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ABSTRACT
The contribution of this work is the design, implementation and
evaluation of a new aspect-oriented intermediate language model
that we call Nu. The primary motivation behind the design of the
Nu model is to maintain the aspect-oriented design modularity in
the intermediate code for the responsiveness of incremental com-
pilers and source-level debuggers. Nu extends the object-oriented
intermediate language model with two primitives: bind and remove.
We demonstrate that these primitives are capable of expressing stat-
ically deployed constructs such as AspectJ’s aspect, dynamic de-
ployment construct such as CaeserJ’s deploy as well as dynamic
control flow constructs such as AspectJ’s cflow by presenting com-
pilation techniques from high-level languages to Nu for these con-
structs. Moreover, these compilation techniques also serve to show
that aspect-oriented design modularity is indeed preserved in the
Nu intermediate code.

We also present the design and implementation of a prototype
extension of the Sun Hotspot virtual machine that supports the Nu
model, which serves to show that it is feasible to implement Nu
in a production level virtual machine. A key concern for dynamic
language models is the performance overhead of their implementa-
tion. Our performance analysis results show that method dispatch
time is not degraded in our prototype implementation. Also, advice
dispatch time remains fairly close to the manually inlined version.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Program-
ming; D.3.4 [Programming Languages]: Processors — Code
generation; Incremental compilers; Run-time environments

General Terms
Design, Human Factors, Languages

Keywords
Nu, invocation, incremental, weaving, aspect-oriented intermediate
languages, aspect-oriented virtual machines
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1. INTRODUCTION
Aspect-oriented (AO) techniques provide software engineers

with new possibilities for keeping crosscutting conceptual concerns
separate at the source code level [10, 18]. The compilers for some
AO approaches then transform the aspect-oriented source code to
object-oriented intermediate code by inserting calls to and frag-
ments from (the now modularized) crosscutting concerns into other
concerns [7, 12]. This is done to produce intermediate code that is
compliant with current object-oriented virtual machines.

The design decision to remain compliant with current object-
oriented virtual machines was made to encourage early adopters,
who may not want to change their virtual machines. Early adop-
tion, in turn, facilitated a large scale empirical evaluation of new
language design ideas. Now that aspect-oriented software develop-
ment techniques have shown promise [8, 33], it makes sense to ask
whether relaxing the requirement to remain compliant with current
intermediate languages can be beneficial.

In this work, we propose an extension of object-oriented inter-
mediate language (IL) models to better support aspect-oriented lan-
guages. Our extension, which we call Nu, consists of two new
atomic primitives: bind and remove. The effect of these primitives
is to manipulate what we call advising relationships. For the pur-
pose of this paper, we define an advising relationship as a many-
to-one relation between points in the execution of a program and a
delegate. If a point in the execution of a program and a delegate are
in an advising relationship, the execution of the point is followed
by the execution of the delegate. The effect of the bind primitive
is to dynamically create an advising relationship. The effect of the
remove primitive is to destroy the specified advising relationship.

Our intermediate language extension is both simple and flexible
enough to be able to accommodate the requirements of a broad set
of source language constructs. Our results show that the combi-
nation of the two primitives in our intermediate language design
allows us to model statically deployed constructs such as AspectJ’s
aspect [17], dynamic deployment constructs such as CaesarJ’s de-
ploy [26] as well as control flow constructs such as AspectJ’s cflow.

Another nice property of the Nu model is that it allows compilers
to maintain the conceptual separation that was present in the source
code, in the object code as well. The intermediate code now mirrors
the design, which among other things is important for incremental
compilation, source-level debugging, and dynamic adaptation of
aspect-oriented programs.

We have extended the Sun Hotspot Java Virtual Machine
(Hotspot JVM) [29] to support our intermediate language design,
which serves to show that it is feasible to support the Nu model in
a production level virtual machine. We have also modified the As-
pectJ [17] compiler to generate Nu code showing that our extended
IL can support portions of this widely used language.
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In what follows, we describe our intermediate language design.
Section 3 describes strategies to compile various static and dynamic
AO language constructs to our intermediate language model. We
then describe our implementation strategy to support the Nu inter-
mediate language model in the Hotspot JVM in Section 4. Section 6
discusses related work, Section 7 discusses some benefits of our ap-
proach, Section 8 discusses future work and Section 9 concludes.

2. NU: A DYNAMIC AO IL MODEL
The key requirements for our IL model is to remain simple,

yet flexible enough to be able to support both static and dynamic
constructs in AO source languages and at the same time preserve
aspect-oriented design modularity in the object code. This section
introduces the join point model adopted by our approach. We then
illustrate new primitives using an example.

2.1 Nu’s Join Point Model
The central concept in AO approaches is the notion of a join

point. A join point is defined as a point in the execution of a pro-
gram. For example, in AspectJ [17], the “execution of the method
Hello.main()” in Figure 1 is an example of a join point. This
join point may possibly occur at a location in the source code, pop-
ularly referred to as the shadow of the join point. The shadow of
the join point shown is marked in Figure 1.

// Source Code
public class Hello {

static void main(String[] arguments) {
System.out.println("Hello");

}
}
// Intermediate Code
static void main(java.lang.String[]);

/* AspectJ join point shadow for "execution
of the method Hello.main" starts here */

getstatic #2; //System.out
ldc #3; //String Hello
invokevirtual #4; //Method println

/* AspectJ join point shadow ends here */
return

Figure 1: Illustration of the AspectJ Join Point Model

Instead of AspectJ’s join point model, we adopted a finer-grained
join point model for Nu, proposed by Endoh et al. [11]. Endoh et
al. called the join point model of AspectJ-like languages a region-
in-time model since a join point in these languages represents du-
ration of an event, such as a call to a method until its termination.
They proposed a join point model called point-in-time model in
which a join point represents an instance of an event, such as the
beginning of a method call or the termination of a method call [11].
They showed that this model is sufficiently expressive to represent
common advising scenarios.

In the point-in-time model, corresponding to AspectJ’s call join
point there are three join points: call, reception, and failure. Here,
failure is when an exception is thrown by the callee. These three
join points eliminate the need for three different types of advice:
before, after returning, and after throwing advice. The before call,
after returning call, and after throwing call become equivalent to
call, reception, and failure respectively. Similarly, corresponding
to AspectJ’s execution join point there are three join points: execu-
tion, return, and throw. Here, throw is when the executing method
throws an exception. At this time, Nu does not support around ad-
vice (see Section 8 for more details). For more details about the
point-in-time model, please see Endoh et al. [11].

For example, in Figure 2, two join point shadows in the method

static void main(java.lang.String[]);
/* Join point shadow for the join point
"execution of the method Hello.main" */

getstatic #2; //System.out
ldc #3; //String Hello
invokevirtual #4; //Method println

/* Join point shadow for the join point
"return of the method Hello.main" */

return

Figure 2: Illustration of the Point-In-Time Join Point Model

bind remove
Stack
Transition

..., Pattern, Delegate
→ ..., BindHandle

..., BindHandle→ ...

