
Instance-level Quanti�ed, Typed Events for
Integrated System Design

Mehdi Bagherzadeh, Robert Dyer, Yuheng Long, and Hridesh Rajan

TR #08-15
Initial Submission: Dec 23, 2008.

Keywords: component integration, implicit-invocation languages, aspect-
oriented programming languages, quanti�cation, pointcut, join point, context
exposure, type checking, event types, event expressions, instance-level aspects.
CR Categories:
D.2.10 [Software Engineering] Design
D.1.5 [Programming Techniques] Object-Oriented Programming
D.2.2 [Design Tools and Techniques] Modules and interfaces,Object-oriented de-
sign methods
D.2.3 [Coding Tools and Techniques] Object-Oriented Programming
D.3.3 [Programming Languages] Language Constructs and Features - Control
structures

Copyright (c) 2008, Mehdi Bagherzadeh , Robert Dyer, Yuheng Long, and
Hridesh Rajan.

Submitted for publication.

Department of Computer Science
226 Atanaso� Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Instance-level Quantified, Typed Events for Improved
Separation of Integration Concerns

Mehdi Bagherzadeh, Robert Dyer, Yuheng Long, and Hridesh Rajan

Department of Computer Science, Iowa State University
226 Atanasoff Hall Ames, IA, 50011, USA

{mbagherz,rdyer,csgzlong,hridesh@cs.iastate.edu}

Abstract. Integrated systems are those where components must behave together
in order to fulfill overall requirements. In such systems, modularization of in-
tegration relationships is important for enabling separate component compila-
tion, testing, and debugging, and for enhanced reuse. Existing languages and ap-
proaches for modularizing integration relationships work, but do not solve all
problems. In particular, they either do not completely decouple components or
require workarounds, which at a minimum incurs design and performance over-
heads. In this work, we discuss instance-level quantified, typed events, which
solve all of these problems. The technical contributions include: the design, se-
mantics, and type system of instance-level quantified, typed events and a proof
of its soundness. A formalized semantics is new to this paper, as there have been
no previous formalizations of language features that aim to modularize separa-
tion of integration relationships. To demonstrate the feasibility of our language
design, we have implemented this design in an interpreter. To provide an initial
assessment of the language’s benefits, we have implemented canonical examples
in the literature. Our initial assessments show that instance-level quantified, typed
events improve the separation of integration concerns over previous language de-
sign proposals.

1 Introduction

Integrated systems [24, 29] are a broad class of software systems in which logically
unrelated objects, such as compilers, editors, debuggers, or any other kind of discrete
components must interact dynamically to meet system-level requirements (e.g., the ed-
itor must automatically open the right file and scroll to the right line when the debugger
encounters a breakpoint) [16]. In the context of these systems, the modularization of
behavioral relationships is an important problem [29, 20, 22]. These relationships coor-
dinate the control, actions, and states of subsets of system components to satisfy overall
system requirements; thus, they are also referred to as integration concerns [16, 29].

Previous works have investigated the separation of integration concerns through
instance-level advising e.g. the work of Pearce and Noble on relationship aspects [15],
the work of Rajan and Sullivan on instance-level aspects in Eos [20, 22], and the work
of Sakurai et al. on association aspects [26]. Others, like the work of Taner on expres-
sive scoping of deployed aspects [5] and the work of Hoffman and Eugster [10], have
suggested changing the advising model in Aspect-Oriented (AO) programming. Work

2

on formalizing AO features has been done by Wand et al. [31], Clifton and Leavens [3],
and others but to the best of our knowledge, no formalization has addressed instance-
level features that require non-trivial extension.

In this paper we introduce and give a formal definition for instance-level event type
support in Ptolemy [19], by adding instance-level event association to it. Ptolemy is
a language with quantified, typed events that solves problems with previous Implicit
Invocation (II) and Aspect-Oriented (AO) languages such as the lack of quantification
in II [19] and fragile pointcuts in AO [19, 27, 30]. Ptolemy however has no support for
instance-level event announcements and instead requires subjects to notify all registered
instances of the observer when a specific event is announced. Systems dealing with sep-
aration of integration concerns require the ability to maintain these event relationships at
a much finer granularity. Our solution is to add a new construct to Ptolemy, called asso-
ciate, which allows creating such instance-level relationships. We give a formal seman-
tics for our new language, called Ptolemy-I, and show several examples implemented
in it. The examples are implemented using an interpreter we developed for Ptolemy-I,
which shows the feasibility of instance-level type event support in Ptolemy-I.

In summary, this work makes the following contributions. It presents:

– a language design that improves the separation of integration concerns [16, 29];
– a formalization of instance-level advising of events that plays a key role in the

separation of integration concerns;
– a demonstration of the benefits of the language design via canonical examples pre-

sented elsewhere [16, 29]; and,
– an interpreter for the instance-level quantified, typed events as a proof of concept.

In the following section, we present insights into the problem through a motivating
example. Section 3 shows how our language design solves the presented problem and
talks about our language design. We then give detailed semantics of the language in
Section 4 and a type system in Section 5. We evaluate our language design with a
large canonical example implemented in our interpreter in Section 7. Finally, we discuss
related work in Section 8 and conclude in Section 9.

2 Motivation

In this section, we motivate the need for instance-level quantified, typed events using an
example borrowed from Rajan and Sullivan [20]. This system consists of a collection
of models. A model provides the ability to change its state. A system-wide requirement
is to keep the states of certain models consistent with each other, e.g. if model m1
and m2 are required to be consistent, whenever the state of m1 changes, m2 needs to
be updated and vice-versa. This requirement is a representative of what Sullivan et al.
have called behavioral relationships [29] in that control, actions and states of subsets of
system components need to be coordinated to satisfy overall system requirements. The
challenge is to enable modular representation of the consistency relationship.

In an object-oriented (OO) implementation of such a system, a model would be de-
signed as an instance of an object-oriented class Model as shown in Figure 1 (lines 4–
10). This class provides the ability to change the state of the model, which for simplicity
is represented here as the method Set (lines 6–9). Other mutators are also conceivable.

3

The simplest implementation of the consistency requirement would be to keep a list
of model instances as a field of the class Model and implement the consistency logic
in the class Model itself. This would, however, couple the implementation of the con-
sistency requirement with that of the model preventing their independent evolution and
reuse. OO design patterns such as the observer pattern, as well as aspects [12], can be
utilized for improved separation of consistency concern, but as Rajan and Sullivan [20,
23], Sakurai et al. [26], and Pearce and Noble [15] have shown, these do not fully mod-
ularize the integration relationships. These authors have proposed AO features in the
style of AspectJ-like languages [12], e.g. instance-level aspects [20], association as-
pects [26], and relationship aspects [15], to further improve the modularization of such
integration requirements. However, AspectJ-like AO languages have other problems in
orthogonal dimensions, e.g. fragility of regular expression-based pointcuts [19, 27, 30].

In a previous work, Rajan and Leavens [19] proposed Ptolemy, a language design
based on quantified, typed events, which solves the problems with AO languages and
maintains similar benefits. To understand whether this language design enables im-
proved separation of integration concerns, we implemented the consistency requirement
using Ptolemy as illustrated in Figure 1 (lines 24–47, ignoring the grey code for now).

1 Model evtype SetEvent {
2 Model model;
3 }
4 class Model {
5 bool value = false;
6 Model Set() {
7 Model model = this;
8 event SetEvent { value = true; this }
9 }

10 }
11 class Main {
12 Main main() {
13 Model m1 = new Model();
14 Model m2 = new Model();
15 Model m3 = new Model();
16 Model m4 = new Model();
17 Consistency c1 = new Consistency();
18 c1.AddMap(m1,m2); c1.AddMap(m3,m4);
19 m1.Set();
20 m3.Set();
21 this
22 }
23 }

24 class Consistency {
25 HashMap<Model, bool> busy = new ..;
26 HashMap<Model, Vector<Model>> map = new ..;
27 Consistency () { register(this) }
28 Consistency AddMap (Model m1, Model m2) {
29 /* initialize busy/map for m1 and m2 */
30 ..
31 map.get(m1).addElement(m2);
32 map.get(m2).addElement(m1);
33 this
34 }
35 Model HandleSetEvent (SetEvent inner) {
36 if (busy.containsKey(inner.model)) {
37 if (!busy.get(inner.model)) {
38 busy.put(inner.model, true);
39 for (Model m : map.get(inner.model))
40 if (!busy.get(m)) m.Set ();
41 busy.put(inner.model, false);
42 }
43 }
44 invoke(inner)
45 }
46 when SetEvent do HandleSetEvent;
47 }

Fig. 1. Model Example Implementation Using Ptolemy [19] (based on [20])

Ptolemy allows programmers to declare event types as shown in lines 1-3. These
event types describe context information available, e.g. the event type SetEvent de-
clares that the changing model instance is available as context. A programmer can name
event types for declarative event announcement, e.g. on line 8 an event expression is
used to announce the event SetEvent. Other classes may specify code to execute
when events of a certain type occur in the application. For example for the consistency
requirement, announcement of events of type “SetEvent” suggest that some model
has changed and thus some other model may need to be updated. This is expressed on
line 46 via a binding declaration, which specifies that the method HandleSetEvent
should execute for events of type “SetEvent” and a register expression on line 27 that

4

specifies the receiver object for the method HandleSetEvent. Note that the classes
that announce such events need not be mentioned, which achieves the similar effect as
a pointcut declaration in an AO language.

