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Deep Learning (DL) is a class of machine learning algorithms that are used in a wide variety of applications. Like any software
system, DL programs can have bugs. To support bug localization in DL programs, several tools have been proposed in the past.
As most of the bugs that occur due to improper model structure known as structural bugs lead to inadequate performance
during training, it is challenging for developers to identify the root cause and address these bugs. To support bug detection
and localization in DL programs, in this paper, we propose Theia, which detects and localizes structural bugs in DL programs.
Unlike the previous works, Theia considers the training dataset characteristics to automatically detect bugs in DL programs
developed using two deep learning libraries, Keras and PyTorch. Since training the DL models is a time-consuming process,
Theia detects these bugs at the beginning of the training process and alerts the developer with informative messages containing
the bug’s location and actionable fixes which will help them to improve the structure of the model. We evaluated Theia on
a benchmark of 40 real-world buggy DL programs obtained from Stack Overflow. Our results show that Theia successfully
localizes 57/75 structural bugs in 40 buggy programs, whereas NeuraLint, a state-of-the-art approach capable of localizing
structural bugs before training localizes 17/75 bugs.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: deep learning bugs, bug localization, debugging, program analysis

1 INTRODUCTION
Deep learning (DL) based software has recently gained popularity and is being used in various fields, including
chatbots [79], virtual assistants [59], and financial institutions [80]. Their popularity has drawn the interest of
the software engineering community to understand their development process. As bugs are inherent to the
software development process, several studies have been conducted in the past to understand the characteristics
of DL bugs, their root causes, and repair solutions [58, 61, 62, 90]. To support the development of DL programs,
several DL libraries and frameworks, such as Tensorflow [50], Keras [51], and Pytorch [78] are available which
provide various APIs for building, training, and evaluating these programs. As DL programs are based on tensor
operations, which are multi-dimensional arrays that generalize matrices to higher dimensions, various operations
on tensors, such as matrix multiplication, addition, activation functions, and convolutions are performed to build
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and train these models. These libraries validate the correctness of the computations and use assertions to detect
crash bugs. However, the dependency of DL programs on data makes it challenging to impose assertions for
silent bugs, that occur due to hidden logic errors and commonly lead to incorrect model behavior, inaccurate
predictions, or degraded performance. Although, these libraries provide ‘callbacks’ to monitor and customize
various stages of training loops (e.g., at the start or end of an epoch, at the start or end of the batch, etc.), these
callback methods (e.g., EarlyStopping(), TerminateOnNaN()) do not indicate which layer or hyper-parameter
caused the issue. As a result, DL libraries lack comprehensive debugging mechanisms for locating silent bugs.
Researchers in the past [58, 61] have found that silent bugs are more prevalent (> 60%) than crash bugs in DL
programs. In the software engineering community, these bugs are referred to as structural bugs [71]. In this work,
we focus on structural bugs, which primarily arise from misconfigured hyper-parameters in the model.

To assist developers in identifying the structural bugs in DL programs, several techniques such as UMLAUT [81],
DeepLocalize [88], DeepDiagnosis [87], TheDeepChecker [42], DeepFD [46] for detecting and localizing these
bugs have been proposed in the past. These techniques observe the abnormal behavior during the training of
the model and identify structural bugs based on certain symptoms. Due to one-to-many mapping between the
abnormal behavior observed during training and its root causes [87], these techniques are unable to provide
sufficient insight into the underlying cause of the issue, thereby requiring several rounds to fix the bugs. As
training a DL model is expensive, identifying model inefficiencies during training wastes computational resources.
To overcome this problem, Nikanjam et al. [76] proposed a static approach, NeuraLint, that examines the DL
model for structural errors and design inefficiencies and can detect bugs in DL programs that are not covered by
previous dynamic approaches [46, 81, 87, 88].

The current approaches for detecting and localizing bugs in DL programs are either specifically designed
for classification tasks [81, 89] or focused on identifying structural bugs that are common across different
DL architectures (i.e., Fully-Connected Neural Networks (FCNN), Convolutional Neural Networks (CNN), and
Recurrent Neural Networks (RNN)) [42, 46, 87, 88]. NeuraLint [76] covers CNN architecture-specific structural
bugs. However, it relies on the parsed source code of the DL model and does not consider the training data
to localize the bugs, resulting in false alarms. As the DL models are data-driven, information acquired using
only the parsed source code is insufficient for effective bug localization. Our insight is that, as the DL models
are data-driven, combining the training data characteristics with the model’s source code provides a more
comprehensive analysis, improving the bug localization accuracy.