Description Associates the execution
of all join points matched
by Pattern to invoke
Delegate

Eliminates the associ-
ation represented by
BindHandle

Exceptions NullPointerEx IllegalArgumentEx
- thrown if any argument is
null

- thrown if the
BindHandle passed
in has already been
removed

Figure 3: Specification of Primitives in Nu

Hello.main() are marked as being shadows for the join points
“execution of the method Hello.main()” and “return of the
method Hello.main()”.

Our adoption of this model was in part driven by the clarity it
gives to the semantics of dynamic aspect deployment. One issue
that arises with the deployment of dynamic aspects is when the
aspect being deployed advises a join point already on the stack.
With a region-in-time model, it is not very clear whether this new
aspect should advise the join point already on the stack and the
problem is often left to the semantics of the virtual machine [16].
Using a point-in-time model, this problem is avoided since a join
point is never on the stack.

2.2 New Primitives: BIND and REMOVE
Our IL model adds only two primitives to the object-oriented IL,

bind and remove. The informal specifications including stack tran-
sitions and exceptions that might be thrown are shown in Figure 3.
As described previously, the effect of these primitives is to manip-
ulate what we call advising relationships. At this time we have
explicitly decided not to support static crosscutting mechanisms,
such as inter-type declarations in AspectJ [17].

An example use of the Nu primitives and Nu’s standard library
is given in Figure 4. The figure shows the intermediate code for
class AuthLogger. The objective is to record the time of ex-
ecution of any method named login in the system. Moreover, one
should also be able to enable and disable the authentication logger
during execution. To implement this logger, we need to specify the
intention to select all methods with the name login. In the Nu
model, one would create a pattern to represent this intention.

2.2.1 Patterns in Nu
A pattern is an object of type Pattern. It is created by instan-

tiating a set of classes provided by the Nu standard library. It is
first-class, in that it can be stored, passed as a parameter, and re-
turned from methods. Note, however, they are immutable. Since
patterns are first-class objects available in the high-level language,
they are re-usable. This allows for possible optimizations by com-
pilers, such as locating commonly used sub-patterns that can be
created once and re-used. Since patterns are immutable, the vir-
tual machine that implements the Nu model does not have to worry
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public class AuthLogger {
protected static BindHandle id;
protected static Pattern loginPattern;
protected static Delegate logDelegate;
static {}; // Static initializer

/* create new Method and Execution objects */
..

ldc #4; //String *.login
invokespecial #5; //Method.<init>
invokespecial #6; //Execution.<init>
putstatic #9; //Pattern loginPattern
ldc #7; //String AuthLogger
ldc #8; //String log
invokespecial #10; //Delegate.<init>
putstatic #11; //Delegate logDelegate
return

public static void enable();
getstatic #9; //Pattern loginPattern
getstatic #11; //Delegate logDelegate
bind //Bind
putstatic #12; //BindHandle id
return

public static void disable();
getstatic #12; //BindHandle id
remove //Remove
return

public static void log();
// record the time of login
return

}

Figure 4: Bind and Remove in an Example Program

Basic Patterns Selected JPs
1. Method Method-related JPs
2. Constructor Constructor-related

JPs
3. Initialization Static initializer-

related JPs
4. Field Field-related JPs
Patterns 5-10 take a pattern of type 1,
2, or 3 as argument. Patterns 11-12
take a pattern of type 4 as argument.

Filters Selected JPs
5. Execution Method executions
6. Return Method returns
7. Throw Method throws
8. Call Method calls
9. Reception Method receptions
10. Failure Method failures
11. Get Field gets
12. Set Field sets

Figure 5: Patterns Available in Nu’s Standard Library

about a pattern instance changing after it has been created.
Figure 5 shows some commonly used patterns available in our

implementation. The basic patterns on the left (numbered 1-4)
serve to select all join points (JPs) related to methods, construc-
tors, fields, etc. For example, the pattern object returned by
new Method("*.login") can be used to select execution, re-
turn, throw, call, reception, and failure join points for all methods
named “login”. The filter patterns on the right (numbered 5-12)
expect one of the basic patterns as an argument and further narrow
down the set of matching join points. For example, if we want to
match the “execution of any method named login” we would have
to first create the Method pattern discussed before. We would
then pass this instance as an argument to the constructor of the
Execution class. The resulting instance is the pattern for “ex-
ecution of any method named login.”

In the example shown in Figure 4, the static initializer of
class AuthLogger creates this pattern and stores it in the
static field loginPattern so that it can be used for enabling
the logger using the bind primitive.

2.2.2 The bind primitive
The bind primitive expects two values on the stack: a pattern

(discussed previously) and a delegate. The delegate is a first-class,

immutable object of type Delegate1. Both these types are part
of Nu’s standard library. The pattern serves to select the subset of
the join points in the program. The delegate points to a method that
provides the additional code that is to execute at these join points.
In Figure 4, the static initializer of class AuthLogger creates
a delegate to the method AuthLogger.log() and stores it in the
static field logDelegate so that it can be used for enabling the
logger using the bind primitive. The enable() method uses the
bind primitive to create an advising relationship between the join
points matched by the pattern loginPattern and the delegate
logDelegate, which enables logging authentication attempts in
the system.

After the bind primitive finishes, the top of the stack contains an
immutable, unique identifier representing the advising relationship.
This unique identifier is an object of type BindHandle, which is
also part of Nu’s standard library. This identifier may only be cre-
ated by the virtual machine. If the pattern and/or delegate is null,
a NullPointerException is thrown by the virtual machine.
The bind primitive dynamically creates an advising relationship
between the join points matched by the pattern and the supplied
delegate. The runtime effect of creating this advising relationship
is that the method pointed to by the delegate is invoked when exe-
cution reaches any join point matching the pattern.

When a join point executes, each delegate supplied with a pat-
tern that matches that join point will be invoked. Delegates are
invoked in the same order in which they were bound. Future lan-
guage extensions may allow ordering constructs; however, at this
time we believe they are not necessary since compilers generating
Nu intermediate code could re-order the bind calls (for example
when modeling the static deployment model of AspectJ and imple-
menting the declare precedence construct). Delegates are invoked
at most once per join point.

Upon completion of a call to bind, any join point that executes
and matches the supplied pattern will invoke the delegate. This
behavior is intentional. Consider a tracing aspect, which will output
a trace at the entry and exit of a method. If a bind call is used to
enable the tracing, we want it to take effect immediately (thereby
tracing the method exit of the method containing the bind call).

The language is defined with a per-thread semantics. This means
that calls to bind and remove only affect the advising relationships
on the same thread that the primitives were called from. This se-
mantics is selected to avoid the need to make groups of bind/remove
calls atomic (note, however, that individual calls are atomic). The
termination of a thread causes all associations created by that thread
to be automatically removed, since reaching a join point in the con-
text of that thread is no longer possible.