As a result of this event-related code, whenever a models’ state changes by running
the method Set, the code in the method HandleSetEvent is run, which implements
the logic for consistency. The key advantage is that the implementation of the consis-
tency requirement remains separate from that of the model and thus both can evolve in-
dependently, while depending on the interface provided by the event type SetEvent.

This implementation has one problem, however. In Ptolemy, there is no language-
level mechanism to model the integration relationships between model instances. In-
stead, and like AspectJ-like AO languages, the method HandleSetEvent is run
when any model instance announces “SetEvent”. The implementation for consis-
tency in Figure 1 implements a workaround to model integration relationships be-
tween instances (shaded code). First, code is added to maintain a hashmap contain-
ing models in the consistency relationship. Second, checks are added in the method
HandleSetEvent to determine whether the model instance announcing SetEvent
is participating in any relationships. The busy flag (line 25) must also be maintained
(lines 36–38 and 40–41) for each model instance to prevent infinite loops.

This workaround has both design and performance costs. First, it unnecessarily
complicates the implementation of the consistency requirement. Second, it creates a
conceptual gap between the design view and the runtime view of the system. At the
design-level, instances of models are integrated using instances of consistency relation-
ships. To understand this system’s behavior at runtime, e.g. for debugging purposes, a
developers must create a mental map from each consistency relationship to the consis-
tency pair inside the map field of the class Consistency. The performance costs are
in unnecessary invocation of the method HandleSetEvent. Each model instance
must pay the price of any model instance participating in an integration relationship.
Such costs will grow with the number of model instances in the system and the number
of integration relationships [20]. For a widely used class, e.g. a List of which several
instances may exist in a system such performance costs may be prohibitive. In the next
section, we discuss instance-level quantified, typed events which solves these problems.

3 Instance-Level Quantified, Typed Events

In this section, we describe Ptolemy-I’s design. Ptolemy-I extends Ptolemy’s de-
sign [19], thus it also contains features inspired from implicit invocation languages
such as Rapide [13], and AO languages such as AspectJ [12], Eos [22] and Caesar [14].
Ptolemy-I features new mechanisms for relating object instances announcing events and
handling events. In the rest of this section, we first describe the language design. We
then revisit the Model example discussed in the previous section.

We have prototyped these features in an interpreter, which serves as a proof of con-
cept for the language design. This interpreter is implemented in Scheme and strictly
follows the semantics of Ptolemy-I described in Section 4, further increasing our con-
fidence in the correctness of the language semantics. We have implemented and tested

5

some canonical examples like the the Model example used in Section 2 and this section
and the Graph System discussed in Section 7 using this interpreter.

3.1 Language Design
Ptolemy-I’s abstract syntax is shown in Figure 2 and illustrated in Figure 3. In the spirit
of Featherweight Java [11], Classic Java [6], and MiniMAO1 [4], we have deliberately
kept the core language small. It has classes, objects, inheritance, and sub-typing, but
it does not have super, interfaces, exception handling, built-in value types, privacy
modifiers, or abstract methods. A program may contain an arbitrary number of decla-
rations followed by an expression that is treated as the entry point of the program. A
declaration may be a class declaration or an event type declaration. A class declaration
class may extend only one other class and may contain an arbitrary number of fields,
methods, and bindings. An event type declaration evtype contains a return type c, a
name p, and an arbitrary number of context variables. The field and method declarations
have standard syntax. A binding declaration binding is the keyword when followed by
an event type name p followed by the keyword do followed by the name of the han-
dler method m. The expressions contain standard OO expressions as well as Ptolemy-I
specific expressions register, event, invoke, and associate.

prog ::= decl* e
decl ::= class c extends d { field* meth* binding* }

| c evtype p { form* }
field ::= c f;
meth ::= t m (form*) { e }
t ::= c | thunk c
binding ::= when p do m
form ::= t var, where var 6=this
e ::= new c() | var | null | e.m(e*) | e.f

| e.f = e | cast c e | form = e; e | e; e
| register(e) | event p { e } | invoke(e) | associate(e,e)

where

c, d ∈ C, a set of class names
p ∈ P, a set of evtype names
f ∈ F, a set of field names
m ∈ M, a set of method names

var ∈ {this} ∪ V,V is
a set of variable names

Fig. 2. Abstract Syntax of Ptolemy-I, Based on Ptolemy [19]

Informally, an event expression (event p { }) is used for signaling an event
of type p. The invoke expression is used for running the next handler method in the list
of registered handler methods and the original event body. The register expression
is used for putting a handler method in the list of registered handler methods. The
intended semantics for these expressions are similar to that in Ptolemy [19].

The associate expression is new to Ptolemy-I. It serves to relate individual in-
stances of subjects and observers. In associate(e, e′), e and e′ are evaluated to
observer and subject objects respectively, with loc and loc′ as locations. Then observer
loc is associated to receive notification whenever subject loc′ announces any event p. Fi-
nally, the associate expression returns loc. To distinguish between subject-observer
instances associated through register and associate expressions, a list contain-
ing binding records is used in the semantics to track subject-observer relationships.

3.2 Consistency Revisited
As discussed previously, the implementation of the consistency relationship using
Ptolemy had design and performance overheads. This was primarily due to the

6

workarounds necessary to simulate integration relationships between model instances.
To solve this problem, Ptolemy-I introduces the notion of instance-level typed events,
which allows individual instances of subjects and observers to be related with each other
through the associate expression. Figure 3 presents an alternative implementation
of the consistency relationship using instance-level quantified, typed events.

11 class Main {
12 ...
17 Consistency c1 = new Consistency();
18 Consistency c2 = new Consistency();
19 c1.AddMap(m1,m2); c2.AddMap(m3,m4);
20 ...
23 }
24 class Consistency {
25 bool busy = false;
26 Model m1, m2;
27 Consistency AddMap (Model m1, Model m2) {
28 associate(this, m1); this.m1 = m1;
29 associate(this, m2); this.m2 = m2;
30 this
31 }
32 Model HandleSetEvent (SetEvent inner) {
33 if (!busy) {
34 busy = true;
35 if (inner.model == m1) m2.Set();
36 else m1.Set();
37 busy = false;
38 }
39 invoke(inner)
40 }
41 when SetEvent do HandleSetEvent;
42 }

Fig. 3. Model Example Implementation In Ptolemy-I (class Model, evtype SetEvent
and the remainder of class Main are the same as in Figure 1)

In this implementation, two example usages of the associate expression ap-
pear (lines 28–29). These associate Model instances m1 and m2 with the observer
instance this. The effect of evaluating these two expressions is that the method
HandleSetEvent is run only when the event SetEvent is announced in the
method Set (Figure 1) and the currently executing instance is either m1 or m2.

We pointed out two design problems and a performance problem with the previ-
ously presented workaround in Section 2. From Figure 3 it is clear that Ptolemy-I’s
implementation is significantly simpler compared to the workaround presented previ-
ously. The simplification is primarily because now we do not need to keep track of
model instances in an integration relationship using a hashmap. Rather, each instance
of the class Consistency keeps track of the model instances that it relates. This leads
to the second improvement over the previous design. The instances of consistency re-
lationships in the design are now modeled using instances of the class Consistency
at runtime (as can be seen in the diagram in Figure 3), which simplifies the conceptual
gap between the static and dynamic representation of the program. Last but not least,
the method HandleSetEvent is run only when necessary, thus avoiding the per-
formance overheads due to unnecessary invocations. Instance-level quantified, typed
events thus show to improve the modularization of integration concerns, while avoiding
the need for workarounds with design and performance costs. Ptolemy-I thus brings the

7

advantage of quantified, typed events to the design and implementation of integrated
systems, which are shown to be an important class of software systems [24, 29].