1.1 Motivation
In practice, new developers usually use familiar solutions when designing the DL program without fully under-
standing the effect of those solutions and various factors that need to be considered for their application. For
instance, utilizing the architecture of the model designed for multi-class classification for binary classification
or a simple model designed for gray-scale image datasets for more complex color images leads to inadequate
performance during training. Due to the numerous hyper-parameters in DL models, debugging these programs is
challenging [58, 62]. For instance, Fig. 1 presents a query posted on Stack Overflow [16], wherein the developer
has implemented a CNN program using Keras. The program demonstrated erratic behavior during training and
testing. The developer in the post mentions the various CNN architectures that were attempted but did not
achieve the desired results. In response, another Stack Overflow user pointed out the following issues in the CNN
program. First, the dataset used to train the model is very small, and the user recommends increasing the dataset
size by adding high-quality data. Secondly, as the model is designed for multi-class classification, the user also
suggests improving the network design by adding more convolution layers and explaining the impact of shallow
and overly deep networks on performance. As a side note, the user also suggests lowering the learning rate. The
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Fig. 1. An example from Stack Overflow [16] with structural bug.

developer could not design a CNN program with good performance and locate the cause of these bugs because
structural bugs usually affect the program’s performance rather than causing the program to crash.

For the CNN program in Fig. 1, current state-of-the-art techniques [42, 46, 81, 87–89] were not able to identify
structural flaws, as mentioned in the Stack Overflow post. These techniques primarily focus on identifying bugs
using different parameters such as weights, gradients, loss, and accuracy within the designed model, assuming
that the model’s depth and width are appropriately defined. Therefore, these techniques do not identify structural
flaws due to suboptimal model depth or width, which can significantly affect performance, as shown in Fig. 1.
While NeuraLint identifies structural errors before training, as it relies on the model’s parsed source code and
does not capture the characteristics of the training dataset in the meta-model, it cannot determine whether
the model is too shallow or narrow for the training dataset. For the example in Fig. 1, existing approaches
cannot identify the structural bug due to the insufficient number of layers in the model. Choosing an appropriate
number of layers or neurons during model design is challenging. In practice, it is usually done by manually
fine-tuning the model or using automated tools like Auto-Keras [63]. However, fine-tuning is expensive [60];
on high-performance machines, Auto-Keras usually requires 8-12 hours to search for models with reasonable
accuracy (90% or higher) [63]. Developers often need to pay more attention to the fundamental design principles,
which leads to incorrect model behavior during training and requires significant debugging time and effort.
Therefore, some lightweight automated debugging tools are needed to verify the designed model structure aligns
with the training dataset and task before initiating an expensive training process.

1.2 Contributions
In this paper, we propose a technique, named Theia, which leverages the characteristics of the training dataset
along with the model’s parsed source code for localizing the structural bugs in DL programs, i.e., bugs related to
the activation function, layer properties, model properties, loss function, preprocessing of data, and bugs due to
missing/redundant/wrong layers and provide suggestions to fix the bug. These bugs lead to performance issues,
i.e., low/stuck accuracy during training. Therefore, the scope of Theia is to localize structural bugs in DL programs.
Theia supports two types of DL architecture, i.e., Fully-Connected Neural Networks (FCNNs) and Convolutional
Neural Networks (CNNs) designed for regression, as well as classification tasks.

To design Theia, first, a general representation of the DL program, a meta-model, that is independent of any DL
libraries or frameworks is constructed. A meta-model captures the characteristics of the dataset, e.g., dimension,
type of training data, and properties of the DL model, e.g., the number of convolution layers and learning
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rate. Theia utilizes the meta-model and performs context-sensitive analysis, namely call-strings analysis [73]
and parameter-sensitive analysis [84] using the verification rules to detect the structural bugs in DL programs
developed using two popular deep learning libraries, Keras and PyTorch. Theia detects these bugs at the beginning
of the training process and alerts the developer with informative messages that include the bug’s location and fix
recommendations to improve the structure of the DL model.

We evaluated Theia on 40 real-world buggy DL programs obtained from Stack Overflow designed for regression
and classification tasks. Theia successfully finds 57/75 bugs and is more effective than NeuraLint [76], which
detects 17/75 bugs.