2.2.3 The remove primitive
The remove primitive expects the unique, immutable identifier

representing the advising relationship on the stack. It destroys the
advising relationship corresponding to the identifier. If the ad-
vising relationship corresponding to the supplied identifier is al-
ready removed, an IllegalArgumentException is thrown.
For example, in Figure 4 the disable() method uses the re-
move primitive to destroy the advising relationship corresponding
to the BindHandle instance stored in the static field id, effec-
tively ceasing logging.

1A limitation of our current implementation is that delegate con-
structors take method names and class names as strings. In the
future, we will use Kniesel’s approach for type-safe delegates [19].
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3. COMPILING AO CONSTRUCTS TO NU
In this section, we will describe strategies for compiling static

and dynamic AO constructs to the Nu IL model. The rationale
for this section is to demonstrate that our model is flexible enough
to support static, dynamic and dynamic control flow constructs in
AO languages. Moreover, it also shows, by giving a translation,
that compilation of these constructs generates modular object code,
which is the primary motivation behind the design of the Nu inter-
mediate language model.

3.1 Compiling AspectJ Constructs
To illustrate the compilation strategies from AspectJ constructs

to the Nu IL model, consider a simple extension of the Hello pro-
gram shown in Figure 1. Now let us assume that we were to
write an aspect that would extend the functionality of the method
main() so that instead of printing “Hello” it prints “Hello” fol-
lowed by “World” on successive lines. aspect World that im-
plements this simple functionality is shown in Figure 6. The gen-
erated object code for this aspect follows in Figure 7.

public aspect World {
pointcut main(): execution(* Hello.main(..));
after returning(): main() {

System.out.println("World");
}

}

Figure 6: The World Aspect

public class World {
public static final World ajc$perSingletonInst;
static {}; // Static initializer

aload_0
//Method java/lang/Object.<init>
invokespecial #1;
//Create the static instance of the aspect
//Method World.<init>
invokespecial #12;
//Store in ajc$perSingletonInst
putstatic #9;
//Create the pointcut as pattern
ldc #6; //String main
//Method org/nu/lang/pattern/Method.<init>
invokespecial #7;
//Method org/nu/lang/pattern/Execution.<init>
invokespecial #8;
//Create the delegate
getstatic #9; // instance
ldc #10; //String ajc$0
//Method org/nu/lang/Delegate.<init>
invokespecial #11;
bind
..
return

//Synthetic method generated for the advice
public void ajc$0();

getstatic #13; //Field System.out
ldc #9; //String World
invokevirtual #14; //Method println
return

//Constructor World, and helper methods hasAspect,
//and aspectOf elided for presentation purposes.

Figure 7: Compiling an AspectJ Aspect to Nu IL

3.1.1 Compiling Aspects, Pointcuts and Advice
Aspects are compiled into intermediate code units in the follow-

ing way: pointcuts are compiled into pattern object instances, ad-
vice code is compiled into delegate methods, and bind primitives

public class Hello {
static void main(java.lang.String[]);

0: getstatic #21; //Field System.out
3: ldc #22; //String Hello
5: invokevirtual #28; //Method println
8: goto 20

//Code inserted for aspect invocation
11: astore_1
12: invokestatic #38; //Method World.aspectOf
15: invokevirtual #41; //Method World.ajc$0
18: aload_1
19: athrow
20: invokestatic #38; //Method World.aspectOf
23: invokevirtual #41; //Method World.ajc$0
26: return
}
public class World {

public static final World ajc$perSingletonInst;
static {}; // Static initializer

0: invokestatic #14; //Method ajc$postClinit
3: goto 11
6: astore_0
7: aload_0
8: putstatic #16; //Field ajc$initFailureCause
11: return
//Advice ajc$0, constructor World, and methods
//hasAspect, aspectOf and ajc$postClinit elided.
}

Figure 8: An AspectJ Aspect Compiled to Standard Bytecode:
the Generated Code for the World Concern is in Gray

are generated in a static initializer of the aspect to associate the
delegate code to the joint points matched by the patterns. In the ex-
ample shown in Figure 7, the generated object code for the method
ajc$0() contains the advice code.

The generated intermediate code for the static initializer of
aspect World contains additional code to first create an in-
stance of the pattern Method. This instance is then used to create
an instance of the pattern Execution. After creating the pattern
instance, the delegate is created.

One interesting property of the Nu IL model is that the in-
termediate code for the aspect class World and the base
class Hello remain separate in their own object code mod-
ules. Also, the object code for the base class Hello remains
free from the aspect related intermediate code.

On the other hand, in order to remain compliant to OO interme-
diate languages, the intermediate code generated by current com-
pilers for AspectJ is not able to maintain this separation. We com-
piled our HelloWorld application using one AspectJ compiler, ajc.
We disassembled the class files using javap, the disassembler for
Java. Figure 8 shows the disassembled intermediate code. We used
the Java byte code notations to represent the disassembled code.

The generated code for the advice, constructor, and the helper
methods hasAspect(), aspectOf(), and
ajc$postClinit() is similar in both the Nu version as well
as ajc’s version, so we elide it for presentation purposes. Unlike
Nu’s version, the generated code for the static initializer does not
contain any additional instructions.

The intermediate code to invoke ajc$0() at join points, how-
ever, is inserted into class Hello in the method main(). As a
result, the concern modularized by aspect World ends up being
scattered and tangled with the Hello concern in the object code.
The separation of the Hello and World concerns at the source
level is thus lost during the compilation phase. The Nu version re-
quires generating a few extra instructions, but the intermediate code
preserves the design modularity of the World concern.
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3.1.2 Compiling Complex Aspects
The illustrative AO application compiled in the previous section

served to provide an example of a basic translation. To preserve
the semantics of an aspect in the AspectJ language, compilation
of an aspect in a real world AO application needs to account for
two additional conditions: deployment as a single unit and whole
program deployment of aspects.

First, aspects are deployed as a single unit at the beginning of
the program. This requirement is addressed by generating all bind
instructions for an aspect inside a transaction in the static initializer
or in a synthetic static method ajc$preClinit(). A dummy
reference to all aspects is inserted in the static initializer of the main
application class as the first few instructions. This causes all aspects
to initialize before the application execution begins.

Second, aspects in AspectJ advise all threads in the program. In
Java, when a thread is created it must be permanently bound to an
object with a run() method. When the thread starts by calling
Thread.start(), it will invoke the object’s run() method.
The strategy to deploy aspects for all threads in the program is
to generate a set of instructions that execute between the methods
Thread.start() and the object’s run() method. These in-
structions are calls to the static method ajc$preClinit() on
all aspects in the program. As mentioned previously, the bind in-
structions are generated in the ajc$preClinit() as a transac-
tion. Executing this method deploys the aspects for the new thread.

