
A Type-and-Effect System for Shared Memory,
Concurrent Implicit Invocation Systems

Yuheng Long, Tyler Sondag, and Hridesh Rajan

TR #10-09a
Initial Submission: December 15, 2010.

Revised: June 1, 2011.

Keywords: Hybrid type-and-effect System, implicit-invocation languages, aspect-oriented programming languages, event
types, event expressions, concurrent languages.
CR Categories:
D.2.10 [Software Engineering] Design
D.1.5 [Programming Techniques] Object-Oriented Programming
D.2.2 [Design Tools and Techniques] Modules and interfaces,Object-oriented design methods
D.2.3 [Coding Tools and Techniques] Object-Oriented Programming
D.3.3 [Programming Languages] Language Constructs and Features - Control structures

Copyright (c) 2011, Yuheng Long, Tyler Sondag, and Hridesh Rajan.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

A Hybrid Type-and-Effect System for Shared
Memory, Concurrent Implicit Invocation Systems

Yuheng Long Tyler Sondag Hridesh Rajan
Dept. of Computer Science, Iowa State University

{csgzlong,sondag,hridesh}@iastate.edu

Abstract
The notion of events in distributed publish-subscribe sys-
tems implies safe concurrency. However, that implication
does not hold in object-oriented (OO) programs that utilize
events for modularity. This is because unlike the distributed
setting, where publisher and subscriber do not share state
and only communicate via messages, additional communi-
cation between publisher and subscriber, e.g. via call-back
or shared state, is common in OO programs that use events.

Static type-and-effect systems can help expose potential
concurrency, however, they are too conservative to handle
an event-based idiom that involves zero or more dynamic
dispatches on receiver objects in a dynamically changing
list. To solve these problems, we present a hybrid (static/-
dynamic) type-and-effect system for exposing concurrency
in event-based OO programs. This type-and-effect system
provides deadlock and data race freedom in such usage of
the event idiom. We have implemented this type-and-effect
system as an extension of Java’s type system and it shows
considerable speedup over the sequential version of several
applications (up to 15.7x) at a negligible overhead.

1. Introduction
Use of events is thought to naturally result in concurrency.
This is indeed true for publish/subscribe-based distributed
systems [18, 42, 52] where events help decouple the exe-
cution of components, thereby exposing potential concur-
rency in system design [52]. In shared memory programs,
however, use of events as a decoupling mechanism, e.g. via
the implicit-invocation design style [27] that is embodied in
such design patterns as observer and mediator[26], does not
necessarily expose concurrency in program design safely.

[Copyright notice will appear here once ’preprint’ option is removed.]

In shared memory programs, sharing and callbacks be-
tween publishers and subscribers can introduce concurrency-
related hazards. This work presents a hybrid type-and-effect
system that helps realize the benefits of the event abstraction
towards exposing safe concurrency in programs.

1.1 FindBugs: A Running Example
To illustrate the use of implicit invocation towards exposing
potential concurrency, consider the code snippets in Figure 1
that are taken from the code of the FindBugs tool [31].
FindBugs is a static analysis tool to detect bugs. It is widely
used in practice and provides plugins for many IDEs [1].

Figure 1 shows one of the driver classes for this appli-
cation (FindBugs on line 1). This class orchestrates the
analysis of projects and collects results. It holds an array
of bug detectors (line 4), which are then used to analyze
any input Java application (line 6). For future evolution,
e.g. add/remove bug detectors, it is desirable that the class
FindBugs remains independent of bug detectors. This de-
coupling is achieved using the observer pattern [26] with
the class FindBugs as a subject and Detectors as han-
dlers. The function analyze uses a list to store active
bug detectors (line 4) and invokes all bug detectors in list
without naming their concrete classes (lines 5-6). The con-
crete bug detectors implement the interface Detector (not
shown here) that has a handler method check. Concrete bug
detectors (e.g. MutableLock and FindBadCast) imple-
ment different types of bug detection.

Once a bug is detected, reporting it (using interface
Reporter’s method reportBug) is desirable. This re-
porting is triggered by the bug detectors. The type of report-
ing depends on options that can be set dynamically. It would
be sensible to keep the bug detector modules separate from
the Reporter modules. By keeping these modules sepa-
rate, both can be reused. This design goal is also achieved
using the observer pattern. In this scenario, Detectors are
subjects and the Reporters are handlers.

Similar to the subject FindBugs, the class
MutableLock implements the functionality to hold
a handler (instance of Reporter, line 18) and will notify
this handler when a bug is found (line 24).

2 2011/6/3

1 class FindBugs {
2 void analyze() {
3 Class c = /*...*/;
4 Detector[] list = /*...*/;
5 for (Detector d : list){
6 d.check(c);
7 }
8 }
9 }

10 class XDocsReport implements Reporter {
11 Element root;
12 void reportBug(Bug bi){
13 root.addElement(/*...*/);
14 }
15 }

16 class MutableLock
17 implements Detector {
18 Reporter r;
19 MutableLock(Reporter r){
20 this.r = r;
21 }
22 void check(Class c){
23 if(/*...*/) {
24 r.reportBug(/*...*/);
25 }
26 }
27 }

28 class FindBadCast
29 implements Detector {
30 Reporter r;
31 FindBadCast(Reporter r){
32 this.r = r;
33 }
34 void check(Class c){
35 if(/*...*/) {
36 r.reportBug(/*...*/);
37 }
38 }
39 }

Figure 1. Snippets adapted from FindBugs [31] that uses implicit invocation to decouple bug detection and reporting classes.

1.2 The Problems and their Importance
To enhance the scalability of FindBugs, it may be desirable
to expose concurrency in its design. To analyze applications,
users generally activate several concrete detectors from a va-
riety of choices. Each detector analyzes the entire input ap-
plication, and thus is compute-intensive. Therefore, running
multiple detectors concurrently can enhance scalability.

1 class FindBugs {
2 void analyze() {
3 final Class c = /*...*/;
4 Detector[] list = /*...*/;
5 int size = list.length;
6 Thread[] t = new Thread[size];
7 for(int i = 0; i < size; i++){
8 final Detector d = list[i];
9 t[i] = new Thread(new Runnable(){

10 public void run(){ d.check(c);}
11 });
12 t[i].start();
13 }
14 /* joins the threads in t */
15 }
16 }

Figure 2. Concurrent implementation of the method
analyze in FindBugs using Java Threads.

Figure 2 shows a common idiom for exposing this con-
currency between detectors using Java threads. It creates
one thread for each detector, spawns these threads, and joins
them after completion. This idiom is effective, but may result
in concurrency-related hazards [29].

For example, in Figure 1, multiple bug detectors may re-
port bugs concurrently (the reporter is shared by all detec-
tors). Further, each reporting may modify a common struc-
ture as is the case in reporter XDocsReport for method
addElement which is concurrency-unsafe and does not
commute [47]. Thus, concurrently invoking this method on
the shared Reporter object will result in concurrency-
unsafe hazards [29]. Therefore, we may have a race condi-
tion and non-deterministic behavior.

Previous work has proposed type-and-effect systems [28,
54] to solve these problems [11, 12, 45]. The basic idea
behind a type-and-effect system is to statically check read
and write effects such that these checks are a conservative
approximation of effects that may happen at runtime.

Conservative Approximations. Even if only certain rare
control flow paths are concurrency-unsafe, a static type-and-
effect system for validating concurrent programs will declare
such a program concurrency-unsafe [30, 37, 45].

Overly conservative approximation in a type-and-effect
system may be caused by two features: data structures with
dynamically varying number of elements (e.g. List) and
dynamic dispatch [50, 55]. The effects of an operation on
such a data structure must be taken as the upper bound of
effects of this operation on any possible state of the structure.
The effects of a dynamically dispatched method call must
be taken as the upper bound of effects produced by all
overriding implementations of the called method.

Unfortunately, these features are both used in a typical
observer implementation as seen in Figure 1 (lines 4, 6,
24, and 36). For example, the method analyze, on line 2
holds an array (dynamically varying number of elements) of
Detectors. The actual type of these Detectors could be
any concrete subtype of Detector (dynamic dispatch).

To illustrate the effect of conservative approximations on
potential concurrency, let us consider the concurrent version
of the analyze method in Figure 2. Informally, the method
analyze is concurrency-safe if the effects of the check
methods in the concrete Detector classes are disjoint.

Since we can not statically know which concrete elements
(subtypes of Detector) the list will hold, we must an-
alyze with respect to all possible subtypes of Detector.
One such subtype is MutableLock. The effects of the
check method in MutableLock include the effects of
the method reportBug (since it may be invoked on some
possible execution path). Since we can not know statically
which concrete subtype of Reporter will be used at run-
time, the effect set of check must include the effect set
of XDocsReport. Therefore, the effect of the check
method for the MutableLock class will contain the effects
of addElement which is concurrency-unsafe. This effect
also applies to the class FindBadCast and other concrete
subtypes of Detector. Thus, a sound static type-and-effect
system will conclude that concurrently executing the detec-
tors could lead to race conditions and reject this implemen-
tation as potentially concurrency-unsafe.

3 2011/6/3

However, there are many scenarios in which Find-
Bugs can reap safe concurrency benefits. For example, in-
stead of using XDocsReport, other reporters could be
used which are concurrency-safe leading to safe concur-
rency. Thus, a carefully designed type-and-effect system
with runtime information could enjoy concurrency benefits
which are sacrificed by a static type-and-effect system.

Runtime Checks. There are several systems that use just
dynamic mechanisms to expose potential concurrency in
program design. However, in general the runtime overhead
of instrumentation essential to determine if a concurrency-
unsafe control flow path is about to run is often prohibitive
for production runs [21, 49]. Finally, many of these tech-
niques require special hardware [35, 43]. Thus, programs
that require sound safety guarantees must choose between
lack of potential concurrency and prohibitive overhead.

1.3 Contributions
The main novelty of this work stems from our insight that,
even though in general detecting whether a concurrency-
unsafe control flow is about to run may have prohibitive
costs, for implicit invocation mechanisms it can be done at
an acceptable cost. This is based on two observations.

1. Handler registrations are infrequent compared to event
announcements. For example, in FindBugs, a reporter is
registered only once (line 10) at the very beginning of
the program. However, reporters are used frequently, i.e.
whenever a bug is found (line 24 and line 36).

2. The exact set of tasks that will be run when an event is
signaled and their potential conflicts can be computed
during handler registration. For example, when the bug
reporter registers on line 10, the effect set for the method
check of class MutableLock may be computed.

Because of these observations, we hypothesize that exposing
safe concurrency for implicit invocation mechanisms can be
done accurately and at an acceptable cost.

Building on this insight, we formally define a hybrid
type-and-effect system for programs written in the II de-
sign style. This system introduces two new effects, namely
announce and register, expressed as ann and reg. Similar
to other static analyses, this hybrid system computes effect
summaries for every method. Unlike previous work, our sys-
tem uses these two newly introduced effects dynamically. An
ann effect serves as a placeholder for the concrete effects of
zero or more registered handlers and is made concrete during
handler registration. Since the exact set of handlers is known
during registration, the placeholder effect ann is taken as the
union of the effects of registered handlers.

For example, on line 6 in Figure 1, the type-and-effect
system determines the effect of the method check of class
MutableLock to be {ann }. For now, the type-and-effect
system assumes an announce effect does not conflict with
another announce effect. Thus it is safe to parallelize the

check methods. However, if an XDocsReport registers
on line 19 in Figure 1, our hybrid system will dynamically
enlarge the effect set of the check method. The previous
effect set of check ({ann }) is unioned with the effect
set of the method reportBug in XDocsBugReporer.
The effect set of the method reportBug includes a write
to a shared instance field. Thus the methods check in
MutableLock and FindBadCast now conflict with
each other. Therefore, our analysis determines that it is no
longer safe to execute the check methods concurrently.

Thus, our hybrid analysis is able to expose concurrency
when it is safe to do so whereas a purely static type-and-
effect analysis would conservatively determine FindBugs as
concurrency unsafe. To summarize, the main benefits of our
hybrid type-and-effect system are:

• it is more precise compared to a fully static analysis
resulting in greater concurrency, and

• its overhead is negligible and is amortized by the intro-
duced concurrency.

We have proven several concurrency properties of our
type-and-effect system. Most notably, we have proven the
absence of races and determinism of programs using this
type-and-effect system. Thus, users are guaranteed to avoid
many complex issues that stem from concurrency.

To evaluate our approach, we have implemented this
type-and-effect system in our language Pān̄ini [36], applied
it to several applications, proven its key properties, and eval-
uated its performance. We have applied our type-and-effect
system to scenarios where the static type-and-effect system
was not able to give any concurrency benefits. These ap-
plications include FindBugs (110K LOC) [31], an e-mail
filter (11K LOC) [2], a refactoring crawler (7K LOC) [17],
a web crawler (16K LOC) [41] and a Genetic Algorithm
(460 LOC) [48]. Our implementation shows almost linear
speedup and negligible overhead. For FindBugs, we saw
around 6x speedup in bug analysis code for 7 detectors, for
a Genetic Algorithm, Pān̄ini gave 7x speedup, for the refac-
toring crawler, it measured about 3.5x speedup for 6 non-
conflicting detectors in the detection, for the web crawler, it
gave 15.7x speedup, and for the e-mail filter, we saw 1.7x
speedup in spam detection code. This shows that our hybrid
type-and-effect system provides considerable speedup. In
summary, this paper makes the following contributions:

• a new hybrid type-and-effect system that facilitates con-
currency in shared memory programs that use implicit-
invocation design style;

• a precise dynamic semantics that uses the effect system
to maximize concurrency;

• a soundness proof that our system guarantees no data
races and no deadlocks; and

• a rigorous study on real world applications showing the
applicability of our approach.

4 2011/6/3

1 class FindBugs {
2 void analyze(Class c){
3 announce ClassAvailable(c);
4 // Further details elided
5 }
6 }

8 class XDocsReport {
9 Element root;

10 void init(){ register(this); }
11 when BugDetected do reportBug;
12 void reportBug(Bug bi){
13 // details elided
14 root.addElement(bi);
15 }
16 }

17 event ClassAvailable {
18 Class c;
19 }

21 class MutableLock {
22 void init(){ register(this); }
23 when ClassAvailable do check;
24 void check(Class c){
25 // details elided
26 if(/*...*/) {
27 announce BugDetected(
28 new Bug(...));
29 }
30 }
31 }

32 event BugDetected {
33 Bug bi;
34 }

36 class FindBadCast {
37 void init(){ register(this); }
38 when ClassAvailable do check;
39 void check(Class c){
40 // details elided
41 if(/*...*/) {
42 announce BugDetected(
43 new Bug(...));
44 }
45 }
46 }

Figure 3. Pān̄ini’s implementation of FindBugs. Imperative code for implicit invocation is replaced by language features.

2. A Calculus with Event-based Concurrency
We present our type-and-effect system using a calculus with
support for implicitly concurrent events. Our presentation
builds on previous calculi [16, 46]. It formalizes language
features that we have previously explored informally in our
work on the Pān̄ini language [36]. Pān̄ini is an implicitly
concurrent language, it does not feature any construct for
spawning threads or for mutually exclusive access to shared
memory. Rather, concurrent execution is facilitated by an-
nouncing events, using the announce expression, which
may cause handlers to run concurrently. While previous
work informally defined Pān̄ini [36], this calculus formalizes
its definition as an expression language. Here, we describe
the syntax in Figure 4 using the example from Section 1.

The program in Figure 3 is similar to the OO version
in Figure 1 except that the code for implementing the ob-
server pattern is replaced with Pān̄ini’s constructs for declar-
ing and announcing events. For example, the event type
BugDetected, on lines 32-34, is used to decouple bug
detectors from the concrete Reporters. Instead of reg-
istering with a certain bug detector, the concrete bug re-
porters register with an event. For example, on line 10,
an XDocsReport instance could dynamically register
with the event BugDetected. The code for calling the
handler(s) in the bug detectors (e.g. MutableLock or
FindBadCast) is replaced by an announce expression,
on line 27 and 42 that notifies registered handlers.

