
Reconciling Trust and Modularity Goals in Web
Services

Hridesh Rajan, Jia Tao, Steve Shaner and Gary T. Leavens

TR #08-07b
Initial Submission: July 16, 2008.

Revised: Mar 7, 2009.

Keywords: web services, data integrity, greybox specification, refinement
CR Categories:
D.3.1 [Programming Languages] Formal definitions and theory — syntax and seman-
tics
F.3.1 [Logics and meaning of programs] Specifying and reasoning about programs —
assertion, mechanical verification, pre and postcondition

This report is an expanded version of the following paper.
Hridesh Rajan, Jia Tao, Steve Shaner, and Gary T. Leavens. Tisa: A Language De-

sign and Modular Verification Technique for Temporal Policies in Web Services, 18th
European Symposium on Programming (ESOP ’09), March 2009, York, UK. Lecture
Notes in Computer Science, Volume 5502, Springer-Verlag, 2009. The ESOP ’09 ver-
sion is Copyright (c) 2009, Springer-Verlag. The authors retain the copyright on this
expanded version, which is Copyright (c) 2009, Hridesh Rajan, Jia Tao, Steve Shaner
and Gary T. Leavens.

Department of Computer Science
226 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1041, USA

Reconciling Trust and Modularity Goals in Web
Services ?

Hridesh Rajan1, Jia Tao1, Steve Shaner1, and Gary T. Leavens2

(1) Iowa State University, Ames, Iowa, USA
{hridesh,jtao,smshaner}@iastate.edu

(2) University of Central Florida, Orlando, Florida, USA leavens@eecs.ucf.edu

Abstract. Web services are distributed software components, that are decoupled
from each other using interfaces with specified functional behaviors. However,
such behavioral specifications are insufficient to demonstrate compliance with
certain temporal non-functional policies. We show an example demonstrating that
a patient’s health-related query sent to a health care service is answered only by
a doctor (and not by a secretary). Demonstrating compliance with such policies
is important for satisfying governmental privacy regulations. It is often necessary
to expose the internals of the web service implementation for demonstrating such
compliance, which may compromise modularity. In this work, we provide a lan-
guage design that enables such demonstrations, while hiding majority of the ser-
vice’s source code. The key idea is to use greybox specifications to allow service
providers to selectively hide and expose parts of their implementation. The over-
all problem of showing compliance is then reduced to two subproblems: whether
the desired properties are satisfied by the service’s greybox specification, and
whether this greybox specification is satisfied by the service’s implementation.
We specify policies using LTL and solve the first problem by model checking.
We solve the second problem by refinement techniques.

1 Introduction

Web services promote abstraction, loose coupling and interoperability of clients and
services [1]. The key idea of web services is to introduce a published interface (often a
description written in an XML-based language such as WSDL [2]), for communication
between services and clients [1]. By allowing components to be decoupled using a
specified interface, web services enable platform-independent integration. These new
integration possibilities are valuable for constructing today’s interoperable, large-scale,
complex software-intensive systems.
Behavioral Contracts for Web Services. A behavioral contract for a web service
specifies, for each of the web service’s methods the relationships between its inputs and
outputs. Such a contract treats the implementation of the service as a black box, hid-
ing all the service’s internal states from its clients. The benefit of this encapsulation is
that clients do not depend upon the service’s changeable design decisions. To illustrate,

? Rajan and Tao were supported in part by the NSF grant CNS 06-27354. Rajan, Shaner and
Leavens were supported in part by the NSF grant CNS 08-08913.

3

consider a healthcare service that allows patients to make appointments and ask pre-
scription and health-related questions from healthcare practioners [3]. Figure 1 shows
how messages are passed in this system.

Fig. 1. Overview of a healthcare service workflow, based on [3, Fig. 3].

An example JML-like contract [4] for such a service follows.
service Patient {

/*@ requires pId >= 0; ensures result >=0; @*/
int query(int pId, int msg);
/*@ requires qId >= 0; ensures result >=0; @*/
int retrieve(int qId);

}

The service description in this contract is written in a form similar to our language,
Tisa, to make comparisons easier. It specifies that a service named Patientmakes two
web-methods available: query and retrieve. The query method takes a patient
identifier and a message as arguments. The message is represented as an integer for
simplicity (think of it as an index into a table of pre-defined questions, such as “does
the test show I have AIDS?”). The precondition of calling this web-method is that the
patient identifier is positive; the postcondition is that it returns a positive result. The
retrieve method takes a query identifier as argument; its precondition is that this
identifier must be positive. Its postcondition is that the result is also positive. These
contracts could be checked by observing the interface of the web-methods [5–9].
Demonstrating Compliance to Temporal Policies. Let us now consider the following
policy inspired from Barth et al.’s work [3]: “a health question about a patient should
only be answered by the doctor”, “furthermore such answers should only be disclosed to
the concerned patients”. We will refer to these as “HIPAA policies” as they are similar
to regulations in the US health insurance portability and accountability act (HIPAA).
The behavioral contract above is insufficient for demonstrating compliance with the
HIPAA policies, as it does not provide sufficient details about the internal state of the
service. For example, the entity that is finally receiving the query is hidden by query’s
contract. Demonstrating compliance to such policies is important. In our example, a
patient may feel much better about their queries regarding an AIDS test result, if such
compliances were demonstrated by the service.
Compliance and Modularity at Conflict. Alternatively suppose the implementation
of the two web-methods query and retrieve were available, including the compo-
nent services that they use. Then demonstrating compliance to the two HIPAA policies
would be equivalent to ensuring that the implementation avoids non-compliant states.
However, by making code for these methods available, clients might write code that de-

4

1 service Secretary {
2 int query(int pId, int msg) {
3 preserve pId > 0 && msg > 0;
4 if (msg >= 2) {
5 query(pId,msg)@Doctor
6 }
7 else {
8 /* Appointment? */
9 establish result > 0

10 }
11 }
12 int retrieve(int qId) {
13 requires qId > 0 ensures result > 0
14 }
15 }

16 service Doctor {
17 int query(int pId, int msg) { /* Re: Test */
18 requires pId > 0 && msg >= 2 ensures result > 0
19 }
20 int retrieve(int qId) {
21 requires qId > 0 ensures result > 0
22 }
23 }
24 service Patient {
25 int query(int pId, int msg) {
26 query(pId, msg)@Secretary;
27 }
28 int retrieve(int qId) {
29 preserve qId > 0;
30 if ((qId/1000)==1) { retrieve(qId)@Secretary}
31 else if ((qId/1000)==2) { retrieve(qId)@Doctor}
32 } }

Fig. 2. An Example Greybox Specification

pends on implementation design decisions. As a result, changing these design decisions
will become harder, as these changes could break client’s code [10].

We thus believe that, for web services, modularity [10] and verification of temporal
policies are fundamentally in conflict. To make the service implementation evolvable,
modularity requires hiding the design decisions that are likely to change. But to demon-
strate compliance to key temporal policies, internal states need to be exposed.

A Language Design and Verification Logic. To reconcile these requirements, we pro-
pose a technique based on greybox specifications [11] that exposes only some internal
states. This technique enables web service providers to demonstrate compliance to tem-
poral policies, such that above, by exposing only parts of their implementation. A client
can verify that the service complies with the desired policies by inspecting a greybox
specification. Providers can also choose to hide many implementation details, so the
service’s implementation can evolve as long as it refines the specification [12, 13].

To illustrate, consider the greybox specification shown in Figure 2. This exam-
ple has three services. In each service the methods are web-methods that may be
called by clients and other services. Specification expressions of the form preserve
e, establish e, and requires e1 ensures e2 are used within these meth-
ods to hide internal details. The code that is not hidden by specification expres-
sions is exposed. Calls to web-methods are written using an at-sign (@), such as
query(pId, msg)@Secretary. For simplicity, Tisa only allows integers to be
passed as arguments in such remote calls, thus we encode questions using integers: 1
for appointments, 2 for prescriptions, and higher numbers for health-related questions.
Contrary to standard black box specifications, internal states of the service, including
calls to other services are exposed. By analyzing lines 26 and 4–6 (in that order) one
could conclude that “health questions by patients are answered by the doctor.” Demon-
strating compliance to temporal policies thus becomes possible. Note that this specifi-
cation only exposes selected details about the implementation. For example, the spec-
ification of retrieve on line 13 hides all details of how this service responds to
appointment questions. Therefore, it hides the design decisions made in the implemen-
tation of creating, storing, and forwarding responses.

5

Contributions. An important contribution is the identification of the conflict between
verification of temporal policies and modularity in web services. We show how to re-
solve this conflict using greybox specifications. Our language, Tisa, supports specifica-
tion of policies specified in a variant of linear temporal logic [14], greybox specification
[11] and a simple notion of refinement [12, 13, 15] for modular reasoning about correct-
ness of implementations with respect to such policies. As usual, implementations are
hidden, but policies and greybox specifications are public. To demonstrate these claims,
we present two preliminary verification techniques: one checks if a greybox specifica-
tion satisfies a temporal policy, the second checks whether a service implementation re-
fines its greybox specification. (The first technique could be used by the clients to select
a service whose specification satisfies their desired policies.) We also show soundness:
that the composition of these two verification techniques, applied modularly by clients
and all service providers, implies that the web service implementation satisfies the spec-
ified temporal policies. In practice, some additional technique, such as proof-carrying
code [16], zero-knowledge proofs [17], or a hardware-based root of trust [18, 19] would
be needed to satisfy clients that web services in fact satisfy their specifications.

2 Tisa Language Design

In this section, we describe Tisa, an object-oriented (OO) language that incorporates
ideas from existing work on specification languages, web services authentication lan-
guages and modeling languages. In particular, Tisa’s design is inspired by Argus [20]
and the work of Gordon and Pucella [21]. (Furthermore, some of our descriptions of
the language syntax are adapted from Ptolemy [22].) Tisa is a distributed programming
language with statically created web services and a single client, each of which has
its own address space. Web services are named and declare web-methods, which can
be called by the client and by other services. As a small, core language, the technical
presentation of Tisa shares much in common with MiniMAO1 [23], a variant of Feath-
erweight Java [24] and Classic Java [25]. Tisa has classes, objects, inheritance, and sub-
typing, but it does not have super, interfaces, exception handling, built-in value types,
privacy modifiers, or abstract methods. Furthermore, other features of web-service de-
scription languages (WSDLs) such as composite data types for exchanging messages
between services, messages, ports, one-way vs. request-response operations, etc, are
omitted to avoid complications in Tisa’s theory. However, most of these are syntactic
sugars that can be desugared to existing constructs in Tisa. Tisa features new mecha-
nisms for declaring policies and greybox specifications. Our description starts with its
programming features, and then describes its specification features.

2.1 Program Syntax

The syntax of Tisa executable programs is shown in Figure 3 and explained below. A
Tisa program consists of zero or more declarations, and a client (see Figure 4). Decla-
rations are either class declarations or web service declarations.

Each web service has a name (w) representing that web service; thus web service
names can be thought of as web sites. (The mapping of web services to actual computers

6

program ::= decl* client
decl ::= classdecl | servicedecl
classdecl ::= class c extends d { field* meth* }
servicedecl ::= service w { field* meth* }
client ::= client w { e }
field ::= t f;
meth ::= t m (form*) { e }
form ::= t var, where var 6=this and var 6=thisSite
t ::= c | int
e ::= n | e == e | e != e | e > e | e < e | e >= e | e <= e
| e + e | e - e | e * e | ! e | e && e | e ‘||’ e | isNull(e)
| if (e) { e } else { e } | new c() | var
| null | e.m(e*) | e.f | e.f = e | cast c e | form = e; e
| e; e | w | m(e*)@e | refining spec { e }

n ∈ N , the set of numeric, integer literals
c, d ∈ {Object, Site} ∪ C,

C is the set of class names
f ∈ F, the set of field names
m ∈ M, the set of method names

var ∈ {this, thisSite} ∪ V,
V is the set of variable names

w ∈ W ⊆ C,
W is the set of web service names

Fig. 3. Abstract syntax, based on [26, Figure 3.1, 3.7].

is not specified in the language itself.) A web service can be thought of as a singleton
object; however, each web service has a separate address space and its methods can
only be called using a remote procedure call.