In summary, this paper makes the following contributions:
• We investigated the mapping between the characteristics of the dataset and the structure of the model.
• We provide verification rules to detect the occurrence of structural bugs.
• We designed and implemented Theia, for two popular DL libraries, Keras and PyTorch, for automatically

detecting structural bugs at the beginning of the training process.
• We evaluated Theia on 40 buggy DL programs and compared with NeuraLint [76]. We found that Theia is

more effective and efficient compared to NeuraLint which can be used by developers to detect structural
bugs in DL programs.

The rest of the paper is organized as follows. §2 describes the background. §3 describes the deep learning
program structural bugs. §4 describes the verification rules, explains how they are used to detect structural
bugs in our approach, and presents an algorithm for identifying these bugs. §5 describes the evaluation of our
approach compared with prior work. §6 discusses the threats to validity. §7 discusses related work, §8 concludes
and discusses future work, and §9 provides details of the replication package.

2 BACKGROUND

2.1 Deep Learning Programs
Deep learning has recently been widely used in different domains to automatically learn complex patterns from
data [46]. Deep learning architectures (i.e., FCNN, CNN) comprise many layers with each layer serving a distinct
function. These layers are fundamental building blocks that transform input data into meaningful output. For
example, the FCNN program comprises an input layer followed by a series of fully connected layers that learn
features from input, and finally an output layer that is trained to predict the output. CNN program has a more
complex structure comprising convolution and pooling layers followed by fully connected layers. Convolution
layers extract the features from the input and produce feature maps, pooling layers help in reducing the size
of feature maps, and fully connected layers help the model learn class-wise features. Using features extracted
from previous layers, the output layer is trained to predict the final output. The DL program has two types of
parameters: (1) the model parameters that are learned during training; and (2) the hyper-parameters whose value
can be configured before training, e.g., number of neurons, filters in the convolution layer, kernel size, strides.
Each layer has a different number of hyper-parameters that help the model to learn and are provided by the
developer while designing the DL programs.

2.2 Deep Learning Library
Keras and PyTorch are the popular deep learning libraries that provide APIs for implementing different stages of
a DL program, namely, data preparation, modeling, and training [44]. The APIs are written in the form of classes,
e.g., Conv2D, MaxPool2d, Dense, etc., comprising many methods with parameters. Some of these parameters are
used in structuring the model, while others serve as hyper-parameters for the DL program which helps in learning.
The hyper-parameters are initialized by the developer while using the API and must be configured considering
the task for which the DL program is designed as well as the characteristics of the training dataset. Failing
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Fig. 2. Details of DL programs used for mapping.

to consider them while designing the DL programs results in the incorrect configuration of hyper-parameters
which may not necessarily cause a program to crash, however, results in a program with performance issues, e.g.,
incorrect output or low/stuck classification accuracy.

3 DEEP LEARNING PROGRAM BUGS
In this section, we first describe the process utilized to identify the structural bugs that lead to performance issues.
Then, we discuss the mapping between the characteristics of the dataset and the structural bug. Followed by
verification rule creation methodology.

3.1 Structural Bugs Investigation
Researchers in the past have studied deep learning program bugs, and their characteristics and also provided
a taxonomy of faults for these programs. Zhang et al. [90] studied the root cause of bugs and their symptoms
in TensorFlow programs. This research was extended by Islam et al. [61] and they studied the types of bugs,
their root causes, and their impacts using five popular DL libraries. Humbatova et al. [58] further refined the bug
investigation and provided a taxonomy of real faults in deep learning systems. The taxonomy was derived using
375 buggy program posts obtained from Stack Overflow and GitHub designed using three popular DL libraries:
Tensorflow, Keras, and PyTorch. Moreover, the taxonomy was further enhanced by conducting interviews with 20
researchers and validated by involving an additional 21 developers. The taxonomy is broadly classified into five
categories: Model, GPU usage, API, Tensors & Inputs, and Training. The structural bugs (bugs due to suboptimal
model structure), might appear in any of the five categories and can cause crashes or poor/unexpected accuracy
when the DL model is trained. The bugs in some of these categories, i.e., ‘GPU Usage’, ‘API’, and ‘Tensors &
Inputs’ cause the DL program to crash while bugs in categories ‘Model’ and ‘Training’ typically result in
low/stuck accuracy during training. While non-crashing bugs do not raise an exception, they negatively impact
training and lead to poor generalization, crash bugs raise an exception during compilation/execution, e.g., tensor
shape mismatch, or deprecated API. We relied on the taxonomy provided by [58] and focused on non-crashing
bugs in this paper.

