inst != null) ui .announceNextTurn(inst);
75 }
76 Position getCurrentPosition() { return position ; }
77 private Instruction nextManeuver() {/∗ ... ∗/} // A helper procedure
78 }
79 signature Calculator { void calculate(Position dst) ; }
80 capsule Shortest (ManeuverGen m) implements Calculator {
81 void calculate(Position dst) {
82 Route r = helper(m.getCurrentPosition(), dst) ;
83 m.setNewRoute(r);
84 }
85 private Route helper(Position src, Position dst) {/∗ ... ∗/}
86 }
87 capsule GPS (ManeuverGen mg) {
88 void run() {
89 while (true) mg.updatePosition( readData() );
90 }
91 private native Position readData();
92 }
93 capsule UI { /∗ provides updatePosition, announceNextTurn ∗/ }
94 system Navigation {
95 UI ui ; ManeuverGen m ; Shortest r ; GPS g ; // Capsule instances
96 m (ui) ; r (m) ; g (m) ; // Wiring capsule instances
97 }

Figure 1: Programs for a simplified navigation system. Classes Position, Route, and Instruction are elided.

face continually parses the data stream from the hardware and up-
dates the maneuver generator with the current position via method
updatePosition. The maneuver generator checks the position
against the current route and generates a new turn instruction for
the UI if needed (not computationally intensive).

The modular structure of the system is clear from the description
above, and it is not difficult to define four Java classes with appro-
priate methods corresponding to this design. However, the system
will not yet work. The programmer is faced with a number of non-
trivial decisions: Which of these components needs to be associ-
ated with an execution thread of its own? Which operations must
be executed asynchronously? Where is synchronization going to be
needed? A human expert might reach the following conclusions,
shown in the listing in Figure 1.

• A thread is needed to read the GPS data (lines 57-60)
• The UI, as usual, has its own event-handling thread. The calls

on the UI need to pass their data to the event handling thread
via the UI event queue (lines 10–14 and 17–20)

• The route calculation needs to run in a separate thread; other-
wise, calls to calculateRoute will "steal" the UI event thread
and cause the UI to become unresponsive (lines 33–39)

• The ManeuverGen class does not need a dedicated thread,
however, its methods need to be synchronized, since its data
is accessed by both the GPS thread and the thread doing route
calculation (lines 5, 8, and 23)

None of the conclusions above, in itself, is difficult to imple-
ment in Java. Rather, in practice it is the process of visualizing the
interactions between the components, in order to reach those con-
clusions, that is extremely challenging for programmers [28, 2].

3. THE PANINI LANGUAGE
A central goal of capsule-oriented programming and the Panini

language is to help sequentially trained programmers deal with the
challenges of concurrent program design.

Overview. The Panini programmer specifies a system as a col-
lection of capsules and ordinary object-oriented classes. A capsule



is an abstraction for decomposing a software into its parts and a
system is a mechanism for composing these parts together.12 A
capsule is like Parnas’s information-hiding module [34] in that it
defines a set of public operations, hides the implementation details,
and could serve as a work assignment for a developer or a team of
developers. Beyond these standard responsibilities, a capsule also
serves as a memory region, or ownership domain [11, 10], for some
set of standard object instances and behaves as an independent logi-
cal process [21]. Inter-capsule calls look like ordinary method calls
to the programmer. The object-oriented features are standard, but
there are no explicit threads or synchronization locks in Panini.

3.1 Declarations in Panini
A program in Panini can have zero or more signature declara-

tions, zero or more class declarations, zero or more capsule decla-
rations, and a system declaration.

Signature. A signature declaration in Panini contains one or
more abstract procedure signatures. An example signature declara-
tion Calculator appears on line 79 in Figure 1. Each procedure
signature has a return type, a name, and zero or more formal pa-
rameters. This syntax is similar to interfaces in Java, except that for
simplicity we do not allow signature inheritance.

Capsule. A capsule declaration consists of the keyword ‘cap-
sule’, the name of the capsule, zero or more formal parameters rep-
resenting dependencies on other capsules, and zero or more signa-
tures representing services that the capsule provides, followed by
the capsule’s implementation. This is similar to both the Mesa [31]
and nesC [16] languages. Each procedure declaration in every sig-
nature implemented by the capsule must match in entirety with ex-
actly one capsule procedure. Panini does not have capsule inheri-
tance but does have class inheritance. The primary mechanism for
reuse of capsules is composition.

The example in Figure 1 contains four capsule declarations. The
capsule ManeuverGen requires a UI capsule instance on line 66,
(UI ui). Similarly, the capsule Shortest declares that it re-
quires an instance of ManeuverGen capsule and it provides the
Calculator signature on line 80. After a capsule instance is cor-
rectly initialized, expressions inside a capsule instance may access
these imported capsule instances using their names, e.g., ui. Like
ML modules [29], Panini capsule instances are not first-class values
so capsule instances may not be passed as arguments to methods or
stored in capsule states or object fields.

A capsule implementation consists of zero or more state decla-
rations, zero or more capsule procedures, and zero or more internal
class declarations. A state declaration has a class type, a name, and
optionally an initialization expression, so in that sense it is similar
to a field in traditional class declarations, except that a capsule in-
stance controls all accesses to the object graph reachable from its
states, i.e., a capsule instance acts as a dominator for the graph [11].
All state declarations are private to a capsule, therefore, no visibil-
ity modifiers are necessary. Two examples appear on lines 67-68 in
Figure 1.