An example web service declaration for the service Patient appears on lines 49–
62 in Figure 4. This service contains two web-method declarations, named query and
retrieve. The web-method query takes a patient Id and message as arguments and
returns a unique query Id generated according to the input arguments. The web-method
retrieve takes query Id as an argument and returns an answer message which en-
codes a patient Id. In examples we use commas to separate method formals. A client
declares a name and runs an expression that is the main expression of the program. We
next explain class declarations and expressions.

Class Declarations. Class declarations may not be nested. Each class has a name
(c) and names its superclass (d), and may declare finite number of fields (field*) and
methods (meth*). Field declarations are written with a class name, giving the field’s
type, followed by a field name. Methods also have a C++ or Java-like syntax, although
their body is an expression.

Expressions. Tisa is an expression language. Thus the syntax for expressions includes
integer literals, various standard integer and logical operations, several standard OO
expressions and also some expressions that are specific to web services. The logical
operations operate on integers, with 0 representing false, and all other integer values
representing true. An if (e1) { e2 } else { e3 } expression tests if e1 is non-
zero; if so it returns the value of e2, otherwise it returns the value of e3.

The standard OO expressions include object construction (new c()), variable deref-
erence (var, including this), field dereference (e.f), null, cast (cast t e), assign-
ment to a field (e1.f = e2), sequencing (e1; e2), casts and a definition block (t var =
e1; e2). The other OO expressions are standard [26, 23].

There are three new expressions: web service names, web-method calls, and refin-
ing statements. Web service names of form w are constants. A web-method call has the
form (m(e*)@ew), where the expression following the at-sign (ew) denotes the name
of the web service name that will execute the web-method call named m with formals
e*. A refining statement, of the form refining spec { e }, is used in imple-

7

1 class Query extends Object {
2 int pId; int msg; int qId;
3 }
4 class Queue extends Object { //...
5 int add(int pId, int msg, int qId){
6 /* add to inner list */; qId
7 } }
8 service Secretary {
9 Queue queryQ; Hashtable responses;

10 int ticket; Log log;
11 int query(int pId, int msg) {
12 refining preserve pId > 0 && msg > 0 {
13 log.recordCurrentTime()
14 };
15 if (msg >= 2) {
16 query(pId, msg)@Doctor
17 } else { /* Re: Appointment */
18 refining establish result > 0 {
19 ticket = ticket + 1;
20 queryQ.add(pId, msg, ticket + 1000)
21 } } }
22 int respond(int qId,int pId,int msg){
23 /* Encode patient’s information */
24 responses.add(qId, pId*1000 + msg);
25 queryQ.remove(qId)
26 }
27 int retrieve(int qId) {
28 refining requires qId > 0
29 ensures result > 0 {
30 responses.get(qId)
31 } } }

32 service Doctor {
33 Queue topQ; Queue medQ; Queue lowQ;
34 int query(int pId, int msg) {
35 refining requires pId > 0 && msg >= 2
36 ensures result > 0 {
37 ticket = ticket + 1;
38 if (msg > 500) {
39 topQ.add(pId, msg, ticket + 2000)
40 } else if (msg > 250) {
41 medQ.add(pId, msg, ticket + 2000)
42 } else {
43 lowQ.add(pId, msg, ticket + 2000)
44 };
45 q.qId
46 } }
47 /* retrieve similar to Secretary’s */
48 }
49 service Patient {
50 int query(int pId, int msg) {
51 query(pId, msg)@Secretary
52 }
53 int retrieve(int qId) {
54 if ((qId/1000) == 1) {
55 retrieve(qId)@Secretary
56 } else if((qId/1000) == 2) {
57 retrieve(qId)@Doctor
58 } } }
59 client User{
60 int qid = query(101,3)@Patient;
61 retrieve(qid)@Patient
62 }

Fig. 4. An Example Tisa Implementation

specification ::= servicespec*
servicespec ::= service w { wmspec* }
wmspec ::= t m (form*) { se }
form ::= t var, where var 6=thisSite
spec ::= requires sp ensures sp

se ::= sp | spec | se; se| form = se; se | m(sp*)@sp
| if (sp) { se } else { se }

sp ::= n | sp == sp | sp != sp | sp > sp | sp < sp | sp >= sp | sp <= sp
| sp + sp | sp - sp | sp * sp | ! sp | sp && sp | sp ‘||’ sp
| var | w

Fig. 5. Syntax for Writing Specifications in Tisa

menting Tisa’s greybox specifications (see below). It executes the expression e, which
is supposed to satisfy the specification spec.

2.2 Specification Constructs

The syntax for writing specifications in Tisa is shown in Figure 5. In this figure, all
nonterminals that are used but not defined are the same as in Figure 3. Specifications
consist of several service specifications (servicespec). (Since we only permit integers
to be sent to and returned from web-method calls, we omit class declarations from
specifications.) A service specification may contain finite number of web-method spec-
ifications (wmspec). All fields are hidden, so field declarations are not allowed in a ser-
vice specification. The body of a web-method specification contains a side-effect free
expression (se). Many expressions from Figure 3 also appear as such side-effect free
expressions, but not field-related operations, method calls, and isNull. Web-method
call expressions are allowed and so are local variable definition expressions.

8

The main new feature of specifications, borrowed from the refinement calculus and
the greybox approach, is the specification expression (spec). Such an expression hides
(abstracts from) a piece of code in a correct implementation. The most general form of
specification expression is requires sp1 ensures sp2, where sp1 is a precondition
expression and sp2 is a postcondition. Such a specification expression hides program
details by specifying that a correct implementation contains a refining expression
whose body expression, when started in a state that satisfies sp1, will terminate in a
state that satisfies sp2 [15]. The two levels of the grammar for se prevent nesting of
specification expressions within specification expressions.

In examples we use two sugared forms of specification expression. The expression
preserve sp is sugar for requires sp ensures sp and establish sp is sugar
for requires 1 ensures sp.

An example greybox specification of the web service Patient appears in Figure 2.
The specification of the web-method query appears on line 26, and specifies (and
thus exposes) all the code for that method. The specification of retrieve hides a
bit more in its preserve expression (line 29). But it also exposes code that makes
a web-method call retrieve to the Secretary or Doctor. With these greybox
specifications, enough details are exposed about what the service does when invoking
other services, which makes it feasible to show compliance to the HIPAA policies.

2.3 Constructs for Specifying Policies

Our simple policy specification language is similar to Linear Temporal Logic [14].

Φ(specification) ::= P(specification) | ¬φ | φ1 ∧ φ2 | φ1 U φ2 | X φ

The language specifies histories that are sequences of web method calls. For a given
specification, a policy can be an atomic proposition in P(specification); a negation of a
policy or boolean combination of policies. For simplicity here we take the set of legal
propositionsP(specification) to be all legal web-method calls in the given specification.
This set can be statically computed from the specification against which the policy is to
be verified by traversing the abstract syntax tree of the specification up to the depth of
web-method specifications. The operator U is read as “until” and X as “next.” φ1Uφ2

states that policy φ2 must be satisfied after policy φ1 is satisfied along all executions of
the service. Xφ states that policy φ must be satisfied in the next state (i.e., at the next
web method call). We also use the following common abbreviations:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) φ1 → φ2 ≡ ¬φ1 ∨ φ2 true ≡ φ ∨ ¬φ
false ≡ ¬true F φ ≡ true U φ G φ ≡ ¬F ¬φ

The constant true means that the service does not have any obligation. The operator F is
read as “eventually" and G as “always". Interesting temporal policies can be constructed
via nesting of these temporal operators. Below we present two sample policies for our
healthcare service example.

φ1 = G(query@Patient ∧ (XF(query@Secretary ∨ XFquery@Doctor)))
φ2 = G(retrieve@Patient ∧ XFretrieve@Doctor → ¬ XFretrieve@Secretary)

The policy φ1 states that whenever there is a web-method call query@Patient, there
is eventually a web-method call query at one of the sites Secretary or Doctor.

9

Evaluation relation: ↪→: Γ → Γ

(WEB METHOD CALL)
Π = {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}∪−{thisSite : var Site} ν = frame ρ Π

ρ = {vari 7→ vi | 1 ≤ i ≤ n} ⊕ (this 7→ loc)⊕ (thisSite 7→ w)
(loc, c2, t m(t1var1, . . . tnvarn){e}) = find(w,m)

〈E[m(v1, . . . , vn)@w], J, S〉 ↪→ 〈E[under e], ν + J, S〉

(REFINING)
n 6= 0˙

E[refining requires n ensures e
′ {e′′}], J, S

¸
↪→

˙
E[evalbody e′′e′], J, S

¸
(EVALBODY)
ρ = envOf (ν) Π = tenvOf (ν) w = thisSite(ν) t = typeOf (v, S, w)
ρ
′
= Π∪−{result : v} Π

′
= Π∪−{result : var t} ν

′
= frame ρ′ Π′˙

E[evalbody v e
′
], ν + J, S

¸
↪→

˙
E[under evalpost v e

′
], ν
′
+ ν + J, S

¸
(EVALPOST)

n 6= 0

〈E[evalpost v n], J, S〉 ↪→ 〈E[v], J, S〉

(UNDER)
〈E[under v], ν + J, S〉

↪→ 〈E[v], J, S〉

Fig. 6. Operational semantics of Tisa. Standard OO rules are presented in Section A.1.

This policy says that a query is eventually delivered to one of the healthcare providers.
The policy φ2 encodes the constraint that a health answer that comes from doctors goes
directly to the patient, and is never forwarded to secretaries. In terms of the service
specification, if there is a web-method call retrieve@Patient and it is followed
by a web-method call retrieve@Doctor, then there is never a web-method call
retrieve at the site Secretary in the same trace.

2.4 Dynamic Semantics of Tisa’s Constructs

This section defines a small step operational semantics for Tisa programs (adapted from
Clifton’s work [26]). In the semantics, all declarations are formed into a single class
table that maps class names and web service names to class and service declarations,
respectively. However, despite this global view of declarations, the model of storage is
distributed, with each web service having an independent store.

The operational semantics relies on four expressions, not part of Tisa’s surface syn-
tax, to record final or intermediate states of the computation. The loc expression repre-
sents locations in the store. The under expression is used as a way to mark when the
evaluation stack needs popping. The evalbody and evalpost are used in evalua-
tion of specification expressions. The three exceptions NullPointerException,
ClassCastException, and SpecException record various problems orthogo-
nal to the type system.

A configuration in the semantics contains an expression (e), an evaluation stack
(J), and a store (S). The current web service name is maintained in the evaluation
stack under the name thisSite. The auxiliary function thisSite extracts the current
web service name from a stack frame. Stacks are an ordered list of frames, each frame
recording the static environment, ρ, and a type environment. (The type environment,Π ,
is only used in the type soundness proof.) The static environment ρ maps identifiers to

10

values. A value is a number, a web service name (site), a location, or null. Stores are
maps from locations to storable values, which are object records. Object records have a
class and also a map from field names to values.

The semantics is presented as a set of evaluation contexts E and an one-step reduc-
tion relation [27] that acts on the position in the overall expression identified by the
evaluation context as shown in Figure 6. Standard OO rules are presented in our techni-
cal report [28]. The key rule is (WEB METHOD CALL), which uses the auxiliary function
find to retrieve the body of the web method from a class tableCT implicitly used by the
semantics. It creates the frame for execution of the web method with necessary static
environment and type environment and starts execution of the web method body. The
under e expression is used in the resulting configuration to mark that the stack should
be popped when the evaluation of e is finished.

Evaluation of a refining expression involves 3 steps. First the precondition is
evaluated (due to the context rules). If the precondition is non-zero (i.e., true), then the
next configuration is evalbody e′′ e′, where e′′ is the body and e′ is the postcondition
(regarded as an expression). The body is then evaluated; if it yields a value v, then
the next configuration is under evalpost v e′, with a new stack frame that binds
result to v pushed on the stack. The type of result in the type environment Π ′ is
determined by the auxiliary function typeOf . Finally, the (EVALPOST) rule checks that
the postcondition is true and uses the body’s value as the value of the expression.