3.2 Mapping between Dataset Characteristics and Structural Bugs
We manually inspected the dataset released by [58] and filtered out the posts related to non-crashing bugs. We
found 105 posts in relation to our targeted bugs in DL programs.The DL programs derived from these posts include
models with different architectures, such as FCNN and CNN, and different network depths. The distribution of
DL models with varying depths obtained from 105 posts is shown in Fig. 2. These posts are manually reviewed
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Table 1. Mapping between Different Types of Bugs, Dataset Characteristics, and Verification Rules.

Bug
Categories

Type of Bug
Dataset Characteristics

used to fix the bug
in SO posts

Rules

Activation
Function

Wrong type of activation/
Missing/redundant softmax

or relu activation

Number of classes
Type of problem

(regression/classification)

Choice of Non-Linearity (CNL):
Checks for missing/redundant/wrong activation function

Wrong filter for conv layer
Type of images
(RGB/Grayscale)

Inaccurate Number of Filters (INF):
Checks inappropriate number of filters for each conv layer

Suboptimal number
of neurons

Type of images
(RGB/Grayscale)/
Type of problem

Incorrect Number of Neurons (INN):
Detects incorrect number of units dense layers

Layer
Properties

Wrong amount or
type of pooling

Any type of data/problem
Insufficient Downsampling (IDS):

Checks for inappropriate amount of pooling after conv layer

Missing Dropout Layer Any type of data/problem
Missing or Redundant Dropout (MRD):

checks if dropout is applied after dense and conv layerMissing
Layer Missing Normalization

Layer
Any type of data/problem

Missing Normalization Layer (MNL):
checks for missing normalization layer after dense and conv layers

Model
Properties

Suboptimal Network
Architecture

Type of images
(RGB/Grayscale)

Inappropriate Number of Convolution Layers (ICL):
checks for suboptimal conv layers

Improper Number of Fully Connected Layers (IFL):
checks for unnecessary dense layers

Preprocessing
of Data

Missing Preprocessing Any type of data/problem
Input Data not Normalized (IDN):

checks if the data is normalized or not

Loss
Function

Wrong selection of
loss function

Number of classes
Type of problem

(regression/classification)

Labels, output layer activation, and Loss Mismatch (LLM):
detects mismatch between output layer activation and loss function

Suboptimal Learning
Rate

Any type of data/problem
Learning Rate Out-of-Bound (LOB):

checks learning rate is in proper rangeHyperparameters
Suboptimal Batch Size Size of training set

Inadequate Batch Size (IBS):
checks for inadequate batch size

by authors to understand the debugging process followed by developers to identify the underlying cause of the
bug, its symptoms, and the methods used to fix structural bugs. We observe that most of the bugs related to the
structure of the model, e.g., wrong activation, and suboptimal neurons which do not cause the program to crash
but lead to training issues, can be found at the beginning of the training process using the characteristics of the
dataset, e.g., the number of classes and/or type of problem, i.e., regression or classification. Therefore, we mapped
each structural bug with the dataset characteristics utilized to fix it. Table 1 shows the mapping between each type
of bug and dataset characteristics used to fix the corresponding bug. Bugs and fixes are obtained using the DL
models with different architectures, i.e., FCNN and CNN designed for different tasks, such as image classification,
text classification, multi-label classification, and regression, and with varying depths (Fig. 2), which highlights
the generalizability of using them for bug localization. Below, we discuss the manual labeling process in detail.

Manual Labeling. In the 105 posts obtained after inspecting the dataset of bugs released by Humbatova et
al. [58], two authors independently reviewed these posts and classified the bugs into various categories following
the taxonomy of [58]. Both authors identified seven bug categories: activation function, layer properties, missing
layer, model properties, data preprocessing, loss functions, and hyperparameters. After discussion, we found that
both authors reached 100% agreement on categorizing these posts into respective categories. The next step is
to understand the debugging process followed by the developers to identify the underlying cause of the bug,

ACM Trans. Softw. Eng. Methodol.

 



Leveraging Data Characteristics for Bug Localization in Deep Learning Programs • 7

its symptoms, and the methods used to fix these bugs. During the distribution of the posts into different bug
categories, two authors observed certain frequent terms such as type of data, type of task, number of classes,
dimension of images, and size of the training dataset in these posts. These terms are used as initial labels to map
the bugs and their fixes used in the posts. We followed the procedure described by Biswas et al. [44], and two
authors (raters) independently labeled these posts. After labeling all posts, we calculated the agreement using
Cohen’s Kappa coefficient and conducted a discussion session between the raters and moderators (co-authors).
We adopted Biswas et al.’s [44] interpretation of Kappa (̂ = ( [0, 1]), the higher the better). After the first round,
we found an almost perfect agreement (̂ = 0.85). There were only a few disagreements about the labeling, which
were resolved after a discussion session involving the raters and the moderators. After discussion, all the authors
reached a perfect agreement (^ = 1). Finally, all the authors collectively examined each post for a final pass. The
labels after the first round and final labels are provided in our repository [72].