With the language design proposal in place, we now turn to the semantics and the
type system, which is also a contribution of this work over related ideas [21, 15, 26].

4 Semantics of Instance-level Quantified, Typed Events

This section defines a small-step operational semantics for Ptolemy-I. The technical
description of the semantics follows the previous work of Rajan and Leavens [19],
Clifton et al. [2, 4], and Flatt et al. [6]. As in the previous work [19, 2, 4, 6], a program’s
declarations are simply formed into a fixed list, which is used in the semantics of expres-
sions. The small steps of the operational semantics thus gives a semantics of programs
by giving a semantics of expressions [19]. This semantics relies on four expressions
that are not part of Ptolemy-I’s surface syntax to record final or intermediate states of
the computation. The loc expression represents locations in the store. The under ex-
pression is used as a way to mark when the evaluation stack needs popping. The two
exceptions record various problems orthogonal to the type system [19].

The small steps in the semantics are defined as transitions from one configuration to
another. Figure 4 defines these configurations. A configuration is defined as the current
expression e, stack of environments ρ, store µ and an ordered list ψ of binding records.
The key challenge in the semantics and thus its novelty was in the integration of the se-
mantics for the register expression and the associate expression that preserves
the order of registered observers. We solve this problem by modeling a binding record
as a variant record type with two variants: an associate record θ or a register record ϑ.

Stacks are an ordered list of frames, each frame recording the static environment and
some other information. The type environments Π are only used in the type soundness
proof in Section 6.

There are two types of frames. Lexical frames lexframe record an environment
σ that maps identifiers to values. Event frames evframe are similar, but also record
the event type name p being run. Store-able values are object records or event closures.
In ordered list ψ, associate binding record θ is a tuple of the form [loco, locs] where
loco and locs are locations of observer instance and the subject instance, while register
binding record ϑ only contains the location of observer instance ([loco]).

Values can be null or a location (loc). Object records consist of the name of the
class and its fields stored in µ. An event closure eClosure is a list of handler records
H , an event body e and its associated variable and typing environments. And finally
each handler record h contains the location of receiver object, the handler method to be
called on receiver object and an environment assembled from needed parameters.

In operational semantics, an evaluation context (E) takes care of the operational
semantics congruence rules and the order in which expressions are reduced [32].

The rules for the new expressions are given in Figure 5. For valid store locations
loc and loc′, the evaluation rule (ASSOCIATE) changes the configuration such that a new
associate binding record θ of the form [loc, loc′] is added to the front of the list ψ.
The evaluation rule (REGISTER) is similar with the subtle difference that here, a register
binding record ϑ of form [loc], containing only the location of the observer object, is

8

Added Syntax:
e ::= loc | under e | NullPointerException | ClassCastException

where loc ∈ L, a set of locations

Domains:
Γ ::= 〈e, ρ, µ, ψ〉 “Configurations”
ρ ::= γ + ρ | • “Stack”
γ ::= lexframe σ Π | evframe p σ Π “Frames”
σ ::= {vark : vk}k∈K , whereK is finite,K ⊆ I “Environments”
µ ::= {lock 7→ svk}k∈K , whereK is finite “Stores”
v ::= null| loc “Values”
sv ::= o | ec “Storable Values”
o ::= [c.F] “Object Records”
F ::= {fk 7→ vk}k∈K , whereK is finite “Field Maps”
ec ::= eClosure(H)(e, ρ,Π) “Event Closure”
H ::= h+H | • “Handler Records List”
h ::=

〈
loc,m, ρ′

〉
“Handler Record”

ψ ::= β + Ψ | • “Subscriber List”
β ::= θ | ϑ “Binding Records”
θ ::= [loco, locs] “Associate Binding Record”
ϑ ::= [loco] “Register Binding Record”

Type Attributes:
θ ::= OK| OK in c | var t | exp t “Type Attributes”
Π ::= {I : θI}I∈K , “Type Environments”

whereK is finite,K ⊆ (L ∪ {this} ∪ V)

Evaluation Relation: ↪→: Γ → Γ

Evaluation Context:
E ::= − | E .m(e . . .) | v.m(v . . .E e . . .) | cast t E | E .f | E .f=e

| v.f=E | t var=E; e | E; e | under E | invoke(E)
| associate(E, e) | associate(v,E) | register(E)

Fig. 4. Ptolemy-I Configuration, Domains and Evaluation Context based on [2, 4, 6, 19]

created and added to the front of the list ψ. The semantics of these two expressions
ensure that observers are added to the list ψ in the same order as the execution of
associate and register expressions.

The evaluation rule (EVENT) first extracts the event declaration from the program’s
declarations CT . Then using auxiliary function hbind creates a list H of handler
records h, where each record h contains the receiver object location (loc), handler
method name (m) and an environment (ρ′) that has the method call arguments for the
handler method. And finally places this list inside the invoke expression, which starts
running the handlers.

The auxiliary function hbind in Figure 6 uses the subject instance location, stack
and store plus the list of register/associate binding records ψ to produce a list of handler
records that are applicable for the event announced in the current state. When called by
the (EVENT) rule, hbind has a new evframe on top of the stack containing the current
event representation.

The rule (INVOKE) extracts the event closure from the store, goes through the list of
event handler records, and runs handler methods one by one after assembling the needed
environment. eClosure(H) (e, σ,Π) contains an ordered list of handler records H ,
event body e, environment variable σ binding event context variables and their values
and typing environment (Π) [19]. The event closure is run by invoke. The handler
method m is looked up in CT using auxiliary function findMeth(c,m) as shown in

9

Evaluation relation: ↪→: Γ → Γ
(ASSOCIATE)
loc, loc

′ ∈ dom(µ) θ = [loc, loc
′
] ψ

′
= θ + ψ〈

E[associate(loc, loc
′
)], ρ, µ, ψ

〉
↪→

〈
E[loc], ρ, µ, ψ

′〉
(REGISTER)
loc ∈ dom(µ) ϑ = [loc] ψ

′
= ϑ+ ψ

〈E[register(loc)], ρ, µ, ψ〉
↪→

〈
E[loc], ρ, µ, ψ

′〉
(EVENT)

(c evtype p{t1 var1, . . . , tn varn}) ∈ CT
σ = envOf(γ) σ

′
= {vari 7→ vi | vi = σ(vari)} loc 6∈ dom(µ) loc

′
= σ(this)

H = hbind(loc
′
, γ
′
+ γ + ρ, µ, ψ) Π

′
= {vari : var ti | 1 ≤ i ≤ n}] {loc : var (thunk c)}

γ
′
= evframe p σ′ Π′

µ
′
= µ⊕ (loc 7→ eClosure(H) (e, σ,Π))

〈E[event p {e}], γ + ρ, µ, ψ〉 ↪→
〈
E[under (invoke(loc))], γ

′
+ γ + ρ, µ

′
, ψ

〉
(INVOKE)

eClosure((〈loc
′
,m, σ

′〉+H)) (e, σ,Π) = µ(loc)
[c.F] = µ(loc

′
) (c, t m(t1var1, . . . , tnvarn){e′}) = findMeth(c,m)

n ≥ 1 σ
′′

= {vari 7→ vi | 2 ≤ i ≤ n, vi = σ
′
(vari)} ⊕ {var1 7→ loc1} ⊕ {this 7→ loc

′}
Π
′
= {vari : var ti | 1 ≤ i ≤ n}] {this : var c)}

γ = lexframe σ′′ Π′
loc1 6∈ dom(µ) µ

′
= µ⊕ (loc1 7→ eClosure(H) (e, σ,Π))

〈E[invoke(loc)], ρ, µ, ψ〉 ↪→
〈
E[under e′], γ + ρ, µ

′
, ψ

〉
(INVOKE-DONE)
eClosure(•) (e, σ,Π) = µ(loc) ρ

′
= σ + ρ

〈E[invoke(loc)], ρ, µ, ψ〉 ↪→
〈
E[under e], ρ′, µ, ψ

〉 (UNDER)
〈E[under v], γ + ρ, µ, ψ〉 ↪→ 〈E[v], ρ, µ, ψ〉

(NEW)
loc /∈ dom(µ) µ

′
= µ] {loc 7→ [c.{f 7→ defaultValOf (t) | (t f) ∈ fieldsOf (c)}]}
〈E[new c()], ρ, µ, ψ〉 ↪→