3.2 Compiling Deployment Constructs
Some aspect languages such as CaesarJ [26] provide declara-

tive constructs for dynamic deployment, such as deploy and unde-
ploy. These constructs are naturally supported by our two primi-
tives. Figure 9 shows a strategy for compiling such constructs. For
presentation purposes, instead of the generated intermediate code
the equivalent source code is shown. In the source code a nota-
tion such as id = bind(p,d) represents generating two push
instructions for the pattern p and the delegate d followed by gen-
erating the bind primitive, followed by a store instruction to store
the result in id. Furthermore, remove(id) represents generating
a remove primitive after an instruction to push id on the stack.

class World {
public static World ajc$perSingletonInst;
static Pattern p =

new Execution(new Method("*.main"));
static Delegate d =

new Delegate(World.aspectOf(), "ajc$0");
static BindHandle id;
static { .. }
public void deploy() {

id = bind(p, d);
}
public void undeploy() {

remove(id);
}
public void ajc$0() {

System.out.println("World");
}
//Elided generated code for hasAspect()
//and aspectOf() helper methods

}

Equivalent intermediate code: (=> means translates to)

id = bind(p, d) => {getstatic p; getstatic d;
bind; putstatic id;}

remove(id) => {getstatic id; remove;}

Figure 9: Compiling dynamic deployment constructs

The deploy and undeploy constructs are modeled by generating
methods that contain the code to bind and remove the pointcuts
and delegates in the aspect. The call to deploy and undeploy in the
program is replaced by World.aspectOf().deploy() and
World.aspectOf().undeploy() respectively.

The strategies discussed in Section 3.1.2 also apply in this case.
This strategy for compiling dynamic deployment constructs also
maintains the separation of the aspect modules and base modules.

3.3 Compiling Control Flow Constructs
A more surprising result for us was to be able to compile control

flow constructs cflow and cflowbelow in AspectJ-like languages.
Moreover, each of these strategies produced modular object code.
In this sub-section, we describe these compilation strategies. Like
the previous section, the equivalent source code is shown for pre-
sentation purposes.

The AspectJ language provides a construct called cflow to sep-
arate crosscutting concerns based on the control flow of the pro-
gram. The AspectJ programming guide [2] informally defines a
cflow pointcut as follows: “The cflow pointcut picks out all join
points that occur between entry and exit of each join point P picked
out by Pointcut, including P itself. Hence, it picks out the join
points in the control flow of the join points picked out by Pointcut.”
The cflowbelow construct is similar, except it does not pick out the
join points matched by the pointcut itself.

The compilation strategy for the cflow and cflowbelow constructs
are similar. We will discuss the cflowbelow case as it is slightly
more interesting, pointing out differences from cflow as necessary.

An example usage of this pointcut expression is shown in Fig-
ure 10. In this example, aspect Counting uses the cflowbelow
construct to count the number of calls to the method Bit.Set()
below the control flow of the method Word.Set(). The point-
cut expression will select all calls to the method Bit.Set() that
occur in any join point that occurs between entry and exit of the
method Word.Set().

aspect Counting {
int count;
before(): cflowbelow(execution(* Word.Set()))

&& call(* Bit.Set()) {
count++;

}
}

Figure 10: An example usage of the cflowbelow construct

An example of a current compilation technique for cflow con-
structs [2] for this example is as follows: first, generate a stack in
aspect Counting, second, insert instructions to push and pop
a unique identifier into this stack at the entry and exit of the method
Word.Set() and third, insert instructions to check whether that
identifier is present on the stack at every point in the program where
a call to the method Bit.Set() is possible [25].

Our compilation strategy for the cflow and cflowbelow con-
structs is as follows: first, generate two new methods, say
cflow$Bind() and cflow$Remove(), making sure that the
names are unique in the class (since the class may already con-
tain other methods), second, bind these two methods to execute at
the entry and exit of the method Word.Set(), respectively, and
third, generate code in cflow$Bind() and cflow$Remove()
to bind and remove the code to the actual advice to execute when-
ever Bit.Set() is called. A stack is used to track multiple bind
calls to Word.Set(), allowing the code to remove the proper
association. Note that since a delegate is invoked at most once
per join point, binding the same association relationship multiple
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class Counting {
static int count;
private static Stack /*BindHandle*/ ids;
private static Call p; //Static pattern instance
private static Delegate d; //Advice’s delegate
private static int initialDepth;
static {

ids = new Stack();
p = new Call(new Method("Bit.Set"));
d = new Delegate(

ajc$perSingletonInst, "ajc$0");
Method meth = new Method("Word.Set");
Execution exec = new Execution(meth);
Delegate delBind = new Delegate(

ajc$perSingletonInst,"cflow$Bind");
bind(exec, delBind);
Delegate delRemove = new Delegate(

ajc$perSingletonInst,"cflow$Remove");
Return ret = new Return(meth);
bind(ret, delRemove);
Failure fail = new Failure(meth);
bind(fail, delRemove);

}
private void cflow$Bind() {

BindHandle handle = bind(p, d);
ids.push(handle);
initialDepth =

Thread.currentThread().countStackFrames();
}
private void cflow$Remove() {

remove(ids.pop());
}
public void ajc$0() {

if (initialDepth >=
Thread.currentThread().countStackFrames())

return;
count++;

}
}

Figure 11: The generated code for cflowbelow

times will not cause the VM to invoke the delegate multiple times
at matching join point shadows.

Some bookkeeping is required to keep track of the execution
stack depth in the variable initialDepth. Inside the ad-
vice body, a check is generated to determine if the stack depth
is the same. If the stack depth is the same, then any call be-
ing made to Bit.Set() is being performed from the initial
call to Word.Set() — we are not below the control flow of
Word.Set(). In this case, the delegate simply returns without
executing the advice body. If the stack depth is larger, then we are
below the control flow of Word.Set() and may continue exe-
cuting the advice body. Figure 11 shows the results of the code
generation for the example program in Figure 10. As previously
mentioned, the equivalent source code is shown for ease of pre-
sentation. The only difference between the compilation of cflow
and cflowbelow is that the bookkeeping code for stack depth is not
generated in the case of cflow.

4. PROTOTYPE VM IMPLEMENTATION
We have extended the Sun Hotspot Java virtual machine (or

Hotspot for short) to support the bind and remove primitives. In
our prototype implementation, we mimic these instructions as na-
tive methods inside the VM. In the rest of this section, we describe
the relevant aspects of Hotspot, our extensions, and a comparison
of their runtime performance that serves to support our claim that
it is feasible to support Nu in an industrial strength VM implemen-
tation without significant performance degradation.

In Section 4.3 we describe the dispatch at join points. Section 4.5
describes our delegate invocation technique. Section 4.4 details
our evaluation of the implementation. Section 4.6 describes the
implementation specific details for the bind and remove primitives.

4.1 Background: Sun Hotspot JVM
Hotspot uses mixed-mode execution for faster performance [1].

There are three modes of bytecode execution: an interpreter, a fast
non-optimizing compiler and a slow optimizing compiler. It uses
runtime profiling to identify a set of performance-critical methods
in the Java program. The compilation efforts are then focussed on
these performance critical methods and the rest of the code is inter-
preted [29]. The insight is based on Hölzle and Ungar’s work on
adaptive optimization of Self [15], where a profile-based technique
called type feedback is used to direct dynamic optimizations.