Declarations. Pān̄ini features two new declarations com-
pared to the Java language: event type (event) and bind-
ing declaration. An event has a name (p) and context vari-
able declarations (form). The over-bar denotes a finite or-
dered sequence and is used throughout this paper (a stands
for a1 . . . an). For example, in Figure 3 on lines 17-19, an
event of type ClassAvailable is defined. It has one
context variable c of type Class, which denotes the class
to be analyzed. These context variables are bound to ac-
tual values and made available to handlers when an event
is fired. A binding declaration consists of two parts: an
event type name and a method name. For example, on
line 23, the class MutableLock declares a binding such

prog ::= decl e
decl ::= class c extends d { field meth binding } | event p { form }
field ::= c f;
meth ::= t m (form){ e }
t ::= c | void
binding ::= when p do m ;
form ::= c var, where var 6= this
e ::= new c() | var | null | e.m(e) | e.f | e.f = e | cast c e
| form = e ; e | e ; e | register(e) | announce p (e)

where
c, d ∈ C, the set of class names
p ∈ P, the set of event type names
f ∈ F, the set of field names
m ∈ M, the set of method names

var ∈ {this} ∪ V,V is the set of variable names

Added Syntax (used only in semantics) :

e ::= loc | yield e | NullPointerException | ClassCastException
where loc ∈ L, a set of locations

Figure 4. Pān̄ini’s abstract syntax, based on [46].

that the check method is invoked whenever an event of
type ClassAvailable is announced. This method may
run concurrently with other handler methods.

Expressions. In Pān̄ini, handlers can register with events
dynamically, e.g. line 10, 22 and 37. The syntax includes
standard OO expressions for object allocation, variable bind-
ing and reference, null reference, method invocation, field
access and update, type casting and sequence.

Concurrency in Pān̄ini. The announce expression
in Pān̄ini is the source of concurrency. The expression
announce p (e) announces an event of type p, which
may run any handlers that are applicable to p concurrently.
In Figure 3 the body of the analyze method contains an
announce expression on line 3. When the method signals
this event, Pān̄ini looks for any applicable handlers. Sup-
pose MutableLock and FindBadCast are registered
with the event ClassAvailable. These handlers may
execute concurrently, depending on whether they interfere
with each other. Our hybrid type-and-effect system ensures
that no conflicting handlers execute concurrently (details are
in Section 3 and Section 4). After all the handlers are fin-
ished, the evaluation of the announce expression then con-
tinues on line 4. The announce expression, when signaled,

5 2011/6/3

binds values to the event type’s context variables. For exam-
ple, when announcing event ClassAvailable on line 3,
parameter c is bound to the context variable c on line 18.
This binding makes the class to be analyzed available to
handlers in the context variable c.

Intermediate Expressions. Four new expressions are
added as shown in the bottom of Figure 4. The loc ex-
pression represents store locations. Following Abadi and
Plotkin [4], we use the yield expression to model con-
currency. The yield expression allows other tasks to run.
Two exceptional final states, NullPointerException
and ClassCastException, are reached when trying to
access a field or a method from a null receiver or when an
object is not a subtype of the casting type.

3. Type and Static Effect Computation
Our type-and-effect system has both a static and a dynamic
part. The purpose of the static part is to compute the effects
of handler methods, e.g. check in Figure 3. The purpose of
the dynamic part is to use these statically computed effects
to calculate the computational effects of announce expres-
sions and to produce a concurrency-safe schedule. The type
attributes used by both parts are defined in Figure 5.

θ ::= OK “program/decl/body types”
| OK in c “binding types”
| (t1 × . . .× tn → t, ρ) in c “method types”
| (t, ρ) “expression types”

ρ ::= ε+ ρ | • “program effects”
ε ::= read c f “read effect”
| write c f “write effect”
| ann p “announce effect”
| reg “register effect”

π,Π ::= {I : tI}I∈K “type environments”
whereK is finite,K ⊆ (L ∪ {this} ∪ V)

Figure 5. Type and effect attributes.

Compared to type systems that include events [46], new
to our system are effects, e.g. the type attributes for expres-
sions are represented as (t, ρ), the type of an expression (t)
and its effect set (ρ). The effects are used to compute the
potential conflicts between handlers. These effects include:

• read effect: a class and a field to be read;
• write effect: a class and a field to be written;
• announce effect: event an expression may announce and
• register effect: produced by a register expression.

For example, in Figure 3, before the program runs, the ef-
fect set of the method check in the class MutableLock
is {ann BugDetected} and the effect set of the
method reportBug in the class XDocsReport is
{write Element root} (for simplicity, we assume that
the method addElement only changes the field root).
We have intentionally avoided tracking object instances to
simplify this discussion. Instead, we focus on event registra-
tion and announcement, however, such extension is feasible.

The interference between effects is shown in Figure 6.
Read effects do not conflict with each other. Write effects
conflict with read and write effects accessing the same field
of the same class. The announce effect is used later in the
semantics. It serves as a place holder and does not conflict
with other announce effects. Announce effects conflict with
register effects, because the order of these two operations af-
fects the set of handlers run during announcement (e.g. even
if an event is fired, a handler will not run if it has not regis-
tered). Register effects interfere with read and write effects
as well. After a handler registers with a certain event, the ef-
fect of some other handlers could be enlarged as well. Thus it
could introduce cascading changes. Our hybrid system sim-
ply makes register effects conflict with any other effect.

Effects read write ann reg
read × ×
write × × ×
ann ×
reg × × × ×

Figure 6. Effect interference. × marks conflicting pairs

For example, before any handler registers with the
event BugDetected, the effects of the methods check
in both the class MutableLock and FindBadCast
are {ann BugDetected}. Thus there is no conflict
between them and it is safe to execute them concur-
rently. If an instance of the class XDocsReport regis-
ters, the effects of check becomes {ann BugDetected,
write Element root} in both these classes. Since these
two write effects access the same field in the same class, the
check methods now conflict with each other. The type sys-
tem updates the announce effects of relevant handlers every
time a handler registers with an event. Thus our system has
more accurate information about the effects of the handlers
than the pure static approaches when computing a schedule.

The type checking rules are shown in Figures 7 and 9.
The notation ν′ <: ν means ν′ is a subtype of ν. It is the
reflexive-transitive closure of the declared subclass relation-
ships. We state the type checking rules using a fixed class
table (list of declarations CT) as in Clifton’s work [16]. The
class table can be thought of as an implicit inherited attribute
used by the rules and auxiliary functions. We require that
top-level names in the program are distinct and that the in-
heritance relation on classes is acyclic. The typing rules for
expressions use a simple type environment, Π, which is a
finite partial mapping from locations loc or variable names
var to a type and an effect set.

3.1 Top-level Declarations
The (T-PROGRAM) rule says that the entire program type
checks if all the declarations type check and the expression
e has any type t and any effect ρ. The (T-EVENT) rule says
that an event declaration type checks if the types of all the
context variables are declared properly.

6 2011/6/3

The (T-CLASS) rule says that a class declaration type
checks if all the following constraints are satisfied. First, all
the newly declared fields are not fields of its super class (this
is checked by the omitted auxiliary function validF). Next,
its super class d is defined in the Class Table. Finally, all the
declared methods and bindings type check.

The (T-METHOD) rule says that a method declaration type
checks only if the return type is a class type (by the auxiliary
function isClass(c), which searches CT to check whether
the class c was declared. This function is used throughout
this paper. If all the parameters have their corresponding de-
clared types, the body of the method has type u and effect ρ
(stored in CT); u is a subtype of the return type t. This rule
uses an auxiliary function override, defined in Figure 8. It
requires that the method has either a fresh name or the same
type as the overridden superclass method [16]. This defini-
tion precludes overloading. In addition to standard condi-
tions, this function enforces that the effect of an overriding
method is the subset of the effect of the overridden method1.

(T-PROGRAM)
(∀decli ∈ decl :: ` decli : OK)

` e : (t, ρ)

` decl e : (t, ρ)

(T-EVENT)
(∀(ti vari) ∈ t var;

:: isClass(ti))

` event p {t var;} : OK

(T-CLASS)
validF(t f, d) (∀b ∈ binding :: ` b : OK in c)

isClass(d) (∀methj ∈ meth :: ` methj : (tj , ρj) in c)

` class c extends d {t f ; meth binding} : OK

(T-BINDING)
CT (p) = event p {t1 var1, . . . , tn varn}

(c1, t,m(t′ var′){e}, ρ) = findMeth(c,m)
π = {var1 : t1 , . . . , varn : tn}

(∀ (t
′
i var′i) ∈ t′ var′ :: π(var

′
i) <: t

′
i)

` when p dom : OK in c

(T-METHOD)
override(m, c, (t1 × . . .× tn → t, ρ))
(∀i ∈ {1..n} :: isClass(ti)) u <: t

isClass(t) (var1 : t1, . . . , varn : tn, this : c) ` e : (u, ρ)

` t m(t1 var1, . . . , tn varn){e} : (t1 × . . .× tn → t, ρ) in c

Figure 7. Type-and-effect rules for declarations [16, 46].

CT (c) = class c extends d {. . . meth1 . . .methp}
@i ∈ {1..p} ·methi = t m(t1 var1, . . . , tn varn){e}

override(m, d, (t1 × . . .× tn → t, ρ))

override(m, c, (t1 × . . .× tn → t, ρ))

(c1, t,m(t′ var′){e}, ρ′) = findMeth(d,m) ρ ⊆ ρ′

override(m, d, (t1 × . . .× tn → t, ρ))

override(m,Object, (t1 × . . .× tn → t, ρ))

Figure 8. Auxiliary function for checking overriding.

1 In practice, we enlarge the effect set of the method in the super class such
that the effect of the overriding method is a subset of its super class. An
alternative could be to raise a type error.

The (T-BINDING) rule says that a binding declaration type
checks if the named method is properly defined; all the con-
text variables are subtypes of their corresponding declared
types in the method; the named event type is declared prop-
erly. It uses the auxiliary function findMeth. This function
looks up the method m, starting from the type of the expres-
sion, looking in super classes, if necessary.

3.2 Expressions
The type rules for the expressions are shown in Figure 9. The
rules for object-oriented expressions are mostly standard,
except for the addition of effects in type attributes. The
(T-NEW) rule ensures that the class c being instantiated was
declared. This expression has type c and empty effect. The
(T-GET) rule says that a field access expression returns the
type of the field of the class, the effects of it will be the effect
of the object expression plus a read effect. The auxiliary
function typeOfF used in this rule finds the type of a field.
The (T-SET) rule says that a field assignment expression type
checks if the object expression is of a class type and the type
of the assignment expression e2 is a subtype of the type of
the field of the class. The effects will be the union of the
effects of its two subexpressions plus one write effect. The
rule for null expression, (T-NULL) is also standard.

(T-NEW)
isClass(c)

Π ` new c() : (c, {})

(T-CAST)
isClass(c) Π ` e : (t

′
, ρ)

Π ` cast c e : (c, ρ)

(T-SEQUENCE)
Π ` e1 : (t1, ρ) Π ` e2 : (t2, ρ

′
)

Π ` e1; e2 : (t2, ρ ∪ ρ′)

(T-YIELD)
Π ` e : (t, ρ)

Π ` yield e : (t, ρ)

(T-VAR)
Π(var) = t

Π ` var : (t, {})

(T-DEFINE)
isClass(c) Π ` e1 : (t1, ρ)

Π, var : c ` e2 : (t2, ρ
′
) t1 <: c

Π ` c var = e1; e2 : (t2, ρ ∪ ρ′)

(T-SET)
Π ` e : (c, ρ) typeOfF(c, f) = t

Π ` e′ : (t
′
, ρ
′
) t

′
<: t

Π ` e.f = e
′

: (t
′
, ρ ∪ ρ′ ∪ {write c f})

(T-NULL)
isType(t)

Π ` null : (t, {})

(T-CALL)
(c1, t,m(t1 var1, . . . , tn varn){en+1}, ρ) = findMeth(c0,m)

Π ` e0 : (c0, ρ0) (∀ i ∈ {1..n} :: Π ` ei : (t
′
i, ρi) ∧ t

′
i <: ti)

Π ` e0.m(e1, . . . , en) : (t, ρ ∪
n[

i=1

ρi ∪ ρ0)

(T-GET)
Π ` e : (c, ρ)

typeOfF(c, f) = t

Π ` e.f : (t, ρ ∪ {read c f})

(T-REGISTER)
Π ` e : (t, ρ) isClass(t)

Π ` register(e) : (t, ρ ∪ {reg })

(T-ANNOUNCE)
CT (p) = event p {t1 var1; . . . tn varn;}

(∀ i ∈ {1..n} :: Π ` ei : (t
′
i, ρi) ∧ t

′
i <: ti)

Π ` announce p (e1, . . . , en) : (void, {ann p} ∪
n[

i=1

ρi)

Figure 9. Type and effect rules for expressions[16, 46].

7 2011/6/3

The (T-CAST) rule says that for a cast expression, the cast
type must be a class type, and its effect is the same as the ex-
pression’s. The (T-SEQUENCE) rule states that the sequence
expression has same type as the last expression and its ef-
fects are the union of the two expressions. The (T-YIELD)
rule says that a yield expression has the same type and
same effect as the expression e. The (T-VAR) rule checks that
var is in the environment. The (T-DEFINE) rule for declara-
tion expressions is similar to the sequence expression ex-
cept that the initial expression should be a subtype of the
type of the new variable. Also, the type of the variable is
placed in the environment. Finally, the sequence expression
type checks if both left and right expressions type check and
has the combined effect of both expressions.

The (T-REGISTER) rule says that a register expression has
the same type as its object expression and the effects will
be the effects of its object expression plus one register ef-
fect. For register, we do not include information about the
event (e.g. reg p), because it will not be more accurate: af-
ter a handler registers with an event p, effects of handlers
for other events could be enlarged as well. Thus, we as-
sume that a register effect conflicts with all other effects.
The (T-ANNOUNCE) rule ensures that the event was declared
and the actual parameters are subtypes of the context vari-
ables in the event declaration. The entire expression has the
type void. The effects of the announce expression will be
the union of all the parameter expressions’ effects plus one
announcement effect.

The (T-CALL) is similar to the announce expression. This
rule says that for a method call expression it finds the method
in the CT using the auxiliary function findMeth (same
as that used for checking binding declarations previously)
and this method is declared either in its own class or its
super class. Each actual argument expression is of subtype of
corresponding parameter type. This method call expression
has the same type as the return type of the method.

isClass(t) = t ∈ dom(CT) ∧ CT (t) = class t . . .

isType(t) = isClass(t) ∨ t = void

fieldsOf (c) = {ti} ∪ fieldsOf (c′)
where CT (c) = class c extends c′{t1 f1; . . . tn fn; . . .}

validF(t f, c) = ∀i ∈ {1..n} :: isClass(ti) ∧ fi /∈ dom(fieldsOf (c))

Figure 10. Auxiliary functions used in type rules.

4. Pān̄ini’s Dynamic Semantics with
Effect-based Task Scheduling

Here we give a small-step operational semantics for Pān̄ini.
The main novelty in our semantics is the integration of an
effect system with a scheduling algorithm that produces safe
execution, while maximizing concurrency for programs that
use implicit-invocation mechanisms.

Evaluation relation: ↪→: Σ 99K Σ
Domains:

Σ ::= 〈ψ, µ, γ〉 “Program Configurations”
ψ ::= 〈e, τ〉 + ψ | • “Task Queue”
τ ::= 〈n, {nk}k∈K〉 “Task Dependencies”

where n, nk∈N and K is finite
µ ::= {loc 7→ ok}k∈K,where K is finite “Stores”
v ::= null | loc “Values”
o ::= [c.F] “Object Records”
F ::= {fk 7→ vk}k∈K,where K is finite “Field Maps”
γ ::= {p 7→ δ} “Event map”
δ ::= ζ + δ | • “Handler Hierarchy”
ζ ::= ι + ζ | • “Handler List”
ι ::= 〈loc,m, ρ〉 “Handler Configuration”

Evaluation contexts:
E ::= − | E .m(e . . .) | v.m(v . . .E e . . .) | cast t E
| E .f | E .f=e | v.f=E | t var=E; e | E; e
| announce(v . . .E e . . .) | register(E)

Figure 11. Domains, and evaluation contexts used in the
semantics, based on [46].