A capsule procedure has a return type, a name, zero or more ar-
guments, and a body. Helper procedures can be declared by qualify-
ing them with a modifier private. All capsule procedures, except
helper procedures, constitute the interface of the capsule. There is
one designated optional capsule procedure run representing that
the capsule can start computation without external stimuli.

1The intent of capsule, a modeling notation in UML-RT and
ROOM [39] is similar in that there is an activity, a state machine
and an interface, but Panini capsules are a language feature.
2Unrelated to CAPSULE [27] a stream processing framework.

A capsule can also contain standard object-oriented class decla-
rations. These class declarations are considered internal to the cap-
sule and are not visible outside the capsule. A class declaration that
is used across two or more capsules should be declared outside a
capsule, as is usual in object-oriented languages.

System Declaration. A system declaration is a declarative static
specification of the topology of capsule instances that would be
present in the program. The system declaration for the navigation
system appears on lines 94-97 in Figure 1; line 95 specifies the
capsule instances that will be participating in this system, e.g., an
instance of UI; and line 96 specifies how these instances are con-
nected, e.g., the GPS instance g is connected to the ManeuverGen
instance m. The topology of capsules is fixed for a program and
does not change dynamically, which facilitates more precise static
analysis of capsule interactions (§4). Arrays of capsule instances of
fixed length can also be declared.

Design Rationale for Capsules. At first glance a capsule decla-
ration may look similar to a class declaration, thus naturally raising
the question as to why a new syntactic category is essential, and
why class declarations may not be enhanced with the additional
capabilities that capsules provide, namely, confinement (as in Er-
lang [4]) and an activity thread (as in previous work on concurrent
OO languages [8, 44, 40]).There are three main reasons for this de-
sign decision in Panini. First, we believe based on previous experi-
ences that objects may be too fine-grained to think of each one as a
potentially independent activity [33]. Second, we wanted to specify
a system as a set of related capsules with a fixed topology, in order
to make it feasible to perform static analysis of the system graphs
described in §4; this implies that capsules should not be first-class
values. Third, there is a large body of OO code that is written with-
out any regard to confinement. Changing the semantics of classes
would have made reusing this vast set of libraries difficult, if not
impossible. In the current design of Panini, since syntactic cate-
gories are different, sequential OO code can be reused within the
boundary of a capsule without needing any modification.

3.2 Informal Semantics
Any capsule with a run procedure begins executing indepen-

dently as soon as the initialization and interconnection of all cap-
sules is complete and may generate calls to the procedures of other
capsules. For example, referring to Figure 1, capsule GPS will run
code on lines 88-90. Capsules without a run procedure, such as
Shortest and ManeuverGen, perform computation only when
their procedures are invoked.

As discussed in more detail in §4, even a capsule without a run
procedure may be associated with an independent execution thread.
Thus, in any nontrivial Panini program there will be issues of thread-
safety to address for all capsules. Thread-safety is primarily en-
sured by confining the object graphs rooted at each capsule’s states,
i.e., only a single execution thread has access to the states of a cap-
sule. In inter-capsular calls, built-in and immutable types are passed
and returned by value, whereas reference types are passed by linear
transfer of ownership for the object graph rooted at the parameter
object or result object.

Although capsule procedures may execute asynchronously, the
programmer does not have to program in a message-passing style.
A call to a capsule procedure behaves like an ordinary method call.
Calling a capsule procedure may have side-effects on the state of
the capsule instance, e.g., reading or writing state, and may also
lead to external calls to other capsule procedures. For two consec-
utive procedure calls on the same capsule instance, the side-effects
of the first procedure call are always visible to the second proce-
dure call to provide sequential consistency. However, it is also pos-



sible that two calls on different capsules ultimately lead to effects
within a single capsule, and we also ensure that effects of consecu-
tive calls, as observable within a given capsule, are always seen in
the order intended by the programmer.

Navigation system revisited. Compared to the explicitly con-
current Java program on lines 1-65 in Figure 1, the Panini program
on lines 66-97 is an implicitly concurrent program. Owing to the
declarative nature of some Panini features, this program is much
shorter compared to the Java program. Most importantly, this ex-
ample illustrates some of the key advantages of the Panini approach
for programmers. These are:

• They don’t need to create explicit threads or specify whether
a given capsule needs its own thread of execution.

• They don’t need to recognize or reason about potential data
races.

• They work within a familiar method-call style interface with
a reasonable expectation of sequential consistency.

• All synchronization-related details are abstracted away and
are fully transparent to them.

4. THE PANINI COMPILER
To show the feasibility of realizing capsule-oriented program-

ming in an industrial-strength compiler, we extended the Open-
JDK Java compiler (javac) to add support for capsule-oriented pro-
gramming to create the Panini compiler. We considered library and
annotation-based approaches instead of extending syntax for Java,
but the notation burden of these alternatives was significant enough
to hamper usability, so we went with syntax changes.

There were three major challenges: how to detect confinement
violations, how to detect the possibility of sequential inconsistency,
and how to realize capsules while minimizing overhead.