3.3 Verification Rules Creation Methodology
To reaffirm the bug’s underlying source and its effect on performance, we reviewed the literature [41, 43, 56,
65–67, 69, 70, 77, 85]. These research papers provide several guidelines and design principles for designing DL
programs. We used these guidelines and design principles to define the verification rules. Therefore, for each bug
in Table 1, we define a verification rule (discussed in detail in Section 4.1). We also defined the thresholds for
various rules using the fix suggestions obtained from 105 posts, illustrated in Section 3.2. Since the fix suggestions
were effective for the DL models with different architectures, i.e., FCNN and CNN designed for different tasks,
such as image classification, text classification, multi-label classification, and regression, and with varying depths,
we utilized them to define the thresholds.

We used the buggy DL programs provided in the defect4ML benchmark [74] to verify these rules. This
benchmark has 100 faulty DL programs obtained from Stack Overflow and GitHub belonging to different bug
categories proposed in [58]. We randomly picked one buggy DL program for each bug type supported by Theia
and verified the rules. As Theia supports 12 types of bugs (shown in Table 1), we specifically selected 12 programs
for this task. This process helped us verify the correctness of defined rules and thresholds.

4 APPROACH
In this section, we first describe the analysis techniques used to detect the structural bugs. Then, we discuss
the verification rules and explain how these rules are used in our approach, Theia, to automatically detect and
localize structural bugs.

4.1 Detecting Structural Bugs
Context-sensitive analysis is a common interprocedural analysis technique used to develop more efficient
programs [83]. Various context-sensitive analysis approaches have been proposed in the past, e.g., call-strings
approach [73], functional approach [73], call graphs [54]. Unlike traditional programs where one function can
be called multiple times and one function can call another function, DL programs follow different structures
where the model is built sequentially by calling different layer APIs, e.g., Conv2D, Activation, MaxPooling2D,
provided by DL libraries one after the other. For traditional programs, the call-strings approach is used to keep
track of how many times each function is called, how many times it is returned, and what other functions are
called by it. In our approach, we used call strings to keep track of API calls and applied verification rules to detect
missing, redundant, or wrong API usage. Parameter-sensitive approach [84] is used for traditional programs
to analyze each function call independently to determine how the function’s parameters affect its functioning.
We utilized this approach to examine each API call and its parameters to identify incorrect parameters. Fig. 3
shows an overview of Theia. We built upon the meta-model proposed by Nikanjam et al. [76] for DL programs,
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Fig. 3. Overview of Theia.

which captures the various components such as the architecture of the model, learner, and details related to
shuffling and batching by parsing the model’s source code. However, their meta-model does not capture the
characteristics of the data. In our approach, for an executable DL program, a meta-model is built as shown in
Fig. 4 which captures the characteristics of the dataset, e.g., type of input, number of classes, and properties of the
DL model, e.g., filters in convolution layers, dropout rate. We utilized the get_config() and modules() APIs
provided by Keras and PyTorch DL libraries, respectively, for parsing the configuration of the model. On the
meta-model, call-string analysis and parameter-sensitive analysis are performed and violations are checked using
the verification rules discussed below. Violations are used to detect bugs and to keep track of layer numbers
which are utilized in bug report for localization. Each analysis generates a bug report that is combined to generate
a final bug report with fix suggestions. If Theia detects a bug, the training aborts with a report containing the
bug’s location and recommended fixes to alert the developer; otherwise, training continues. Below, we discuss
the verification rule used by Theia for detecting and localizing each bug shown in Table 1.

4.1.1 Choice of Non-Linearity (CNL). Rationale: Convolution and Dense are linear operations; therefore, in-
corporating non-linear activation functions is crucial in the DL models to satisfy the Universal Approximation
Theorem (UAT). Non-linearity is added to the output of convolution and dense layers of DL programs via non-
linear activation functions, which ensures these models learn from complex data patterns. Activation functions
can be saturating (e.g., sigmoid and tanh) or non-saturating (e.g., ReLU and its variants) [75]. These activations
transform the value of convolution and dense operation into a restricted range [47]; therefore, applying multiple
or redundant activations will result in the wrong output in the last layer. Hence, for each convolution and dense
layer activation function is used once. Also, the choice of activation depends on the type of the task, i.e., regression
or classification. For example, for image data, Krizhevsky et al. [67] have shown the benefit of using non-saturating
non-linear activation functions for hidden layers over saturating counterparts. First, non-saturating functions like
ReLU help the network to learn faster, thus accelerating the training process. Second, these activation functions
help mitigate common training problems, such as exploding and vanishing gradients [87, 89]. Therefore, choosing
the right activation function for hidden layers is crucial for enhancing the model’s performance.