3 Examples in Tisa

We have tried several examples in Tisa and they worked out wonderfully. In this section,
we will discuss two other example web-services in Tisa. Each of these examples is
inspired from a real-world web-service, however, we consider simplified versions of
these for ease of presentation.

3.1 Streamlined Sales Tax Service

Many states in the United States enact some form of sales tax to raise revenue. E-
commerce complicates the collection of such taxes due to the boundary-crossing nature
of transactions on the internet. Identifying which states need to be paid and how much
to pay them is a concern shared by all e-businesses. Likewise, the states want to be seen
as amenable to e-business. If the states provide a suitable automated e-filing system
for their sales tax, web services could be developed to distribute per-state taxes given
a descriptive set of receipts by some client. A multi-state project enabling these web
services is now under development [29].

For such web services demonstrating compliance to non-functional policies would
be crucial. For example, the service provider may like to demonstrate that “the tax
returns filed by the clients are indeed sent to the relevant state’s e-file system” to in-
spire client’s trust in the web service implementation. Figure 7 illustrates the greybox
specifications and Figure 8 shows the implementation of the Sales Tax Service. The
implementation uses the service ZipToState (not shown) to determine the state cor-
responding to the argument zip code. The tax returns are then filed to the desired state

11

1 service IAEFile {
2 int fileReturn(int fedId, int amount){
3 requires fedId>0 && amount>0
4 ensures result == amount
5 }
6 int getReturn(int fedId){
7 requires fedId>0
8 ensures result >= 0
9 }

10 }
11 service FLEFile {
12 int fileReturn(int fedId, int amount){
13 requires fedId>0 && amount>0
14 ensures result == amount
15 }
16 int getReturn(int fedId){
17 requires fedId>0
18 ensures result >= 0
19 }
20 }

21 service SalesTax {
22 int process(int fedId, int zip, int amount){
23 preserve fedId > 0 && zip > 0 && amount > 0;
24 int state = getState(zip)@ZipToState;
25 if (state == 19){
26 fileReturn(fedId, amount)@IAEFile
27 } else if (state == 12){
28 fileReturn(fedId, amount)@FLEFile
29 }
30 establish result == amount
31 }
32 }

Fig. 7. Greybox Specification of Sales Tax Service

1 service IAEFile {
2 Hashtable db;
3 int fileReturn(int fedId, int amount) {
4 refining requires fedId>0 && amount>0
5 ensures result == amount {
6 db.set(fedId, db.get(fedId) + amount);
7 amount
8 } }
9 int getReturn(int fedId){

10 refining requires fedId>0
11 ensures result >= 0 {
12 db.get(fedId)
13 } } }
14 service FLEFile {
15 Hashtable db;
16 RequestCache cache;
17 int fileReturn(int fedId, int amount) {
18 refining requires fedId>0 && amount>0
19 ensures result == amount {
20 cache.add(fedId, amount);
21 if(cache.size()>=10) {
22 cache.commit(db)
23 } } }
24 int getReturn(int fedId) {
25 refining requires fedId>0
26 ensures result >= 0 {
27 cache.commit(db);
28 db.get(fedId)
29 } } }

30 service SalesTax {
31 Hashtable clientFiles;
32 int process(int fedId, int zip, int amount){
33 refining preserve fedId > 0 && zip > 0 && amount > 0
34 {
35 ClientFile f = clientFiles.get(fedId);
36 f.taxAmount = f.taxAmount + amount
37 }
38 int state = getState(zip)@ZipToState;
39 int taxAmount = if (state ==19) {
40 /* IA */
41 fileReturn(fedId, amount)@IAEFile
42 } else if (state == 12) {
43 /* FL */
44 fileReturn(fedId, amount)@FLEFile
45 };
46 refining establish result == amount {
47 ClientFile f = clientFiles.get(fedId);
48 f.lastState = state;
49 taxAmount
50 } } }
51 class ClientFile {
52 int fedId;
53 int taxAmount;
54 int lastState;
55 }

Fig. 8. Implementation of the Sales Tax Service

on behalf of clients by calling the web-methods fileReturn of that state’s efile ser-
vice. Using a blackbox specification, a client may not be able to tell whether the tax is
paid to the correct state, whereas with the greybox specification this can be expressed.
A sample policy for our sales tax example follows.

G((process@SalesTax)
∧ (XF(fileReturn@IAEFile) ∨ XF(fileReturn@FLEFile))

12

The policy states that whenever there is a web-method call process at the site
SalesTax, there is eventually a web-method call fileReturn at the site IAEFile
or FLEFile. Informally, for this small example this policy can be verified by just
inspecting the specification of the web-method process in Figure 7. As we will show
in Section 4.1 that policies such as the example policy above can be verified using just
this greybox specification as an input. The clients of the sales tax service may use the
specification to verify whether the service satisfies their desired policies. The refinement
component of our verification technique, described in Section 4.2, can then be used by
clients as a blackbox to check whether the service implementation refines its public
specification.

This example also demonstrates the modularity benefits of Tisa’s greybox specifi-
cations. In the specification of the web-method process for the service SalesTax,
the specification expressions hide much of the implementation details. For example de-
tails about how client’s accounting is kept by the web-service is not exposed in the
specification. Other similar changeable implementation details such as the policy to de-
ploy a logging mechanism or to profile the execution of the web-method to measure
throughput of service requests, etc, can be easily added and removed from the service
implementation. Figure 8 shows that the service implementation uses two refining
expressions in the implementation of the web-method process to hide the details
related to client accounting that is kept around to bill clients for tax-related services.

To illustrate the benefits of modularity, consider the implementations of the services
IAEFile and FLEFile. The former uses a straightforward, write-through technique
where tax returns filed are immediately committed to the database, whereas the latter
uses a simple caching strategy to minimize writes to the database. Both these imple-
mentations refine similar greybox specifications, which does not expose details about
how tax returns are stored internally. As a result, it becomes possible to replace the
implementation of IAEFile with that similar to FLEFile (perhaps to improve effi-
ciency) without breaking reasoning of any clients. Such replacement would not have
been easy, if the entire implementation of these services were exposed for reasoning.

3.2 Web-based Photo Album

Consider an online photo album sharing application. Every user has an album contain-
ing photos. Users can see photos in their own albums and those from their friends as
well. For simplicity, we design the application in a way that each photo has its own
id and its owner’s id as properties of the photo. We also assume that all users are al-
ready authenticated. The web service Album contains all the photos and the service
Friends has the relationship of whether two users are friends or not. This relation-
ship is reflexive; i.e., every user is their own friend.

In practice, the photos will be saved in a persistent storage such as a file system and
such file system may be organized into directories. However, to avoid complications
in modeling, we represent this file system as instances of a class. We do not model
directories. In the implementation, we use an instance of the List class to store the set
of friends who can view a picture. The implementation of List would be standard and
thus not shown in this example. Figure 9 shows the grey box specification and Figure 10
shows an implementation of this service. An example policy for such service might be:

13

1 service Album {
2 int view (int uid, int pid) {
3 preserve uid> 0 && pid > 0;
4 int pUid = photoUid(pid)@Album;
5 if(pUid == 0) { establish result == 0 }
6 else {
7 int isFr = find(pUid, uid)@Friends;
8 establish result == isFr
9 } }

10 int putPhoto (int uid, int pid) {
11 requires uid > 0 && pid > 0
12 ensures ensures result >= 0
13 }
14 int photoUid(int pid) {
15 requires pid >= 0 ensures result >= 0
16 }
17 }

19 service Friends {
20 int find(int uid, int fid) {
21 requires uid > 0 && pid > 0
22 ensures result >= 0
23 }
24 int add(int uid, int fid) {
25 requires uid > 0 && pid > 0
26 ensures result == 1
27 }
28 }

Fig. 9. Greybox Specification of the Photo Sharing Service

G(view@Album ∧ (XF find@Friends))

which says that when a photo is viewed, the friendship relation is always checked.
However, this policy can be seen to not be followed, as it does not take into account
the early return in the view web method for the case where the photo id (pid) is not
found. To express a policy that takes arguments and results into account we would need
a more complex policy specification language.

14

1 class Photo { int pid; int uid }
2 class List { /* ... */}
3 class FriendRel { int uid; int fid }
4 class PhotoList extends List { /* ... */
5 Photo findPhoto(int pid) {
6 if (this.empty()) {
7 Photo p = new Photo(); p.pid = 0; p }
8 else {
9 Photo p = this.car();

10 if (p.pid == pid) { p }
11 else { this.cdr().findPhoto(pid) }
12 }
13 }
14 }
15 service Album {
16 PhotoList photoList;
17 int view (int uid, int pid) {
18 refining preserve uid>0 && pid>0 {};
19 int pUid = photoUid(pid)@Album;
20 if (pUid == 0) {
21 refining establish result == 0 {0} }
22 else {
23 int isFr = find(pUid, uid)@Friends;
24 refining establish result == isFr {
25 isFr
26 } }
27 }
28 int putPhoto (int uid, int pid) {
29 refining requires uid>0 && pid>0
30 ensures result == 1 {
31 photoList.add(uid, pid); 1
32 }
33 }
34 int photoUid(int pid) {
35 refining requires pid >= 0
36 ensures result >= 0 {
37 photoList.findPhoto(pid)
38 }
39 }
40 }

41 class FriendList extends List { /* ... */
42 int findFriend(int uid, int fid) {
43 if(this.empty()){ 0 }
44 else {
45 FriendRel fr = this.car();
46 if (fr.uid == uid) {
47 if (fr.fid == fid) 1
48 }
49 else {
50 this.cdr().findFriend(uid, fid)
51 } }
52 }
53 }
54 service Friends {
55 FriendList friendList;
56 int find(int uid, int fid) {
57 refining requires uid > 0 && pid > 0
58 ensures result >= 0 {
59 friendList.findFriend(uid, fid)
60 }
61 }
62 int add(int uid, int fid) {
63 refining requires uid>0 && pid>0
64 ensures result == 1 {
65 friendList.add(uid, fid); 1
66 }
67 }
68 }
69 client User{
70 add(200,250)@Friends;
71 put(200,12345)@Album;
72 view(250,12345)@Album;
73 }

Fig. 10. Implementation of Photo Sharing Service

15

4 Verification of Policies in Tisa

A key contribution of our work is to decouple, with Tisa’s language design, the verifi-
cation of whether a policy is satisfied by a web service implementation into two veri-
fication tasks that can proceed modularly and independently. The first task is to verify
whether a policy is satisfied by the service specification. The second task is to ver-
ify whether the service specification is satisfied by the service implementation. Three
benefits follow from this modular approach. First, the service implementation need not
be visible to clients, as a client uses the specification to determine whether their de-
sired policies hold. Thus, our approach achieves modularity for service implementa-
tions. Second, regardless of the number of clients, the second verification task must
only be done once; thus our approach is likely to be scalable for web service providers.
Last but not the least, policy verification is performed on the (generally smaller) speci-
fication. Thus, our approach has efficiency benefits for policy verification.

Determining whether a policy is satisfied by the specification can be reduced to a
standard model checking problem [14]. We claim no contribution here; rather, the nov-
elty of our approach is in a combination of these two techniques, enabled by a careful
language design. To show the feasibility of applying ideas from model checking [14]
and refinement calculus [12, 13] to our problem, in the rest of this section we describe
our techniques for verifying policies and refinement.

4.1 Verifying Policies

We adopt the standard automata-theoretic approach for verifying linear temporal logic
formulas proposed by Vardi and Wolper [30] to verify policies in Tisa. Following Vardi
and Wolper [30], a policy φ ∈ Φ(S) is viewed as a finite-state acceptor and a specifica-
tion S as a finite-state generator of expression execution histories. Thus the specification
S satisfies policy φ if every (potentially infinite) history generated by S is accepted by
φ, in other words, if S ∩ ¬φ is empty.