Confinement. Within a capsule, thread-safety is primarily en-
sured by confinement: only a single capsule instance has access to
the objects belonging to the instance. Confinement in itself is gener-
ally insufficient, however, since mutable objects can still be passed
as arguments to inter-capsule procedure calls and returned as val-
ues. Unlike Erlang, which enforces that all data is immutable [4],
or Scala actors with capabilities [19], which use an ownership type
system [11, 10], we have adapted a static analysis for confine-
ment [18] that tracks variables used as parameters in inter-capsule
procedure calls and in return statements of public procedures.

Sequential consistency. In Panini, all instances of capsules in
a system and all interconnections between them are declared stat-
ically; there is no inheritance for capsules and references to them
cannot be passed as procedure arguments. The compiler exploits
these properties to efficiently construct a system graph showing de-
pendencies between capsule instances. In addition, when compiling
a system declaration the compiler produces a more detailed inter-
procedural system graph in which the nodes are capsule procedures
and edges are interprocedural calls. The compiler detects cases in
which two calls lead to observable effects within the same cap-
sule instance and provides a warning to the programmer. In some
cases, that warning may be benign, and we provide an annotation
Commutes for the programmer to express that. Our current pro-
totype does not check whether this annotation is correctly placed,
however, Diniz and Rinard’s commutativity analysis could be ap-
plied [13]. If two calls are made to the same capsule instance, the
FIFO ordering of messages (see below) ensures that effects within
that capsule instance will occur in order.

Execution model. A capsule instance is a potential execution
domain as well as an ownership domain for its state. An important
feature of Panini is that the specification of capsules by the pro-
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Figure 2: A capsule. Procedure invocations are enqueued as re-
quests on the Message Ring Buffer. Requests are processed by
an execution thread in FIFO order.

grammer is decoupled from the decisions about how to map each
capsule’s activities to OS threads. Logically, each capsule is an in-
dependent process-like entity, and the invocation of a capsule pro-
cedure triggers creation of a request object that is placed on a FIFO
queue (the message ring buffer shown in Figure 2). In the default
implementation, requests are executed in FIFO order by a single
thread associated with the capsule instance.

From the caller’s point of view, invoking a capsule procedure
looks like an ordinary method call. The call returns immediately
and the caller receives a future as a proxy for the actual return value
(void return values are allowed). The future is completely transpar-
ent to the programmer, that is, it is an automatically generated type
that is consistent with the expected return value [35]. If the value
is not used immediately, the caller can continue execution. An at-
tempt by the caller to invoke a method on the returned future will
cause the caller to block until the callee has finished executing the
procedure, automatically providing a synchronization point.

5. FURTHER APPLICATIONS
In coarse-grained concurrent applications, such as the simplified

navigation system illustrated in Figure 1, the main motivation is
not necessarily to achieve parallel execution but rather to correctly
and safely model components that are “logically autonomous” [24].
These kinds of asynchronous, event-driven systems are the obvi-
ous candidates for Panini. However, the capsule abstraction also
adapts easily to other styles of parallel programming, while retain-
ing Panini’s advantages of abstracting away the concurrency con-
trol mechanisms and ensuring data confinement.

Master-worker example. As an example, Figure 3 is a simple
parallel program in which a number of “worker” tasks execute a
Monte Carlo approximation of π in parallel; a “master” task com-
bines the results as the workers finish. Each call to compute on
line 17 executes asynchronously in an instance of a Worker cap-
sule; the returned Number object is transparently replaced by a fu-
ture for the eventual result. The futures provide an implicit barrier;
that is, in the call to value on line 19, the execution of the run
procedure in master capsule blocks until the corresponding Worker
has finished computing its result.

The explicitly concurrent Java program has the applications’s
concerns tangled with the concurrency concerns, whereas the Panini
program abstracts away the details of concurrency. As Figure 3
shows, the performance of the Panini program is comparable to
that of the thread-based program. A more significant potential ben-
efit is that the Panini compiler can be employed to guard against
race conditions when parallelism is introduced into an application.

Thread pool example. Figure 4 shows the Java and Panini code
for a simplified server using a thread pool implemented using a



Java program with threads and synchronization

1 class Worker implements Runnable {
2 long num;
3 private final CountDownLatch doneSignal;
4 Worker(long num, CountDownLatch doneSignal) {
5 this .num = num;
6 this .doneSignal = doneSignal;
7 }
8 Random prng = new Random ();
9 Number _circleCount = null; //Emulates return value of worker

10 Number getCircleCount() { return _circleCount; }
11 public void run() {
12 _circleCount = new Number(0);
13 for (long j = 0; j < num; j++) {
14 double x = prng.nextDouble();
15 double y = prng.nextDouble();
16 if ((x ∗ x + y ∗ y) < 1) _circleCount. incr () ;
17 }
18 doneSignal.countDown();
19 }
20 }
21 class Master {
22 void assign(long totalCount, int numWorkers) {
23 CountDownLatch l = new CountDownLatch(numWorkers);
24 Worker[] workers = new Worker[numWorkers];
25 for ( int i = 0; i < numWorkers; ++i) {
26 workers[i ] = new Worker(totalCount/numWorkers, l);
27 new Thread(workers[i]).start () ;
28 }
29 try {
30 l .await() ;
31 } catch (InterruptedException e) { /∗ Error recovery ∗/ }
32 Number[] results = new Number[numWorkers];
33 for ( int i=0; i< numWorkers; i++)
34 results [ i ] = workers[i ]. getCircleCount();
35 long total = 0;
36 for (Number result: results ) total += result .value() ;
37 double pi = 4.0 ∗ total / totalCount;
38 }
39 }
40 public class Pi {
41 public static void main(String[] args) {
42 Master master = new Master();
43 master.assign(50000000,10);
44 }
45 }