〈
E[loc], ρ, µ

′
, ψ

〉
(CALL)

loc ∈ dom(µ) [c.F] = µ(loc)
(c,m(t1 var1, . . . , tn varn){e}) = findMeth(c,m) σ = {vari : vi | 1 ≤ i ≤ n}] {this : loc}

Π = {vari : var ti | 1 ≤ i ≤ n}] {this : var c} γ = lexframe σ Π

〈E[loc.m(v1, . . . , vn)], ρ, µ, ψ〉 ↪→ 〈E[under e], γ + ρ, µ, ψ〉

(CAST)
[c
′.F] = µ(loc) c

′ 4 c

〈E[cast c loc], ρ, µ, ψ〉 ↪→ 〈E[loc], ρ, µ, ψ〉

(GET)
loc ∈ dom(µ) [c.F] = µ(loc) v = F (f)

〈E[loc.f], ρ, µ, ψ〉 ↪→ 〈E[v], ρ, µ, ψ〉

(SET)
loc ∈ dom(µ) [c.F] = µ(loc) µ

′
= µ] {loc 7→ [c.F ⊕ (f 7→ v)]}]

〈E[loc.f = v], ρ, µ, ψ〉 ↪→
〈
E[v], ρ, µ

′
, ψ

〉
(ASSIGN)
σ = envOf (γ) var ∈ dom(σ) σ

′
= σ] {var : v} Π = tenvOf (γ) γ

′
= lexframe σ′ Π

〈E[var = v], γ + ρ, µ, ψ〉 ↪→
〈
E[v], γ

′
+ γ + ρ, µ, ψ

〉
(SEQUENCE)
〈E[v; e], ρ, µ, ψ〉 ↪→ 〈E[e], ρ, µ, ψ〉

(DEFINE)
σ = envOf (γ) var /∈ dom(σ)

σ
′
= σ] {var : v1} Π = tenvOf (γ) Π

′
= Π] {var : var t} γ

′
= lexframe σ′ Π′

〈E[t var = v; e], γ + ρ, µ, ψ〉 ↪→
〈
E[under e], γ′ + γ + ρ

′
, µ, ψ

〉
Fig. 5. Operational Semantics of Ptolemy-I, Based on Ptolemy and MiniMAO [2, 19]

10

hbind(locs, ρ, µ, •) = •
hbind(locs, ρ, µ, ϑ+ Ψ) =

concat(hmatch(CT, ρ, µ, loco),
hbind(locs, ρ, µ, Ψ))

where ϑ = [loco] is register binding

hbind(locs, ρ, µ, θ + Ψ) =
if locs = locs′ then

concat(hmatch(CT, ρ, µ, loco′),
hbind(locs, ρ, µ, Ψ))

else
hbind(locs, ρ, µ, Ψ)

where θ = [loco′ , locs′] is associate binding

bindings(CT, c) = binds(CT,CT, c)

binds(CT, •, c) = •
binds(CT, ((t evtype p{ . . . }) + CT ′), c) = binds(CT,CT ′, c)
binds(CT, ((class c extends c′ . . . binding1 . . . bindingn)+CT ′), c) =

concat((bindingn + . . .+ binding1 + •), binds(CT,CT, c′))

findMeth(c,m) = (c, t m(t1var1, . . . , tnvarn){e})
where ct ∈ CT & ct = {c extends d, fld* meth* binding*} & ∃i ∈ {1 . . . k}, methi = t m(t1var1, . . . , tnvarn)

fieldsOf(c) = {fi → ti, i ∈ {1 . . . n}} ∪ F ′
where ct ∈ CT & ct = {c extends d, fld* meth* binding*} & F ′ = fieldsOf(d)

defalutV alueOf(t) = null where isType(t)
defalutV alueOf(t) = 0 where !isType(t)

envOf (lexframe σ Π) = σ
envOf (evframe p σ Π) = σ

tenvOf (lexframe σ Π) = Π
tenvOf (evframe p σ Π) = Π

concat(•, H′) = H′

concat(h+H,H′) = h+ concat(H,H′)

hmatch(CT, ρ, µ, loc) = match(H, ρ, µ, loc)
where µ(loc) = [c.F] &H = bindings(CT, c)

match(•, ρ, µ, loc) = •
match(binding +H, (evframe p′ ρ′ Π) + ρ, µ, loc) =

if p ≡ p′then
let ρ′′ = ρ′

in let ρ′′′ = {vari 7→ ρ(vari) | 1 ≤ i ≤ n}
in(〈loc,m, ρ′′′〉+ match(H, ρ′′, µ, loc))

else match(H, ρ, µ, loc)
where binding = when p do m

Fig. 6. Auxiliary Functions Inspired by Work of Rajan and Leavens on Ptolemy [19]

Figure 6, then all of its formal parameter bindings are extracted from σ′ and added to
σ′′. After the current event handler is executed, it is removed from the list of event
handler records and a new event closure is created and stored in a new location loc1 in
the store. As the first parameter in every event handler method call is an event closure
location, then the binding of the first formal parameter and the event closure is put on
top of the stack. This process is run repeatedly, until there are no more records in the
event handlers records list. At this time the body of the event is executed as it is shown
in Figure 5 in (INVOKEDONE).

To compute the list of handler records, we need to know which classes have event
bindings. Event binding expression when p do m in a class c states that whenever
an event of type p is announced, the handler method m should execute if this class or
its individual instances are registered with the subject announcing the event. To fig-
ure out elements of the handler records list, the hbind function shown in Figure 6 goes
through the list of binding records ψ recursively and checks the individual records in the
list. When encountering a register binding ϑ, the control is handed over to the hmatch
function. If an associate binding record θ is encountered and the subject instance pub-
lishing the event and subject instance in the associate binding record are the same, again
hmatch does the rest of the processing and concatenates its results with current list of
handler records. If none of these cases happen, then the record on the list will be ig-
nored. Function hmatch searches CT for event bindings of an specific class c. It also

11

takes care of inheritance when looking for class bindings. If the declaration in CT is an
event type declaration of the form t evtype p{ } it is ignored, as it has no bindings.
But if it is a class declaration, its event bindings plus its super class bindings are added
to the result.

The hmatch function determines, for a particular object loc, what bindings declared
in the class of the object referred to by loc are applicable. It looks up the location
loc in the store, extracts the class that the object loc refers to, and uses that class to
obtain a list of potential bindings. This list is filtered using match , which matches p
against a particular event on the stack. Each matched binding generates a handler record,
recording the active object (which will act as a receiver when the handler method is
called), the handler method’s name and an environment. The environment is obtained
from the evframe. This environment is also restricted to contain just those mappings
that are for names in the declared formal arguments of the binding.

Standard OO expressions and their semantics are similar to those discussed in more
detail in [18] with the exception that, in Ptolemy-I, we use an ordered list ψ of asso-
ciate/register binding records to keep track of subject-observer instances on individual
basis. As it can be seen in Figure 5 none of the standard OO expressions change or
specifically use ψ. Auxiliary functions used in semantics of Ptolemy-I’s expressions
are defined in Figure 6

5 Type System of Ptolemy-I

Ptolemy-I’s type checking attributes are shown in Figure 4 and rules are shown in Fig-
ure 7.

Class table CT along with some auxiliary functions are used in the type checking
rules. We assume that names declared at top levels of the program are distinct and there
is no cyclic inheritance relationship. Relation c′ 4 c means c′ is the subtype of c. As in
the work on Ptolemy [19], it is the reflexive transitive closure of the declared subclasses
relationships. In the defined typing attributes, OK and OK in c are used to denote that a
term is well typed or well typed in the context of class c, respectively. Π represents the
typing environment. There are two kinds of declarations in the program that should be
type checked, classes and events.

A class type checks if all of its fields, methods and binding definitions are well
typed and the class extends a valid class type . When type checking a class, we don’t
allow overriding of super class fields. The type checking rules for fields and methods
are standard. A binding declaration when p do m type checks if the handler method is
a valid method, the return type of the handler method m is the same as the return type
of the event type declaration p, and the arguments of the handler method match both in
names and types with the context variables of p.

An evtype type checks if its return type and all of its context variables have a
defined type. An event expression event p { e } type checks if (a) the body of
the event type checks, (b) the event context variables are well defined in the typing
environment, (c) the event context variables have the same type as their declared type
in the event type declaration p, and (d) the type of the body expression is a subtype of
the declared return type for the event.

12

An associate expression associate(e0, e1) type checks if e0 and e1 are well
typed. A register expression register(e) type checks if e is well typed and its type
is the same as that of e. An invoke expression invoke(e) type checks if e is of type
thunk c ensuring that e is an event closure. The under expression under e type checks
if the type of the expression e is valid. The type of under e is the same as type of e.