Domains. The small steps taken in the semantics are de-
fined as transitions from one configuration to another. These
configurations are shown in Figure 11. The rules and auxil-
iary functions all make use of an implicit attribute CT , the
program’s declarations.

A configuration consists of a task queue ψ, a global store
µ, and a global event map γ. The store µ is a mapping from
locations (loc) to objects (o). The map γ maps event p to a
event hierarchy δ. Each event hierarchy consists of a list ζ of
list. Each item ι is a tuple consists of the handler object loc,
the handler method m and the effect set ρ for this handler.
The task queue ψ consists of an ordered list of task config-
urations 〈e, τ〉. This configuration consists of an expression
e running in that task and the corresponding task dependen-
cies τ . This expression e serves as the remaining evaluation
to be done for the task. Pān̄ini orders the handlers as a hier-
archy. Handlers in each level of the event hierarchy depends
on previous levels. These handlers do not get executed until
handlers in the previous levels are done executing.

The task dependencies are used to record the identity of
the current task (n) and a set of identities for other tasks on
which this task depends. We call this set the dependence set
of the task. A task t depends on another task t′ if 1) t’s effect
set conflicts with the effect set of t′ and t′ registered before t
or 2) if t′ is a handler task for an announce expression t is
evaluating. In the semantics, a task is never scheduled unless
all the tasks it depends on are finished.

An object record o consists of a class name c and a field
record F . A field record is a mapping from field names f to
values v. A value v may either be null or a location loc,
which have standard meanings.

Evaluation Contexts. We present the semantics as a set of
evaluation contexts E (Figure 11) and a one-step reduction
relation that acts on the position in the overall expression
identified by the evaluation context [59]. This avoids the
need for writing out standard recursive rules and clearly
presents the order of evaluation. The language uses a call-

8 2011/6/3

by-value evaluation strategy. The initial configuration of a
program with a main expression e is 〈〈e, 〈0, ∅〉〉 , •, •〉.

Semantics for Object-oriented Expressions. The rules
for OO expressions are given in Figure 12. These are mostly
standard and adopted from Ptolemy’s semantics [46]. The
operator ⊕ is an overriding operator for finite functions, i.e.
if µ′ = µ ⊕ {loc 7→ v}, then µ′(loc′) = v if loc′ = loc,
otherwise µ′(loc′) = µ(loc′).

(SEQUENCE)
〈〈E[v; e], τ〉+ ψ, µ, γ〉 ↪→ 〈〈E[yield e], τ〉+ ψ, µ, γ〉

(NEW)
loc /∈ dom(µ)

µ
′

= {loc 7→ [c.{f 7→ null | (t f) ∈ fieldsOf (c)}]} ⊕ µ
〈〈E[new c()], τ〉+ ψ, µ, γ〉 ↪→

˙
〈E[yield loc], τ〉+ ψ, µ

′
, γ
¸

(CALL)
(c
′
, t,m(t1 var1, . . . , tn varn){e}, ρ) = findMeth(c,m)

[c.F] = µ(loc) e
′

= [loc/this, v1/var1, . . . , vn/varn]e

〈〈E[loc.m(v1, . . . , vn)], τ〉+ ψ, µ, γ〉 ↪→
˙˙

E[yield e′], τ
¸

+ ψ, µ, γ
¸

(DEFINE)
e
′

= [v/var]e

〈〈E[t var = v; e], τ〉+ ψ, µ, γ〉
↪→
˙˙

E[yield e′], τ
¸

+ ψ, µ, γ
¸

(CAST)
[c
′.F] = µ(loc) c

′
<: c

〈〈E[cast c loc], τ〉+ ψ, µ, γ〉
↪→ 〈〈E[yield loc], τ〉+ ψ, µ, γ〉

(GET)
µ(loc) = [c.F] v = F (f)

〈〈E[loc.f], τ〉+ ψ, µ, γ〉
↪→ 〈〈E[yield v], τ〉+ ψ, µ, γ〉

(SET)
[c.F] = µ(loc)

µ
′

= µ⊕ (loc 7→ [c.F ⊕ (f 7→ v)])

〈〈E[loc.f = v], τ〉+ ψ, µ, γ〉
↪→
˙
〈E[yield v], τ〉+ ψ, µ

′
, γ
¸

Figure 12. Semantics of OO expressions in Pān̄ini

One difference stems from the concurrency and store
models in Pān̄ini. The use of the intermediate expression
yield in all these rules serves to allow other tasks to run.

The (NEW) rule creates a new object and initializes its
fields to null. It then creates a record with a mapping from a
reference to this newly created object. The fieldsOf function,
in Figure 13, returns a map from all the fields defined in the
class and its supertypes to the types of those fields.

CT (c) = class c extends d {t1 f1 . . . tn fn meth binding}
fieldsOf (d) = Ft

′

fieldsOf (c) = {fi 7→ ti :: i ∈ {1 . . . n}} ∪ Ft′

fieldsOf (Object) = {}

Figure 13. Auxiliary function fieldsOf .

The (CALL) rule acquires the method signature using the
auxiliary function findMeth (defined in Figure 14). It uses
dynamic dispatch, which starts from the dynamic class (c)
of the record, and may look up the super class of the object
if needed. The method body is to be evaluated with the
arguments substituted by the actual values as well as the
this variable by loc. The entire substituted method body
is then put inside a yield expression to model concurrency,
which will be discussed later.

CT (c) = class c extends d {field meth1 . . .methp binding}
∃i ∈ {1 . . . p} :: methi = (t, ρ,m(t1 var1, . . . , tn varn){e})

findMeth(c,m) = (c, t,m(t1 var1, . . . , tn varn), ρ)

CT (c) = class c extends d {field meth1 . . .methp binding}
@i ∈ {1 . . . p} :: methi = (t, ρ,m(t1 var1, . . . , tn varn){e})

findMeth(d,m) = l

findMeth(c,m) = l

Figure 14. Auxiliary function findMeth .

The (SEQUENCE) rule says that the current task may
yield control after the evaluation of the first expression. The
(CAST) rule is used only when the loc is a valid record in the
store and when the type of object record pointed to by loc is
subtype of the cast type. The (DEFINE) rule allows for local
definitions. It binds the variable to the value and evaluates
the subsequent expressions with the new binding.

The (GET) rule gets an object record from the store and
retrieves the corresponding field value as the result. The
semantics for (SET) first fetches the object from the store
and overrides the field using the overriding operator ⊕.

Semantics for Yielding Control. In Pān̄ini’s semantics,
the running task may implicitly relinquish control to other
tasks. The rules for yielding control are given in Figure 15.

(YIELD)˙
e
′
, τ
′¸

+ ψ
′

=
active(ψ + 〈E[e], τ〉)

〈〈E[yield e], τ〉+ ψ, µ, γ〉
↪→
˙˙
e
′
, τ
′¸

+ ψ
′
, µ, γ

¸
(TASK-END)˙
e
′
, τ
′¸

+ ψ
′

= active(ψ) ψ 6= •
〈〈v, τ〉+ ψ, µ, γ〉

↪→
˙˙
e
′
, τ
′¸

+ ψ
′
, µ, γ

¸
(YIELD-DONE)
〈〈E[yield e], τ〉+ •, µ, γ〉 ↪→ 〈〈E[e], τ〉+ •, µ, γ〉

Figure 15. Semantics of yielding control in Pān̄ini

The (YIELD) rule puts the current task configuration to the
end of the task-queue and starts evaluating the next active
task configuration from this queue. Finding an active task is
done by the auxiliary function active (shown in Figure 16).
It returns the top most task configuration in the queue that
could be run. A task configuration is ready to run if all the
tasks in its dependence set are done (evaluated to a single
value v). The (YIELD-DONE) rule is applied when there is no

active(〈e, τ〉+ ψ) = 〈e, τ〉+ ψ if intersect(τ, ψ) = false
active(〈e, τ〉+ ψ) = active(ψ + 〈e, τ〉) if intersect(τ, ψ) = true

intersect(∅, ψ) = false
intersect({n} ∪ τ, ψ) = true if inQueue(n, ψ) = true
intersect({n} ∪ τ, ψ) = intersect(τ, ψ) if inQueue(n, ψ) = false

inQueue(n, •) = false
inQueue(n, 〈e, 〈n, {nk}〉〉+ ψ) = true
inQueue(n,

˙
e,
˙
n′, {nk}

¸¸
+ ψ) = inQueue(n, ψ) if n 6= n′

Figure 16. Functions for finding a nonblocked task.

other task configuration in the queue. It continues to evaluate

9 2011/6/3

the current configuration. The (TASK-END) rule says that the
current running task is done (it evaluates to a single value v),
thus it will be removed from the queue and the next active
task will be scheduled.

Semantics for Event registration. The semantics for
subscribing to an event is given in Figure 17. The (REGISTER)
rule makes use of the function updateHierarchy to insert the
handler into the event hierarchy (γ). This auxiliary function,
defined in the appendix, also updates the effect sets for all
tasks which announce the event this handler is interested in.
This update of the effect sets happens repeatedly until a fixed
point is reached.

(REGISTER)
loc /∈ γ updateHierarchy(loc, γ, µ) = γ

′

〈〈E[register(loc)], τ〉+ ψ, µ, γ〉 ↪→
˙
〈E[yield loc], τ〉+ ψ, µ, γ

′¸
(ANNOUNCE)

event p{t1 var1, . . . , tn varn} = CT (p)
τ =

˙
id, I

′¸
ψ
′

= ψ + ψ
′′

τ
′

= 〈id, I〉
ν = (v1, . . . , vn)

˙
ψ
′′
, I
¸

= spawn(p, ψ, γ, ν, µ)

〈〈E[announce p (v1, . . . , vn)], τ〉+ ψ, µ, γ〉
↪→
˙˙

E[yield null], τ
′¸

+ ψ
′
, µ, γ

¸

Figure 17. Semantics of registration and announcement

Semantics for announcing an event. The semantics for
signaling events is shown in Figure 17. The (ANNOUNCE)
rule takes the relevant event declaration from CT (the pro-
gram’s list of declarations) and creates a list of actual pa-
rameters (ν). This list of actual parameters (ν) is used by
the auxiliary function spawn shown in Figure 18 (with other
helper functions in Figure 19). The (ANNOUNCE) rule resorts
to the auxiliary function spawn for two tasks: 1) finding
the handlers registered for the corresponding event; 2) for
executing them according to the hierarchy (computed at reg-
istration) to guarantee safety and maximize concurrency. It
can then safely put the handler configurations (returned from
the auxiliary function spawn) into the queue. Note that the
task dependencies, τ may be safely dropped. This is because
if there were conflicts, t could not have been executed until
the conflicting handlers completed. Thus, the dependencies
are no longer relevant. The auxiliary function concat is used
in several other auxiliary functions. It combines the contents
in the two lists, which are the inputs to this function. The
first task is done by the function spawn . It searches the pro-
gram’s global list of handlers (γ) for applicable handlers,
using auxiliary functions hfind (finds method body for each
handler), hmatch(finds the class for a specific handler), and
match(finds the correct binding from a list of bindings) [46].

The second task is done by the functions buildconfs (Fig-
ure 19) and buildconf . They create task configurations for
handlers. buildconf binds the context variables (of the event
type) with the values (ν), computes a unique id for each han-
dler task, and configures the dependence set of this handler.

spawn(p, ψ, γ, ν, µ) = buildconfs(H,ψ, ν, •, γ, µ)
whereH = hfind(γ, p, µ)

hfind(•, p, µ) = •
hfind(loc + γ, p, µ) = hfind(γ, p, µ)

if µ(loc) = [c.F] ∧ hmatch(c, p, CT) = •
hfind(loc + γ, p, µ) = concat(hfind(γ, p, µ), 〈loc,m〉)

if µ(loc) = [c.F] ∧ hmatch(c, p, CT) = m

hmatch(c, p, •) = •
hmatch(c, p, (event p{ . . . }) + CT ′) = hmatch(c, p, CT ′)
hmatch(c, p, (class c′ . . .) + CT ′) = hmatch(c, p, CT ′) if c 6= c′

hmatch(c, p, ((class c extends d . . . binding1 . . . bindingn) + CT ′))
= excl(match((bindingn + . . .+ binding1), p), hmatch(d, p, CT))

where excl(•, H) = H and excl(e,H) = e

match(•, p) = •
match((when p′ dom) + B, p) = match(H, p) if p′ 6= p
match((when p dom) + B, p) = m

Figure 18. Functions for creating task configurations.

buildconfs(•, ψ, ν,H′, γ, µ) = (•, •)
buildconfs(〈loc,m〉+H,ψ, ν,H′, γ, µ)

= (〈e, 〈id, I〉〉+ ψ′, concat(id, I′))
where 〈e, 〈id, I〉〉 = buildconf (loc,m, ψ, ν,H′, γ, µ) ,
H′′ = H′ + 〈loc,m〉, (ψ′, I′) = buildconfs(H,ψ, ν,H′′, γ, µ)

buildconf (loc,m, ψ, ν,H, γ, µ) =
let e′ = [this/loc, var1/v1, . . . , varn/vn]e in

˙
e′, 〈id, I〉

¸
where loc = [c.F] , ν = (v1, . . . , vn) ,
(c′, t,m(t1 var1, . . . , tn varn){e}, . . .) = findMeth(c,m),
I = preds(loc,m,H, id′ + 1, γ, µ) , id = fresh()

preds(loc,m, •, n, γ, µ) = •
preds(loc,m, 〈loc1,m1〉+H,n, γ, µ) = preds(loc,m,H, n+ 1, γ, µ)

if true = indep(update(ρ, γ, µ), update(ρ′, γ, µ))
where loc = [c.F], (c′, t,m . . . , ρ) = findMeth(c,m),
loc1 = [c1.F], (c′1, t1,m1 . . . , ρ

′) = findMeth(c1,m1)
preds(loc,m, 〈loc1,m1〉+H,n, γ, µ) = concat(n, preds(loc,m,H, n+ 1, γ, µ))

if false = indep(update(ρ, γ, µ), update(ρ′, γ, µ))
where loc = [c.F], (c′, t,m . . . , ρ) = findMeth(c,m),
loc1 = [c1.F], (c′1, t1,m1 . . . , ρ

′) = findMeth(c1,m1)

update(•, γ, µ) = •
update(〈read c f〉+ ρ, γ, µ) = concat(〈read c f〉 , update(ρ, γ, µ))
update(〈write c f〉+ ρ, γ, µ) = concat(〈write c f〉 , update(ρ, γ, µ))
update(〈create 〉+ ρ, γ, µ) = concat(〈create 〉 , update(ρ, γ, µ))
update(〈reg 〉+ ρ, γ, µ) = concat(〈reg 〉 , update(ρ, γ, µ))
update(〈ann 〉+ ρ, γ, µ)

= concat(getE(hfind(γ, p, µ), γ, µ), update(ρ, γ, µ))

Figure 19. Functions for building handler configurations.

These task configurations are used to run the handler bodies
and are appended to the end of the queue ψ. The auxiliary
function fresh is used for giving the newly-born task a fresh
ID.