Panini program
1 capsule Worker (int num) {
2 Random prng = new Random ();
3 Number compute() {
4 Number _circleCount = new Number(0);
5 for ( int j = 0; j < num; j++) {
6 double x = prng.nextDouble();
7 double y = prng.nextDouble();
8 if ((x ∗ x + y ∗ y) < 1) _circleCount. incr () ;
9 }

10 return _circleCount;
11 }
12 }
13 capsule Master (int totalCount, Worker[] workers) {
14 void run(){
15 Number[] results = new Number[workers.length];
16 for ( int i = 0; i < workers.length; i++)
17 results [ i ] = workers[i ]. compute();
18 long total = 0;
19 for (Number result: results ) total += result .value() ;
20 double pi = 4.0 ∗ total / totalCount;
21 }
22 }
23 system Pi {
24 Master master; Worker workers[10]; // Statically declared capsule array
25 master(50000000, workers); // Wiring capsules together
26 for (Worker w : workers) w(5000000); //Giving initial value to num
27 }

Performance results

Figure 3: Parallel programs for Monte Carlo calculation of π . The user-defined Number class is the same in both Java and Panini.

leader-followers pattern [38]. The Java code is based on the imple-
mentation of the Tomcat 6 web server [1]. The thread pool Pool
consists of a queue of idle threads. When the pool recieves a re-
quest from the Host via the runIt method to handle a connec-
tion, a Worker is removed from the queue and awakened with
the doRunIt method. When finished handling the connection, the
worker calls available to put itself back on the idle queue and
then waits for the next task. If there are no idle threads in the
queue when the host calls runIt, the main thread will block until
a worker is available to handle the request, automatically providing
a form of throttling to ensure that existing connections are handled
before any new connections are accepted. (Note that this exam-
ple, while faithful to the Tomcat implementation, does not precisely
match the leader-followers pattern as described in [38] in which the
worker threads also take turns listening for connections.)

The Panini version is functionally the same, but is dramatically
simpler since all of the queueing, waiting, and notification is im-
plicit. When a Worker calls the getConnection procedure, the
call returns immediately with a future representing the Socket ob-
ject, and a task corresponding to the procedure body is queued for
execution in the Host. When a worker attempts to use the socket
in its handleConnection helper, it blocks until the Host pro-
vides the actual socket.

Pipeline example. Panini’s features can also be useful for im-
plementing applications that can benefit from pipeline parallelism.
To illustrate, consider the problem of maintaining the running av-
erage and maximum of a stream of numbers, e.g. average and max
price of a stock in a day. Figure 5 presents a model with four cap-
sules: Source, Average, Max, and Sink. Each of these cap-
sules implement the signature Stage that provides only one pro-
cedure consume. The capsule Source generates a stream of ran-
dom numbers and sends it down the pipeline, where Average up-
dates its running average, Max updates the maximum, and Sink
counts. Finally, on line 33, instances of these capsules are con-
nected as a pipeline src -> avg -> sum -> max -> snk.

This code is very similar to how one would write a sequen-
tial program to model the same scenario, so the structure of this
Panini program would be familiar to a sequential programmer. This
code is also free of any concurrency-related concerns, such as setup
and teardown threads for running each stage in the pipeline con-
currently and synchronization between adjacent stages to hand off
the input to the next stage, which is typical of a pipeline pattern.
This code would, however, have all of the benefits of the explicitly
concurrent implementation. Therefore, we believe that a sequential
programmer would have a greater chance of success.



Java
1 public class Server {
2 public static void main(String[] args) {
3 new Host().runServer();
4 }
5 }
6 class Pool {
7 Queue<Worker> idle = new LinkedList<Worker>();
8 public void addWorker(Worker w) {
9 idle .add(w);

10 }
11 public synchronized void runIt(Socket s) {
12 while ( idle .isEmpty()) wait () ;
13 Worker w = idle.remove();
14 w.doRunIt(s);
15 }
16 public synchronized void available(Worker w){
17 idle .add(w);
18 notify () ;
19 }
20 }
21 class Worker extends Thread {
22 private Pool p;
23 private Socket s;
24 public Worker(Pool p){this.p = p;}
25 public void run() {
26 while (true) {
27 synchronized(this) {
28 while (s == null) wait () ;
29 handleConnection(s);
30 s = null ;
31 }
32 p.available (this) ;
33 }
34 }
35 public synchronized void doRunIt(Socket s){
36 this .s = s;
37 notify () ;
38 }
39 private void handleConnection(Socket s){ /∗...∗/}
40 }

Java program, con’t
41 class Host {
42 private Pool p;
43 public Host(){
44 p = new Pool();
45 for ( int i = 0; i < 10; ++i) {
46 p.addWorker(new Worker(p));
47 }
48 }
49 public void runServer() {
50 ServerSocket ss = new ServerSocket(8080);
51 while (true) {
52 Socket s = ss.accept();
53 p. runIt (s) ;
54 }
55 }
56 }

Panini
57 capsule Host() {
58 ServerSocket ss = new ServerSocket(8080);
59 Socket getConnection() {
60 Socket s = ss.accept();
61 return s;
62 }
63 }
64 capsule Worker(Host h) {
65 void run() {
66 while (true) {
67 Socket s = h.getConnection();
68 handleConnection(s);
69 }
70 }
71 private void handleConnection(Socket s) { /∗...∗/ }
72 }
73 system Server {
74 Host h; Worker workers[10]; // Statically declared capsule array
75 for (Worker w: workers)
76 w(h); // Wiring capsules together
77 }

Figure 4: Server with a leader-followers style thread pool (based on Tomcat 6). Exception handling code is elided.