Some auxiliary functions are used in the type checking rules and can be seen in
Figure 7. isClass ensures that the given parameter is a valid class name which exists in
the CT . isThunkType checks that a given class name is valid and also is an event type.
Finally, isType returns true if its argument is a valid class or a valid event type.

6 Type Soundness

The proof of soundness of Ptolemy-I’s type system follows the standard preservation
and progress argument [32]. Progress says that the evaluation of a term does not get
stuck, as the term could either be a value or there is a evaluation rule for it. Preservation
emphasizes on preserving expression type during reduction phases and consistency of
typing environment Π and store µ.

Progress:

Theorem 1. (Progress)
For a well-typed expression e, stack ρ, store µ, list ψ and type environment Π which is
consistent with µ. If Π ` e : t then either

– e = loc and loc ∈ dom(µ) or e = null
– 〈e, ρ, µ〉 ↪→ 〈e′, ρ′, µ′〉

Proof: (a) If expression e is a location value (loc) and Π ` loc : t, then according to
(T-LOC), loc ∈ dom(Π), and assuming the consistency of store and typing environment,
Π ≈ (µ, ρ), then loc ∈ dom(µ) as dom(Π) = dom(µ).

(b) In the case where the expression e is not a value, we consider the evaluation rules
case by case for providing the proof. We proceed with the induction of derivation of
expression e. Assuming that all the sub-terms of expression e have progress. Induction
hypothesis (IH) assumes all sub-terms of e to be well-typed and we use this assumption
in our proof frequently. We define configuration cg as c = 〈E[e], ρ, µ, ψ〉

– case 1. e = E[associate(loc, loc′)]. Based on IH, sub-terms loc and loc′ are
well-typed, as it is also ensured by (T-ASSOCIATE) rule; Therefore the configuration
cg evolves according to (ASSOCIATE).

– case 2. e = E[register(loc)]. Based on the IH, loc is well-typed as it is
also ensured by (T-REGISTER); Therefore the configuration cg evolves according
to (REGISTER).

– case 3. e = E[event p {e}]. Sub-term e is well-typed based on IH. Rule
(T-EVENT) ensures Π ` e : exp c; Therefore configuration cg evolves according to
(EVENT).

13

– case 4. e = E[invoke(loc)]. sub-term loc is well-typed based on IH besides that
(T-INVOKE) ensuresΠ ` loc : exp (thunk c); Therefore configuration cg evolves
based on (INVOKE) reduction rule.

– case 5. e = E[loc.m(v1, . . . , vn)]. Based on the IH, sub-term loc is well-typed
Π ` loc : c. According to (T-LOC), loc ∈ dom(Π) and as Π ≈ (µ, ρ) then
loc ∈ dom(µ).
Again based on IH, method m is well-typed therefore, type of its body e, is the
same as its return type. Meaning that cg evolves by (CALL).

– case 6. e = E[loc.f]. Based on IH loc and loc.f both are well-typed sub-
terms, µ(loc) = [c.F]. Having loc.f as a well-typed expression implies that
f ∈ fieldsOf (c) based on (T-GET) type checking rule; Therefore, cg evolves by
(GET).

– case 7. e = E[loc.f = v]. The argument is the same as the argument made for case
6.

– case 8. e = E[cast t loc]. Based on IH, sub-term loc is well-typed implying such
that Π ` loc : c′ and µ(loc) = [c′.F]. On the other hand (CAST) ensures c′ 4 c
then cg evolves correctly by (CAST).

– case 9. e = E[new c()]. Based on IH all sub-terms are well-typed, rendering
the case trivial, since as long as we have isClass(c) to be true, configuration cg
evolves according to (NEW). Consistency of store and typing environment, assures
that newly created loc is of type c.

– case 10. e = E[var = v]. Based on the IH, sub-terms var and v both are well-
typed. On the other hand, (T-ASSIGN) ensures their types are the same. Therefore,
configuration cg evolves according to (ASSIGN).

– case 11. e = E[under v]. Based on the IH, sub-term v is well-typed as it is also
assured by (T-UNDER). Therefore, configuration cg evolves by (UNDER).

– case 12. e = E[t var = v; e]. Based on the IH, sub-terms var, v and e are all
well-typed. On the other hand, (T-DEFINE) ensures the type of var and v are the
same. Therefore, configuration cg evolves according to (DEFINE).

– case 13. e = E[v1; v2]. Based on IH, both terms v1 and v2 are well-typed. There-
fore, configuration cg is evolved based on the rule (SEQUENCE).

Preservation:

Theorem 2. (Subject Reduction)
Given an expression e, stack ρ, store µ and a typing environment Π , consistent with the
store and stack Π ≈ (µ, ρ), if Π ` e : t and 〈e, ρ, µ〉 ↪→ 〈e′, ρ′, µ′〉, then there exist Π ′

and t′ such that Π ′ ≈ (µ′, ρ′), Π ` e′ : t′ and t′ 4 t.

As it can be seen to prove preservation, it should be proved that (a) reduction
preserves the type and (b) typing environment is consistent with store and stack,
Π ≈ (ρ, µ).

Consistency of type environment Π and store µ is defined as follows [2]:

– 1. µ(loc) = [c.F]⇒
(a) Π(loc) = c

14

(b) dom(F) = dom(fieldsOf (c))
(c) rng(F) = dom(µ) ∪ {null}
(d) ∀f ∈ dom(F).{F (f) = loc′ & fieldsOf (c)(f) = u & µ(loc′) = [c′.F ′]} ⇒
t′ 4 u

– 2. loc ∈ dom(Π)⇒ loc ∈ dom(µ)
– 3. dom(µ) ⊆ dom(Π)

Before proceeding with the proof, we need a lemma, replacement lemma, which is
taken from Clifton’s work on MiniMAO [2]

Lemma 1. (Replacement) Π ` E[e] : t, Π ` e : t′ & Π ` e′ : t′ ⇒ Π ` E[e′] : t

To show preservation property in Ptlemy-I, we show it case by case for all of the
evaluation rules defined for the language expressions.

(ASSOCIATE)
loc ∈ dom(µ) loc

′ ∈ dom(µ) θ = [loc, loc
′
] ψ

′
= θ + ψ〈

E[associate(loc, loc
′
)], ρ, µ, ψ

〉
↪→

〈
E[loc], ρ, µ, ψ

′〉
– Proof of consistency relation Π ≈ (ρ, µ) is trivial, as neither the stack nor the store

changes in this rule.
– Now we show that Π ` E[associate(loc, loc′)] : t ⇒ Π ′ ` E[loc] : t. Based

on the (T-ASSOCIATE), Π ′ ` associate(loc, loc′) : exp c0 where Π ′ ` loc :
exp c0. Using (REPLACEMENT) lemma, we replace associate(loc, loc′) with
loc in Π ` E[associate(loc, loc)] : t, as they have the same type, concluding
that E[loc] : t.

(REGISTER)
loc ∈ dom(µ) ϑ = [loc] ψ

′
= ϑ+ ψ

〈E[register(loc)], ρ, µ, ψ〉 ↪→
〈
E[loc], ρ, µ, ψ

′〉
– Proof of consistency Π ≈ (ρ, µ) is the same as (ASSOCIATE) as neither stack nor

store changes.
– Now we show Π ` E[register(loc)] : t ⇒ Π ′ ` E[loc)] : t. Based

on the (T-REGISTER), Π ′ ` register(loc) : exp c where Π ′ ` loc :
exp c. Using (REPLACEMENT), register(loc) is replaced with loc in Π `
E[register(loc)] : t as they both have the same type, concluding that E[loc)] : t.

(EVENT)
(c evtype p{t1 var1, . . . , tn varn}) ∈ CT

σ = envOf(γ) σ
′
= {vari 7→ vi | vi = σ(vari)} loc 6∈ dom(µ) loc

′
= σ(this)

H = hbind(loc
′
, γ
′
+ γ + ρ, µ, ψ) Π

′
= {vari : var ti | 1 ≤ i ≤ n}] {loc : var (thunk c)}

γ
′
= evframe p σ′ Π′

µ
′
= µ⊕ (loc 7→ eClosure(H) (e, σ,Π))

〈E[event p {e}], γ + ρ, µ, ψ〉 ↪→
〈
E[under (invoke(loc))], γ

′
+ γ + ρ, µ

′
, ψ

〉
– To show the consistency, let Π ′ = Π] loc : thunk c as it is ensured by

(T-INVOKE). Having loc ∈ dom(Π ′), loc ∈ dom(µ′) and the typing environment
consistency with stack and store, Π ≈ (µ, ρ), consistency Π ≈ (µ′, ρ′) holds.