For the few parts of the Java program that are executed most
often, the adaptive optimizing compiler produces optimized native
code. The key idea is that there are often no gains achieved by com-
piling the entire program to produce the native code before running
it. The interpreter uses a macro-assembler to generate generic stubs
for the entry of Java methods. These stubs include a check to see
if a compiled version of the method exists and if so, directly jumps
to the compiled code. If not, the stub will continue executing in-
side the interpreter. The mixed-mode execution strategies and the
preference to use the interpreter loop for execution of most of the
program are precisely the reasons for selecting Hotspot for our pro-
totype. The ease of extending the interpreter loop and small number
of compilations make it easy to efficiently support dynamic inter-
mediate language designs such as Nu.

4.2 Our VM Implementation Strategy
Previous studies of Java programs, for example by Krintz et

al. [21], show that up to 57% of the methods loaded by the VM are
never executed. These studies and the results on adaptive optimiza-
tion led us to our implementation strategy that in the common case
we should interpret a join point instead of statically weaving it like
traditional AO compilers that modify the join point shadows in the
bytecode. Only frequently executing join point shadows should be
dynamically woven.

Our current VM implementation provides a dispatch mechanism
at each join point. The focus of the prototype presented in this
paper is to optimize this dispatch mechanism. This mechanism
handles matching the join point to existing patterns and invoking
any corresponding matched delegates. We take advantage of the
stub generation code of Hotspot, adding in additional code to per-
form our dispatch for the join points. We have implemented code
for method execution and return join points. At this time, we have
only tested the interpreter loop. We plan to continue our investi-
gation into the Hotspot compilation process. Based on an initial
review of the Hotspot compiler code, we have determined that the
compiler also uses the interpreter stubs for method entry and exits
and therefore extending our strategies should be feasible.

4.3 Join Point Dispatch in Nu’s VM
At each appropriate point in the interpreter corresponding to the

execution of a join point shadow, we added code that performs three
checks, implemented as three mov, three cmpl, and three jcc
assembly instructions. These assembly instructions are emitted in
the assembly code stubs generated by the VM.

The first check is a filtering check to prevent JRE and Nu run-
time join point shadows from being advised. The second check
is a cache validation check that determines if the cached pattern
matching results for the join point shadow are valid. If the results
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are not valid, an incremental pattern match is performed for the join
point shadow and the pattern matching results are cached. The third
check determines if there are any cached delegates that need to be
invoked at this join point shadow, pending check of any dynamic
residues. If the check passes, the delegates are invoked, otherwise
the join point shadow execution continues. This code is designed
to maximize the use of branch prediction algorithms implemented
by most modern processors. If a join point is executed frequently,
these checks will be optimized away by the (correct) branch pre-
diction, minimizing the dispatch overhead.

4.3.1 Caching technique in Nu’s VM
Matching a join point with a list of bound patterns at runtime is

an expensive operation that is a separate research topic on its own;
however, caching techniques can be used to minimize the amor-
tized cost of this operation. To that end, we have implemented a
two-level caching algorithm for dynamic matching at a join point
shadow. Following the terminology of the computer architecture
community, hereon we refer to these two caches as the L1 cache
and L2 cache. A join point shadow match result being present or
not present in a cache is referred to as a hit or miss respectively.
The L1 cache is maintained at the join point shadow in the form of
a list of references to the (delegate, pattern) pairs that have already
matched with that join point shadow. In the previous section, the
cache validation check that we described pertains to the L1 cache.
The L2 cache for each join point kind is maintained inside the pat-
tern matcher in the form of a hash map from the join point shadow
signatures to a list of current patterns that match that signature.
Similar to L1 and L2 caches inside a processor, a L1 hit is the least
costly operation, followed by a L2 hit, then followed by a match.

We implemented a very simple algorithm for detecting a L1
cache hit/miss. Each join point shadow contains a counter that is
initialized to zero, when the class containing the join point shadow
is loaded. There is also a global counter for each join point kind that
is initialized to zero when the VM is initialized. The global counter
for a join point kind is incremented on bind/remove operations, if
the bound/removed pattern may match that join point kind.

Patterns internally maintain the information about possible join
point shadow kinds that may match during their construction using
an iterative scheme. All patterns maintain a fast-match flag. All
concrete patterns such as Execution, Call, etc, statically assign
values to this flag that represents matching their specific join point
shadow kinds. All dynamic patterns such as This, Target, etc,
match selective join point kinds. When constructed, all And/Or
composite patterns retrieve the fast match flags from inner patterns
supplied as arguments to their constructors and set their own fast
match flag to the logical and/or of their inner pattern’s flag. This
scheme is similar to the fast-match technique used by the AspectJ
compiler during compile-time [2].

At join point dispatch time, the check for L1 cache hit/miss is
simply an equality test between the local counter for the join point
shadow and the global counter for that join point kind. At join
point match time, the local counter is reinitialized to the current
value by the join point matcher. We suspect that better checking
techniques might be possible; however, we were able to implement
this check using two mov, one cmpl, and one jcc instruction and
therefore we did not investigate further in this direction. One nice
property of our L1 cache checking algorithm is that it does not
require keeping track of all join point shadows of a specific kind
that we have seen so far and invalidating their caches during a bind
operation. This alternative scheme would have reduced the cache
check to one mov, one cmpl, and one jcc instruction, but with a
significantly expensive bind operation.

Figure 12: Comparison of Join Point Dispatch times Using the
Java Grande Benchmark (larger bars are better)

Figure 13: Comparison of Join Point Dispatch times Using the
SPEC JVM98 Benchmark (smaller bars are better)

When a join point shadow incurs an L1 cache miss, the pattern
matcher is called to perform incremental pattern matching. The
overhead of calling the incremental pattern matcher is the cost of an
L1 cache miss. Incremental matching refers to a simple technique
of only matching patterns that have not already been matched. The
join point stores the bindHandle of the last pattern it was matched
against. When an incremental match is performed, only patterns
with newer bindHandles need matched. The incremental match
must also check the list of cached delegates to verify none have
been removed and if so they are taken out of the join point’s L1
cache. At the end of the incremental match, the join point’s L1
cache is set to valid.

We compared the performance of our improved join point dis-
patching technique with a previous version of our runtime with no
caching and the unmodified Sun JVM. The results are described in
the next section.