6. EVALUATION: PERFORMANCE
We now investigate three critical features of Panini to determine

its viability as a language and an abstraction for non-trivial, implic-
itly concurrent programming. First, in §6.2 we translate 15 popular
benchmarks shown in Figure 6 into Panini and determine the lines
of code changed by minimal rewriting. Second, in §6.3 we test the
speedup of these Panini benchmarks against the original serial and
parallel versions. Third, in §6.4 we examine the memory overhead
for Panini benchmarks compared with the originals.

6.1 Benchmarks
Our selected benchmark suites, JavaGrande (JG) [41] and NPB

[15], offer explicitly-threaded and explicitly-serial reference pro-
grams. Our rewriting translated only concurrency-related code and
structure from the original programs and did not alter or optimize
code not related to concurrency. We translated every Java bench-
mark in NPB and every benchmark in JG that had both a serial and
a threaded version. For the rest of our evaluation, we refer to these
explicitly-sequential and explicitly-parallel programs as SERIAL
and PARALLEL, respectively. Figure 6 summarizes several char-
acteristics of these programs gathered with SOOT [42] and lists
what problem sizes our experiments used.

6.2 Code Size
Explicitly concurrent code can be some of the most intricate code

in a program and challenging to write. Reducing this volume of
code eases the programmer’s burden and limits development bugs.

Research Question 1: Do Panini programs require less code to
implicitly achieve parallel and serial execution?

Methodology. The translation of NPB and JG benchmarks from
Java to Panini allowed many lines of explicitly-concurrent code to
be replaced by implicitly-concurrent lines of code. We used the fol-
lowing non-intrusive guidelines for rewriting:

• Change thread objects to Panini capsules
• Change synchronized methods and blocks to Panini capsule

methods and calls
• Create Panini capsule fields for top-level class instances
• Remove explicitly-concurrent and serial-only code

We used standard techniques for counting lines of code, which
ignore blank lines and comments and count multi-statement lines
with a weight equal to the number of actual statements.3

Results. The lines of code added and deleted by our rewriting
are shown in Figure 7.

Analysis. The translated Panini benchmarks show a significant
drop in lines of concurrency-related code because synchronization
patterns are more concise in Panini. For example, execution of par-
allel workers is synchronized regularly in NPB with 11 lines in a
master object and 13 lines in a worker object. Panini realizes this
pattern implicitly with only 2 and 4 capsule lines, respectively.

3http://reasoning.com/downloads/java_line_
count_estimator.html



1 signature Stage { void consume(long n); }
2 capsule Source (Stage next, long num) {
3 Random prng = new Random ();
4 void run() {
5 for ( int j = 0; j < num; j++) {
6 long n = prng.nextInt(1024);
7 next.consume(n);
8 }
9 }

10 }
11 capsule Average (Stage next) implements Stage {
12 long average = 0;
13 long count = 0;
14 void consume(long n) {
15 next.consume(n);
16 average = ((count ∗ average) + n) / (count + 1);
17 count++;
18 }
19 }
20 capsule Max (Stage next) implements Stage {
21 long max = Long.MIN_VALUE;
22 void consume(long n) {
23 next.consume(n);
24 if ( n > max) max = n;
25 }
26 }
27 capsule Sink(long num) implements Stage {
28 long count = 0;
29 void consume(long n) { count++; }
30 }
31 system Pipeline {
32 Source src; Average avg; Max max; Sink snk;
33 src(avg,500); avg(sum); max(snk); snk(500);
34 }

Figure 5: An Example of Pipeline Parallelism in Panini.

Benchmark Abbr. Size # Methods # Statements

Ja
va

G
ra

nd
e

Crypt cr C 30 1,567
LUFact lu C 33 1,737
MolDyn md B 35 2,417

MonteCarlo mc B 110 2,252
RayTracer rt B 68 2,303

Series ser B 28 873
SOR sor C 26 771

SparseMatmult sm C 27 818

N
PB

BT – A 44 34,804
CG – A 31 3,434
FT – A 37 4,831
IS – A 27 2,358
LU – A 44 36,736
MG – A 41 7,818
SP – A 44 28,098

Total 625 130,817

Figure 6: Static Characteristics of Evaluation Benchmarks

By reducing the volume and complexity of concurrent code, Panini
promises to boost programmer productivity and success during con-
current program design. When rewriting these benchmarks in Panini,
our student programmers gave frequent feedback that the Panini
code they created was easier for them to write and understand than
the explicitly-concurrent code of the original benchmarks.

6.3 Speedup
To ensure that Panini program performance is comparable to

that of explicitly-parallel programs, we examined the speedup that
Panini benchmarks achieve with reference to the original serial ver-
sions and original parallel versions. We define Panini speedup as:

Speedup = Re f erence Time / Panini Time

Because speedup is a ratio, its average is correctly computed as
a geometric mean rather than as an arithmetic mean.