The auxiliary function preds is used to find the depen-
dence set for a task t. It first calls another function update to
update the effects of the task. It uses the findMeth to retrieve
the effects of methods from CT. The function update is used
to model the effect enlargement discussed in the beginning
of the section, i.e. it is the dynamic phase of the hybrid sys-
tem. This function searches the handler queue γ for applica-
ble handlers, registered for events that this current task could

10 2011/6/3

signal, and unions their effect sets with the effect set of this
task t (e.g. if tmay announce an event p, then the effect of all
the handlers registered for event p will be used). Pān̄ini does
this to get more accurate information about the potential ef-
fect sets of a task to reduce false conflicts. The function
indep (shown in Figure 20) is used to actually compare the
effects to check whether they conflict with each other. The
table in Figure 6 is used to compare effects.

size(•) = 0 size(〈loc,m〉+H) = 1 + size(H)

getE(•, γ, µ) = •
getE(〈loc,m〉+H, γ, µ) = concat(update(ρ, γ, µ), getE(H, γ, µ))

where loc = [c.F], (c′, t,m . . . , ρ) = findMeth(c,m)

indep(•, ρ) = true
indep(ε+ ρ′, ρ) = indep(ρ′, ρ) if true = differ(ε, ρ)
indep(ε+ ρ′, ρ) = false if false = differ(ε, ρ)

differ(ε, •) = true
differ(ε, ε′ + ρ) = differ(ε, ρ) if ε and ε′ have no conflicts
differ(ε, ε′ + ρ) = false if ε and ε′ have conflicts

concat(•, L′) = L′ concat(l + L,L′) = l + concat(L,L′)

Figure 20. Miscellaneous helper functions.

5. Evaluation: Safety Properties
We now show key properties of our type-and-effect system.

5.1 Deadlock Freedom
The first property of our type-and-effect system is that it
provides deadlock freedom. We now state and provide a
proof sketch of this property.

Definition [Predecessor] A task t1 is a predecessor of an-
other task t2 (denoted as t1 ≤ t2) , if either 1) t2 announces
an event and t1 is a handler for the event (a task, which an-
nounces an event, has to wait for all the handlers to finish,
as described in Section 4), or 2) handlers h1 and h2, corre-
sponding to t1 and t2 respectively, are handlers for the same
event, h1 registers earlier than h2, and the effect set of h2

conflicts with the effect set of h1.

Definition [Blocked Configurations.] A task configuration
〈e, τ〉 in a program configuration 〈〈e, τ〉+ ψ, µ, γ〉 may
block if any one of its predecessor tasks is still in execu-
tion.

Theorem 5.1. [Liveness.] Let σ =〈〈e, τ〉+ ψ, µ, γ〉 be a
program configuration, where e is a well-typed expression, τ
is task dependencies, µ is the store, ψ is a task queue and γ
is a handler queue. Then either 〈e, τ〉 is not blocked or there
is some task configuration 〈e′, τ ′〉 ∈ ψ that is not blocked.

Proof Sketch: Construct a tree of the current tasks where
parent nodes, t, have announced events, e, and the handlers
of e, Te, form the children of t. This relationship is de-
noted as succ(t, t′) where t′ ∈ TE . Nodes in a lower level
will never depend on nodes in the above levels. That is,

∀t1, t2 s.t. succ(t1, t2) ⇒ ¬t1 ≤ t2. Children will never
depend on their parents by definition of the spawn func-
tion (the buildHier doesn’t take as a parameter higher lev-
els of the hierarchy, thus, no dependencies may be created).
A node, t3, may depend on its sibling, t2, (succ(t1, t2) ∧
succ(t1, t3)) denoted as t2 ≤ t3, if t3’s effect set conflicts
with t2’s effect set and t2 registers first. Since one of these
handlers must register first, there can not be a circular de-
pendency. That is, t2 ≤ t3 ⇒ ¬t3 ≤ t2 where t2 and t3 are
siblings. Finally, leaf nodes, ∀p s.t. @p′ s.t. succ(p, p′), have
no children and thus may depend on nothing except their sib-
lings. If there is no conflict between the children then they
may run concurrently. If there exists a conflict between the
children, at least the first of the remaining handlers to reg-
ister may be run. This is because there may be no circular
dependencies among children as shown above and this han-
dler registered earlier than all remaining handlers. Thus, in
the lowest level of the tree (leaves), there is at least one task
(the handler in this level that registered earlier than any of its
siblings) that does not block. Therefore, a well typed Pān̄ini
program does not deadlock.

5.2 Deterministic Semantics (Data Race Freedom)
Another property of our type-and-effect system is that it
provides deterministic semantics. This is accomplished by
ensuring data race freedom (as defined by Bocchino [10,
pp. 16]). The statement and proof of this property builds on
Welc’s work [57].

Definition [Schedule.] A schedule (χ) is a sequence of read,
write, announce and register operations performed during
the evaluation of a program. More precisely, χ ::= η, where
η ::= (rd , n, loc, f) | (wt , n, loc, f) | (an , n, p) | (rg , n)
and n is a task ID.

〈〈E[loc.f], 〈t, . . .〉〉+ ψ, µ, γ〉 ↪→ Σ χ
′

= χ+ (rd , t, loc, f)

χ ↪→ χ
′

〈〈E[loc.f = v], 〈t, . . .〉〉+ ψ, µ, γ〉 ↪→ Σ χ
′

= χ+ (wt , t, loc, f)

χ ↪→ χ
′

〈〈E[announce p (v1, . . .)], 〈t, . . .〉〉+ ψ, µ, γ〉 ↪→ Σ
χ
′

= χ+ (an , t, p)

χ ↪→ χ
′

〈〈E[register(loc)], 〈t, . . .〉〉+ ψ, µ, γ〉 ↪→ Σ χ
′

= χ+ (rg , t)

χ ↪→ χ
′

Definition [Schedule Safety.] A schedule χ is safe if and
only if:

1. an access to a field of an object o.f performed by a pre-
decessor should not witness a write to o.f by its succes-
sor2(ssafe);

2. a write to o.f by a predecessor should be visible to the
first access to that field by its successor (psafe);

2 A task t is a successor of t′ (denoted as t′ ≤ t.) if t′ is a predecessor of t.

11 2011/6/3

3. an event announcement by a predecessor should not no-
tify handlers registered by its successor (rsafe) and

4. an event announcement by a successor should notify han-
dlers registered by its predecessor (asafe).

(wt , t′, loc, f), (rd , t′, loc, f) /∈ χ′ t
′ ≤ t

ssafe(χ+ (wt , t, loc, f) + χ
′
)

(wt , t′, loc, f), (rd , t′, loc, f) /∈ χ t ≤ t′

psafe(χ+ (wt , t, loc, f) + χ
′
)

(an , t′, p), (rg , t′) /∈ S′ t
′ ≤ t

rsafe(χ+ (rg , t) + χ
′
)

(rg , t′) /∈ χ t ≤ t′

asafe(χ+ (an , t, p) + χ
′
)

The first two conditions are roughly the same as in Welc’s
work [57], while the last two are necessary to ensure that
handlers only handle appropriate events.

Definition [Permute.] Schedule S is a permutation of sched-
ule S′ (written S ↔ S′), iflen(S) = len(S′) and for every
OP lit ∈ S, there exists a unique OP ljt ∈ S′.

Definition [Serial Schedule.] Schedule S = OP l1t1 . . . OP
ln
tn

is serial if for all OP ljtj there does not exist OP ljtk , k > j
such that tk < tj .

Lemma [Permutation.] Let schedule S = OP l1t1 .OP
l2
t2 be

safe. Then if S is safe, there exists a serial schedule S′ such
that S ↔ S′.

Theorem 5.2. [Deterministic Semantics.] If schedule S is
safe, then there exists a serial schedule S′ such that S ↔ S′.

Theorem 5.3. [Deterministic Semantics.] Any schedule χ
produced by a Pān̄ini program is safe, and thus Pān̄ini
guarantees deterministic semantics.

Proof Sketch: Case 1: Suppose neither tasks t or t′

write to a common field. That is, without loss of general-
ity, @loc, f s.t. (wt , t, loc, f) ∈ χ∧ [(wt , t′, loc, f) ∈ χ′∨
(rd , t′, loc, f) ∈ χ′]. Then, the first two conditions (ssafe
and psafe) in the previous definition (Schedule Safety) hold.

Case 2: Suppose task t writes a common field with t′.
That is, ∃loc, f s.t. (wt , t, loc, f) ∈ χ∧ [(wt , t′, loc, f) ∈ χ′∨
(rd , t′, loc, f) ∈ χ′]. In this case, Pān̄ini will never sched-
ule t and t′ to run concurrently (by the hierarchy built by the
(REGISTER) rule and the auxiliary functions it uses – specif-
ically reorderLvl). Thus, the first two conditions (ssafe and
psafe) in the previous definition (Schedule Safety) hold.

Finally, the current version of the hybrid system makes
register effects conflict with all other effects. Therefore, the
last two conditions (rsafe and asafe) hold.

5.3 Type Soundness
Type Soundness. The proof of soundness of Pān̄ini’s
type-and-effect system uses a standard preservation and
progress argument [59]. The details are adapted from pre-
vious work [16, 25]. Throughout this section we assume a
fixed, well-typed program with a fixed class table, CT. A
type environment Π ::= {I : {t, ρ}} maps variables and

store locations to types and effect sets. The effect set was
used in the semantics to compute the dependency between
handlers and will not be used in the following section. For
simplicity, we omit the effect sets ρ in subsequent discus-
sion. The key definition of consistency is as follows (the
auxiliary function if defined in Figure 13).

Definition [Environment-Store Consistency.] Suppose we
have a type environment Π and µ a store. Then µ is consis-
tent with Π, written µ ≈ Π, if and only if all the followings
hold:

1. ∀loc · µ(loc) = [t.F]⇒
(a) Π(loc) = t and
(b) dom(F) = dom(fieldsOf (t)) and
(c) rng(F) ⊆ dom(µ) ∪ {null} and
(d) ∀f ∈ dom(F) · F (f) = loc′, fieldsOf (t)(f) = u
and µ(loc′) = [t′.F ′]⇒ t′ <: u

2. ∀loc · loc ∈ dom(Π)⇒ loc ∈ dom(µ)

We now state the standard lemmas for substitution, exten-
sion, environment contraction, replacement and replacement
with subtyping. These lemmas can be proved by adaptations
of Clifton’s proofs for MiniMAO0 [16].

Lemma [Substitution.] If Π, var1 : t1, . . . , varn : tn `
e : t and ∀i ∈ {1..n} · Π ` ei : si where si <: ti then
Π ` [var1/e1, . . . , varn/en]e : s for some s <: t.

Proof Sketch: The proof proceeds by structural induction
on the derivation of Π ` e : t and by cases based on the last
step in that derivation. The base cases are (T-NEW), (T-NULL)
and (T-VAR), which have no variables and s = t. Other
cases can be proved by adaptations of MiniMAO0 [16]. The
induction hypothesis (IH) is that the lemma holds for all
sub-derivations of the derivation. The cases for (T-CAST),
(T-SEQUENCE), (T-SET), (T-CALL) and (T-GET) are similar to
Clifton’s proofs. We now consider the case for (T-DEFINE),
(T-REGISTER), (T-ANNOUNCE) and (T-YIELD).

For c var = e1; e2, by IH, if we substitute the variables
for e1, we will get the subtype of e1, which is a subtype of c.
Also, the type for the substitution for e2 results in a subtype
of it. Therefore, since the type for the entire expression is the
type for e2, it holds.

For announce p (e1, . . . , en), we do the same substitu-
tion for each argument ei, 1 ≤ i ≤ n. By IH, each of these
has a subtype of the argument. Therefore, since the whole
expression has the type void, consistency holds.

The cases for yield e and register(e) are straight-
forward, because the type of yield e and register(e) is
the same as e.

Lemma [Environment Extension.] If Π ` e : t and a /∈
dom(Π), then Π, a : t′ ` e : t.

Proof Sketch: The proof is by a straightforward structural
induction on the derivation of Π ` e : t. The base cases
are (T-NEW), (T-NULL) and (T-VAR). In the first two cases,

12 2011/6/3

the type environment does not appear in the hypotheses of
the judgment, so the claim holds. For the (T-VAR) case,
e = var and Π(var) = t. But a /∈ dom(Π), so var 6= a.
Therefore (Π, a : t′)(var) = t and the claim holds for this
case. The remaining typing rules cover the induction step.
By the induction hypothesis, changing the type environment
to Π, a : t′ does not change the types assigned by any
hypotheses. Therefore, the types assigned by each rule are
also unchanged and the claim holds.

Lemma [Environment Contraction.] If Π, a : t′ ` e : t and
a is not free in e, then Π ` e : t.

Proof Sketch: The proof is by a straightforward structural
induction on the derivation of Π, a : t′ ` e : t. The base
cases are (T-NEW), (T-NULL) and (T-VAR). In the first two
cases, the type environment does not appear in the hypothe-
ses of the judgment, so the claim holds. For the (T-VAR) case,
e = var and (Π, a : t′)(var) = t. But a is not free in e, so
var 6= a. Therefore Π(var) = t and the claim holds for this
case. The remaining typing rules cover the induction step.
By the induction hypothesis, changing the type environment
to Π does not change the types assigned by any hypothe-
ses. Therefore, the types assigned by each rule are also un-
changed and the claim holds.

Lemma [Replacement.] If Π ` E[e] : t,Π ` e : t′, and
Π ` e′ : t′, then Π ` E[e′] : t.

Proof Sketch: By examining the evaluation context rules and
corresponding typing rules, we see that Π ` e : t′ be a sub-
derivation of Π ` E[e] : t. Now the typing derivation for
Π ` E[e′] : t′′ must have the same shape as that for E[e] : t,
except for the sub-derivation for Π ` e′ : t′. However,
because this sub-derivation yields the same type as the sub-
derivation it replaces, it must be the case that t′′ = t.

Lemma [Replacement with Subtyping.] If Π ` E[e] : t,Π `
e : u, and Π ` e′ : u′ where u′ <: u, then Π ` E[e′] : t′

where t′ <: t.

Proof Sketch: The proof is by induction on the size of
the evaluation context E, where the size is the number of
recursive applications of the syntactic rules necessary to
build E. In the base case, E has size zero, E = −, and t′ =
u′ <: u = t. For the induction step we divide the evaluation
context into two parts so that E[−] = E1[E2[−]], where E2

has size one. The induction hypothesis is that the claim of
the lemma holds for all evaluation contexts smaller than the
one considered in the induction step. We use a case analysis
on the rule used to generate E2. In each case we show that
Π ` E2[e] : s implies that Π ` E2[e′] : s′, for some s <: s,
and therefore the claim holds by the induction hypothesis.
The cases for (T-CAST), (T-SEQUENCE), (T-SET), (T-CALL)
and (T-GET) are similar to Clifton’s proofs. We now consider
the case for (T-DEFINE), (T-REGISTER), (T-ANNOUNCE) and
(T-YIELD).

(a) Cases E2 = −; e2. The last step in the type derivation
for E2[e] must be (T-DEFINE):

isClass(c) Π ` e : u Π, var : c ` e2 : s u <: c

Π ` E[e] : s

Now, u′ <: u <: c, so by (T-DEFINE), Π ` E[e′] : s.

(b) Cases E2 = announce (v1, . . . , vp−1,−, ep+1, . . . , en).
The last step in the type derivation for E2[e] must be
(T-ANNOUNCE):

CT (p) = event p {t1 var1; . . . tn varn;}
(∀ i ∈ {1..(p− 1)} :: Π ` vi : t

′
i ∧ t

′
i <: ti) Π ` e : u

u <: tp (∀ j ∈ {(p+ 1)..n} :: Π ` ej : t
′
j ∧ t

′
j <: tj)

Π ` E[e] : void

Now, u′ <: u <: sp, so by (T-ANNOUNCE), Π ` E[e′] :
void.

(c) Cases E2 = register(−). The last step for E2[e]
must be (T-REGISTER):

Π ` e : t isClass(t)

Π ` E[e] : t

Now, t′ <: t, so by (T-REGISTER), Π ` E[e′] : t′ <: t.

(d) Cases E2 = yield (−). The last step for E2[e] must
be (T-YIELD):

Π ` e : t

Π ` E[e] : t

Now, t′ <: t, so by (T-YIELD), Π ` E[e′] : t′ <: t.

Theorem 5.4. [Progress.] For a well-typed expression e, a
task dependencies τ , a task queueψ, a store µ, and a handler
queue γ. If Π ` e : t and µ ≈ Π, then either e =
loc or e = null or e = NullPointerException
or e = ClassCastException or 〈〈e, τ〉+ ψ, µ, γ〉 ↪→
〈〈e′, τ ′〉+ ψ′, µ′, γ′〉.