4.4 Runtime Performance of Nu’s VM
To evaluate the runtime performance of our implementation of

JVM Nu (initial) % of JVM Nu (current) % of JVM
check 0.052 0.052 100.90% 0.057 109.86%
compress 127.853 186.968 146.24% 129.068 100.95%
jess 28.086 48.199 171.61% 28.974 103.16%
db 66.346 66.915 100.86% 66.237 99.84%
javac 36.140 48.190 133.34% 36.636 101.37%
mpegaudio 105.596 130.548 123.63% 107.212 101.53%
mtrt 22.651 57.652 254.52% 23.812 105.13%
jack 24.188 26.556 109.79% 24.232 100.18%
Average 51.364 70.635 137.52% 52.028 101.29%

Figure 14: Comparison of Join Point Dispatch times Using the
SPEC JVM98 Benchmark (smaller is better)
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JVM Nu (initial) % of JVM Nu (current) % of JVM
Same Instance 16,765,966.65 3,194,657.43 19.05% 16,105,814.33 96.06%
Same Synchronized Instance 4,497,624.18 2,148,470.59 47.77% 4,518,029.94 100.45%
Same Final Instance 15,709,483.76 2,961,620.07 18.85% 15,537,262.22 98.90%
Same Class 16,032,110.68 2,801,511.89 17.47% 14,554,337.11 90.78%
Same Synchronized Class 4,613,550.68 2,108,878.45 45.71% 4,457,858.00 96.63%
Other Instance 15,571,583.01 2,921,367.39 18.76% 15,055,368.00 96.68%
Other Instance of Abstract 14,240,123.96 3,002,304.42 21.08% 15,181,286.63 106.61%
Other Class 15,449,503.87 2,817,779.49 18.24% 15,909,643.50 102.98%
Average 12,859,993.35 2,744,573.71 21.34% 12,664,949.97 98.48%

Figure 15: Comparison of Join Point Dispatch times Using the Java Grande Benchmark (larger is better)

Nu, we evaluated the performance of the system in the case where
no bind calls have occurred to determine the dispatch overhead of
our VM implementation. We used two standard Java benchmarks
for our evaluation: SPEC JVM98 and Java Grande. Since we are
advocating modifying a production level VM, it is important that
the modifications do not significantly affect the performance of ex-
isting applications. To measure the overhead in these cases, we
ran the SPEC JVM98 and Java Grande method benchmarks on our
modified VM. There were no bind/remove calls in these bench-
marks. We measured the performance of the unmodified JVM, our
initial implementation of Nu, and our current implementation of Nu
as described in this paper.

The results for the Java Grande method benchmark are shown
in Figures 12 and 15. Since the Java Grande method benchmark
executes simple methods repeatedly to obtain the average number
of method calls possible per second, this is where our caching im-
plementation really shows up. Our initial version had to perform
matching on each method call (even though there were no binds).
With caching in place, this match is performed once. Our imple-
mentation went from 21.3% to 98.5% of the method calls achieved
by the unmodified JVM.

The results for the SPEC JVM98 benchmark are shown in Fig-
ures 13 and 14. This benchmark measures the time to execute a
set of realistic applications. These results were similar to the Java
Grande benchmark. Our implementation went from a 37% execu-
tion time overhead to a little over 1% overhead.

4.5 Delegate Invocation in Nu’s VM
Due to the lack of delegates in Java, our initial implementation

made use of the reflection API and Java Native Interface (JNI)
methods. Users passed in strings representing the name of a class
and the name of the delegate method and the runtime created a re-
flection Method object representing the specified delegate. This
object was then passed into bind calls. JNI methods available in-
side the VM were then used to invoke the delegate where necessary.

Our current strategy still makes use of the reflection API
Method class for passing in a delegate to bind calls. The bind im-
plementation makes use of data structures already available inside
the VM to keep track of information regarding the delegate, such as
class, instance, method, etc. When the VM initially loads, template
code for invoking delegates is generated inside the method stubs.
This code makes use of the stored information about the delegate,
avoiding the need to use expensive JNI methods.

To measure the performance of our delegate invocation code, we
created a benchmark that calls a simple test method repeatedly. A
delegate method that increments a static counter is then used to
create an advising relationship with our test method. A copy of
the test method is created with manually inlined calls to the dele-
gate method. The number of manually inlined calls is equal to the
number of advising relationships created using bind. Both copies
of the test method (one with manually inlined calls and one with
advising relationships to the delegate) are then executed and timed.

Figure 16: Invoke Benchmark - Varying Number of Patterns

A comparison to AspectJ’s advice invocation code was not made,
since most typical AspectJ compilers generate two methods at the
call site (one to get an instance of the aspect and one to call the
advice method).

Figure 16 varies the total number of bind calls while keeping the
percent that match the test method at 100%. Figure 17 varies the
percentage of bind calls that match the test method while keeping
the total number of bind calls at 256. As can be seen from the
figures, our delegate invocation technique went from around 4% as
efficient as the manually inlined version to around 82%. We believe
that as we refine our technique, our invocation mechanism should
approach relatively the same efficiency as manually inlining calls
to delegate methods.

4.6 Handling Bind/Remove Calls in Nu’s VM
The modified VM handles bind calls by storing the pattern and

delegate objects into a list. There is one list for each type of join
point and the pattern indicates which join point(s) it applies to. It
also performs some simple sanity checks (like verifying neither ob-
ject are null, if the delegate is non-static then an instance object
was passed in, etc). The VM then stores the pair into all appli-
cable lists, generates and returns a unique BindHandle to the
caller. The BindHandle is an instance of the immutable Java
class BindHandle, which may only be instantiated by the VM.

For remove calls, the modified VM simply removes the pat-
tern/delegate pair matching the passed in BindHandle from all
lists. Any join point that previously cached the delegate will lazily,
on its next execution, recognize the cache is invalid and remove the
delegate from the cache.

The class file processor was modified to initialize data structures
used at each join point. These data structures consist of several
flags for use in caching, a local cached delegate list, and storage
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Figure 17: Invoke Benchmark - Varying % Matching Patterns

for the join point’s static reflective information (which is created
lazily upon first use). The class file processor already accesses the
bytecode of potential join point shadows, so no additional iterations
were needed for initializing these data structures.

4.7 Summary
Our current prototype implementation serves as a proof of con-

cept of our claim that support for the Nu IL model in production
level virtual machine is feasible. Starting from our very ineffi-
cient implementation, we have improved our join point dispatch by
reducing the overhead from 37% to 1.27% for the SPEC JVM98
benchmark and increased our performance on the Java Grande
benchmark from 21.34% of the unmodified Hotspot to 98.48%
of the unmodified Hotspot. Delegate invocation improved from
around 4% as efficient as the manually inlined version to around
82% as efficient.

5. COMPILER IMPLEMENTATION
The strategies for compiling AspectJ constructs were imple-

mented by modifying the AspectJ compiler ajc to generate Nu in-
termediate code as described in Section 3. We will refer to this
compiler as ajc-nu from here onwards. The version of ajc modified
was 1.5.0. Please note that at the time of this paper, version 1.5.3 of
the AspectJ compiler was available but was not used due to various
problems when performing incremental compiles.

Their are two key differences between our compiler, ajc-nu, and
the original AspectJ compiler, ajc. First, our compiler does not
have to weave advice constructs. Note that at this time, we let the
original parts of the ajc compiler related to weaving inter-type and
declare constructs intact in ajc-nu. Some additional work is added
to a pass that analyzes and transforms AspectJ’s aspect into classes
in the object code. This code now also performs the translation of
the AspectJ constructs into Nu primitives as previously described.
Finally, we have tested our compiler on large-scale projects such
as Eclipse IDE and the Azureus P2P system by adding aspects to
these system [9].