Figure 7: Change in Benchmark Code Size

General Methodology. Following the methodology of Georges et
al., we tested the speedup of Panini benchmarks against the origi-
nals using two different metrics [17]. Start-up performance is mea-
sured for “one VM invocation and a single benchmark iteration.”
Steady-state performance is measured using “one VM invocation
and multiple benchmark iterations,” where each benchmark is re-
peated within the VM until its performance reaches steady-state.
Iteration time measurements are taken after steady-state is reached.

For our experiments, steady-state performance is reached when
the coefficient of variation of the most recent three iteration times of
a benchmark fall below 0.02. Some changes to the original bench-
marks were necessary to reset static result variables, restart timers,
join created threads, and cut object reference loops in support of
repeated iterations in a single VM.

We repeated our comparison on multiple evaluation platforms
with a number of cores ranging from 2 to 12 including an Intel
Core 2 Duo with two cores, an Intel Core i5 with four cores, an
AMD Opteron 2431 with six cores, and an AMD Opteron 2431
with twelve cores. We also considered several different values for
the number of threads used by each benchmark in order to compare
performance across a range of thread-to-core ratios.

6.3.1 Start-up Time
When a Java program is run only once, a previous adaptive com-

pilation of that program is not available to the VM. If the program
is fairly short, the execution time will include JIT-ing but will not
be long enough to benefit much from it. In these cases, start-up time
is a critical performance measure.

Research Question 2: Do Panini programs have better start-up
performance than sequential programs?

Methodology. We took 30 start-up time samples for each bench-
mark on each evaluation platform and at each number of threads of
interest. The number of threads ranged from “0,” which implies se-
rial execution, up to 24, which is twice the number of cores on our
largest evaluation machine. Time was measured as the OS-reported
CPU time used to execute the program once in a fresh VM. Be-
cause the NPB benchmarks BT, LU, and SP take orders of mag-
nitude longer to run than all other benchmarks, we sampled them
only 3 times and not on our 2-core platform. We computed 95%
confidence intervals (CI’s) using the Student’s t-inference to verify
the reliability of our observed summary statistics.

Results. At a glance, Figure 8 shows the speedup for all test
cases and all Panini benchmarks with reference to SERIAL. As
white changes to blue, speedup increases from 1.0 to 12.0. As white
changes to yellow, speedup decreases from 1.0 to 0.0.

Analysis. Figure 8 is dominated by white and blue, which shows
that Panini speedup is near 1.0 or above 1.0, in most cases. Only a
few test cases show a slowdown with Panini in light yellow.
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Figure 8: Start-up Time Speedup For Panini vs. SERIAL.
(Stronger blues show that Panini performance is better.)

This overview gives quick visual evidence that a Panini program
is as good as or better than SERIAL. Not all programs exhibit start-
up time speedup; so, we examine head-to-head speedup at each ex-
periment setting to confirm that Panini’s implictly-concurrent per-
formance is on par with PARALLEL.

Research Question 3: Is the start-up time speedup of Panini
programs comparable to that achieved by human experts?

Methodology. To answer this research question, we used the
test data that was gathered for the previous question.

Results. Figure 9 shows the head-to-head speedup of each Panini
benchmark against its explicit PARALLEL or SERIAL version.
The confidence intervals for start-up time speedup were very tight;
so, they are not shown.

Analysis. The majority of Panini benchmarks show close start-
up time performance to their explicitly-parallel counterparts. SOR
from JavaGrande exhibits unpredictable behavior while the oth-
ers follow consistent speedup patterns. As the number of machine
cores increases, speedup tends to vary more. The 2-core machine
shows speedup constricted around 1.0 while the 12-core machine
shows speedup ranging more loosely between about 0.8 and 1.2.

The Panini speedup for SOR is unique and somewhat erratic. We
inspected the PARALLEL code for SOR and discovered that a busy
wait on shared data values is used for thread synchronization. This
has rising costs as the number of threads increases; so, Panini’s au-
tomatic synchronization mechanism performs much better at non-
ideal thread-to-core ratios. It may be that this behavior is intended
for benchmarking purposes. Other JG benchmarks make use of a
TournamentBarrier, and show better behavior as thread-count in-
creases.

Assuming a log-normal distribution for speedup, statistical t-
inference yields a 99% confidence interval of (0.997,1.021) for
speedup across all start-up time experiments. Repeating the t-test
for an alternative hypothesis that true speedup is less than 1.0 yields
p-value against the alternative of 0.9699. So, even when restricted
to the same compilation decision as human experts, there is strong
evidence that a Panini program with compiler-generated synchro-
nization will execute as fast as or faster than a vetted Java program
with manually-written synchronization.

6.3.2 Steady-State Time
When a Java program runs for a long time, adaptive compilation

and class-loading performed during start-up have much less impact
on overall performance. This can be approximated for shorter pro-
grams with repeated executions in a single VM. For long-running
concurrent applications such as server programs, steady-state per-
formance is of greater interest than start-up time.

Research Question 4: Do Panini programs have better steady-
state performance than sequential programs?