Proof Sketch:
(a) If e = v or e = null, it is trivial.
(b) Cases e = NullPointerException or e =

ClassCastException, which are final states of the pro-
grams, result from the semantics rules null.f , null.f =
v, null.m(v1, . . . , vn), register(null) and cast e.
We presented the rules in Figure 21. These values serve as
the base cases.

13 2011/6/3

(NCALL)
〈〈E[null.m(v1, . . . , vn)], τ〉+ ψ, µ, γ〉
↪→ 〈〈NullPointerException, τ〉 , µ, γ〉

(NGET)
〈〈E[null.f], τ〉+ ψ, µ, γ〉

↪→ 〈〈NullPointerException, τ〉 , µ, γ〉

(NSET)
〈〈E[null.f = v], τ〉+ ψ, µ, γ〉

↪→
˙
〈NullPointerException, τ〉 , µ′, γ

¸
(XCAST)

[c
′.F] = µ(loc) c

′ 6<: c

〈〈E[cast c loc], τ〉+ ψ, µ, γ〉
↪→ 〈〈ClassCastException, τ〉 , µ, γ〉

Figure 21. Operational semantics of expressions that pro-
duce exceptions, base on,[46].

(c) In the case where the expression e is not a value,
evaluation rules are considered case by case for the proof.
We proceed with the induction of derivation of expression
e. Induction hypothesis (IH) assumes that all sub-terms of e
progress and are well-typed.

Cases e = E[new c()], e = E[loc.m(v1, . . . , vn)], e =
E[loc.f], e = E[loc.f = v], e = E[cast t loc], e =
E[t var = v; e] and e = E[v; e1] are similar to Clifton’s
work [16] and are omitted.

Case e = E[register e]. Based on the IH, e is well
typed. Thus, it evolves by (RE-REGISTER) or (REGISTER).

Case e = E[announce p (v1, . . . , vn)]. Based on the
IH, p is well typed and is defined. Each parameter is well
typed and is a subtype of the type of the field in event p.
Thus, it evolves by (ANNOUNCE).

Case e = E[yield e]. This case has no constraint and
evolves based on different rules.

Theorem 5.5. [Subject-reduction.] Let e be an expression
and e 6= yield e1 for any e1, τ task dependencies, ψ a
task queue, µ a store, and γ a handler queue. Let Π be a type
environment such that µ ≈ Π. And let t a type. If Π ` e : t
and 〈〈e, τ〉+ ψ, µ, γ〉 ↪→ 〈〈e′, τ ′〉+ ψ′, µ′, γ′〉, then there
is some µ′ ≈ Π′ and t′ such that Π′ ` e′ : t′ and t′ <: t.

Proof Sketch: The proof is by cases on the definition
of ↪→ separately. The cases for object oriented parts (rules
(NEW), (NULL), (CAST), (GET), (SET), (VAR), (SEQUENCE)
and (CALL)) can be proved by adaptations of Clifton’s proofs
for MiniMAO0 [16].

The rule for (SEQUENCE) is similar to Clifton’s work,
except that e′ = E[yield e] instead of e′ = E[e]. Since
the type of yield e has the same type as e, this case holds.
For (DEFINE), e = E[t var = v; e1] and e′ = E[[var/v]e1]:
let τ ′ = τ , µ′ = µ, ψ′ = ψ, γ′ = γ and Π′ = Π. We
now show that Π ` e′ : t′ for some t′ <: t. Π ` e : t
implies that t var = v; e1 and all its subterms are well
typed in Π. Let Π ` (t var = v; e1) : u. By (T-Define),

Π, var : t ` e1 : u′. By Lemma 5.3, Π ` [var/v]e1 :
u′′ for some u′′ <: u′ <: u. Therefore, by lemma 5.3,
Π ` e′ : t′ for some t′ <: t. For the (RE-REGISTER) rule,
e = E[register(v)] and e′ = E[v]. Let τ ′ = τ , µ′ = µ,
ψ′ = ψ, γ′ = γ and Π′ = Π. Obviously, t′ = t. For the
(REGISTER) rule, e = E[register(v)] and e′ = E[v]. Let
τ ′ = τ , µ′ = µ, ψ′ = ψ, γ′ = v + γ and Π′ = Π. Clearly,
t′ = t. For the (ANNOUNCE) rule, e′ = E[e2] and e =
E[announce p {v1, . . . , vn}]. Let µ′ = µ, γ′ = γ,
Π′ = Π and t′ = t. void <: c for any class type c.

Definition [Thread-interleaving.]
If 〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→〈〈E1[e1], τ1〉+ ψ1, µ1, γ1〉

. . . ↪→〈〈En[en], τn〉+ ψn, µn, γn〉 ↪→〈〈E[e], τ〉+ ψ′, µ′, γ′〉

or 〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→〈〈E[e], τ〉+ ψ′, µ′, γ′〉,
we denote this as 〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→∗ 〈〈E[e], τ〉+ ψ′, µ′, γ′〉,
where ∀i{1 ≤ i ≤ n}Ei[ei] 6= E[e].

Theorem 5.6. [Subject-reduction-Thread-interleaving.] For
an expression e =
E[yield e1], for any e1, τ task dependencies, and ψ a
task queue, µ a store and γ a handler queue. Let Π be a
type environment such that µ ≈ Π. And let t a type. If
Π ` E[yield e1] : t and 〈〈E[yield e1], τ〉+ ψ, µ, γ〉
↪→∗ 〈〈E[e1], τ ′〉+ ψ′, µ′, γ′〉, then there is some µ′ ≈ Π′

and t′ such that Π′ ` E[e1] : t′ and t′ <: t.

Proof Sketch: The proof is by induction on the number n
of yield expressions in the transitions.

In the base case, n = 0, 〈〈E[yield e], τ〉+ ψ, µ, γ〉 ↪→
〈〈E[e], τ〉+ ψ, µ, γ〉. Let Π′ = Π and t′ = t. The condition
holds.

If n = 1, 〈〈E[yield e], 〈t, I〉〉+ ψ, µ, γ〉 ↪→〈〈E[e1], τ1〉+ ψ1, µ, γ〉
↪→∗ 〈〈E[yield e′1], τ1〉+ ψ′1, µ

′
1, γ
′
1〉 ↪→〈〈E[e], τ〉+ ψ′1, µ

′
1, γ
′
1〉.

And Π ` t. Since µ ≈ Π, ∃t1 :: Π ` E[e1] : t1. By The-
orem 5.5, ∃t′1,Π1 :: Π1 ` E[yield e′1] : t′1 ∧ µ′1 ≈ Π1.
Therefore, Π1 ` E[e] : t′ ∧ t′ <: t.

The (IH) is that there is some µ′ ≈ Π′ and t′ such that
Π′ ` E[e1] : t′ and t′ <: t for ∀i :: 1 ≤ i ≤ n, the
number of transitions. By Theorem 5.5 and it also true for
the last transition, the claim is also true, by adding one more
transition.

Theorem 5.7. [Soundness.] Given a programP = decl 1 . . .decl n e,
if ` P : (t, ρ) for some t and ρ, then either the evaluation
of e diverges or else 〈〈e, 〈0, ∅〉〉 , •, •〉 ↪→∗ 〈〈v, τ ′〉 , µ′, γ′〉
where one of the following holds for v: v = loc or v = null
or v = NullPointerException or v = ClassCastException.

Proof Sketch: If e diverges, then this case is trivial. Oth-
erwise if e converges, then because the empty environment
is consistent with the empty store. This case is proved by
Theorem 5.4, Theorem 5.5 and Theorem 5.6.

14 2011/6/3

6. Evaluation: Performance Benefits
We now evaluate the performance benefits of our type-and-
effect system using several real world applications. To fa-
cilitate these experiments we enhanced the compiler for the
Pān̄ini language [36] to incorporate our type-and-effect sys-
tem. All performance-related experiments were run on a sys-
tem with a total of 24 cores (two 12-core AMD Opteron
6168 chips 1.9GHz) running Fedora GNU/Linux. In the ex-
periments, the number of “threads” is often varied. Pān̄ini’s
implementation uses a thread pool of n threads. So, using
n threads is essentially the same as enabling n cores (when
n ≤ 24 for our system). For each of the experiments, an
average of the results over ten runs was taken.

6.1 Candidate Java Applications
We have studied several Java applications. Figure 22 presents
key static characteristics of these applications as well as
the speedup seen in each case. In this table, the column la-
beled lines shows the lines of source code in the application
(not including comments and blank lines). Columns labeled
methods and classes show the total number of Java meth-
ods and classes respectively. Finally, the column labeled
Speedup shows the maximum observed speedup.

Application Size Speeduplines methods classes
FindBugs [31] 110932 21508 2781 5.7x

jASEN [2] 11497 955 165 1.7x
RefactoringCrawler [17] 7862 914 268 3.5x

WebSPHINX [41] 16061 1807 216 15.7x
Genetic Algorithm [48] 461 121 20 7.3x

Figure 22. Static characteristics of evaluation candidates.
“lines” is counted as non-comment, non-blank LOC [3].

In the following sections, we first introduce each applica-
tion, describe the applicability of our hybrid type-and-effect
system to that application, and describe performance bene-
fits observed for that application.

6.2 Candidate: FindBugs — Static Bug Detection
First we present performance results for FindBugs, a static
analysis tool for bug detection, described in Section 1.

6.2.1 Experimental Setup and Results
Our implementation is similar to the example presented in
Figure 3. In our implementation, we registered 7 bug detec-
tors that may all run safely in parallel.

Figure 23 shows the speedup for FindBugs with varying
number of threads in bug analysis code.

This figure shows the speedup of FindBugs implemented
in Pān̄ini as well as a manually parallelized version. In the
manually parallelized code, we created 7 tasks, which re-
spectively wrap those 7 detectors as in the Pān̄ini code.
These tasks are then submitted to the fork/join frame-
work [33] for execution3. Once the task is taken by the

3 We use the fork/join framework because of its efficiency.

0
1

2
3

4
5

6

1 2 3 4 5 6 7
Number of threads

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

Panini
Fork/join

Figure 23. FindBugs: speedup over sequential version.
Pān̄ini achieves nearly 6x speedup for 7 threads. Speedup is
nearly the same as manually parallelized version suggesting
negligible overhead.

framework for execution, the checkmethod of the wrapped
detector will be invoked. As the figure shows, the speedups
between the manually parallelized version and the Pān̄ini
version are comparable. Both implementations achieved
nearly 6x speedup with 7 or more threads.

6.2.2 Analysis of results
An interesting result shown in this figure is the plateau from
4 to 6 threads and the sudden increase in speedup when
increasing the number of threads from 6 to 7. To understand
this, first consider Figure 24 which shows the portion of
sequential runtime for each of the 7 detectors.

 14%

 14% 14%

 14%

 15%
 15%

 15%

NoteSuppressedWarnings
FindBugsSummaryStats
NoteJCIPAnnotation
Methods
NoteCheckReturnValue
NoteCheckReturnValueAnnotations
NoteNonNullAnnotations

Figure 24. FindBugs: breakup of sequential runtime by de-
tectors, shows that detectors take similar time to finish.

As this figure shows, all of these 7 detectors take roughly
the same amount of time to execute. Therefore, with 6
threads, the first 6 detectors will execute concurrently and
the 7th detector can not be invoked until one of the first 6
detectors finishes. Thus, it will take approximately as long
as two detectors running sequentially. A similar situation
occurs for 4 and 5 threads.

6.3 Candidate: jASEN — Anti Spam ENgine
jASEN is a Java anti spam engine combining bayesian-like
scanning with intelligent email inspection and classifica-
tion [2]. This tool is best suited to developers wishing to in-
tegrate anti-spam services into an existing server based Java
email application. jASEN allows adding/removing different
spam detection algorithms (called plugins in its implemen-
tation). Figure 25 shows the main logic from jASEN.

The class Jasen is the core scanning class of the jASEN
framework. It scans a message using any registered plug-

15 2011/6/3

1 class Jasen {
2 Result scan(Message m) {
3 // initilization code omitted
4 Result r;
5 for(Plugin p:plugins) {
6 r = p.test(m);
7 if(r.isAbsolute()) {
8 return r;
9 }

10 // further processing omitted
11 }
12 }
13 }

14 class AttachScanner implements Plugin {
15 Result test(Message m) {
16 PointResult r = /*...*/;
17 if(/*...*/) {
18 r.setAbsolute(true);
19 }
20 return r;
21 }
22 }

23 class Keyword implements Plugin {
24 Result test(Message m) {
25 ProbabilityResult r = /*...*/;
26 if(/*...*/) {
27 r.setProbability(highProb);
28 }
29 return r;
30 }
31 }

Figure 25. Snippets from jASEN, an Anti Spam ENgine. Two concrete Plugins (handlers) are shown.

1 class Jasen {
2 Result scan(Message m) {
3 // initilization code omitted
4 announce messageAvailable(m);
5 // subsequent code unchanged
6 }
7 }

9 class Keyword extends Plugin{
10 void test(Message m) {
11 if(done){
12 return;
13 }
14 // subsequent code unchanged
15 }
16 }

17 event messageAvailable {
18 Message m;
19 }

21 class Plugin {
22 when messageAvailable do test;
23 when resultFound do finish;
24 boolean done = false;
25 void init(){ register(this); }
26 void finish(Result result){
27 done = true;
28 }
29 void test(){}
30 }

31 event resultFound {
32 Result result;
33 }

35 class AttachScanner extends Plugin {
36 void test(Message m) {
37 if(done){
38 return;
39 }
40 PointTestResult result = /*...*/;
41 if(/*...*/) {
42 result.setAbsolute(true);
43 announce resultFound(result);
44 }
45 }
46 }

Figure 26. Pān̄ini implementation of jASEN. Imperative code for implicit invocation is replaced by language features.

ins and returns a scan result object indicating the results of
the scan. After initializing the received message, declared
on line 2, the method scan invokes the registered plugins to
detect spam (line 5). Some of the plugins can make an abso-
lute decision and classify an email as a spam. For example,
the scanner AttachScanner in some cases can tag a mes-
sage as spam (line 18). Other plugins can only set a certain
value for the probability of a message being a spam. For ex-
ample, the Keyword class, may only set a probability of a
message being a spam (line 27). We refer to these detectors
as absolute and probability detectors respectively in subse-
quent discussion. Once an e-mail is detected to be spam, the
method scan will return it immediately (line 7).

This plugin-invocation logic is implemented as the ob-
server pattern [26] with the method scan as the subject and
plugins as handlers. A Pān̄ini version is shown in Figure 26.

For the Pān̄ini version, the code for the method scan is
almost the same. The main difference is that an event an-
nouncement statement is used to notify the plugin’s han-
dlers (line 4) in order to decouple this method from the
plugins. Since the basic structure of the plugin’s handlers
are similar, except for the actual detection logic, this struc-
ture is abstracted into a superclass Plugin. Concrete plu-
gin detectors extend this class (e.g. AttachScanner and
Keyword). Once an event of type messageAvailable
is fired, the method test will be invoked. The logic for
setting an e-mail as spam and ending the detection is imple-
mented via introducing another event of type resultFound.

As before, the AttachScanner plugin can classify a mes-
sage as spam and, in this case, announces an event of type
resultFound (line 43). Once a message is tagged as an
spam, the plugins handlers are notified (line 23), an instance
field done (line 27) in the superclass is set, and the actual
class will not process any longer (line 37 and line 11).

To enhance the scalability of this spam filter, it is de-
sirable to execute the non-conflicting plugins concurrently.
However, as shown in Figure 26, on line 27, the plugin can
classify a spam and stop others. In this case, it announces
an event of type resultFound, and plugin handlers will
accept this event, (line 23) and write to instance fields done
(line 27). Therefore, the effects of this absolute plugin are
{write Plugin done, read Plugin done}. Proba-
bility plugins will read their corresponding instance field
done, e.g. on line 11, and the effect is {read Plugin
done}. Because of this, the absolute detector conflicts with
all other detectors (note that probability detectors do an in-
stance field read and do not conflict with other probability
detectors). What is more, since the method scan is unaware
of whether these absolute detectors will register or not, nor
does it statically know the registration order of the plugins, a
static type-and-effect system will conservatively sequential-
ize the entire detection [45]. However, our type-and-effect
system is able to organize the execution schedule to max-
imize concurrency and eliminate unsafe executions. It will
execute the absolute plugins sequentially, while execute the
probability plugins in parallel. Notice that this schedule is

16 2011/6/3

sequentially consistent [9] with the sequential execution, i.e.
the results they produce are the same.