6. RELATED WORK
Three closely related and complimentary research ideas are run-

time weaving, load-time weaving and virtual machine support for
AOP. We discuss these ideas in detail below.

6.1 Run- and Load-Time Weaving
There are several approaches for run-time weaving such as

PROSE [31], Handi-Wrap [5], Eos [32], etc. A typical approach to
runtime weaving is to attach hooks at all join points in the program
at compile-time. The aspects can then use these hooks to attach and
detach at run-time. An alternative approach is to attach hooks only
at potentially interesting join points. In the former case, aspects can
use all possible join points, excluding those that are created dynam-
ically so the system will be more flexible. The disadvantage is the
high overhead of unnecessary hooks. In the latter case, only those
aspects that utilize existing hooks can be deployed at run-time, but
the overhead will be minimal for a runtime approach.

Eos uses the second model, i.e. only instrument the join points
that may potentially be needed. Handi-Wrap uses the first model,
making all join points available through wrappers. PROSE indi-
rectly uses the first model, exposing all join points through the
debugger interface. PROSE allows aspects to be loaded dynam-
ically without restarting the system. An additional advantage of
indirectly exposing join points through a debugger interface is that
new join points (created by reflection) are registered automatically.
As observed by Popovici et al. [31] and Ortin et al. [27], however,
performance in both cases is a problem.

A load-time weaving approach delays weaving of crosscutting
concerns until the class loader loads the class file and defines it to
the virtual machine [24]. Load-time weaving approaches typically
provide weaving information in the form of XML directives or an-
notations. The aspect weaver then revises the assemblies or classes
according to weaving directives at load-time. A custom class loader
is often needed for this approach.

There are load-time weaving approaches for both Java and the
.NET framework. For example, AspectJ [17] recently added load-
time weaving support. Weave.NET [22] uses a similar approach
for the .NET framework. The JMangler framework can also be
used for load-time weaving [20]. It provides mechanisms to plug-
in class-loaders into the JVM.

A benefit of the load- and run-time weaving approaches is that
they delay weaving of AO programs. A contribution of our ap-
proach might also be perceived as delaying weaving, however, we
view the interface and corresponding contracts between the lan-
guage designs and execution model designs as the main contribu-
tion of our work. The decoupling between language compilers and
the virtual machine achieved by the interface provided by our IL
model enables independent research in these areas. Simpler aspect
language designs and compiler implementations might be realized
without spending significant time on the optimization of the under-
lying AO execution models. Novel optimization mechanisms for
the underlying execution models can be developed independent of
the language design as long as it conforms to the interface. The
load-time weaving approaches do not provide these benefits.

The bind and remove primitives are similar to install and unin-
stall messages in AspectS [13]. The difference is that install and
uninstall messages are sent to aspects in AspectS, whereas bind and
remove can be thought of as messages sent to the virtual machine.

6.2 Virtual Machine Support of Aspects
Steamloom [6] and PROSE2 [30] both aim to achieve an aspect-

aware Java VM, to enhance the runtime performance of AOP.
Steamloom extends the Jikes Research VM, an open source Java
VM [4]. Traditional approaches for supporting dynamic cross-
cutting involve weaving aspects into the program at compilation.
Steamloom moves weaving into the VM, which allows preserv-
ing the original structure of the code after compilation and shows
performance improvements of 2.4 to 4 times when compared to
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AspectJ. It accomplishes this by modifying the Type Information
Block to point methods to a stub that modifies the existing byte
code to weave in the advice. On the other hand, PROSE2 proposes
an enhanced implementation for the original PROSE approach, by
incorporating an execution monitor for join points into the virtual
machine. This execution monitor is responsible for notifying the
AOP engine which in turn executes the corresponding advices.

Our approach and Steamloom are in some sense complimen-
tary. Similar to Steamloom, our approach also advocates support
for crosscutting in the execution models. Steamloom investigates
techniques to improve the performance of these crosscutting mech-
anisms provided by the execution model, whereas, our approach
focuses on separating the compiler implementations and execution
model implementations by defining an interface between the two.
Our focus is on providing the basic mechanisms at the interface
that can be used as primitives by compiler implementations. Our
approach thus potentially allows multiple language models to use
the same VM and/or multiple VMs. Each of these VMs may have
their own method of weaving.

Steamloom and PROSE2, however, restrict the type hierarchy
of aspects. An aspect must inherit from a special class. In lan-
guages like Java, this restriction uses up the only available inheri-
tance link. Our approach does not impose any restrictions on pro-
gramming language constructs, leaving those design decisions to
programming language designers and compiler implementers.

7. DISCUSSION
The compilation strategies described in Section 3 demonstrated

that a variety of constructs in high-level languages can be supported
by our intermediate language model. A key property of all these
strategies is that they retain the separation of aspects and base in the
object code. Maintaining this separation in object code helps with
incremental compilation of aspect-oriented programs and source-
level debugging.

Incremental compilation is defined as the property of a compiler
such that a small change in syntax or semantic structure requires
only a small amount of reprocessing to reflect the change [3]. In
a recent report, Lesiecki [23] observed that on an average, incre-
mental compilation of 700 classes and around 70 aspects using the
AspectJ compiler usually takes at least 2-3 seconds longer than the
near instant compilation time using a pure Java compiler.

The speed of incremental compilation affects the responsiveness
of integrated development environments (IDEs), such as Eclipse.
As Hölzle and Ungar point out, in the context of object-oriented
programming and more specifically the Self language, an IDE must
respond as quickly as possible after programming changes in order
to increase programmer productivity [15]. Hölzle also argues that
“compilation must be quick and non-intrusive, and the system must
support full source-level debugging at all times” [14]. These re-
quirements are valid for aspect-oriented IDEs as well. Maintaining
the separation of concerns in object code helps achieve these goals.

after(): call(* *.read(..)) &&
&& cflow(execution(* java.io.InputStream.*)) {
/* Do Something */

}

Figure 18: Original pointcut expression

after(): call(* *.read(..)) &&
cflow(execution(* java.io.FileInputStream.*)) {
/* Do Something */

}

Figure 19: Modified pointcut expression

To illustrate the issue, let us consider the compilation of the cflow
construct. In current implementations of aspect-oriented compil-
ers, cflow is implemented by generating additional code to perform
runtime checks and determine if the program is currently in the
control flow of a join point (such as the execution of a method).
For example, the pointcut expression in Figure 18 will result in
the generation of a set of instructions to dynamically check at all
program points where a method read(..) is called to determine
if the program is currently in the control flow of any method in
java.io.InputStream.

Now, a change in the pointcut expression, say to the point-
cut in Figure 19, will have an impact on all program points
where the dynamic check was generated. Instead of checking
for methods belonging to type java.io.InputStream, the
generated code will now check for methods belonging to type
java.io.FileInputStream. A simple change in the source
code will thus lead to non-trivial processing.

On the other hand, if the aspect were to be translated to the Nu
intermediate language model using the strategy described in Sec-
tion 3.3 (see Figure 11), the change in the pointcut expression
would only require localized changes inside the aspect, propor-
tional to the change in the source code, thereby leading to a reduced
incremental compilation time and faster responsiveness.