Figure 11 shows main parts of an algorithm for constructing a finite-state machine
F(S) = (Z, z0, R, ∆) from a Tisa specification S. Here, Z is a finite set of states, z0
is the initial state, R is a total accessibility relation, ∆ : Z → 2P(S), which determines
how truth values are assigned to propositions in each state [30, pp. 5]. All rules make
use of unions for joining set of states (Z) and disjoint union (]) for joining propositions.
Rules for standard OO expressions are omitted.

The (IF EXP FSM) rule demonstrates creation of non-deterministic transitions in the
state machine. It computes the FSMs corresponding to the true branch and the false
branch of the if expression with initial states z′ and z′′ and joins these two FSMs to
make a new FSM with initial state z. Corresponding to the state z′, which corresponds
to the true branch, the proposition sp is added to ∆, which corresponds to the con-
ditional expression evaluating to the truth value true. Similarly for the state z′′, which
corresponds to the false branch, the proposition !sp is added to∆, which corresponds to
the conditional expression evaluating to the truth value false. Finally, an edge is added
from the new initial state z to the two original initial states z′ and z′′.

The (SPEC EXP FSM) rule models the cases for satisfaction of precondition and post-
condition. The states corresponding to precondition being true and the postcondition

16

Production relation: NT ` se (Z, z0, R,∆),NT whereNT ∈ NT =W ×M→ Z

(IF EXP FSM)
NT ` se′ (Z

′
, z
′
, R
′
, ∆
′
),NT′ NT′ ` se′′ (Z

′′
, z
′′
, R
′′
, ∆
′′
),NT′′ Z = Z

′ ∪ Z′′ ∪ {z}
∆ = ∆

′]∆′′] {(z′, {sp}), (z′′, {!sp})} R = R
′ ∪ R′′ ∪ {(z, z′), (z, z′′)}

NT ` if (sp) {se′} else {se′′} (Z, z,R,∆),NT′′

(WEB METHOD CALL FSM 1)
¬(∃z :: NT(w,m) = z)

NT′ = NT ∪ ((w,m), z) m(t1, . . . tn){se} = find(w,m) NT′ ` se (Z
′
, z
′
, R
′
, ∆
′
),NT′′

Z = Z
′ ∪ {z} ∆ = ∆

′] {(z′, {m@w})} R = R
′ ∪ {(z, z′)}

NT ` m(v1, . . . , vn)@w (Z, z,R,∆),NT′′

(WEB METHOD CALL FSM 2)
z = NT(w,m)

NT ` m(v1, . . . , vn)@w ({z}, z, {}, {}),NT

(SPEC EXP FSM)
Z = {z1, z2, z3, z4} R = {(z, z1), (z, z2), (z1, z3), (z1, z4), (z3, z′)}

∆pre = {(z1, {sp1}), (z2, {!sp1})} ∆ = ∆pre] {(z3, {sp1, sp2}), (z4, {sp1, !sp2})}
NT ` requires sp1 ensures sp2 (Z, z,R,∆),NT

(DEF EXP FSM)
NT ` se′ (Z

′
, z
′
, R
′
, ∆
′
),NT′ NT′ ` se′′ (Z

′′
, z
′′
, R
′′
, ∆
′′
),NT′′

Z = Z
′ ∪ Z′′ ∪ z R = R

′ ∪ R′′ ∪ {(z, z′)} ∪ {(zi, z
′′
) | zi ∈ final(Z′, R′)}

NT ` t var = se
′ ;se′′ (Z, z,R,∆),NT′′

(SEQ EXP FSM)
NT ` se′ (Z

′
, z
′
, R
′
, ∆
′
),NT′ NT ` se′′ (Z

′′
, z
′′
, R
′′
, ∆
′′
),NT′′

Z = Z
′ ∪ Z′′ ∪ z R = R

′ ∪ R′′ ∪ {(z, z′)} ∪ {(zi, z
′′
) | zi ∈ final(Z′, R′)}

NT ` se′ ; se′′ (Z, z,R,∆),NT′′

Fig. 11. Finite-state machine construction, built from expressions in a specification.

being true are z1 and z3. The states z2 and z4 correspond to precondition being false
and postcondition being false respectively. The transitions inserted in R ensure that the
postcondition-related states z3 and z4 are only reachable from the precondition true
state z1. The initial state of the finite-state machine generated from the expression fol-
lowing spec expression is z′. This state should only be reachable if both precondition
and postcondition are true. Thus, an edge is added from the state z3 to z′ in R. Finally,
edges are added such that the states z1 and z2 are reachable from the new initial state z.

The (WEB METHOD CALL FSM) rules make use of a table NT that maps pairs
of web service names and method names (w,m) to states. This table is used to
account for recursion in web-method calls. Thus the (WEB METHOD CALL FSM 2)
rule checks that the current web-method is already expanded into an FSM, and if
so it uses the previously generated initial state for the web-method. To illustrate
the (WEB METHOD CALL FSM 1) rule, consider a service defined by service w {
int m(){ ... m(); ...}. At the call site for m(), suppose there is no z that NT
maps the pair (w,m) to; in this case the (WEB METHOD CALL FSM 1) is used, putting
the pair in the table NT ′ used to check the body. When the body of m() is expanded,
the process eventually encounters the call site again; however, this time the pair (w,m)
is in the domain of NT , and so the (WEB METHOD CALL FSM 2) rule must be used,

17

which terminates the recursion in the process, by producing ({z}, z, {}, {}). Alterna-
tive evaluation also leads to same effective results. Finally, the finite-state machine for
a service specification is created by first creating finite-state machines for each of its
web-method specifications as if it is being called and by joining them using an extra
state that becomes the new initial state.

(SERVICE SPEC)
NT ` m1(form11, . . . , form1k)@w (Z1, z1, R1, ∆1),NT1

. . . NTn−1 ` mn(formn1, . . . , formnq)@w (Zn, zn, Rn, ∆n),NTn

Z = Z1 ∪ . . . ∪ Zn ∪ {z} ∆ = ∆1] . . .]∆n R = R1 ∪ . . . ∪ Rn ∪ {(z, z1), . . . , (z, zn)}
NT ` service w {t m1(form11, . . . , form1k){se1}, . . . , t mn(formn1, . . . , formnq){sen}}

 (Z, z,R,∆),NTn

To verify a policy, we first use the algorithm defined in Figure 11 to compute the
finite-state machine F(S). We then construct a Büchi automaton [31], B(¬φ(S)) for
the policy φ(S) as shown by Vardi and Wolper [30]. Now as shown by Vardi and Wolper
we compute whether F(S)∩B(¬φ(S)) is empty. If this set is empty, we conclude that
the specification S satisfies the policy φ(S).

4.2 Verifying Refinement

Our technique for checking whether a program refines a specification in Tisa is sim-
ilar to the work of Shaner, Leavens and Naumann [15]. An implementation refines a
specification if it meets two criteria: first, that the code and specification are structurally
similar and second, that the body of every refining expression obeys the specifi-
cation it is refining. By structural similarity we mean that for every non-specification
expression in the specification, the implementation has the identical expression at that
position in the code. This is checked in a top-down manner as shown in Figure 12.
The operational semantics rules (REFINING), (EVALBODY) and (EVALPOST) ensure that
the body of every refining expression obeys the specification it is refining.

4.3 Soundness of Verification Technique

The proof of soundness of our verification technique uses the following three defini-
tions.

Definition 1 (A Path for S). Let S be a specification and F(S) = (Z, z0, R, ∆) be
the FSM for S constructed using algorithm shown in Figure 11. A path t for S is a
(possibly infinite) sequence of pairs (zi, ∆(zi)) starting with pair (z0, ∆(z0)), where
for each i ≥ 0, zi ∈ Z and (zi, zi+1) ∈ R.

Definition 2 (A Path for P). Let P be a program and CFG(P) = (Z ′, z′0, R
′, ∆′)

be an annotated control flow graph for P , where Z ′ is the set of nodes representing
expressions in program, R′ is the control flow relation between nodes, and ∆′ : Z ′ →
2P(P) is such that for each z′i ∈ Z ′, if it represents a web-method call expression
m(..)@w then (z′i, {m@w}) ∈ ∆′. A path t′ for P is a (possibly infinite) sequence of
pairs (z′i, ∆(z′i)) starting with pair (z′0, ∆(z′0)), where for each i ≥ 0, z′i ∈ Z and
(z′i, z

′
i+1) ∈ R′.

18

(PROGRAM REF)
∀i ∈ {1..m} ∃j ∈ {1...n} declj ∈ servicedecl ∧ servicespeci v declj

servicespec1 . . . servicespecm v decl1 . . . decln

(SP REF)
sp = e

sp v e

(SERVICE REF)
∀i ∈ {1..m} ∃j ∈ {1...n} wmspeci v methj

servicew {wmspec1 . . . wmspecn}
v servicew {field1 . . . fieldf meth1 . . .methn}

(WEB METHOD REF)
se v e

tm(form1 . . . formn) {se}
v tm(form1 . . . formn) {e}

(SEQ EXP REF)
se1 v e1 se2 v e2

se1; se2
v e1; e2

(IF EXP REF)
sp v eb seT v eT seF v eF

if (sp) {seT } else {seF }
v if (eb) {eT } else {eF }

(DEF EXP REF)
sp v einit se v ebody

form = sp;se
v form = einit;ebody

(WEBCALL EXP REF)
(∀i ∈ {1..n} :: spi v ei) spw v ew

m(sp1, . . . , spn)@spw v m(e1, . . . , en)@ew

(SPEC EXP REF)
(requires sp1 ensures sp2) = spec

requires sp1 ensures sp2 v refining spec {e}

Fig. 12. Inference rules for proving Tisa refinement.

Definition 3 (Path Refinement). Let t be a path for S and t′ be a path for P . Then t
is refined by t′, written t v t′, just when one of the following holds:

– t ≡ t′ i.e., for each i ≥ 0, (zi, δi) ∈ t and (z′i, δ
′
i) ∈ t′ implies zi = z′i and δi = δ′i,

– t = (z, δ) + t1 and t′ = (z′, δ′) + t′1 and δ ⇒ δ′ and t1 v t′1,
– t = (z, δ) + t1 and t′ = (z′1, δ

′
1) + . . .+ (z′n, δ

′
n) + t′1 and δ ⇒ (δ′1] . . .] δ′n) and

t1 v t′1, or
– t = t1 + t2 and t′ = t′1 + t′2 and t1 v t′1 and t2 v t′2.

Lemma 1. Let P ∈ program and S ∈ specification be given. If P refines S, then for
each path t′ for P there exists a path t for S such that t v t′.

Proof Sketch: The proof for this lemma follows from structural induction on the
refinement rules shown in Figure 12. Details are contained in Section A.

Lemma 2. Given a specification S and a policy φ ∈ Φ(S), the automaton F(S) ∩
B(¬φ) accepts a language, which is empty when the specification satisfies the policy.

The proof of this lemma follows from standard proofs in model checking, in particular,
from Lemma 3.1, Theorem 2.1 and Theorem 3.3. given by Vardi and Wolper [30, pp.
4,6]. Details are contained in Section A.

Theorem 1. Let S be a specification, φ be a policy in Φ(S), and P be a program. Let φ
be satisfied by the specification S and P be a refinement of S (as defined in Figure 12).
Then the policy φ is satisfied by the program P .

Proof Sketch: The proof follows from lemmas 1 and 2. From lemma 1, we have
that each path in the program refines a path in the specification. From lemma 2 and
the assumptions of this theorem, we have that φ is satisfied on all paths in S. Thus, φ,
which is written over P(S), is also satisfied for P .