15

– Now we show Π ` E[event p{e}] : t ⇒ Π ′ ` E[under (invoke(loc))] :
t. Based on (T-EVENT) we know Π ′ ` event p{e} : c and Π ′ ` loc :
thunk c. On the other hand, based on (T-INVOKE) Π ′ ` invoke(loc) : c. Using
(REPLACEMENT), we replace eventp{e} with invoke(loc) in E[eventp{e}] : t
and conclude that E[invoke(loc)] : t. Type checking rule (T-UNDER) ensures
E[under invoke(loc)] : t.

(INVOKE)
eClosure((〈loc

′
,m, σ

′〉+H)) (e, σ,Π) = µ(loc)
[c.F] = µ(loc

′
) (c, t m(t1var1, . . . , tnvarn){e′}) = findMeth(c,m)

n ≥ 1 σ
′′

= {vari 7→ vi | 2 ≤ i ≤ n, vi = σ
′
(vari)} ⊕ {var1 7→ loc1} ⊕ {this 7→ loc

′}
Π
′
= {vari : var ti | 1 ≤ i ≤ n}] {this : var c)}

γ = lexframe σ′′ Π′
loc1 6∈ dom(µ) µ

′
= µ⊕ (loc1 7→ eClosure(H) (e, σ,Π))

〈E[invoke(loc)], ρ, µ, ψ〉 ↪→
〈
E[under e′], γ + ρ, µ

′
, ψ

〉
– Showing consistency relation is the similar to (EVENT).
– Now we should show Π ` E[invoke(e)] : t ⇒ Π ′ ` E[under e′] : t. Based

on (T-INVOKE) we know Π ′ ` invoke(e) : c where Π ′ ` loc : thunk c. On
the other hand, based on (T-INVOKE) Π ′ ` invoke(loc) : c. On the other hand,
whatever handler method returns which has the same type of its body e′, is of
type c. Therefore using (REPLACEMENT) we replace invoke(e) with under e′

in E[invoke(e)] : t and conclude that E[under e′] : t. Type checking rule
(T-UNDER) ensures E[under e′)] : c as well.

(CALL)
loc ∈ dom(µ) [c.F] = µ(loc)

(c,m(t1 var1, . . . , tn varn){e}) = findMeth(c,m) σ = {vari : vi | 1 ≤ i ≤ n}] {this : loc}
Π
′
= {vari : var ti | 1 ≤ i ≤ n}] {this : var c} γ = lexframe σ Π′

〈E[loc.m(v1, . . . , vn)], ρ, µ, ψ〉 ↪→ 〈E[under e], γ + ρ, µ, ψ〉

– First we show that Π ′ ≈ (µ′, ρ′). Let Π ′ = Π . As we know store does not change
(µ′ = µ). Therefore, using assumption Π ≈ (µ, ρ) we have Π ≈ (µ′, ρ′).
As the program type checks based on (T-PROGRAM), consequently its classes and
methods in classes type check as well. Based on (T-METHOD) we choose Π ′ =
{var1 : t1, . . . , vari : ti, . . . , varn : tn,this : c}. Method type checking rule
(T-METHOD) also specifies a type t′ for the body e of the method, Π ′ ` e : exp t′

and t′ 4 t.
– We show Π ` E[loc.m(v1, . . . , vn)] : t ⇒ Π ′ ` E[under e] : t. Rule

(T-CALL) ensures that, the returning the method is called on the object with the right
type, and the type of method body e is sub-type of returning type of the method.
This paves the way for using (REPLACEMENT) and replace loc.m(v1, . . . , vn) with
under e in E[loc.m(v1, . . . , vn)], as they both have the same type, concluding that
E[under e] : t.

(GET)
loc ∈ dom(µ) [c.F] = µ(loc) v = F (f)

〈E[loc.f], ρ, µ, ψ〉 ↪→ 〈E[v], ρ, µ, ψ〉

– Showing Π ′ ≈ (µ′, ρ′) is trivial. As it can be seen, neither stack, nor store, nor
typing environment changes.

16

– Now we show that Π ` E[loc.f] : t ⇒ Π ′ ` E[v] : t. Using (T-LOC) and the
assumption Π ≈ (µ, ρ), we have Π(loc) = c. On the other hand, (T-GET) ensures
that type of field fieldsOf (c)(f) = v is the same as c; Therefore, we can easily
replace E[loc.f] with E[v] using (REPLACEMENT), concluding that E[v] : t. The
case for (SET) is similar.

(CAST)
[c
′.F] = µ(loc) c

′ 4 c

〈E[cast c loc], ρ, µ, ψ〉 ↪→ 〈E[loc], ρ, µ, ψ〉

– Proving consistency is trivial as neither stack nor store changes.
– Now we show that Π ` E[cast t e] : t ⇒ Π ′ ` E[loc] : t. Rule (CAST) assures

that type of expression e is the subtype of class t, while (T-CAST) makes sure that t
is a valid type. Therefore we replace cast t e with loc in E[cast t e] : t, having
E[loc] : t.

(NEW)
loc /∈ dom(µ) µ

′
= µ] {loc 7→ [c.{f 7→ defaultValOf (t) | (t f) ∈ fieldsOf (c)}]}
〈E[new c()], ρ, µ, ψ〉 ↪→

〈
E[loc], ρ, µ

′
, ψ

〉
– LetΠ ′ = Π] loc : c. We have loc ∈ dom(Π ′), loc ∈ dom(µ′) and the assumption

that Π ≈ (µ, ρ); therefore parts 2 and 3 of consistency definition hold, because
loc /∈ dom(µ), (Π ≈ µ) ⇒ loc /∈ dom(Π). As µ′(loc) = [c.F], Π ′(loc) = c,
dom(F) = dom(fieldsOf (c)), rng(F) = {null} ⊆ dom(µ) ∪ {null}, so part
1 holds too. Therefore we have Π ′ ≈ (µ′, ρ′), where ρ′ = ρ, as the stack doesn’t
change here.

– Now we show that Π ` E[new c()] : t ⇒ Π ′ ` E[loc] : t. We know
Π ′ ` new c() : c and Π ′ ` loc : c, so using replacement lemma, we replace
new c() with loc in E[new c()] : t and conclude that E[loc] : t.

(DEFINE)
σ = envOf (γ) var /∈ dom(σ)

σ
′
= σ] {var : v1} Π = tenvOf (γ) Π

′
= Π] {var : var t} γ

′
= lexframe σ′ Π′

〈E[t var = v; e], γ + ρ, µ, ψ〉 ↪→
〈
E[under e], γ′ + γ + ρ

′
, µ, ψ

〉
– Proving consistency of stack and store is similar to the approach we have takne

in the proof for rule (CALL). Store doesn’t change and we have taken care of new
typings added to typing environment.

– Now we show that Π ` E[t var = e1; e2] : t ⇒ Π ′ ` E[under e2] : t.
Rule (T-DEFINE) assures that type of expression e1 is the subtype of class t and
the return type of the expression is t which is the same as type of expression e2.
And having the IH, we know, all of the sub-terms are well-typed. On the other
hand, (T-CAST) makes sure the return type of the expression under e2 is the same
as type e2. Therefore, we can easily replace t var = e1; e2 with under e2 in
E[t var = e1; e2] : t, having E[under e2] : t. The similar argument applies to
(ASSIGN).

17

(SEQUENCE)
〈E[v1; v2], ρ, µ, ψ〉 ↪→ 〈E[v2], ρ, µ, ψ〉

– Proving consistency of stack and store is trivial because stack and store, both remain
the same and intact.

– Now we show that Π ` E[e1; e2] : t ⇒ Π ′ ` E[e2] : t. Again based on the IH,
all of sub-terms e1 and e2 are well-typed. Rule (T-SEQUENCE) assures that type of
expression e2 is the same as the return type of the whole sequence expression (t).
Therefore, based on (SEQUENCE) we replace e1; e2 with e2 in E[t var = e1; e2] : t
as both of them have the same type, concluding E[e2] : t.

7 Initial Assessment of the Language Design

To provide an initial assessment of our language design with instance-level quantified,
typed events, we apply it to an example Graph System (GS) used by Rajan and Sulli-
van [22]. First, we present an overview of the example and integration requirements.
We then analyze Ptolemy-I’s implementation of this system.