Our recent work [9] has examined this problem in detail by mea-
suring the incremental compilation time of AspectJ [2] programs
after making minor modifications to the source code. Figure 20
shows the incremental compilation times of the Azureus peer-to-
peer application, a medium-scale system with around 3500 classes,
2000 source files, and 200 KLOC. In most cases, a small change in
the aspect resulted in an increase in incremental compilation time
of 10 times when compared to the incremental compilation of a
Java class in the system. This problem becomes even more appar-
ent with larger systems. Eclipse, a Java integrated development en-
vironment, is a large-scale system. Figure 21 shows the incremen-
tal compilation time of a subset of Eclipse2 (over 12000 classes,
7000 source files, and almost 800 KLOC). In most cases, the in-
cremental compilation times in this system are over 30 seconds for
very simple changes. The increased incremental compilation time
can potentially affect the build-test-debug cycle common in many
software development processes.

The benefits of AO modularity are attractive at a large scale;
in fact, the majority of the benefits only become apparent during
large-scale uses such as IBM WebSphere [8]. Large-scale usage,
however, does come with unique performance requirements such as
design-build-test cycle time, full build time, etc. The best AO com-
pilers available today have pushed the performance limits and de-
livered significant improvements compared to early versions, how-
ever, there is only so far they can go without addressing the under-
lying fundamental problem. Once these issues become apparent to
the large-scale adopters, tough decisions on the trade-off of Sep-
aration of Concerns vs. performance will have to be made. This
work thus creates a timely opportunity to rethink the commitment
to object-oriented intermediate languages that the original AO com-
pilers entailed.

8. FUTURE WORK
Our future investigations will focus on two key areas: language

extensions and virtual machine optimizations.

2A subset was selected due to memory constraints with Java and
the large amount of memory required by the AspectJ incremental
compiler.
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Figure 20: Incremental compile times of Azureus [9]

Figure 21: Incremental compile times of Eclipse [9]

8.1 Language Extensions
There are several possible routes for extensions to the Nu IL

model. One extension would create another IL primitive, say bind-
Static, which would behave similar to bind but with the additional
semantics that the bind identifier returned after a bindStatic call can
never be passed into remove. These semantics are useful for static
deployment cases and would allow virtual machine implementa-
tions to perform optimizations such as code re-writing. Another
possible extension which is similar, but would allow the returned
identifier to be passed into remove, would state that the virtual ma-
chine should indeed perform code re-writing for that specific call.
This could be used in situations where a compiler is able to stat-
ically identify that it is unlikely that remove will happen (perhaps
through an examination of the control flow graph), allowing the
virtual machine to re-write the byte code for faster execution.

Our current implementation does not support around constructs
in AspectJ-like languages. Endoh et al. have proposed adding two
constructs, proceed and skip, to handle around advice [11]. We plan
to add and implement similar constructs in our IL model to explore
support for around advice in our pointcut model.

Currently, our intermediate language design does not support
inter-type declarations. These constructs allow aspects to declare
new methods or fields in another type, declare a type extends a
new class, or declare a type implements new interfaces. Inter-type
declarations can be compiled to the Nu intermediate language by
directly adding the declarations to the class that it crosscuts. In
cases where the declaration affects more than one class, this will
require compiling several classes. Clearly, this strategy is not mod-
ular since a change in an aspect may affect not only the aspect’s
object code, but also the object code of each class into which the
inter-type declaration is being introduced.

A more general problem is support for multi-dimensional separa-
tion of concerns and HyperJ constructs in the virtual machine. For-
tunately, researchers are beginning to identify possible directions.
For example, recently Ossher [28] identified a runtime model based
on fragmented objects as a basis, which appears to be a promising
direction for future extensions of the Nu model.

8.2 Optimizations
We have planned several optimizations to further optimize the

dispatch time of our prototype virtual machine. Additional opti-
mizations for improved pattern matching and delegate invocation
are also planned. In the rest of this section, we will briefly describe
these optimizations.

8.2.1 Further Improved Join Point Dispatch
The Hotspot VM keeps a list of tables for efficient interpretation.

During VM initialization time, this table is also initialized with
code buffers that contain optimized interpretation code for various
different types of entry and exit events in the interpreter. In our cur-
rent optimization, we insert additional instructions into these code
buffers. During the execution of a program, the interpreter simply
jumps to different entries in these tables as appropriate.

We plan to implement strategies to swap entries in this table such
that an entry always points to the most optimal code buffer. At VM
initialization time, we will generate multiple generic code buffers,
each optimized for specific join point dispatch scenarios. For ex-
ample, if we have not seen any bind instructions yet for a join point
kind, there is no need for dispatch condition checks. As soon as the
VM sees a bind call for a specific join point kind, it checks to see
if the interpreter table is already initialized to support dispatch of
that join point kind. If not, it replaces the entry with the right code
buffer. Note that these modified entries will not be generated for
every join point instance, just for each join point kind.

On a remove, the VM will check to see if there are any more
binds remaining in the list of a join point kind. If there are no more
binds in a list of join point kinds, the interpreter replaces the entry
for that join point kind with the original entry that does not contain
dispatch checks. These two modifications should speed up the join
point dispatch by eliminating the need for redundant checks.

8.2.2 More Efficient Join Point Matching
The language implementation techniques for aspect-oriented

quantification mechanisms, i.e. matching join points against a (pos-
sibly large) set of pointcut predicates, have not received much at-
tention. This is primarily because most aspect-oriented approaches
today employ compile-time deployment of aspects, where the cost
of quantification is a small percentage of total compilation time.
Recently, however, many usecases for dynamic aspect deployment
have emerged, including ours [31, 5, 6, 30].

An implementation challenge for languages providing dynamic
deployment constructs is to efficiently determine the set of join
points that are matched by the aspect being deployed (or removed).
This is primarily because in this case the cost of matching may be-
come a significant portion of the cost of the deployment operation.

In the future, we will look into efficient join point matching
mechanisms. In particular, a decision tree-based approach for
matching join points against a set of pointcuts may potentially
reduce the cost of matching. Unlike previous approaches imple-
mented in AO compilers that treat each pointcut individually, one
can maintain all pointcuts in the system in a single decision tree,
which allows us to utilize more implication relationships resulting
in a faster matching process.
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9. CONCLUSION
In this paper, we introduced Nu, an AO IL model that adds

two primitives to object-oriented IL models. These primitives are
geared towards a class of AO languages called pointcut-advice lan-
guages. Nu exhibits two key properties: first it is able to express
a number of deployment models and constructs proposed in AO
literature and second that representation of these constructs in Nu
preserves AO design modularity in the object code.

We also described a prototype virtual machine implementation
that supports the Nu IL model. Our performance analysis showed
that there is minimal performance degradation of method dispatch
time compared to the unmodified JVM. The speed of invoking the
delegate also remains fairly close to the manually inlined method
call because of our caching mechanisms.
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