19

5 Related Work

In this section, we discuss techniques that are closely related to our approach.
Greybox specifications. We are not the first to consider greybox specifications [11] as
a solution for verification problems. Barnett and Schulte [32, 33] have considered using
greybox specifications written in AsmL [34] for verifying contracts for .NET frame-
work. Wasserman and Blum [35] also use a restricted form of greybox specifications
for verification. Tyler and Soundarajan [36] and most recently Shaner, Leavens, and
Naumann [15] have used greybox specifications for verification of methods that make
mandatory calls to other dynamically-dispatched methods. Compared to these related
ideas, to the best of our knowledge our work is the first to consider greybox specifica-
tions as a mechanism to decouple verification of web services without exposing all of
their implementation details. Secondly, most of these, e.g. Shaner, Leavens, and Nau-
mann [15] use the refinement of Hoare logic as their underlying foundation. This was
insufficient to tackle the problem that we address, which required showing refinement
of (a variant of) linear temporal logic. Thus adaptation of much of their work was not
possible, although we were able to adapt the notion of structural refinement.
Specification and Verification Techniques for Web Services. The technique pro-
posed by Bravetti and Zavattaro [37] for determining whether the behavioral contract
of a service correctly refines its desired requirements in a composition of web-services
is closely related and complementary to this work. The main difference between this
work and the current work is that we verify refinement of greybox specifications by
service implementations that allows us to reason about temporal policies, while hid-
ing much of the implementation. However, we foresee a combination of our work and
Bravetti and Zavattaro’s work for determining fitness of a service implementation in a
desired composition of web-services.

Some approaches have recently been proposed to verify contracts for web services,
as seen in the works of Acciai and Boreale [38], Kuo et al. [8], Baresi et al. [6],
Barbon et al. [5], Mahbub and Spanoudakis [39], etc.

Castagna, Gesbert and Padovani present a formalism for specifying web services
based on the notion of “filtering” the possible behaviors of an existing web service to
conform to the behavior of some contract [7]. These filters take the form of coercions
that limit when and how an available service may be consumed. These coercions per-
mits contract subtyping and support reasoning in a language-independent way about the
sequence of reads and writes performed between service clients and providers. Their
contracts are intended to constrain the usage scenarios of a web service, whereas the
present work describes a modular way to specify the observable behaviors that occur
inside service implementations.

Acciai and Boreale attempt a similar typed technique with their work on XPi, a
process calculus for XML messaging systems. Their system guarantees runtime safety
for message size and structure in well-typed services. In contrast, our language provides
sound refinement and modular specification for web services.

The focus of Kuo et al.’s approach is on facilitating a more concise representation
of the message exchange protocols as Boolean formula associated with each exchanged
message, which in turn helps verify whether a given message exchange is legal. On the
other end of the spectrum are approaches to validate the functional and non-functional

20

requirements of a web service such as by Baresi et al. [6], Barbon et al. [5], Mahbub
and Spanoudakis [39], etc, which use dynamic monitoring to ensure that a service-
oriented architecture is satisfying its requirements. These techniques rely on monitoring
the functional interface, often during service composition, to determine conformance of
a web service to its requirement. Non-functional requirements such as observable web
service calls are not addressed.

Wada et al. proposed a UML profile to graphically model non-functional aspects in
SOA so that they are incorporated in the development phase [9]. This UML profile in-
cludes certain key model elements of service oriented architecture such as service, mes-
sage exchange, message, connector and filter. This model driven development (MDD)
paradigm for addressing non-functional concerns such as security and integrity in the
service oriented architecture is an encouraging step for developing a secure service ori-
ented architecture, however, it does not help with verification of observable web service
calls for existing service-oriented architectures.

Another approach towards achieving trust is Aglet [40]. An Aglet is a Java object
with a code component and a data component. The key idea here is to use these mobile
agents to preserve privacy. An Aglet consists of two distinct parts: the Aglet core and
the Aglet proxy. The Aglet core contains all the internal variables and methods. It pro-
vides interfaces through which the environment can make use of the Aglet or vice versa.
The core is encapsulated with an Aglet proxy which acts as a shield against any attempt
to directly access the private variables and methods of the aglet. This Aglet proxy can
be programmed to enforce local privacy requirements on the site of the remote entity.
Aglets are deployed into Aglet servers, which enforce the requirement of the security
model. A key problem with Aglets is that the integrity of Aglets depends on the in-
tegrity of Aglet servers. This approach does not provide a technique to guarantee such
integrity in an untrustworthy environment. Furthermore, this approach requires service
implementations (source) to change to use the Aglets instead of the original objects.

A very basic architecture for addressing Security aspects in Web Service composi-
tion has been proposed by Charfi et al. [41]. The authors considered security attributes
as boolean propositions and classified three classes of Security constraints. They are
the general or global security constraints (have to be satisfied by every service compo-
nent). Component specific security constraints and Compatibility security constraints
ensure that the mutual obligations of each of the participating services in a composition
is satisfied. However, their approach is restricted only to satisfy basic security assertions
given the information during static composition, and does not address how composite
service security attributes can be verified dynamically at an instance level. Moreover,
there is a need for a verifiable composition procedure that can guarantee both static and
dynamic privacy and security aspects for the generated composition.

Bartoletti et al. [42] provide a formalization of web service composition in order to
reason about the security properties provided by connected services. While they ignore
policy language details, our work shows how the amount of overhead used to relate
specifications to policies depends on the level of detail in the policy language. Further-
more, we believe greybox reasoning grants real benefits in readability and modularity
over their type system. We view later work developing executable specifications for
design of web services [43] as possible future work for Tisa.

21

Another approach [44] proposes an architecture to enforce these access policies at
component web services, but again the work is tightly coupled to the WS-SensFlow and
Axis implementations. Srivatsa et al. [45] propose an Access Control system for com-
posite services which does not take care of the Trust in the resulting service oriented
architecture. Skalka and Wang [46] introduced a trust but verify framework which is
an access control system for web services, but they do not provide temporal reasoning
for the verification of policies. By recording the sequence of program events in tem-
poral order, Skalka and Smith [47] are able to verify the policies such as whether the
events were happened in a reasonable order, but the mechanism does not support decou-
pling the model and the implementation. Other approaches [48, 49] either do not have a
formal model supporting them or are tightly coupled with implementations.

Language-based Information flow techniques. There is significant body of work on
language-based approaches to analyzing information flow (cf. [50–68] and [69] for a
survey). These techniques statically analyze and/or type-check code for secure infor-
mation flow and are quite useful at the time of development. The major disadvantage
of all these approaches is that they require source code. Thus, they cannot be applied
transparently to already deployed applications that are only available as binaries. These
techniques are also not applicable to scenarios where service provider’s implementation
is not accessible (primarily due to intellectual property issues).

Future Work and Conclusions

We have designed Tisa to be a small core language to clearly communicate how it allows
users to balance compliance and modularity in web service specification. However, our
desire for simplicity and clarity led us to leave for future work many practical and
useful extensions. The most important future work in the area of Tisa’s semantics is
to investigate refinement of information flow properties. It would also be interesting to
investigate the utility of Tisa’s specification forms for reasoning about the composition
of web services.

Verifying web services is an important problem [5–9], which is crucial for wider
adoption of this improved modularization technique that enables new integration pos-
sibilities. There are several techniques for verifying web-services using behavioral in-
terfaces, but none facilitates verification that requires access to internal states of the
service. To that end, the key contribution of this work is to identify the conflict between
verification of temporal properties and modularity requirements in web services. Our
language design, Tisa, addresses these challenges. It allows service providers to demon-
strate compliance to policies expressed in an LTL-like language [14]. We also showed
that policies in Tisa can be verified by clients using just the specification. Furthermore,
refinement of specifications by program ensures that conclusion drawn from verifying
policies are valid for Tisa programs. Another key benefit of Tisa is that its greybox
specifications [11] allow service providers to encapsulate changeable implementation
details by hiding them using a combination of spec and refining expressions. Thus,
Tisa provides significant modularity benefits while balancing the verification needs.

22

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing: Introduction. Com-
mun. ACM 46(10) (2003) 24–28

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description lan-
guage (WSDL) 1.1. Technical report, World Wide Web Consortium (March 2001)

3. Barth, A., Mitchell, J., Datta, A., Sundaram, S.: Privacy and utility in business processes. In:
CSF’07. 279–294

4. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral interface
specification language for Java. SIGSOFT Softw. Eng. Notes 31(3) (2006) 1–38

5. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and
classes of web service compositions. In: ICWS ’06. 63–71

6. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: ICSOC ’04.
193–202

7. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: POPL
’08. 261–272

8. Kuo, D., Fekete, A., Greenfield, P., Nepal, S., Zic, J., Parastatidis, S., Webber, J.: Expressing
and reasoning about service contracts in service-oriented computing. In: ICWS ’06. 915–918

9. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented architec-
ture. In: IEEE International Conference on Services Computing (SCC’06). (2006) 222–229

10. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Communi-
cations of the ACM 15(12) (December 1972) 1053–8

11. Büchi, M., Weck, W.: The greybox approach: When blackbox specifications hide too much.
Technical Report 297, Turku Center for Computer Science (August 1999)

12. Back, R.J.R., von Wright, J.: Refinement calculus, part i: sequential nondeterministic pro-
grams. In: REX workshop. (1990) 42–66

13. Morris, J.M.: A theoretical basis for stepwise refinement and the programming calculus. Sci.
Comput. Program. 9(3) (1987) 287–306

14. Edmund M. Clarke, J., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge,
MA, USA (1999)

15. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification of higher-order methods
with mandatory calls specified by model programs. In: OOPSLA ’07. 351–368

16. Necula, G.C.: Proof-carrying code. In: POPL ’97. 106–119
17. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all

languages in np have zero-knowledge proof systems. J. ACM 38(3) (1991) 690–728
18. Rajan, H., Hosamani, M.: Tisa: Towards trustworthy services in a service-oriented architec-

ture. IEEE Transactions on Services Computing (SOC) 1(2) (2008)
19. Hosamani, M., Narayanappa, H., Rajan, H.: How to trust a web service monitor deployed in

an untrusted environment? In: NWESP ’07: Proceedings of the Third International Confer-
ence on Next Generation Web Services Practices. (2007) 79–84

20. Liskov, B., Scheifler, R.: Guardians and actions: Linguistic support for robust, distributed
programs. TOPLAS 5(3) (July 1983) 381–404

21. Gordon, A.D., Pucella, R.: Validating a web service security abstraction by typing. Formal
Aspects of Computing 17(3) (2005) 277–318

22. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified typed events. In: 22nd
European Conference on Object-oriented Programming (ECOOP 2008). (July 2008)

23. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the semantics of proceed. Science of
Computer Programming 63(3) (2006) 321–374

24. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java
and GJ. In: OOPSLA ’99. 132–146

23

25. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes
and mixins. In: Formal Syntax and Semantics of Java. Springer-Verlag (1999) 241–269

26. Clifton, C.: A design discipline and language features for modular reasoning in aspect-
oriented programs. Technical Report 05-15, Iowa State University (Jul 2005)

27. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and
Computation 115(1) (Nov 1994) 38–94

28. Rajan, H., Tao, J., Shaner, S.M., Leavens, G.T.: Reconciling trust and modularity in web
services. Technical Report 08-07, Dept. of Computer Sc., Iowa State U. (July 2008)

29. : Streamlined sales tax project. http://www.streamlinedsalestax.org/
30. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.

In: Proceedings of the First Symposium on Logic in Computer Science. (1986) 322–331
31. Buchi, J.: On a decision method in restricted second order arithmetic. Proc. Internat. Congr.

Logic, Method. and Philos. Sci (1960) 1–12
32. Barnett, M., Schulte, W.: Runtime verification of .net contracts. Journal of Systems and

Software 65(3) (March 2003) 199–208
33. Barnett, M., Schulte, W.: Spying on components: A runtime verification technique. In:

Workshop on Specification and Verification of Component-Based Systems. (2001)
34. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, Behavior, and Components.

Informatica 25(4) (November 2001) 517–526
35. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. J. ACM 44(6)

(1997) 826–849
36. Tyler, B., Soundarajan, N.: Black-box testing of grey-box behavior. In: FATES ’03, 1–14.
37. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and

contract compliance. In: Software Composition. (2007) 34–50
38. Acciai, L., Boreale, M.: XPi: A typed process calculus for XML messaging. Science of

Computer Programming 71(2) (2008) 110–143
39. Mahbub, K., Spanoudakis, G.: Run-time monitoring of requirements for systems composed

of web-services: Initial implementation and evaluation experience. In: ICWS ’05. 257–265
40. Rezgui, A., Ouzzani, M., Bouguettaya, A., Medjahed, B.: Preserving privacy in web services.