Methodology. We took 10 steady-state time samples for each
benchmark on the same combination of platforms and program
thread counts as the preceding start-up time experiment. Time was
measured as the average clock time of three iterations of the pro-
gram inside an existing VM after steady-state performance was
reached. Because the NPB benchmarks BT, LU, and SP take orders
of magnitude longer to run than all other benchmarks, we sampled
them 2 times and not on our 2-core evaluation platform. We again
computed 95% confidence intervals.

Results. Figure 10 shows an overview of steady-state time speedup
of each Panini benchmark with reference to SERIAL.

Analysis. Almost entirely white and blue, Figure 10 establishes
that Panini programs are as fast or faster than SERIAL. Not all
Panini benchmarks show speedup against SERIAL; so, we again
more closely examine steady-state time in head-to-head compar-
isons of Panini benchmarks with the originals.

Research Question 5: Is the steady-state time speedup of Panini
programs comparable to that achieved by human experts?

Methodology. To answer this research question, we used the
test data that was gathered for the previous question.

Results. Head-to-head steady-state speedup for Panini with ref-
erence to PARALLEL and SERIAL is shown in Figure 12.

Analysis. As before, most Panini benchmarks perform virtually
the same as their counterparts. The variation in speedup increases
with the number of cores on the platform, exhibiting little differ-
ence from 1.0 on a 2-core machine and a range of about 1.3 to 0.7
on a 12-core machine. Though not shown, the 95% CI’s remain
between 0.6 and 1.6 for all benchmarks other than SOR, whose
busy-sync behavior is again a problem for PARALLEL.

The expected steady-state speedup overall is 1.003, with a 99%
confidence interval of (0.988,1.018). Though not as clearly equiva-
lent as it was for start-up time, there remains evidence that a Panini
program with automatic, implicit concurrency will execute as fast
as an expert’s explicitly-parallel Java program in steady-state.

6.4 Memory Overhead
Efficient use of both time and memory is essential for applica-

tions to reduce energy costs and allow other programs to be pro-
ductive on a shared platform. Having shown that the size of con-
currency code is decreased and that the execution time remains
generally unchanged for Panini programs, we consider finally what
memory overhead, if any, is introduced by Panini.

Research Question 6: How much memory overhead is intro-
duced by Panini and what are the primary sources of this over-
head?

Methodology. Using our 4-core evaluation platform, we logged
garbage collector activity for 10 runs of each benchmark at each
number of threads used in the speedup experiments of §6.3. Be-
cause the NPB benchmarks BT, LU, and SP take orders of magni-
tude longer to run, we sampled them only 3 times.
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Figure 9: Start-up Time Speedup For Panini vs. Originals — Equivalent, overall, with no direct concurrent programming.
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Figure 10: Steady-state Time Speedup For Panini vs. SERIAL
(Stronger blues show that Panini performance is better.)

Figure 11: Change in Java Heap Used For Panini vs. Originals

Results. Figure 11 shows the head-to-head ratio of the heap
memory used by Panini over PARALLEL and SERIAL on our 4-
core evaluation platform.

Analysis. Panini’s automatically returned future objects are small;
however, when the memory used by a program is also small per
synchronization, this overhead becomes more apparent. In partic-
ular, LUFact uses shared objects throughout its execution yet has
several barriers per iteration.

Our Panini version of SparseMatmult was based on the PAR-

ALLEL version, which creates a copy of 3 large matrices in each
worker object. The SERIAL version uses a single master copy of
its matrices. So, SERIAL consumes only about half as much Java
heap as the Panini version, which has 1 serial worker capsule.

6.5 Summary
Panini programs automatically achieve start-up and steady-state

time performance that is likely indistinguishable from hand-crafted,
explicitly-parallel programs. All in fewer lines of code and with
no explicitly concurrent code. Compiler-generated synchronization
introduces minimal memory overhead, which becomes trivial for
sufficient computation per capsule method. Thus, Panini is a very
attractive choice for a simple, implicitly-concurrent development
language that yields no performance loss.

7. RELATED IDEAS
The idea of exposing concurrency at the boundary of compo-

nents has appeared in one form or another in much previous work,
e.g., guardians [25], active objects [32], and actors [3] as in Er-
lang [4] in Scala [20] and in AmbientTalk [12]. Many of the early
proposals were in the context of distributed systems; nevertheless,
they are relevant to current and ongoing efforts in the design, se-
mantics, and implementation of concurrent language features [4,
20], including capsules. Bal, Steiner, and Tanenbaum present an
excellent overview of this research [5]. The observation that im-
proving parallelism requires better abstractions has also appeared
in literature, e.g., X10 [9], Habanero [7], and Galois [22]. A pri-
mary goal of Panini is to decrease the impedance mismatch be-
tween sequential and implicitly concurrent code to help sequen-
tially trained programmers who may struggle with concurrency.
In contrast to prior work that provides an asynchronous program-
ming model, calls to capsules are treated as logically synchronous
in Panini. Many decisions in the design of Panini and its implemen-
tation are driven by this fundamental difference in philosophy.