6.3.1 Experimental Setup and Results
In this experiment, we registered 14 probability plugins and
measured the speedup. The results are shown in Figure 27.

0.
0

0.
5

1.
0

1.
5

2.
0

1 2 3 4 5
Number of threads

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

Figure 27. jASEN: speedup over sequential version

The figure indicates that maximum speedup was around
1.7x speedup in spam detection code.

6.3.2 Analysis of results
To understand these speedups, consider Figure 28 which
shows the proportion of sequential time taken for each of
the 14 detectors.

1.6%
2.3%

12.7%35.9%

43.3%

InvisiMail
Robinson
HTMLConcealment
ImageDominance
TagSourceCgi
TagSourcePort
TagFalseAnchor

ObfuscatedCharacter
AnomalousCharacter
Recipient
SenderAddressValidation
FromAddressValidation
Heuristic
Keyword

Figure 28. jASEN: breakup of sequential runtime by plug-
ins, shows that 3 plugins dominate the execution time.

As the figure shows, three of detectors make up most of
the execution time. As a result of this, the speedups level off
when more than 3 threads are available.

6.4 Candidate: Refactoring Crawler
Refactoring Crawler is a tool for detecting refactoring be-
tween software versions [17]. This tool is useful for updating
software to use the latest version of its libraries, which are
constantly changing. Currently, the tool detects refactorings
like renaming package, class and method, pullup and push-
down method, move method and changes of method signa-
tures. A code snippet is presented in Figure 29.

The class DetectRefactoringsPlugin is the driver
class which initializes the reference graphs, as well as other
variables for the detection. After initialization, it invokes dif-
ferent detectors, on lines 5-11, to crawl refactorings between
two versions of a Java application. These detectors may or
may not be invoked for a given run based on the user input.
This behavior can be seen at the if conditions on line 5.

1 class DetectRefactoringsPlugin {
2 void doLaunch(/**/) {
3 /* The initializations, e.g. the reference
4 graphs for both versions, are omitted. */
5 if (/*...*/) {
6 detectPullUpMethod(/*...*/);
7 }
8 /* other detectors omitted */
9 if (/*...*/){

10 detectMoveMethod(/*...*/);
11 }
12 }
13 }

Figure 29. Snippets from Refactoring Crawler. Function
doLaunch will call enabled detectors.

1 event detect{
2 Graph originalGraph;
3 Graph versionGraph;
4 }

6 class DetectRefactoringsPlugin {
7 void doLaunch(/**/) {
8 /* the initilizations code remains. */
9 announce detectRefactoring(

10 originalGraph, versionGraph);
11 }
12 }

14 class RenameMethodDetection{
15 when detectRefactoring do detect;
16 void init(){ register(this); }
17 void detect() {
18 detectRenameMethod(/*...*/);
19 }
20 }

22 class MoveMethodDetection {
23 when detectRefactoring do detect;
24 void init(){ register(this); }
25 void detect() {
26 /* the actually detection algorithm is omitted. */
27 if (/*PulledUpCategory.contain(prunedPair)
28 || PushedDownCategory.contain(prunedPair)*/) {
29 pairsToRemove.add(prunedPair);
30 }
31 }
32 }

Figure 30. Pān̄ini version of the Refactoring Crawler. Im-
perative code for implicit invocation is replaced by language
features.

Again, the observer pattern [26] is used to decouple
doLaunch and refactoring detectors which are the subject
and handlers respectively. The Pān̄ini version of the code is
shown in Figure 30.

In the Pān̄ini version of the code, the initializations in the
doLaunch method remain unchanged. Once the initializa-
tions are done, this method signals an event of type detect
and the detectors are notified on line 9.

All of these detectors are computationally intensive. Thus
to enhance the scalability of this application, it is desir-
able to execute the detectors concurrently. However, as is
shown in Figure 30 the MoveMethodDetection detector
read instance fields (line 27), which could be written by the
PulledUpMethodDetection and PushDownMethod
detectors. It reads the fields to check whether a certain po-

17 2011/6/3

tential refactoring is already classified as another refactoring.
As a result of this, the detector MoveMethodDetection
conflicts with these other two detectors (note that other de-
tectors do not conflict with each other). What is more, since
the method doLaunch do not statically know whether this
detector will register or not, neither does it know in advance
about registration order of these detectors, a static type-and-
effect system will conservatively sequentialize the entire de-
tection process [45]. However, our hybrid type-and-effect
system is able to manage the handler list and organize the
execution schedule to maximize concurrency and eliminate
unsafe executions. For example, if all the 7 handlers register
in the order described in the first paragraph of this section,
it will execute the other 6 handlers in parallel and execute
the MoveMethodDetection detector after the other han-
dlers are done.

6.4.1 Experimental Setup and Results
In the first experiment, we registered all 7 detectors in the or-
der in Figure 29. Figure 31 shows the speedup with varying
number of threads.

0.
0

1.
0

2.
0

3.
0

1 2 3 4 5 6 7
Number of threads

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

Panini
Fork/join

Figure 31. Refactoring Crawler: speedup over sequential
version.

This figure shows the speedup of the Pān̄ini version as
well as a manually parallelized version. The manually paral-
lelized version is created in a manner similar to that of Find-
Bugs as described in Section 6.2.1.

As the figure shows, speedups between the manual ver-
sion and the Pān̄ini versions are comparable. The speedups
achieved are almost 2.5x with 5-7 threads in the detection
code. To understand why speedup does not go beyond 2.5x,
first consider Figure 32.

 2% 1%

 20%
 20%

 19%

 20%

 18%

RenamePackage
RenameClass
RenameMethod
PullUpMethod
PushDownMethod
MoveMethod
ChangeMethodSignature

Figure 32. Refactoring Crawler: breakup of sequential run-
time by refactoring detectors

Figure 32 shows the portion of sequential execution time
for each of these 7 detectors. As we can see, the detectors
for rename package and class, respectively, take far less time
to execute. That is expected, because generally, there are far
more methods in a Java application than classes or packages.
All the other 5 detectors take roughly the same amount of
time for execution. Notice that as mentioned in the previous
section, the moved method detector could only be executed
after all other detectors are done because it conflicts with
other detectors. This explains the large jump from 1 thread
to 2 threads and from 3 threads to 4 threads. Finally, speedup
may not be more than 3 because the moved method detector
conflicts with other refactoring detectors.

In the next experiment, we did not register the move
method detector. Thus, all 6 remaining methods may run in
parallel. These results are shown in Figure 33.

0
1

2
3

4

1 2 3 4 5 6 7
Number of threads

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

Panini
Fork/join

Figure 33. Refactoring Crawler: speedup over sequential
version, without the conflicting handler.

The results are expected in that it achieved almost 4x
speedup. This is because there are 4 detectors, each may
safely run in parallel, and each has a comparable runtime.

6.5 Candidate: WebSPHINX — Crawling the WWW
WebSPHINX is a web crawler for collecting links [41].
Figure 34 shows the main logic from this application.

1 void process (Link link) {
2 Page page = link.getPage ();
3 for(Classifier c: classifiers) {
4 c.classify(page);
5 }
6 expand (page);
7 // processing detail omitted
8 }

10 void expand (Page page) {
11 if(page.depth() >= max) return;
12 for(Link l: page.links())
13 process(ls[i]);
14 }

Figure 34. Snippets from WebSPHINX, a web crawler.
Iteratively calls each classifier on each page.

Upon receiving a link, this crawler fetches the cor-
responding page. It invokes classifiers to annotate pages
(lines 3-5). It expands the crawl from this page by calling

18 2011/6/3

the expand method. It processes all the links referenced
to by the page until certain criteria are met, e.g. a certain
depth is reached. After expanding the page (line 6), it con-
tinues processing the page (not shown). Again, the observer
pattern [26] is used to decouple Classifiers from the
process method.

1 event PageAvailable{
2 Page page;
3 }

5 void expand (Page page) {
6 if(page.depth() >= max) return;
7 List<link> ls = page.links();
8 if(!ls.isEmpty()){
9 announce LinkAvailable(ls);

10 }
11 }

13 event LinksAvailable{
14 List ls;
15 }
16 class processLink {
17 when LinkAvailable do process;
18 void init(){ register(this); }
19 void process(List links) {
20 process(cast Link links.get(0));
21 }
22 }

24 void process (Link link) {
25 Page page = link.getPage ();
26 announce PageAvailable(page);
27 expand (page);
28 // processing detail omitted
29 }
30 class processRest {
31 when LinkAvailable do process;
32 void init(){ register(this); }
33 void process(List links) {
34 List ls = new ArrayList(links);
35 ls.remove(0);
36 if(!ls.isEmpty()){
37 announce LinkAvailable(ls);
38 }
39 }
40 }

Figure 35. Pān̄ini version of WebSPHINX, web crawler.
Imperative code for implicit invocation is replaced by lan-
guage features.

It is beneficial to expose potential concurrency in pro-
cessing links on lines 12-13. Several, but not all, concrete
classes that implement this Classifier interface write
to the same location (they are also not commutative opera-
tions [47]). However, it is beneficial to parallelize the meth-
ods that use the default classifier (not shown) which does not
write to a same location, as well as other cases that use other
non-conflicting classifiers.

Snippets from the Pān̄ini version of the web crawler code
are shown in Figure 35.

Like the earlier examples, the implementation is similar
to the OO version except that the for loop is replaced by an
event announcement statement. We register a continuation
handler, shown on line 30, and a link processor, on line 16,
for this event. Thus traversing the list of classifiers is now
delegated to the event system on line 26.

0
5

10
15

20

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of threads

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

Figure 36. Web crawler: speedup over sequential. Speedup
scales well (up to almost 16x) until all cores are utilized.

6.5.1 Experimental Setup and Results
For this experiment, we measured the speedup of the Pān̄ini
version of the web crawler over the sequential version. We
measured the speedup for web-crawling with a maximum
depth of 6. The results are shown in Figure 39. As expected,
as the number of threads increases, so does speedup. It
achieved more than 15.7x speedup.

6.6 Candidate: GA — Mutate and Evolve
A genetic algorithm (GA) mimics the process of natural se-
lection. These algorithms are computationally intensive and
are useful for solving optimization problems [48]. The main
idea is that searching for a desirable state is done by combin-
ing two parent states, instead of modifying a single state. An
initial generation with n members is given to the algorithm.
A cross over function is used to combine different members
of the generation to develop the next generation. Optionally,
members of the offspring may be randomly mutated slightly.
Finally, members of the generations (or an entire generation)
are ranked using a fitness function.

Figure 37 shows two main sub-algorithms of the GA
that change a generation to produce a new generation:
CrossOver and Mutation. To allow adding and remov-
ing other components in the flow of generations, this al-
gorithm is implemented using the observer design pattern.
These sub-algorithms serve as handlers. Once a new gen-
eration is produced, these handlers will be notified. In Fig-
ure 38, some other handlers are presented, as in JGAP [39].
A monitor will terminate the entire computation once cer-
tain criteria are met. A logger could log all the generations
produced. Different fitness functions could be used for dif-
ferent purposes. All these other handlers are not needed all
the time and may be registered in any combination to handle
intermediate outputs. Therefore, it makes sense to decouple
them from the main computations [26, pp.293].

Generally, both the mutation and the crossover func-
tions are computationally intensive and have no depen-
dency on each other. Thus, executing these two functions
in parallel is beneficial. The effects of both these han-

19 2011/6/3

1 event GenReady { GenCont gct; }

3 class GenCont{
4 Generation g;
5 boolean done;
6 GenCont(Generation g, boolean done){
7 this.g = g; this.done = done
8 }
9 }

11 class CrossOver {
12 int prob; int max;
13 void init(){ register(this); }
14 when GenReady do cross;
15 void cross(GenCont gct){
16 Generation g = gct.gen();
17 int gSize = g.size();
18 Generation g1 = new Generation(g);
19 // apply crossover funtion on g1;
20 if(g1.getDepth() < max && gct.done)
21 announce GenReady(new GenCont(g1,false));
22 }
23 }

25 class Mutation {
26 int prob; int max;
27 void init(){ register(this); }
28 when GenReady do mutate;
29 void mutate(GenCont gct){
30 Generation g = gct.gen();
31 int gSize = g.size();
32 Generation g1 = new Generation(g);
33 // apply Mutation funtion on g1;
34 if(g1.getDepth() < max && gct.done)
35 announce GenReady(new GenCont(g1,false));
36 }
37 }

Figure 37. GA implementation in Pān̄ini. Cross-over and
mutation handlers do not have conflicts.

dlers are {read GenCont done,ann GenReady}. For
CrossOver, the read effect comes from the field read on
line 12 and the announce effect comes from the announce
expression on line 17. On line 15, applying the crossover
function on a new generation has no effect. That is because
g1 was created on line 13 and all the changes to this local
copy may not be visible to other methods until it escapes [58]
out of the method on line 13.

A static type-and-effect system would yield too conser-
vative of results for this application. The effect set would at
least include the effects of the handlers shown in Figure 38
and these effects conflict with each other: these handlers
methods have an instance field write effect and any one of
them does not commute with itself [47]. Therefore, it is un-
safe to concurrently execute crossover and mutation.
However, not all usage of this genetic algorithm framework
will require all of these handlers and most of the usage do
not. Also, almost all the fitness functions in JGAP [39], ex-
cept some special cases like the one in Figure 38, are pure
functions. Thus, our hybrid type-and-effect system is likely
to be very useful towards exposing concurrency in this ge-
netic algorithm implementation.

6.6.1 Experimental Setup and Results
We implemented this GA and ran two versions of it, one that
registers a conflicting logger and another that does not, to ob-

1 class ImprovementMonitor {
2 Generation lastG;
3 void init(){ register(this); }
4 when GenReady do improve;
5 void improve(GenCont gct){
6 Generation g = gct.gen();
7 if(gain(lastG, g)){
8 gct.done = true;
9 }

10 lastG = g;
11 }
12 boolean gain(Generation g, Generation g1) {
13 // pure function that computes value gained.
14 }
15 }

17 class Logger {
18 when GenReady do log;
19 void init(){ register(this); }
20 void log(GenCont gct){
21 logGen(gct.g);
22 }
23 }

25 class OffsetRemoverFitness {
26 Int preOffset;
27 void init(){ register(this); }
28 when GenReady do improve;
29 void evaluate(GenCont gct){
30 Int cur;
31 // Computes fitness value and cur, detail omitted
32 preOffset = cur;
33 }
34 }

Figure 38. GA implementation in Pān̄ini (continued).
These handlers all conflict with themselves.

serve the speedup from concurrently executing the handlers
Mutation and CrossOver. For this experiment, the gen-
eration (or population) size was 3000 and the depth (number
of generations) was 10. Figure 39 shows the results.

0 5 10 15 20 25

0
2

4
6

8

Number of threads

S
pe

ed
up

 o
ve

r
se

qu
en

tia
l

● ●

●

no conflict
conflict
sequential

Figure 39. GA: speedup over sequential version. Speedup
scales to 7.3x as number of threads increases.

6.6.2 Analysis of results
As expected, the version with no conflict shows good
speedup (considering the concurrency available), achieving
7.3x speedup, while the version with conflicts was serial-
ized. On the other hand, with a static type-and-effect system
both of these scenarios would have been serialized, because

20 2011/6/3

the schedule produced at compile time must be serial if the
handlers conflict for any input.

7. Evaluation: Overhead of Effect System
This section evaluates our second hypothesis. That is that our
hybrid type-and-effect system has acceptable overhead. We
now consider the dynamic overhead of the type-and-effect
system for real world applications. Recall that this overhead
occurs upon handler registration.