In: WIDM ’02. 56–62
41. Charfi, A., Mezini, M.: Using aspects for security engineering of web service compositions.

In: ICWS ’05. 59–66
42. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service orchestration.

In: CSFW. (2006) 57–69
43. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for secure web

services. IEEE Trans. Software Eng. 34(1) (2008) 33–49
44. Wei, J., Singaravelu, L., Pu, C.: Guarding sensitive information streams through the jungle

of composite web services. In: ICWS ’07. 455–462
45. Srivatsa, M., Iyengar, A., Mikalsen, T., Rouvellou, I., Yin, J.: An access control system for

web service compositions. In: ICWS ’07. 1–8
46. Skalka, C., Wang, X.S.: Trust but verify: authorization for web services. In: SWS. (2004)

47–55
47. Skalka, C., Smith, S.F.: History effects and verification. In: APLAS. (2004) 107–128
48. Biskup, J., Carminati, B., Ferrari, E., Muller, F., Wortmann, S.: Towards secure execution

orders for composite web services. In: ICWS ’07. 489–496
49. Vorobiev, A., Han, J.: Specifying dynamic security properties of web service based systems.

In: SKG ’06. 34–34
50. Bell, D., LaPadula, L.: Secure Computer Systems: Mathematical Foundations. DTIC Re-

search Report AD0770768 (1973)

24

51. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web
applications via automatic partitioning. In: 21st ACM Symposium on Operating Systems
Principles (SOSP’07). (October) 31–44

52. Chong, S., Vikram, K., Myers, A.C.: Sif: Enforcing confidentiality and integrity in web
applications. In: USENIX Security Symposium 2007. (August 2007) 1–16

53. Chess, B., McGraw, G.: Static analysis for security. Security & Privacy Magazine, IEEE
2(6) (2004) 76–79

54. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with static
analysis. In: SSYM’05: Proceedings of the 14th conference on USENIX Security Sympo-
sium, Berkeley, CA, USA, USENIX Association (2005) 18–18

55. Evans, D., Larochelle, D.: Improving security using extensible lightweight static analysis.
IEEE Softw. 19(1) (2002) 42–51

56. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: IEEE Symposium on
Security and Privacy. (1999) 32–45

57. Myers, A.C.: Jflow: practical mostly-static information flow control. In: POPL ’99: Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM (1999) 228–241

58. Fournet, C., Rezk, T.: Cryptographically sound implementations for typed information-flow
security. In: POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, New York, NY, USA, ACM (2008) 323–335

59. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language.
In: POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, New York, NY, USA, ACM (1998) 355–364

60. Volpano, D., Smith, G.: Verifying secrets and relative secrecy. In: POPL ’00: Proceedings
of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
New York, NY, USA, ACM (2000) 268–276

61. Hristova, K., Rothamel, T., Liu, Y.A., Stoller, S.D.: Efficient type inference for secure infor-
mation flow. In: PLAS ’06: Proceedings of the 2006 workshop on Programming languages
and analysis for security, New York, NY, USA, ACM (2006) 85–94

62. Echahed, R., Prost, F., Serwe, W.: Statically assuring secrecy for dynamic concurrent pro-
cesses. In: PPDP ’03: Proceedings of the 5th ACM SIGPLAN international conference on
Principles and practice of declaritive programming, New York, NY, USA, ACM (2003) 91–
101

63. Riely, J., Hennessy, M.: Trust and partial typing in open systems of mobile agents. In:
POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM (1999) 93–104

64. Barthe, G., Nieto, L.P.: Formally verifying information flow type systems for concurrent and
thread systems. In: FMSE ’04: Proceedings of the 2004 ACM workshop on Formal methods
in security engineering, New York, NY, USA, ACM (2004) 13–22

65. Hennessy, M., Riely, J.: Information flow vs. resource access in the asynchronous pi-
calculus. ACM Trans. Program. Lang. Syst. 24(5) (2002) 566–591

66. Vitek, J., Bokowski, B.: Confined types. In: OOPSLA ’99: Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applica-
tions, New York, NY, USA, ACM (1999) 82–96

67. Abadi, M.: Secrecy by typing in security protocols. J. ACM 46(5) (1999) 749–786
68. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model. ACM Trans.

Softw. Eng. Methodol. 9(4) (2000) 410–442
69. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal on Se-

lected Areas in Communications 21(1) (Jan 2003) 5–19
70. Schmidt, D.A.: The Structure of Typed Programming Languages. Foundations of Computing

Series. MIT Press, MA (1994)

25

71. Choueka, Y.: Theories of automata on ω-tapes: A simplified approach. Journal of Computer
and System Sciences 8(2) (1974) 117–141

72. Emerson, E.A., Lei, C.L.: Modalities for model checking: branching time logic strikes back.
Sci. Comput. Program. 8(3) (1987) 275–306

A Appendix

A.1 Omitted Details about Operational Semantics

This section presents the omitted details about the small step operational semantics for
Tisa programs. Small steps are taken in the semantics to transition from one configura-
tion to another. These configurations appear in Figure 13. A configuration contains an
expression (e), a stack (J), and a store (S). The current web service name is maintained
in the evaluation stack under the name thisSite. The auxiliary function thisSite ex-
tracts the current web service name from a stack frame.

thisSite(frame ρΠ) = ρ(thisSite)

Stacks are an ordered list of frames, each frame recording the static environment, ρ,
and a type environment. (The type environment, Π , is only used in the type soundness
proof.) The static environment ρ maps identifiers to values. A value is a number, a web
service name (site), a location, or null. Stores are maps from locations to storable
values, which are object records. Object records have a class and also a map from field
names to values. The type environmentΠ (see Figure 18) is not used by the operational
semantics, but only in the type soundness proof.

As is usual [27] the semantics is presented as a set of evaluation contexts E and an
one-step reduction relation that acts on the position in the overall expression identified
by the evaluation context. Figure 13 also defines the evaluation contexts and the order
of evaluation for Tisa. The language uses a strict leftmost, innermost evaluation policy,
which thus uses call-by-value, except for the short-circuit operators && and ||, and the
if-expression.

The operational semantics make implicit use of a fixed (global) class table, CT , that
maps class names (including the subset of web service names) to declarations (of classes
or services). It also uses a fixed instance table, IT , that maps web service names to
locations; these are the locations of fixed instances that act as receiver objects for web-
method calls. Both of these tables are implicitly used by various auxiliary functions.

Thus to define an initial configuration, we first have to describe how CT and IT
are defined for a given program. To explain this initialization, consider the program
given in Figure 14, where without loss of generality, all class declarations are placed in
front of all service declarations, and n ≥ 0, k ≥ 0. For the program in Figure 14(left),
we define the class table to map each class to its class declaration and each service
declaration to the declaration of a class with the same name that inherits from Site as
shown in Figure 14(right). For this program, we define the instance table by:

IT (wn+j) = locn+j , for j ∈ {1, . . . , k}
IT (wcl) = null.

26

Added Syntax:

e ::= loc | under e | evalbody e e | evalpost e e
| NullPointerException | ClassCastException| SpecException

where loc ∈ L, a set of locations

Domains:

Γ ::= 〈e, J, S〉 “Configurations”
J ::= ν + J | • “Stacks”
ν ::= frame ρ Π “Frames”
ρ ::= {vark : vk}k∈K , “Environments”

whereK is finite,K ⊆ I
v ::= n | w | loc | null “(Expressible) Values”
S ::= {(wk, lock) 7→ svk}k∈K , “Stores”

whereK is finite
sv ::= o “Storable Values”
o ::= [c.F] “Object Records”
F ::= {fk 7→ vk}k∈K , “Field Maps”

whereK is finite

Evaluation contexts:

E ::= − | E == e | v == E | E != e | v != E | E > e | v > E | E < e | v < E | E >= e
| v >= E | E <= e | v <= E | E + e | v + E | E - e | v - E | E * e | v * E | !E
| E && e | E ‘||’ e | isNull(E) | if (E) e else e | E .m(e . . .) | v.m(v . . .E e . . .)
| E .f | E .f=e | v.f=E | E ;e | cast c E | t var=E; e | m(v . . .E e . . .)@e | m(v . . .)@E
| refining requires E ensures e { e } | evalbody E e | evalpost v E | under E

Fig. 13. Added syntax, domains, and evaluation contexts used in the semantics, based on [26].

class c1 extends d1{field*1 meth*1}
· · ·
class cn extends dn{field*n meth*n}
service wn+1{field*n+1 meth*n+1}
· · ·
service wn+k{field*n+k meth*n+k}
client wcl{ecl}

CT (Site) = class Site extends Object{},
CT (ci) = class ci extends di{field*i meth*i},

where i ∈ {1, . . . , n}
CT (wn+j) = class wn+j extends Site{

field*n+j meth*n+j},
where j ∈ {1, . . . , k}

Fig. 14. A schematic example of a program and corresponding class table. Here n ≥ 0.

With these definitions, we can give a well-defined initial configuration for the pro-
gram in Figure 14, which is 〈e, Jinit, Sinit〉, where the initial stack and store are:

Jinit = frame ρinit Πinit + •
ρinit = {thisSite : wcl}
Πinit = {thisSite : Site}
Sinit = {(wn+j , locn+j) 7→ initialObj (wn+j)}j∈{1,...,n}

where initialObj (c) = [c. initialFields(c)]
and initialFields(c) = {f 7→ null | f ∈ dom(fieldsOf (c))}.

Figure 6 and Figure 15 present the operational semantics of Tisa. In these rules
all of the hypotheses are really side conditions and side definitions for use in the rule.
Several of the rules manipulate type information; this information is not used by the
semantics, but is kept for the type soundness proof.

27

Evaluation relation: ↪→: Γ → Γ

(GR)
n = (if v1>v2 then 1 else 0)

〈E[v1>v2], J, S〉
↪→ 〈E[n], J, S〉

(LE)
n = (if v1<v2 then 1 else 0)

〈E[v1<v2], J, S〉
↪→ 〈E[n], J, S〉

(GREQ)
n = (if v1>=v2 then 1 else 0)

〈E[v1>=v2], J, S〉
↪→ 〈E[n], J, S〉

(LEEQ)
n = (if v1<=v2 then 1 else 0)

〈E[v1<=v2], J, S〉
↪→ 〈E[n], J, S〉

(EQEQ)
n = (if v1 = v2 then 1 else 0)

〈E[v1==v2], J, S〉
↪→ 〈E[n], J, S〉

(NEQ)
n = (if v1 = v2 then 0 else 1)

〈E[v1!=v2], J, S〉
↪→ 〈E[n], J, S〉

(PLUS)
n3 = n1 + n2

〈E[n1+n2], J, S〉
↪→ 〈E[n3], J, S〉

(MINUS)
n3 = n1 − n2

〈E[n1-n2], J, S〉
↪→ 〈E[n3], J, S〉

(TIMES)
n3 = n1 × n2

〈E[n1*n2], J, S〉
↪→ 〈E[n3], J, S〉

(NOT)
n2 = (if n1 = 0 then 1 else 0)

〈E[!n1], J, S〉
↪→ 〈E[n2], J, S〉

(ANDTRUE)
n1 6= 0

〈E[n1&&e], J, S〉
↪→ 〈E[e], J, S〉

(ANDFALSE)
〈E[0&&e], J, S〉
↪→ 〈E[0], J, S〉

(ORFALSE)
〈E[0||e], J, S〉
↪→ 〈E[e], J, S〉

(ORTRUE)
n1 6= 0

〈E[n1||e], J, S〉
↪→ 〈E[n1], J, S〉

(ISNULL)
n = (if v = null then 1 else 0)