Active Objects. Lavendar and Schmidt [23], Nierstrasz [32]
among others, investigated the notion of active objects. Most re-
cently Schäfer and Poetzsch-Heffter [37] as well as Clarke et al. [10]
have further investigated this design. The notion of a “domain” in
Hybrid [32] is closely related to a capsule. A domain encapsulates
a set of objects, whereas a capsule acts as a dominator for the ob-
ject graph reachable via the capsule [11]. Like a capsule, a domain
can only have a single active thread of control called an “activ-
ity,” which is like a token that is moved from one domain to an-
other; in Panini a capsule logically retains an active thread of con-
trol throughout its lifetime. In Hybrid all calls (except for “activity
start”) were remote procedure calls with blocking send, whereas in
Panini intra-capsular calls are synchronous and inter-capsular calls
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Figure 12: Steady-state Time Speedup For Panini vs. Originals — Equivalent, overall, with no direct concurrent programming.

are logically synchronous. MOAO [10] distinguishes between “ac-
tive” and “passive” objects and uses futures to introduce concur-
rency for calls on active objects. Transparent futures using proxy
objects similar to those generated by the Panini compiler are de-
scribed in [35].

Argus. The notion of capsules in Panini is also related to the
notion of guardians in Argus [25]. Like guardians, capsules encap-
sulate and control access to resources. However, unlike guardians,
sending a request does not create a concurrent process in Panini,
avoiding concurrency-related issues within a capsule’s boundary.
Unlike the dynamic creation of guardians in Argus, capsules are
statically created and configured in Panini, which helps provide se-
quential consistency via a compile-time analysis.

More declarative concurrency. Unlike Jade [36] and similar
approaches like Cilk [14] that focus on fine-grained parallelism,
Panini combines both concurrent tasks and data into the capsule
abstraction to provide coarse-grained implicit concurrency. Cap-
sule are also more general compared to async event types that are
specific to implicit-invocation design style [26].

Concurrent object-oriented languages. There is also a rich
body of work on such concurrent object-oriented languages such as
COOL [8], Seuss [30], Concurrent Smalltalk [44] and BETA [40].
See Papathomas’s survey for an overview [33]. Unlike the works
above, in Panini objects do not execute in the context of a local
process, which avoids creating too many processes [33]. Panini’s
design also avoids the inheritance anomaly [33].

StreamIt. Capsules in Panini can also be used like filters and
streams in the StreamIt language as we show in §5; however, since
focus of StreamIt is streaming applications it provides some spe-
cialized (and highly optimized) features for this domain, e.g. split-
ters, joiners. Panini is intended to be a general purpose language in
which these features can be defined by the programmer, e.g. con-
sider a capsule Splitter in Figure 5 that connects to two other
capsules and calls the procedure consume on both.

Explicitly concurrent languages. Compared to explicitly con-
current features like threads in Java and C#, and approaches like
unified parallel C (UPC) [6], Titanium [43], Panini provides im-
plicit concurrency at the capsule boundary. The advantage of Panini’s
approach compared to these ideas is the ease of use for a sequen-
tially trained programmer, whereas a disadvantage is the lack of
fine-grained control over concurrent structures.

Modules in sequential languages. One of the earliest languages
to have the notion of modules with exported and imported inter-
faces was Mesa [31], a language designed and developed at Xerox
Palo Alto Research Center in the 70’s and early 80’s. The notions
of modules and signatures in ML are similar [29]. Panini’s capsules
are based on Mesa, but also provide implicit concurrency.

8. CONCLUSION AND FUTURE WORK
Programmers come in two shapes — those who have mastered

reasoning about the interleaving of concurrent tasks and those that
find it difficult. There are many in the second camp [28, 2]. There is
a significant body of research on helping programmers in the first
camp, typically HPC programmers [9, 7, 22]. Programmers who
find concurrency hard to master can benefit from better abstrac-
tions that provide implicit concurrency [3, 25, 32]. While the jury
is still out on whether the asynchronous message passing model for
concurrency is the best path going forward, it is clear that the ex-
isting software development workforce was not educated to adopt
that model [2].

We have argued for research on programming language mech-
anisms that adhere to assumptions that a sequentially trained pro-
grammer would rely upon, such as the sequential semantics of pro-
cedure calls. However, we do not promise concurrency for free;
rather, we rely upon the observation that capable, sequential pro-
grammers have received some formal training in modularization-
related concepts in both basic and in advanced courses. To harness
this knowledge towards exposing modularization-guided implicit
concurrency in program design, we have shown how to fuse the no-
tion of a module [31, 16, 29] with the notion of an activity [32] and
an ownership domain [11] such that separating program logic into
capsules naturally contributes toward implicit concurrency. Cap-
sules provide simultaneous benefits in terms of both software evo-
lution and program performance.

In Panini, the specification of capsules by the programmer is
decoupled from decisions regarding how to associate them with
threads of execution. The default implementation associates a ded-
icated OS thread with each capsule. However, in some cases a
purely thread-based execution model may introduce unnecessary
overhead. Our immediate future work focuses on a compilation
strategy that, based on a set of heuristics and program metrics we
have identified, selects for each capsule either a thread-based im-
plementation, a purely sequential implementation, or a task-based
implementation in which one execution thread is shared by a group
of similar capsules.

A key challenge in this work was to provide a safe and efficient
implementation while retaining familiar semantics. We tried out the
Panini language on several benchmarks, where it showed speedup
comparable to manually parallelized versions, while providing the
additional benefit of simpler, more modular code. Since concur-
rency is implicit, Panini hides these concerns from programmers,
allowing them to focus on the task at hand. By bringing most ben-
efits of actor-like abstractions to sequentially-trained programmers
via a familiar synchronous model, Panini could help these program-
mers overcome the tough hurdle of concurrent program design.
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