7.1 FindBugs
First, we measured the overhead of registration for the Find-
Bugs system. To do so, we compared the runtime for regis-
trations against the overall application runtime. The experi-
mental setup is similar to that described in Section 6.2. How-
ever, in this experiment we ran FindBugs with three different
input workloads: 1 application, 10 applications and 50 appli-
cations. These results are shown in Figure 40.

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

Number of threads

R
eg

is
tr

at
io

n
ov

er
he

ad
(%

 o
f t

oa
l r

un
tim

e)

● ● ●
● ● ●

● ●

●

Panini 1 applications
Panini 10 applications
Panini 50 applications

Figure 40. Registration overhead for FindBugs. Handlers
have no conflicts. Less than 0.04% overhead for large input.

The results show that registration makes up only a small
portion of the overall execution time (less than 0.8%) even
for small workloads. The overhead increases slightly as the
number of threads increases because the execution time of
the entire program decreases. However, for larger workloads,
even with many threads, overhead is less than 0.04%.

7.2 jASEN: Anti Spam ENgine
Next, we measured the overhead of registration for jASEN,
a spam detection system. To do so, we compared the runtime
of registrations to that of the rest of the spam detection.
We ran the spam detection system with different workload
sizes: 1, 10, and 30 messages. These results are shown in
Figure 41.

When 1 message is analyzed, the overhead is signifi-
cant (around 14%). However, the overhead decreased sig-
nificantly when 10 messages were processed and dropped to
less than 2% when 30 messages were analyzed. Consider-
ing that a typical e-mail system will handle far more than
30 messages, this overhead is acceptable. Also, the gains

2 4 6 8 10 12

0
2

4
6

8
10

12
14

Number of threads

R
eg

is
tr

at
io

n
ov

er
he

ad
(%

 o
f t

ot
al

 r
un

tim
e)

● ● ● ● ● ● ● ● ● ● ● ●

●

Panini 1 Email
Panini 10 Emails
Panini 30 Emails

Figure 41. Registration overhead for jASEN. Handlers
have no conflicts. Less than 2% overhead for large input.

achieved by parallelizing this system (as shown in Figure 23)
outweigh the costs of registration.

7.3 Refactoring Crawler
Next, we measured the overhead of registration for the refac-
toring crawler application. We ran the application with three
different input workloads: applications JHotDraw, Struct,
and Eclipse. These results are shown in Figure 42.

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Number of threads

R
eg

is
tr

at
io

n
ov

er
he

ad
(%

 o
f t

ot
al

 r
un

tim
e)

● ● ● ● ● ● ●

●

JHotDraw
Struct
Eclipse

Figure 42. Registration overhead for Refactoring Crawler.
Handlers have no conflicts. Only approximately 0.01% over-
head for large workload.

Again, we see expected results in that registration takes
only a very small portion of the execution time. In this case
we see only approximately 0.3% overhead even for many
threads for the smallest workload. For the larger workload
sizes, we see only about 0.01% overhead for many threads.

7.4 Web Crawler
Next, we measured the overhead for the WebSPHINX web
crawler program. We tested with four different crawling
depths. These results are shown in Figure 43.

Notice that even for small web-crawling depths, the over-
head is only about 0.25%. For larger depths the overhead
becomes negligible (about 0.01%).

21 2011/6/3

0 1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Number of threads

R
eg

is
tr

at
io

n
ov

er
he

ad
(%

 o
f t

ot
al

 r
un

tim
e)

●

●

●
●

● ●
●

●

●

●
● ●

●
●

●

●

● ● ● ● ● ● ● ●

●

●

●

Depth

0
1
2
3

Figure 43. Registration overhead for WebSPHINX. Less
than 0.01% overhead for modest crawling depths.

7.5 Genetic Algorithm
Finally, we measured the overhead of registration for the
genetic algorithm application. In this experiment, we use a
similar setup to the previous experiment except that we also
measured overhead for depths eight and nine (on top of the
original depth of 10). These results are shown in Figure 44.

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

Number of threads

R
eg

is
tr

at
io

n
ov

er
he

ad
(%

 o
f t

ot
al

 r
un

tim
e)

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●

●

Depth 8
Depth 9
Depth 10

Figure 44. Registration overhead for GA. Handlers have no
conflicts. Roughly 0.1% overhead for large generation depth.

As expected, the registration takes only a very small por-
tion of the execution time. We see less than 0.8% overhead
for a depth of eight. Like earlier experiments, this overhead
increases as the number of threads increases because the ex-
ecution time of the entire program decreases. For the largest
depth (10) we saw only about 0.1% overhead.

Summary. We have shown, through the study of real
world applications, the potential utility of our technique to-
wards exposing implicit concurrency in shared-memory II
programs. These results show that for real world applications
our claims hold. These claims are that

• our hybrid analysis is more precise compared to a fully
static analysis resulting in greater concurrency, and

• our hybrid analysis has negligible overhead that is amor-
tized by the introduced concurrency.

8. Related Work
Pān̄ini. This work builds on our previous work on the
Pān̄ini language [36] in several ways.

First, we give a calculus describing the hybrid effect anal-
ysis model and formalize the semantics of Pān̄ini. This has
enabled a rigorous understanding of key concurrency prop-
erties (e.g. deadlock and data race freedom, etc.). These as-
pects of Pān̄ini differ from previous approaches. This calcu-
lus has also enabled verification of the implementation and
testing of semantic variations. This includes the ability to
plug in more powerful static analysis techniques. Such im-
provements would be important in practical settings.

Next, we provide a thorough discussion and experimental
evaluation of Pān̄ini’s hybrid effect analysis. This includes
a study using real world programs of our hybrid type-and-
effect system as compared to static approaches. Our evalu-
ation has answered several questions about the runtime per-
formance of the hybrid analysis in various situations.

In summary, this work makes important contributions
over previous work both theoretically and practically. The
theoretical advances have enabled us to verify key concur-
rency properties, present a more clearly defined language de-
sign, and consider practical future improvements for Pān̄ini.
The practical advances have answered key questions regard-
ing the benefits of Pān̄ini’s hybrid type-and-effect system
and the overall practical use of Pān̄ini.

Types, Regions and Effects. Pān̄ini’s hybrid system is not
the first to use type-and-effect to enable safe concurrency.
Deterministic parallel Java (DPJ/DPJizer) [45, 55] uses a
region-based type-and-effect system to provide determinis-
tic parallelism in imperative OO programs. Ownership sys-
tems [13–15] have been used to organize objects into hierar-
chies for better reasoning, i.e. about the absence of aliasing.
Concurrent Revisions [12] provides users with a syntax that
says each thread accesses its own version of certain objects
to eliminate interferences. Similar to these analyses, our hy-
brid system generates static invariants, e.g. effect summaries
for every method. To the best of our knowledge, compared
to these related ideas, Pān̄ini’s type-and-effect system is the
first that effects in a hybrid manner. Next, the schedule pro-
duced by purely static approaches must be valid for all inputs
and thus may declare many programs concurrency-unsafe,
even though only certain rare control flow paths in such pro-
grams produce concurrency-unsafe computational effects.
Our hybrid system computes schedules during program exe-
cution where it has more accurate information. Therefore, it
may observe more safe parallelization opportunities than the
purely static approaches.

Atomicity. Several systems provide syntax to declare and
validate the atomicity of certain data structures and thus
guarantee concurrency safety. AJ2 and Rcc/Sat [23, 24] use
the type system to enforce certain locking disciplines to
check for data races or ensure atomic access objects. AJ [56]

22 2011/6/3

uses a type system to maintain data-centric synchronization
and is a variant of the atomicity protection. Unlike these
works, our hybrid system ensures a deterministic semantics,
not just atomicity. Sometimes, atomicity is not enough to
guarantee a deterministic semantics. For example, although
it is safe to concurrently add elements to a list, the order
of the insertions is violated and could be arbitrary. Second,
our focus is on producing and validating a safe schedule,
while they offer constructs for programmers to facilitate
the reasoning on concurrency safety, statically. Therefore,
these works are orthogonal to ours. Thus our hybrid system
may enhance its accuracy by combining with these static
techniques.

Dynamic Approaches. Dynamic approaches are also
used to ensure concurrency safety. The Galois system [32,
40] aims to optimistically parallelize irregular applications.
Central to this system is a worklist where pending operations
live and more operations can be inserted into this list. Their
underlying implementation uses speculative execution. In
contrast to this, our system infers the computational effects
for operations statically and then uses these effects at run-
time to determine a safe schedule for operation execution
that maximizes concurrency. The Galois system requires use
of a thread speculation infrastructure at runtime, e.g. to im-
plement a rollback mechanism, whereas our effect system
requires an effect manipulation and a scheduling mecha-
nism. Furthermore, unlike previous work on dynamic ap-
proaches [44, 57], our work does not require modifications
to the underlying virtual machine.

Actor-based Languages. There is a large body of work
on using the notion of actors [5] for concurrency. Agha and
Hewitt’s work [6] and Erlang’s language design [7] model
programs as a set of “isolated” active entities that commu-
nicate by passing messages. JCoBox [51] unifies the actor
model with the shared memory model to enhance local and
distributed concurrency. In these models, actors process lo-
cal computations concurrently with other actors. The actor
model is seen as naturally supporting concurrency. Also,
complete isolation of actors makes it easier to reason about
their states. However, in mainstream object-oriented lan-
guages such as Java, C++, etc., programmers rely on shared
states to express many useful computational idioms. So al-
though in principle it would be sensible to adopt a fully-
isolated actor-based model, practice and existing investment
in mainstream languages demands a solution that supports
both message-passing and shared states. Also, our system
guarantees a deterministic semantics, which is somewhat
difficult for the actor model, due to asynchronous and non-
deterministic nature of the message passing paradigm [38].

Event-based Systems. Events have a long history in both
the software design [22, 34] and distributed systems com-
munities [20]. Pān̄ini’s notion of asynchronous, typed events
builds on these notions, in particular recent work in pro-

gramming languages focusing on event-driven design [18,
19, 46]. Pān̄ini’s design is not the first to integrate event-
based model with concurrency. Reactor [52] pattern inte-
grates the demultiplexing of events and the dispatching of
the corresponding event handlers to simplify event-driven
applications. Li and Zdancewic [34] promote the integra-
tion of event-based model with the thread-based explicit
concurrency models. TaskJava [22] provides syntax to mark
asynchronous methods. Expressions may express their
interests in a set of events and the expressions will block
until one of them fires. Pān̄ini’s design is also not the first
to promote implicit concurrency, e.g. in BETA [53], objects
implicitly execute in the context of a local process.

The above models, developed for event-based distributed
systems, assume that components in the system do not share
state and only communicate by passing primitive values,
whereas Pān̄ini allows shared states (similar to mainstream
languages like Java, C#), which is useful for many computa-
tion patterns. Also, unlike the above works on shared mem-
ory [8, 22, 34], Pān̄ini provides safety guarantees. Pān̄ini
provides programmers with deterministic semantics via its
hybrid type-and-effect system. As a result, programmers are
relieved of reasoning about concurrency bugs. Such software
engineering properties are becoming very important with the
increasing presence of concurrent software, increasing in-
terleaving of threads in concurrent software, and increasing
number of under-prepared software developers writing code
using concurrency unsafe features.

9. Conclusion and Future Work
The implicit invocation (II) design style is widely used in
mainstream shared-memory languages, e.g. via the observer
design pattern [26]. Thus, language features that promote
safe concurrency for the II design style have become im-
portant [18, 42, 52]. Static type-and-effect systems [14, 45]
are effective at eliminating data races and deadlocks in ex-
plicitly concurrent languages, however, they are often too
conservative and reject programs written in II style where
concurrency could be safely exposed. The actor model [5]
exposes concurrency by providing a disjoint memory model.
However, due to the asynchronous nature of the message
passing model, it does not provide a deterministic semantics.
Also, programmers that are well-versed in mainstream OO
languages have to make great efforts to adapt to this model.

We have developed a new hybrid type-and-effect system
that solves these problems. This system is based on our ob-
servations that handler registrations are infrequent compared
to event announcements and that the exact set of tasks to
be run when an event is signaled can be computed during
registration. We have shown several real world applications
where our type-and-effect system exposes more concurrency
than completely static type-and-effect systems. The results
gathered from running these applications have shown that
the overhead of our effect system is acceptable and its per-

23 2011/6/3

formance benefits are promising. Finally, our effect system
provides race and deadlock freedom and a deterministic se-
mantics.

In this work, we have deliberately avoided aliasing issues
by keeping the read and write effects limited. This allowed
us to focus on the announcement and registration effects. In
the future, we would like to explore the integration of our
type-and-effect system with an ownership type system [13–
15] to further enhance its precision and effectiveness.

References
[1] FindBugs Eclipse Plugin. http://

marketplace.eclipse.org/content/
findbugs-eclipse-plugin.

[2] The Java Anti Spam ENgine. http://www.jasen.org/.

[3] Java Line Count Estimator. http://reasoning.com/
downloads/java_line_count_estimator.html.

[4] M. Abadi and G. Plotkin. A model of cooperative threads. In
POPL, pages 29–40, 2009.

[5] G. Agha. Actors: a model of concurrent computation in
distributed systems. Technical Report AITR-844, MIT, 1985.

[6] G. Agha and C. Hewitt. Concurrent programming using
actors: Exploiting large-scale parallelism. In Foundations
of Software Technology and Theoretical Computer Science,
pages 19–41. Springer, 1985.

[7] J. Armstrong, R. Williams, M. Virding, and C. Wikstroem.
Concurrent Programming in ERLANG. Prentice-Hal, 1996.

[8] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency
abstractions for C#. ACM Trans. Program. Lang. Syst., 26(5):
769–804, 2004.

[9] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: safe
multithreaded programming for c/c++. In OOPSLA, pages
81–96, 2009.

[10] R. Bocchino. An Effect System and Language for
Deterministic-by-Default Parallel Programming. PhD thesis,
University of Illinois, Urbana-Champaign, 2010.

[11] C. Boyapati, R. Lee, and M. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA, pages 211–230, 2002.

[12] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent pro-
gramming with revisions and isolation types. In OOPSLA,
pages 691–707, 2010.

[13] N. Cameron, J. Noble, and T. Wrigstad. Tribal ownership. In
OOPSLA, pages 618–633, 2010.

[14] N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith.
Multiple ownership. In OOPSLA, pages 441–460, 2007.

[15] D. Clarke and S. Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In OOPSLA, pages
292–310, 2002.

[16] C. Clifton and G. T. Leavens. MiniMAO1: Investigating the
semantics of proceed. Science of Computer Programming, 63
(3):321–374, 2006.

[17] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Auto-
mated Detection of Refactorings in Evolving Components. In
ECOOP, pages 404–428, 2006.

[18] P. Eugster. Type-Based Publish/Subscribe: Concepts and Ex-
periences. ACM Trans. Program. Lang. Syst., 29(1):6, 2007.

[19] P. Eugster and K. R. Jayaram. EventJava: An Extension of
Java for Event Correlation. In ECOOP, pages 570–584, 2009.

[20] P. T. Eugster, R. Guerraoui, and C. H. Damm. On Objects and
Events. In OOPSLA, pages 254–269, 2001.

[21] M. Feng and C. E. Leiserson. Efficient detection of determi-
nacy races in cilk programs. In SPAA, pages 1–11, 1997.

[22] J. Fischer, R. Majumdar, and T. Millstein. Tasks: language
support for event-driven programming. In PEPM, pages 134–
143, 2007.

[23] C. Flanagan and S. N. Freund. Type inference against races.
Sci. Comput. Program., 64:140–165, 2007.

[24] C. Flanagan, S. N. Freund, and M. Lifshin. Type inference for
atomicity. In TLDI, pages 47–58, 2005.

[25] M. Flatt, S. Krishnamurthi, and M. Felleisen. A Programmer’s
Reduction Semantics for Classes and Mixins. In Formal
Syntax and Semantics of Java, chapter 7, pages 241–269.
Springer, 1999.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

[27] D. Garlan and D. Notkin. Formalizing design spaces: Implicit
invocation mechanisms. In VDM ’91, pages 31–44, 1991.
ISBN 3-540-54834-3.