〈E[isNull(v)], J, S〉 ↪→ 〈E[n], J, S〉

(IFTRUE)
n 6= 0

〈E[if (n) {e2} else {e3}], J, S〉 ↪→ 〈E[e2], J, S〉

(IFFALSE)
〈E[if (0) {e2} else {e3}], J, S〉 ↪→ 〈E[e3], J, S〉

(NEW)
w = thisSite(ν)

(w, loc) 6∈ dom(S) S
′
= S ⊕ ((w, loc) 7→ [c.{f 7→ null | f ∈ dom(fieldsOf (c))}])

〈E[new c()], ν + J, S〉 ↪→
˙
E[loc], ν + J, S

′¸
(VAR)

ρ = envOf (ν) v = ρ(var)

〈E[var], ν + J, S〉 ↪→ 〈E[v], ν + J, S〉

(CALL)
w = thisSite(ν) [c.F] = S(w, loc) (c2, t m(t1var1, . . . , tnvarn){e}) = mbody(p, c,m)

ρ
′
= {vari 7→ vi | 1 ≤ i ≤ n} ⊕ (this 7→ loc)⊕ (thisSite 7→ w)

Π
′
= {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2}∪−{thisSite : var Site} ν

′
= frame ρ′ Π′

〈E[loc.m(v1, . . . , vn)], ν + J, S〉 ↪→
˙
E[under e], ν′ + ν + J, S

¸
(DEF)

ρ = envOf (ν)
ρ
′
= ρ⊕ (var 7→ v) Π = tenvOf (ν) Π

′
= Π∪−{var : var t} ν

′
= lexframe ρ′ Π′

〈E[t var = v;e], ν + J, S〉 ↪→
˙
E[under e], ν′ + ν + J, S

¸
(SKIP)
〈E[v;e], J, S〉 ↪→ 〈E[e], J, S〉

(CAST)
w = thisSite(ν) [c

′.F] = S(w, loc) c
′ 4 c

〈E[cast c loc], ν + J, S〉 ↪→ 〈E[loc], ν + J, S〉

(NCAST)
〈E[cast t null], J, S〉
↪→ 〈E[null], J, S〉

(GET)
w = thisSite(ν) [c.F] = S(w, loc) v = F (f)

〈E[loc.f], ν + J, S〉 ↪→ 〈E[v], ν + J, S〉

(SET)
w = thisSite(ν) [c.F] = S(w, loc) S

′
= S ⊕ ((w, loc) 7→ [c.F ⊕ (f 7→ v)])

〈E[loc.f = v], ν + J, S〉 ↪→
˙
E[v], ν + J, S

′¸

Fig. 15. Operational semantics for the OO expressions in Tisa, based on [26].

28

The (NEW) rule says that the store is updated to map a fresh location to an object
of the given class that has each of its fields set to null. This rule (and others) uses ⊕ as
an overriding operator for finite functions. That is, if S′ = S ⊕ ((w, loc) 7→ v), then
S′(w′, loc′) = v if (w′, loc′) = (w, loc) and otherwise S′(w′, loc′) = S(w′, loc′). The
fieldsOf function uses the class table to determine the list of field declarations for a
given class (and its superclasses), considered as a mapping from field names to their
types.

In the (VAR) rule, envOf (ν) returns the environment from the current frame ν,
ignoring any other information in ν.

envOf (frame ρ Π) = ρ

Thus the (VAR) rule says that the value of a variable, including this, is simply
looked up in the environment of the current frame. The (CALL) rule implements dy-
namic dispatch by looking up the method m starting from the dynamic class (c) of the
receiver object (loc), looking in superclasses if necessary, using the auxiliary function
mbody (see Figure 16). The body is executed in a frame with an environment that
binds the methods formals, including this, to the actual parameters. Since methods
do not nest, and since expressions access object fields by starting from an explicit object
there is no other context available to a method.

(MBODY)
CT (c) = class c extends d {field∗ meth1, . . . ,methk} methi = t m(var1, . . . , varn){e}

mbody(c,m) = (c, t m(var1, . . . , varn){e})

(MBODY)
CT (c) = class c extends d {field∗ meth1, . . . ,methk}

@i ∈ {1, . . . , k}.methi = t m(var1, . . . , varn){e}
mbody(d,m) = (d

′
, t m(var1, . . . , varn){e})

mbody(c,m) = (d
′
, t m(var1, . . . , varn){e})

(FIND)
IT (w) = loc mbody(w,m) = (c

′
, t m(var1, . . . , varn){e})

find(w,m) = (loc, c
′
, t m(var1, . . . , varn){e})

Fig. 16. Auxiliary functions for looking up and finding methods.

Note that under e is used in the resulting configuration
for the (WEB METHOD CALL) rule. This expression is used whenever a new frame is
pushed on the stack, to record that the stack should be popped when the evaluation of
e is finished. The (UNDER) rule pops the stack when evaluation of its subexpression is
finished.

The (DEF) rule allows for local definitions. It is similar to let in other languages,
but with a more C++ and Java-like syntax. It simply binds the variable given to the
value in an extended environment. (Note that tenvOf (ν) is the type environment from
the frame ν.) Since a new frame is pushed on the stack, the body, e, is evaluated inside

29

an “under” expression, which pops the stack and the principal stack when e is finished.
The (SKIP) rule for sequence expressions is similar, but no new frame is needed.

The (CAST) rule simply checks that the dynamic class of the object is a subtype of
the type given in the expression. The (NCAST) rule allows null to be cast to any type.

The (GET) and (SET) rules are standard. The value of a field assignment is the value
being assigned.

Evaluation of a refining expression involves 3 steps. First the precondition is
evaluated (due to the context rules). If the precondition is non-zero (i.e., true), then the
next configuration is evalbody e′′ e′, where e′′ is the body and e′ is the postcondition
(regarded as an expression). The body is then evaluated; if it yields a value v, then
the next configuration is under evalpost v e′, with a new stack frame that binds
result to v pushed on the stack. The type of result in the type environment Π ′ is
determined by the auxiliary function typeOf , which is defined as follows.

typeOf (n, S,w) = int
typeOf (loc, S, w) = c, if S(w, loc) = [c.F] for some F
typeOf (null, S, w) = Object
typeOf (w′, S, w) = w′

Finally, the (EVALPOST) rule checks that the postcondition is non-zero (true) and uses
the body’s value as the value of the expression.

The operational semantics rules that result in exceptions are given in Figure 17.
These treat some uses of null values and bad casts as exceptions, following Java. En-
countering one of these exceptions does not make the semantics be “stuck” and hence
the situations that lead to these exceptions are not considered to be type errors. However,
all of the resulting configurations are terminal.

(NCALL)
〈E[null.m(v1, . . . , vn)], J, S〉 ↪→ 〈NullPointerException, •, S,W 〉

(NGET)
〈E[null.f], J, S〉 ↪→ 〈NullPointerException, •, S〉

(NSET)
〈E[null.f = v], J, S〉 ↪→ 〈NullPointerException, •, S〉

(XCAST)
w = thisSite(ν) [c.F] = S((w, loc)) c 64 t

〈E[cast t loc], ν + J, S〉 ↪→ 〈ClassCastException, •, S〉

(FPRE)
n = 0˙

E[refining requires n ensure e
′ {e′′}], J, S

¸
↪→ 〈SpecException, •, S〉

(FPOST)
n = 0

〈E[evalpost v n], J, S〉 ↪→ 〈SpecException, •, S〉

Fig. 17. Operational semantics of expressions that produce exceptions, based on [26].

30

A.2 Type Checking

Type checking uses the type attributes defined in Figure 18. (These use some of the
notation and ideas from Schmidt’s book [70].)

θ ::= “type attributes”
OK “program/top-level decl.”
| OK in c “meth./web-meth.”
| var t “var/formal/field”
| exp τ “expression”
| specFor t “specification”

τ ::= t | ⊥ “type expressions”
π,Π ::= {I : θI}I∈K , “type environments”

whereK is finite,K ⊆ (L ∪ {this} ∪ V)

Fig. 18. Type attributes.

(CHECK PROGRAM)
(∀i ∈ {1..n} :: ` decli : OK) ` e : exp int

` decl1 . . . decln client w {e} : OK

(CHECK CLASS)
isClass(d)

(∀i ∈ {1..n} :: isType(ti) ∧ fi 6∈ dom(fieldsOf (d))) (∀j ∈ {1..m} :: ` methjOK in c)

` class c extends d { t1 f1; . . . tn fn; meth1 . . . methm } : OK

(CHECK METHOD)
(class c extends d { . . . }) ∈ CT

override(m, d, t1 × · · · × tn → t) (∀i ∈ {1..n} :: isType(ti))
isType(t) Π

′
= {var1 : var t1, . . . , varn : var tn, this : var c, thisSite : var Site}

Π
′ ` e : exp τ ′ τ

′ 4 t

` t m(t1 var1, . . . , tn varn){e} : OK in c

Fig. 19. Type-checking rules for standard declarations.

The type checking rule themselves are shown in Figure 19, 20 and 21. Also, see
Clifton’s thesis [26] for details on these straightforward rules for standard OO expres-
sions. Some rules we use the overriding union notation ∪−, defined in [70].

As in Clifton’s work [26, 23], the type checking rules are stated using a fixed class
table (list of declarations)CT , which can be thought of as an implicit (hidden) inherited
attribute. This class table is used implicitly by many of the auxiliary functions. For ease
of presentation, we also follow Clifton in assuming that the names declared at the top
level of a program are distinct and that the extends relation on classes is acyclic.

In the type checking rules above we use several auxiliary functions. Most of these
are taken from Clifton’s dissertation [26, Figure 3.3]. A few others are given in Fig-
ure 22.

31

(NUM EXP TYPE)
Π ` n : exp int

(EQEQ EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e==e′ : exp int

(NEQ EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e!=e′ : exp int

(GR EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e>e′ : exp int

(LE EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e<e′ : exp int

(GREQ EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e>=e′ : exp int

(LEEQ EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e<=e′ : exp int

(PLUS EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e+e′ : exp int

(MINUS EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e-e′ : exp int

(TIMES EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e*e′ : exp int

(NOT EXP TYPE)
Π ` e : exp int

Π ` !e : exp int

(AND EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e&&e′ : exp int

(OR EXP TYPE)
Π ` e : exp int Π ` e′ : exp int

Π ` e||e′ : exp int

(ISNULL EXP TYPE)
Π ` e : exp c isClass(c)

Π ` isNull(e) : exp int

(IF EXP TYPE)
Π ` e : exp int Π ` e2 : exp t2 Π ` e3 : exp t3 t2 4 t t3 4 t

Π ` if (e) {e2} else {e3} : exp t

(NEW EXP TYPE)
isClass(c) c 64 Site

Π ` new c() : exp c

(VAR EXP TYPE)
(var : var t) ∈ Π
Π ` var : exp t

(NULL EXP TYPE)
isClass(c)

Π ` null : exp c

(CALL EXP TYPE)
Π ` e : exp c (c2, t m(t1 var1, . . . , tn varn){e}) = mbody(c,m)
c 4 c2 (∀i ∈ {1..n} :: Π ` ei : exp t′i) (∀i ∈ {1..n} :: t

′
i 4 ti)

Π ` e.m(e1, . . . , en) : exp t

(GET EXP TYPE)
Π ` e : exp c fieldsOf (c)(f) = t

Π ` e.f : exp t

(SET EXP TYPE)
Π ` e : exp c fieldsOf (c)(f) = t Π ` e′ : exp t′ t

′ 4 t

Π ` e.f=e′ : exp t′

(SEQ EXP TYPE)
Π ` e : exp t Π ` e′ : exp t′

Π ` e;e′ : exp t′

(DEF EXP TYPE)
isType(t) Π ` e : exp t′ t

′ 4 t Π
′
= Π∪−{var : var t} Π

′ ` e′′ : exp t′′

Π ` t var= e′;e′′ : exp t′′

(CAST EXP TYPE)
isClass(c)

Π ` cast c e : exp c

(LOC EXP TYPE)
(loc : var t) ∈ Π
Π ` loc : exp t

(NP EXCEPTION EXP TYPE)
Π ` NullPointerException : exp⊥

(CC EXCEPTION EXP TYPE)
Π ` ClassCastException : exp⊥

Fig. 20. Type-checking rules for standard expressions.