Overview. GS exploits the Model-View-Controller (MVC) architecture with several
classes in each layer. Figure 8 shows the contributing classes of GS in boxes with plain
white background. In the view layer, classes PS (PointSet) and LS (LineSet) are re-
sponsible for keeping track of a set of Points and Lines, respectively, depicted on
the user interface. The UI class is responsible for the user interface. In the model layer,
classes VS (VertexSet) and ES (EdgeSet) model each Vertex and all Edges associ-
ated with points and lines in the view layer.

Example Graph System Requirement. A very natural requirement of GS system is
consistency. The system should remain consistent when lines are added or removed
from the UI. In other words, if a line is removed in the view layer, its associated edge in
the model layer should also be removed. Similarly, lines added to the view layer should
be added to the model layer.

The controller classes VS-PS (VertexSet-PointSet) and ES-LS (EdgeSet-LineSet)
synchronize the model and the view, keeping them consistent. For example ES-LS is
responsible for keeping ES consistent with LS. Whenever a Line object is removed
from LS, the associated ES removes the associated edge. Class Lazy synchronizes UI
in the view layer and G (Graph) in the model layer in two different modes: agile and
lazy. In agile mode, changes are synchronized as soon as they occur in the UI, but in
lazy mode changes are buffered and synchronized in batches.

Ptolemy-I’s Solution and Analysis. One solution to implement the consistency require-
ment in an integrated system is to use subject-observer behavioral patterns [7]. In event
based systems, objects like LS announce events and others like LS-ES, interested in
those events, receive notification to handle them. Ptolemy [19], with support for quan-
tified, typed events is a good candidate to implement such event-based integrated sys-
tems. But the implementation of this use case in Ptolemy (that lacks the support for

18

instance-level typed events) would not be efficient in the case where there are numer-
ous LS and ES objects in the system. In Ptolemy, whenever a Line object is removed
from a line set LS, an event, say LineRemove, is fired to inform interested ES objects
to update themselves. Ptolemy’s implementation would suffer overhead due to every
instance of ES checking if the line removed was in its model.

Figure 8 shows the architectural design of the GS system using quantified, typed
events. In this figure, when an event LineRemove is announced by an LS object,
all registered ES-LS instances are notified and handle the event by calling the han-
dler method LineRemoveEventHandler. Likewise, whenever an edge is removed
from an ES instance an event of type EdgeRemoved is announced and handled
by ES-LS by calling EdgeRemoveEventHandler. To model the lazy and agile
modes, two events Lazy-VC and Lazy-CM are created along with their handlers.
Whenever the synchronization mode changes from eager to lazy or vice-versa, first
the event Lazy-VC is fired and consequently the event Lazy-CM is fired, as they are
designed to communicate between UI, Lazy and G objects.

There are two approaches to relate LS objects with ES objects in Ptolemy. Either
an ES object is related to all instances of LS through plain register expression or
the relation between individual instances of ES and the associated LS objects is kept
track of through a combination of using register and a map-like structure. Both
of these approaches have their problems. The first one could be inefficient when the
system has a lot of LS objects. Announcement of the LineRemove event by any of
them would result in the notification of all ES instances that are registered to receive
notification for LineRemove. The second solution, although not suffering from this
problem, adds the overhead of keeping the map of relations between LS and ES objects
updated. As it can be seen, both of these solutions are inefficient in the sense that they
both have unnecessary processing in terms of unneeded notifications or updating the
subject-observer instances relationship map.

Our solution in Ptolemy-I, which solves the above-mentioned problems and reduces
the inefficiency imposed on the system by type-level events in Ptolemy, is to allow indi-
vidual instances of the LS and ES types to be related through support for instance-level
typed events using associate. With instance-level typed events, when an instance of
LS announces an event of type LineRemove only ES instances that have been related
to that specific LS instance will be notified, reducing the overhead of unnecessary event
notifications that was happening in Ptolemy. As the language itself takes care of keep-
ing track of related subject-observer instances, there is no need to maintain a separate
map in the implementation. The support for instance-level quantified, typed events in
Ptolemy-I thus further improves the separation of integration concerns in GS.

8 Related Work

Our work has two facets, one concerning quantified, typed events and the other concern-
ing instance-level features for modularization techniques. Compared to instance-level
typed events which is a new idea to our knowledge with no prior work, class-level quan-
tified typed events is not. Rajan and Leavens have introduced a language, Ptolemy [19],
which supports quantified typed, events to improve separation of concerns and more ef-

19

ficient implementation of integrated systems. Ptolemy also is a solution for some of the
problems incurred in Aspect Oriented (AO) and Implicit Invocation (II) languages. The
inability of II languages to address a broad range of events and limitations of AO lan-
guages such as their dependence on syntactical structure of the language and delimited
set of available implicit events are problems solved in Ptolemy. Although instance-level
typed events have no prior work, there are several works that have introduced instance-
level aspects in AO languages, but have not addressed all problems.

Rajan and Sullivan proposed runtime instance-level aspect weaving [21]. They also
extended C# with AspectJ-like constructs, first class aspect instances and instance-level
advising [20], paving the way to implement the Mediator behavioral pattern [28] us-
ing aspect instances and instance-level advising while improving modularity. Pierce
and Noble have introduced Relationship Aspects [15]. They implemented object re-
lationships in a library of aspects in AspectJ, moving the the code handling the ob-
ject’s relations out of the objects and leaving them more modularized, maintainable
and reusable without sacrificing efficiency. A shortcoming of their approach is that al-
though they factor out the object relationship code into relationship aspects, since they
have no mechanism supporting instance-level aspects there is no way to relate object
instances using relationship aspects and they only work at the type(class)-level. Sakurai
et al. proposed a way to associate an aspect instance with a group of objects to solve
the shortcoming of the per-object aspect model of languages like AspectJ for directly
supporting behavioral relationships in integrated systems [26]. Rajan and Sullivan pro-
posed a programming language with classes and aspects unified, classpects [23], and
use classpects as basic units of modularity, providing the ability to create instances of
aspects and have instance-level advising. Rajan later showed that the implementation
of some of Gang-of-Four (GOF) patterns using classpect constructs are improved and
without degrading the remaining patterns [17]. Garcia et al. reported the same result
regarding modularity and separation of concerns improvement [8] as Hannemann and
Kiczales [9] do, improving modularity in 17 out of 23 of GOF patterns.

Other works have tried to solve the need for instance-level aspects by introducing
changes in the advising model of existing AO languages. Taner proposed deployment
strategies to change the advising model of AO languages and make it more customiz-
able [5]. Deployment strategies precisely specify the scope of a deployed aspect at run-
time. Hoffman and Eugster investigate a model with base code being aware of cross cut-
ting aspects [10] and extend AspectJ with constructs that allow base code and aspects to
cooperate in new ways like advising arbitrary blocks of code, explicitly parameterizing
aspects, base code specifying where to apply an aspect, and enforcing new constraints
by advice on base code. Rho et al. introduced fine grained point cuts to empower the
AO languages advising model by exposing a larger set of join points [25]. But aspects
are not the only way to manage behavioral relationships between objects. Bierman and
Wren proposed a language construct for defining the relationship between classes and
to manipulate relationship instances [1]. The problem here again, is that the relationship
definition is at the type-level and not at the instance-level.

20

9 Future Work and Conclusions

Integrated systems must modularize behavioral relationships between several logically
unrelated objects, such as debuggers, editors, compilers, etc. These behavioral relation-
ships control the actions, control, and states of various components to implement the
overall behavior of the system. Previous works in the field of Aspect-oriented (AO)
languages have investigated instance-level support for separating these integration con-
cerns. The language Ptolemy [19] aims to solve problems of such AO languages, such
as fragile pointcuts [19, 27, 30], by adding quantified, typed events. The events added in
Ptolemy however operate on a type(class)-level and are not directly sufficient to support
such integration concerns. Instance-level support must be manually added to the system,
adding extra complexity for the programmer. There is also added overhead incurred due
to the event handlers executing more often than needed.

Our solution instead uses Ptolemy as the base language, which solves the problems
associated with using an AO base language. We extend Ptolemy’s language to add new
syntax in the form of associate expression, which allows for the association of event
publishers (subjects) to subscribers (observers) at the instance level. We also, to the best
of our knowledge, give the first formal semantics of such instance-level features in a lan-
guage and prove the type soundness of our approach. We also have implemented a proof
of concept interpreter for our new language Ptolemy-I as well as shown an example for
handling Model relationships and a Graph System example. The Graph System
example shows that our language is able to implement complicated use cases that have
been used to justify the need for instance-level support [20]. Our initial assessment of
the implementation shows that instance-level quantified, typed events improve the sep-
aration of integration concerns over previous language design proposals.