[28] D. K. Gifford and J. M. Lucassen. Integrating functional and
imperative programming. In LFP, pages 28–38, 1986.

[29] B. Goetz, T. Peierls, B. J., J. Bowbeer, D. Holmes, and D. Lea.
Java Concurrency in Practice. Addison-Wesley, 2006.

[30] R. T. Hammel and D. K. Gifford. Fx-87 performance mea-
surements: Dataflow implementation. Technical report, Cam-
bridge, MA, USA, 1988.

[31] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39:92–106, December 2004.

[32] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires ab-
stractions. In PLDI, pages 211–222, 2007.

[33] D. Lea. A Java Fork/Join Framework. In Java Grande, pages
36–43, 2000.

[34] P. Li and S. Zdancewic. Combining events and threads for
scalable network services implementation and evaluation of
monadic, application-level concurrency primitives. In PLDI,
pages 189–199, 2007.

[35] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau,
and J. Torrellas. Posh: a tls compiler that exploits program
structure. In PPoPP, pages 158–167, 2006.

[36] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan. Implicit
invocation meets safe, implicit concurrency. In GPCE, 2010.

[37] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. In POPL, pages 47–57, 1988.

24 2011/6/3

http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://marketplace.eclipse.org/content/findbugs-eclipse-plugin
http://www.jasen.org/
http://reasoning.com/downloads/java_line_count_estimator.html
http://reasoning.com/downloads/java_line_count_estimator.html

[38] P. Mackay. Why has the actor model not succeeded? Technical
Report 2, Imperial College, Dept. of Comput., 1997.

[39] K. Meffert. JGAP - Java Genetic Algorithms and Genetic
Programming Package. http://jgap.sf.net.

[40] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel
inclusion-based points-to analysis. In OOPSLA, pages 428–
443, 2010.

[41] R. C. Miller and K. Bharat. Sphinx: a framework for creating
personal, site-specific web crawlers. In WWW, pages 119–
130, 1998.

[42] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information
Bus: An Architecture for Extensible Distributed Systems. In
SOSP, pages 58–68, 1993.

[43] M. K. Prabhu and K. Olukotun. Using thread-level specu-
lation to simplify manual parallelization. In PPoPP, pages
1–12, 2003.

[44] P. Pratikakis, J. Spacco, and M. Hicks. Transparent Proxies
for Java Futures. In OOPSLA, pages 206–223, 2004.

[45] R. Bocchino et al.. A type and effect system for deterministic
parallel java. In OOPSLA, pages 97–116, 2009.

[46] H. Rajan and G. T. Leavens. Ptolemy: A language with
quantified, typed events. In ECOOP, pages 155–179, 2008.

[47] M. C. Rinard and P. C. Diniz. Commutativity analysis: a
new analysis framework for parallelizing compilers. In PLDI,
pages 54–67, 1996.

[48] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2003.

[49] C. Sadowski, S. N. Freund, and C. Flanagan. Singletrack: A
dynamic determinism checker for multithreaded programs. In
ESOP, pages 394–409, 2009.

[50] R. D. Salcianu and M. C. Rinard. Purity and side effect
analysis for java programs. In In VMCAI. Springer-Verlag,
2005.

[51] J. Schäfer and A. Poetzsch-Heffter. Jcobox: Generalizing
active objects to concurrent components. In ECOOP, pages
275–299. Springer, June 2010.

[52] D. C. Schmidt. Reactor: an object behavioral pattern for con-
current event demultiplexing and event handler dispatching.
Pattern languages of program design, pages 529–545, 1995.

[53] B. Shriver and P. Wegner. Research directions in object-
oriented programming, 1987.

[54] J.-P. Talpin and P. Jouvelot. The type and effect discipline.
Inf. Comput., 111:245–296, 1994.

[55] M. Vakilian, D. Dig, R. Bocchino, J. Overbey, V. Adve, and
R. Johnson. Inferring method effect summaries for nested
heap regions. In ASE, pages 421–432, 2009.

[56] M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek. A type
system for data-centric synchronization. In ECOOP, pages
304–328, 2010.

[57] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for
Java. In OOPSLA, pages 439–453, 2005.

[58] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for Java programs. In OOPSLA, pages 187–206.
ACM, 1999.

[59] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, Nov
1994.

25 2011/6/3

http://jgap.sf.net

Appendix: Omitted Semantics Details
The auxiliary function updateHierarchy (defined in Fig-
ure 45) is responsible for updating the hierarchy upon a reg-
istration. We now briefly define each step in this process.

updateHierarchy(loc, γ, µ) = γ if registered(loc, γ) = true
updateHierarchy(loc, γ, µ) = γ′ if registered(loc, γ) = false

where µ(loc) = [c.F], colEvents(c, CT) = P,
γ′′ = putEvent(P, loc, γ, µ),
γ′′′ = updateEvMap(γ′′), γ′ = reorderEvMap(γ′′′)

registered(loc, γ) = t
where γ = {pi 7→ δi}, t =

S
i inHierarchy(loc, δi)

inHierarchy(loc, •) = false
inHierarchy(loc, ζ + δ) = inHierarchy(loc, δ) if inList(loc, ζ) = false
inHierarchy(loc, ζ + δ) = true if inList(loc, ζ) = true

inList(loc, •) = false
inList(loc,

˙
loc′, ρ

¸
+ ζ) = inList(loc, ζ) if loc 6= loc′

inList(loc, 〈loc, ρ〉+ ζ) = true otherwise

Figure 45. Auxiliary functions for registering a handler.

1. First, the function checks whether the handler has regis-
tered before (using registered). If it has registered before,
the configuration does not change. For simplicity, Pān̄ini
does not allow multiple registrations for the same object.

2. If this handler has not registered before, it searches the
class table to collect all of the events that this handler
subscribes to. This is done using the colEvents function
(defined in Figure 46).

3. Next, the handler is put into the hierarchy for each
of these events (those found by colEvents) using the
putEvent function defined in Figure 47.

4. The updateEvMap function (defined in Figure 48) is
then used to update the effects for each handler based
on the new registration. This is performed until a fix-
point is reached. The purpose of this step is to propagate
the effects of this new handler to all handlers which may
cause this handler to run.

5. Finally, the reorderLvl function is used to reorder the hi-
erarchy to guarantee that no handlers which may conflict
may be run in parallel.

The function inHierarchy checks if a handler is already
in the event hierarchy and the function inList checks if a
handler is in a specific level of the event hierarchy.

colEvents(c, •) = •
colEvents(c, (event p{ . . . }) + CT ′) = colEvents(c, CT ′)
colEvents(c, (class c′ . . .) + CT ′) = colEvents(c, CT ′) if c 6= c′

colEvents(c, ((class c extends d . . . binding1 . . . bindingn) + CT ′))
= {colEvent(bindingn)} ∪ . . . ∪ {colEvent(binding1)} ∪ colEvents(d, CT)

where colEvent(when p dom) = p

Figure 46. Functions for collecting events of interest.

Next, consider the colEvents function which is defined
in Figure 46. Recall that this function is responsible for

searching class table to collect all the events a handler is
interested in. It will first search the binding declarations in
the handlers’ class and recursively search its super classes.

putEvent(∅, loc, γ, µ) = γ
putEvent(p+ P, loc, γ, µ) = γ′′

where δ = γ(p), putHierarchies(loc, δ, µ, p) = δ′,
γ′ = γ] {p 7→ δ′}, γ′′ = putEvent(P, loc, γ′, µ)

putHierarchies(loc, δ, µ, p) = ζ + δ
where µ(loc) = [c.F], hmatch(c, p, CT) = m,
(c′, t,m . . . , ρ) = findMeth(c,m),
ζ = 〈loc,m, ρ〉+ •

Figure 47. Adding a handler into an event hierarchy.

Now, consider the functions defined in Figure 47. The
putEvent function uses the putHierarchies function to put
current handler (p ∈ P) into the hierarchies of all the events
that this handler is interested in.

updateEvMap(γ) = γ if fixpEvMap(γ) =
˙
γ′, true

¸
updateEvMap(γ) = updateEvMap(γ′) if fixpEvMap(γ) =

˙
γ′, false

¸
fixpEvMap(γ) =

˙
γ′, t

¸
where γ′ = {pi 7→ δ′i | pi ∈ dom(γ) ∧ γ(pi) = δi∧˙

δ′i, ti
¸

= fixpHier(δi, γ)},
T = {ti|∃pi ∈ dom(γ) s.t. γ(pi) = δi ∧

˙
δ′i, ti

¸
= fixpHier(δi, γ)},

t =
V

ti∈T ti

fixpHier(•, γ) = 〈•, true〉
fixpHier(ζ + δ, γ) =

˙
∅, t′′

¸
where fixpEpsilon(ζ) =

˙
ζ′, t

¸
,

fixpHier(δ, γ) =
˙
δ′, t′

¸
, t′′ = t′ ∧ t

fixpLevel(•, γ) = 〈•, true〉
fixpLevel(ι+ ζ, γ) =

˙
ι′ + ζ′, t′′

¸
where fixpEpsilon(ι) =

˙
ι′, t
¸
,

fixpLevel(ζ, γ) =
˙
ζ′, t′

¸
, t′′ = t′ ∧ t

fixpEpsilon(〈loc,m, ρ〉 , γ) =
˙˙

loc,m, ρ′
¸
, ρ = ρ′

¸
where P = {pi|∃ εj ∈ ρ s.t. εj = ann pi},
ρ′ = ρ

S
pi∈P effHierachy(γ(pi))

Figure 48. Functions for updating effects for handlers.

Next, consider the fix-point update functions defined in
Figure 48. The top level updateEvMap function is used
to update the effects of each handler using a fix-point algo-
rithm. This function will repeatedly call the fixpEvMap func-
tion until the hierarchies no longer change. For each call to
fixpEvMap each event hierarchy (δ) is updated using the
fixpHier function which uses the fixpLevel function to up-
date each level of the hierarchy. This function uses the func-
tion fixpEpsilon to update each announcement effect. For
each event p, that it may announce, it merges the effects of
all the handlers of event p into the effect of the current task.
This algorithm is guaranteed to terminate because the total
effect could only be the union of all the effects of all the
handlers. And in each iteration, there is at least one handler
whose effect is changed.

Finding the effects of all the handlers of an event p is done
using the function effHierachy (defined in Figure 49) which
merges the effects of all handlers in each level. The effect of
a handler is found using the effList function.

26 2011/6/3

effHierachy(•) = ∅
effHierachy(ζ + δ) = effList(ζ) ∪ effHierachy(δ)

effList(•) = ∅
effList(〈loc,m, ρ〉+ ζ) = ρ ∪ effList(ζ)

Figure 49. Computing effects for the entire hierarchy.

Since the effects in each of the event hierarchies can be
updated, the handlers in the hierarchy need to be reordered
to eliminate potential data races. This is accomplished using
the reorderEvMap function which updates all event hierar-
chies. The reorderHier function takes a specific event hier-
archy and re-orders each level using the reorderLvl function.
The reorderLvl function takes the first handler in the origi-
nal list, compares its updated effect set with all the handlers
in the last level in the updated list (by the comp function). If
there is no conflict, it is put into this level. Otherwise, it is put
into a new level. The boolean variable t in these functions is
used to determine whether there is a handler h that regis-
tered before that has a reg effect. If such a handler exists,
we make the later registered handler, h′, which has an ann ,
conflict with the other handlers. This is because during the
execution of h, more handlers could register. The ann effect
for h′ maybe be enlarged and h′ may conflict with handler
h′′ even though h′ and h′′ did not conflict originally.

reorderEvMap(γ) = γ′

where γ′ = {pi 7→ δ′i | pi ∈ dom(γ) ∧ γ(pi) = δi∧
δ′i = reorderHier(δi, •, false)

reorderHier(•, δ, t) = δ
reorderHier(δ′ + ζ, δ, t) = reorderHier(δ′, δ′′, t′)

where reorderLvl(ζ, δ, t) =
˙
δ′′, t′

¸
reorderLvl(•, δ, t) = 〈δ, t〉
reorderLvl(ζ + ι, •, t) = reorderLvl(ζ, ζ′, t)

where ζ′ = ι+ •, ι = 〈loc,m, ρ〉, t = hasReg(ρ)
reorderLvl(ζ + ι, ζ′ + δ, t) = reorderLvl(ζ, δ′, t) if comp(ζ′, ι, t) = true

where ζ′′= ι+ ζ′, δ′= ζ′′+ δ, ι = 〈loc,m, ρ〉, t′ = t || hasReg(ρ)
reorderLvl(ζ + ι, ζ′ + δ, t) = reorderLvl(ζ, δ′, t) if comp(ζ′, ι, t) = false

where ζ′′= ι+ •, δ′= ζ′′+ ζ′+ δ, ι = 〈loc,m, ρ〉, t′ = t || hasReg(ρ)

comp(•, ι, t) = true
comp(

˙
loc′,m′, ρ′

¸
+ ζ, 〈loc,m, ρ〉 , t) = indep(ρ, ρ′, t)∧

comp(ζ, 〈loc,m, ρ〉 , t)

hasReg(•) = false
hasReg(ε+ ρ) = hasReg(ρ) if ε 6= reg
hasReg(ε+ ρ) = true if ε = reg

Figure 50. Functions for reordering the event hierarchies.

Figure 51 defines the functions responsible for building
event hierarchies. The spawn function is used when an event
is announced. It first pulls the event hierarchy from the event
map γ. Each level is build using the buildLevel function
which creates tasks using the buildTask function. In the end,
each new task depends on all the tasks in the previous level
of the hierarchy.

spawn(p, ψ, γ, ν, µ) =
˙
γ′ + γ, I

¸
where δ = γ(p), buildHier(δ, µ, ∅, ν) =

˙
γ′, I

¸
buildHier(•, µ, I, ν) = 〈•, ∅〉
buildHier(δ + ζ, µ, I, ν) =

˙
ψ + ψ′, I′ ∪ I′′

¸
where buildLevel(ζ, µ, I, ν) =

˙
ψ, I′

¸
,

buildHier(ζ, µ, I′, ν) =
˙
ψ′, I′′

¸
buildLevel(•, µ, I, ν) = 〈•, ∅〉
buildLevel(ι+ ζ, µ, I, ν) =

˙
ψ′, I′′′

¸
where buildTask(ι, µ, I, ν) = 〈e, 〈id, I〉〉,
buildLevel(ζ, µ, I, ν) =

˙
ψ, I′

¸
,

ψ′ = 〈e, 〈id, I〉〉+ ψ, I′′ = I′ ∪ {id}

buildTask(〈loc,m, ρ〉 , µ, I, ν) =
˙
e′, 〈id, I〉

¸
where µ(loc) = [c.F], e′ = [this/loc, var1/v1, . . . , varn/vn]e,
(c′, t,m(t1 var1, . . . , tn varn){e}, . . .) = findMeth(c,m),
ν = (v1, . . . , vn) , id = fresh()

Figure 51. Functions for creating task configurations.

27 2011/6/3

	Introduction
	FindBugs: A Running Example
	The Problems and their Importance
	Contributions

	A Calculus with Event-based Concurrency
	Type and Static Effect Computation
	Top-level Declarations
	Expressions

	Panini's Dynamic Semantics with Effect-based Task Scheduling
	Evaluation: Safety Properties
	Deadlock Freedom
	Deterministic Semantics (Data Race Freedom)
	Type Soundness

	Evaluation: Performance Benefits
	Candidate Java Applications
	Candidate: FindBugs — Static Bug Detection
	Experimental Setup and Results
	Analysis of results

	Candidate: jASEN — Anti Spam ENgine
	Experimental Setup and Results
	Analysis of results

	Candidate: Refactoring Crawler
	Experimental Setup and Results

	Candidate: WebSPHINX — Crawling the WWW
	Experimental Setup and Results

	Candidate: GA — Mutate and Evolve
	Experimental Setup and Results
	Analysis of results

	Evaluation: Overhead of Effect System
	FindBugs
	jASEN: Anti Spam ENgine
	Refactoring Crawler
	Web Crawler
	Genetic Algorithm

	Related Work
	Conclusion and Future Work