32

(CHECK SERVICE)
(∀i ∈ {1..n} :: isType(ti)) (∀j ∈ {1..m} :: ` methjOK in w)

` service w {t1 f1; . . . tn fn; meth1 . . . methm } : OK

(CHECK WEB-METHOD)
Π
′
= {var1 : var int, . . . , varn : var int}

Π
′∪−{this : var w, thisSite : var w} ` e : exp int

` intm(int var1, . . . , int varn){e} : OK in w

(WEB-METHOD CALL EXP TYPE)
Π ` e : exp w isService(w)

(w, intm(int var1, . . . , int varn){e}) = mbody(w,m) (∀i ∈ {1..n} :: Π ` ei : exp int)

Π ` m(e1, . . . , en)@e : exp t

(REFINING EXP TYPE)
Π ` e : exp t Π ` spec : specFor t

Π ` refining spec {e} : exp t

(UNDER EXP TYPE)
Π ` e : exp t

Π ` under e : exp t

(EVALBODY EXP TYPE)
Π ` e1 : exp t Π∪−{result : var t} ` e2 : exp int

Π ` evalbody e1 e2 : exp t

(EVALPOST EXP TYPE)
Π ` e1 : exp t Π∪−{result : var t} ` e2 : exp int

Π ` evalpost e1 e2 : exp t

(SPEC EXP SPEC TYPE)
Π ` e : exp int Π∪−{result : var t} ` e′ : exp int

Π ` requires e ensures e′ : specFor t

Fig. 21. Type-checking rules for new Tisa features.

isClass(t) = (class t . . .) ∈ CT
isService(t) = (class t extends Site . . .) ∈ CT
isType(t) = (t = int) ∨ isClass(t)

Fig. 22. Auxiliary functions used in type rules.

The notation τ ′ 4 τ means τ ′ is a subtype of τ . It is the reflexive-transitive closure
of the declared subclass relationships with the added fact that that ⊥ is a subtype of all
class type expressions. The type ⊥ is used as the type of exceptions. This is formalized
in Figure 23.

(BASIS)
(class c extends d{ . . . }) ∈ CT

c 4 d

(REF)
τ 4 τ

(TRANS)
τ1 4 τ2 τ2 4 τ3

τ1 4 τ3

(BOTTOM)
isClass(c)

⊥ 4 c

Fig. 23. Subtyping rules, adapted from [26, Figure 3.4].

33

A.3 Omitted Details on Soundness of Refinement

This section proves the soundness of refinement.

Lemma 3. If the atomic propositions in a specification S are P(S) and the atomic
propositions in program P are P(P), and P refines the specification S then P(S) ⊆
P(P) .

The proof of this lemma follows from construction of P and structural refinement rules
shown in Figure 12. The construction of P picks all potential web-method calls as
propositions and the refinement ensures that all web-method specifications in S have a
corresponding web-method declaration in P.

Lemma 4. Let P ∈ program be given. If t′ is a path for P , then there are paths t′pre
and t′loop such that t′ = t′pre + t′loop, t′pre has finite length, and each (z′, δ′) ∈ t′loop
occurs infinitely often in t′loop.

Proof Sketch: If t′ has finite length, then let t′pre = t′ and t′loop be the empty path.
If t′ has infinite length, then since P has only a finite number of expressions, it must

loop at some point. Consider all the states that occur infinitely often in t′, and let t′loop
be the longest suffix of t′ that contains only such states. Let t′pre be the unique prefix of
t′ such that t′ = t′pre + t′loop.

Lemma 5. Let S be a specification and let P be a program such that S is refined by P .
Let t+ (zn−1, δn−1) be a path for S and let t′ + (z′n−1, δ

′
n−1) + (z′n, δ

′
n) be a path for

P . If δn−1 ⇒ δ′n−1, then there is some (zn, δn) such that t + (zn−1, δn−1) + (zn, δn)
is a path for S and δn ⇒ δ′n.

Proof Sketch: From the definition of path for P , we have that z′n−1 represents an
expression in P and that there is a control flow relation from z′n−1 to z′n. From the
derivation rules for expressions in programs, we have the following cases.

Case if-true: z′n−1 represents the if expression and z′n represents the true ex-
pression. Case if-false: z′n−1 represents the if expression and z′n represents the
false expression. Case seq: z′n−1 represents the first expression and z′n represents the
second expression in the sequence. Case def: z′n−1 represents the definition expres-
sion and z′n represents the second expression in the variable definition. Case refining:
z′n−1 represents the refining expression and z′n represents the body expression of
the refining expression. Case web-method call: z′n−1 represents the web-method
call expression and z′n represents the body expression of the web-method.

From the assumptions we have that S is refined by P . From the refinement rules we
have that for each expression represented by z′n−1 and z′n above there is a corresponding
expression sem−1 and sem in S and the structure of these expressions and their relative
order is identical. By the construction of the FSM (Figure 11) we have that for each
case above corresponding to sem−1 and sem there is some state zm−1 and zm in Z and
(zm−1, zm) ∈ R. Thus tm−1 = t′m−1 + (zm, δm) is a path for P . Also for all cases
except web-method call, there are no new atomic propositions corresponding to z′n and
zm in program and specification, thus δm ⇒ δ′n is vacuously true.

34

For the case web-method call by the construction of the FSM (Figure 11), we have
that the new set of propositions δm = {m@w}. From the refinement rule for web-
method call, we have that identical web-method call occurs in the program. From the
definition of a path for P , we have that for each such occurrence of a web-method call
the new of propositions δ′n = {m@w}. Thus δm ⇒ δ′n holds.
Proof of Lemma 1. Let P ∈ program and S ∈ specification be given. If P refines S,
then for each path t′ for P there exists a path t for S such that t v t′.

Proof Sketch: Suppose P refines S. Let t′ be a path for P .
The proof is by transfinite induction, using the various cases discussed in Figure 12

that could generate t′. The well-ordering on paths that is used is that t1 < t2 if and only
if t1 is a finite, proper prefix of t2.

Base case: Let t′ be the empty path. Then by definition of refinement, the empty
path for S is refined by t′, so we can choose t as the empty path.

Inductive case: Let t′ be a non-empty (and potentially infinite) path for P . We as-
sume inductively that for all t′1 < t′ there is some path t1 for S such that t1 v t′2. We
must show that there is some path t for S such that t v t′.

By Lemma 4, we can write t′ = t′pre + t′loop, such that t′pre has finite length, and
each (z′, δ′) ∈ t′loop occurs infinitely often in t′loop. Let t′loop be chosen so that it is the
longest such path.

Now there are two cases, depending on whether t′loop is empty.
If t′loop is empty, then t′ = t′pre and t′ is finite. Since t′ is non-empty, we can write

t′ = t′n−1 + (z′n, δ
′
n). Now there are two subcases.

The first subcase is if t′n−1 is empty. Then by the construction of the FSM (Fig-
ure 11), we know that the propositions that are assigned a truth value at the start
of a path (i.e., δn) are top-level calls to web-methods. Suppose this is a call to a
web method m. But by assumption the program’s m refines the corresponding web
method in S, hence there must be a zn and δn such that δn ⇒ δ′n, and so in this case
[(zn, δn)] v [(z′n, δ

′
n)] = t′.

The second subcase is if t′n−1 is non-empty. By definition of < for paths t′n−1 < t′.
So from the inductive hypothesis we get a sequence tn−1 such that tn−1 v t′n−1. Since
t′n−1 is finite, it has a last element (z′n−1, δ

′
n−1) and t′n−1 = t′n−2+(z′n−1, δ

′
n−1). Since

tn−1 v t′n−1 it must be that tn−1 is finite and non-empty. Hence there is some tn−2 such
that tn−1 = tn−2 + (zn−1, δn−1). Since tn−1 v t′n−1 it must be that δn−1 ⇒ δ′n−1.
Thus by Lemma 5, there is some (zn, δn) such that tn−2 + (zn−1, δn−1) + (zn, δn) in
is a path for S and δn ⇒ δ′n. Letting t = tn−1 + (zn, δn), we then have t v t′. This
ends the proof of the second subcase, when t′loop is empty.

If t′loop is non-empty, we can write it as t′loop = (z′n+1, δ
′
n+1) + t′pp. Since t′pre is

also non-empty, we can write t′pre = t′n−1 + (z′n, δ
′
n). By the inductive hypothesis we

have that there is some tpre such that tpre v t′pre. As above we can write tpre = tn−1 +
(zn, δn), and by the refinement relationship, we know that δn ⇒ δ′n. Thus by applying
Lemma 5 again, we have that there is some (zn+1, δn+1) such that tn−1 + (zn, δn) +
(zn+1, δn+1) is a path for S and δn+1 ⇒ δ′n+1. Thus tn−1 +(zn, δn)+(zn+1, δn+1) v
t′n−1 + (z′n, δ

′
n) + (z′n+1, δ

′
n+1).

Now t′loop must be made up of some repetitions of a prefix t′2 of t′loop that starts with
(z′n+1, δ

′
n+1). This path t′2 is also finite, and so we can find a subpath t2 in S such that

35

t2 v t′2, as above. We can then paste these together to produce a path t in S such that
t v t′.

A.4 Omitted Details on Soundness of Policy Verification

The key idea in the proof of soundness for policy verification is to give a state explo-
ration technique to verify that the policy is satisfied by the state machine constructed by
the construction algorithm in Figure 11. Furthermore, we show that the output of our
construction algorithm is a valid finite-state program.

Lemma 6. Given a policy φ ∈ Φ(S) one can build a Büchi automaton B(¬φ) such that
the language accepted by that automaton L(B(¬φ)) is exactly the set of computations
satisfying the formula ¬φ.

The proof of this Lemma automatically follows from the proof of Theorem 2.1 and
3.3. given by Vardi and Wolper [30, pp. 4,6].

Given a finite state program (Z, s0, R, ∆) one can construct an equivalent Büchi
automaton (σ, Z, s0, %, ∆), where σ = 2P(S), z′ ∈ %(z, δ) iff (z, z′) ∈ R and δ =
∆(z) [30, pp. 5].

Lemma 7. Given two Büchi automata (σ, Z, s0, %, ∆) and B(¬φ) one can construct
an automaton that accepts L((σ, Z, s0, %, ∆)) ∩ L(B(¬φ)).

The proof of this Lemma also automatically follows from Lemma 3.1 of [30],
which in turn follows from [71].

From Lemma 6 and 7 it follows that given a finite state program (Z, s0, R, ∆)
and a policy φ ∈ Φ(S), one can construct an automaton that accepts a language, which
is empty when the finite state program satisfies the policy. This emptiness property is
known to be solvable in linear-time [72].

Lemma 8. For a specification S, the production relation of Figure 11 constructs a
valid finite-state program.

Proof Sketch: The key intuition behind the proof of this lemma is that from the
hypothesis of the rules (IF), (SPEC), (DEF), and (SEQ) in Figure 11 one can see that
each of these rules generates a finite number of states. Furthermore, each of these rules
maintains the structure of the finite-state program. The rule (WEB METHOD CALL) is dif-
ferent as it can potentially allow recursion, and thus generate potentially infinite num-
ber of states. However, this is accounted for by the (WEB METHOD CALL FSM 1) and
(WEB METHOD CALL FSM 2) rules, which check membership in the table NT passed
into the rule. The (WEB METHOD CALL FSM 1) rule requires that there is not already a
state associated with the web method being called in NT , and ensures that subsequent
relations use a table (NT ′ in the rule) that has the particular method defined. If there is
a definition in the table, the (WEB METHOD CALL FSM 2) rule, is used, which does not
add a new state but simply reuses the one in the table. This makes sure that the state for
a particular web method call is only added to the FSM once.

36

Proof of Lemma 2 : Given a specification S and a policy φ ∈ Φ(S), the automaton
F(S) ∩ B(¬φ) accepts a language, which is empty when the specification satisfies the
policy.

Proof Sketch: The proof follows from lemma 6, 7, and 8.