Many directions for investigation remain to be investigated. Primary among them
are an implementation and a detailed performance evaluation of Ptolemy-I’s design as
an extension of Java. Such implementation would then pave the way for a large-scale
empirical evaluation by us and others, e.g. using GOF design patterns [7].

Note : Ptolemy-I’s interpreter and examples are available at
http:\\www.cs.iastate.edu\~ptolemy\instance.

References

1. G. Bierman and A. Wren. First-class relationships in an object-oriented language. In
ECOOP, pages 262–282, 2005.

2. C. Clifton. A design discipline and language features for modular reasoning in aspect-
oriented programs. Technical Report 05-15, Iowa State University, Jul 2005.

3. C. Clifton and G. T. Leavens. MiniMAO1: an imperative core language for studying aspect-
oriented reasonings. Sci. Comput. Program., 63(3):321–374, 2006.

4. C. Clifton and G. T. Leavens. MiniMAO1: Investigating the semantics of proceed. Sci.
Comput. Programming, 63(3):321–374, 2006.

5. Éric Tanter. Expressive scoping of dynamically-deployed aspects. In AOSD, pages 168–179,
2008.

6. M. Flatt, S. Krishnamurthi, and M. Felleisen. A programmer’s reduction semantics for
classes and mixins. In Formal Syntax and Semantics of Java, pages 241–269, 1999.

21

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., 1995.

8. A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, and A. von Staa. Modular-
izing design patterns with aspects: a quantitative study. In AOSD ’05, pages 3–14, 2005.

9. J. Hannemann and G. Kiczales. Design pattern implementation in Java and AspectJ. In
OOPSLA ’02, pages 161–173, 2002.

10. K. Hoffman and P. Eugster. Bridging Java and AspectJ through explicit join points. In PPPJ
’07, pages 63–72, 2007.

11. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. In OOPSLA ’99, pages 132–146, 1999.

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview
of AspectJ. In ECOOP, pages 327–353, Jun 2001.

13. D. C. Luckham, J. J. Kennedy, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. Speci-
fication and analysis of system architecture using Rapide. IEEE Transactions on Software
Engineering, 21(4):336–54, Apr 1995.

14. M. Mezini and K. Ostermann. Conquering aspects with caesar. In AOSD, 2003.
15. D. J. Pearce and J. Noble. Relationship aspects. In AOSD, pages 75–86, 2006.
16. H. Rajan. Unifying Aspect- and Object-Oriented Program Design. PhD thesis, The Univer-

sity of Virginia, Charlottesville, Virginia, August 2005.
17. H. Rajan. Design pattern implementations in eos. In PLoP ’07, Conference on Pattern

Languages of Programs, September 2007.
18. H. Rajan and G. T. Leavens. Quantified, typed events for improved separation of concerns.

Technical Report 07-14, Iowa State University, Department of Computer Science, July 2007.
19. H. Rajan and G. T. Leavens. Ptolemy: A language with quantified, typed events. In ECOOP

’08: 22nd European Conference on Object-Oriented Programming, July 2008.
20. H. Rajan and K. Sullivan. Eos: instance-level aspects for integrated system design. In

ESEC/FSE-11, pages 297–306, 2003.
21. H. Rajan and K. Sullivan. Need for instance level aspect language with rich pointcut lan-

guage. In SPLAT workshop, mar 2003.
22. H. Rajan and K. J. Sullivan. Classpects: unifying aspect- and object-oriented language de-

sign. In ICSE ’05, pages 59–68, 2005.
23. H. Rajan and K. J. Sullivan. Unifying aspect- and object-oriented design. ACM Transactions

on Software Engineering and Methodology (TOSEM), 2008.
24. S. P. Reiss. Connecting tools using message passing in the field environment. IEEE Softw.,

7(4):57–66, 1990.
25. T. Rho, G. Kniesel, and M. Appeltauer. Fine-grained generic aspects. In FOAL, 2006.
26. K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S. Komiya. Association aspects. In

AOSD ’04, pages 16–25, 2004.
27. M. Stoerzer and J. Graf. Using pointcut delta analysis to support evolution of aspect-oriented

software. In ICSM ’05, pages 653–656, 2005.
28. K. J. Sullivan, I. J. Kaletyz, and D. Notkin. Mediators in a radiation treatment planning

environment. IEEE Transactions on Software Engineering, 22, 1996.
29. K. J. Sullivan and D. Notkin. Reconciling environment integration and software evolution.

ACM TOSEM, 1(3):229–68, Jul 1992.
30. T. Tourwé, J. Brichau, and K. Gybels. On the existence of the AOSD-evolution paradox. In

SPLAT workshop, March 2003.
31. M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice and dynamic join points in

aspect-oriented programming. ACM Trans. Program. Lang. Syst., 26(5):890–910, 2004.
32. A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, Nov 1994.

22

(T-ASSOCIATE)
Π ` e0 : exp c0 Π ` e1 : exp c1
Π ` associate(e0, e1) : exp c0

(T-EVTYPE)
isClass(c) ∀i ∈ {1..n}, isType(ti)

` c evtype p {t1 var1; . . . tn varn;} : OK

(T-REGISTER)
Π ` e : exp c

Π ` register(e) : exp c

(T-INVOKE)
Π ` e : exp (thunk c)

Π ` invoke(e) : exp c

(T-UNDER)
Π ` e : exp t

Π ` under e : exp t

(T-EVENT)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT

{var1 : var t1, . . . , varn : var tn} ⊆ Π Π ` e : exp c′ c
′ 4 c

Π ` event p {e} : exp c

(T-BINDING)
(c, c

′
m(t1 var1, . . . , tn varn){e}) = findMeth(c,m) isClass(c′)

t1 = thunk c′ (∀i ∈ {2..n} :: isType(ti)) {var2 : var t2, . . . , varn : var tn} ⊆ π
Π ` (when p do m) : OK in c

(T-PROGRAM)
∀i ∈ {1..n}, decli : OK ∅ ` e : exp t

` decl1 . . . decln e : OK

(T-NEW)
isClass(c)

Π ` new c() : exp c

(T-GET)
Π ` e : exp c fieldsOf (c)(f) = t

Π ` e.f : exp t

(T-CLASS)
isClass(d) ∀i ∈ {1..n} isClass(ti) ∀i ∈ {1..n} fi /∈ dom(fieldsOf (d))

∀j ∈ {1..m}methj : OK in c ∀k ∈ {1..l} bindingk : OK in c

` class c extends d {ti fi; methj ; bindingk} : OK

(T-METHOD)
isClass(t) ∀i ∈ {1..n}, {vari : ti, this : c} ` e : exp t′

t
′ 4 t override(m, t1 ∗ t2 ∗ . . . ∗ tn 7→ t) CT (c) = class c extends d {. . .}

Π ` t m(ti vari){e} : OK in c

(T-ASSIGN)
Π ` e0 : exp t0 Π ` e1 : exp t1 t1 4 t0

Π ` e0 = e1 : exp t1

(T-SEQUENCE)
Π ` e1 : exp t1 Π ` e2 : exp t2

Π ` e1; e2 : exp t2

(T-SET)
Π ` e : exp c fieldsOf (c)(f) = t Π ` e′ : exp t′ t

′ 4 t

Π ` e.f = e
′
: exp t′

(T-DEFINE)
isType(t) Π ` e1 : exp t1 Π ` e2 : exp t2 t1 4 t Π

′
= Π] {var : var t}

Π ` t var = e1; e2 : exp t2

(T-CAST)
isType(t)

Π ` cast t e : exp t

(T-NULL)
isClass(c)

Π ` null : exp c

(T-LOC)
(loc : var t) ∈ Π
Π ` loc : var t

(T-UNDER)
Π ` e : exp t

Π ` under e : exp t

(T-CALL)
Π ` e : exp c′ (c, t m(t1 var1, . . . , tn varn){e}) = findMeth(c,m)
c
′ 4 c Π ` e : exp t′ t

′ 4 t Π ` ei : exp ti ∀ i ∈ {1..n}
Π ` e.m(e1, . . . , en) : exp t

Auxiliary Functions:
isClass(t) = (class t . . .) ∈ CT
isThunkType(t) = (t = thunk c ∧ isClass(c))
isType(t) = isClass(t) ∨ isThunkType(t)

Fig. 7. Type-checking rules for Ptolemy-I based on [19]

23

Fig. 8. Graph System Architectural Diagram Using Ptolemy-I