Detection: If the activation function for hidden layers, i.e., convolution or dense layer is missing or multiple
activation functions are used for the same layer, Theia identifies it as a bug. Theia also considers the type of task
for which the model is designed, checks incorrect usage of the activation function, and reports it as a bug.
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Fig. 4. Meta-Model used in Theia.

4.1.2 Inaccurate Number of Filters (INF). Rationale: In CNN programs, features are learned by the convolution
layers via various filters in each layer. Since the input has multiple features, distinct types of features are learned
by these layers, starting from basic features to higher-order features as we go deeper into the network [70]. For
example, for image data, the first few layers learn the basic features, i.e., lines, edges, and corners and the deeper
layers learn the higher-order features like objects. The filters in each convolution layer depend on the type of
input the CNNs are designed for. For instance, if the CNN model is designed for image classification, then the
input images can be gray-scale or color. Krizhevsky et al. [67] and Simonyan et al. [85] have shown the benefit of
using more filters for color images as compared to the model designed for gray-scale images [70] as color images
have more complex features as compared to the gray-scale images. Convolution layers with too many filters
often lead to overfitting of the model on training data, which restricts the model’s ability to generalize adequately
on test data. While few filters impede the model’s capacity to learn, which leads to poor performance during
training and testing. While designing CNN programs, the filters in the convolution layer must be configured by
the developer by taking into account the training dataset characteristics, i.e., type of data.

Detection: For detecting this bug, Theia checks parameter filters in Conv1D and Conv2D API and considers the
dataset characteristic - channels captured in meta-model. It checks if the filters are less than 16 or more than 512
in each convolution layer for channels = 3 (represents color images) or filters are less than 6 or more than 256 in
each convolution layer for channels = 1 (represents gray-scale images or tabular data), the bug is reported with
the fix location.

4.1.3 Incorrect Number of Neurons (INN). Rationale: The width of the network, i.e., number of neurons in each
dense layer of the DL model is defined by considering the task for which the model is built. For instance, for
classification tasks, the number of neurons depends on the number of classes for classification [57]. As these
neurons learn features during training, a large number of neurons results in more trainable parameters. Therefore,
choosing the correct configuration helps in improving performance and results in faster training. Also, for CNNs,
the number of neurons in each layer should either remain the same or decrease while moving deeper toward the
output layer [67, 70].
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Detection: This bug is detected by Theia by checking the units in the dense layer excluding the output layer.
The units must be less than or equal to the size of the input each dense layer receives; otherwise Theia reports it
as a bug. For CNN programs, Theia checks if the units in dense layers decreases progressively towards the output
layer, reporting a bug if this condition is not met.

4.1.4 Insufficient Downsampling (IDS). Rationale: In CNN programs, different filters are used by the convolution
layer to generate feature maps [70]. Feature maps extract the position of the features in the input and summarize
the presence of features. To make feature maps more robust and make them invariant to the local translation,
downsampling is used [70]. Downsampling helps in reducing the size of the feature maps while preserving large
or important structural elements. Pooling is the commonly used method for downsampling [67] and it is used
after convolution layer(s) to make the model more robust against shifts and distortion [70]. Stacking several
convolution layers without using pooling in between makes the model less robust to the local translation and
affects the performance of the model. Therefore, to make the model robust, the pooling is recommended to be
applied after a stack of few convolution layers [67, 85].

Detection: Theia detects this bug by checking if the pooling layer is missing after 4 consecutive convolution
layers.

4.1.5 Missing or Redundant Dropout (MRD). Rationale: Dropout is a regularization technique used in DL
programs to prevent the model from overfitting and thus helps in better generalization. Srivastava et al. [86]
proposed this approach and has shown the effectiveness of using dropout on the performance of the DL model.
[86] suggests applying dropout after dense and convolution layers once as these layers have learnable parameters.
Detection: To detect this bug, Theia checks if dropout is applied after dense and convolution layers. Theia

also counts the number of times dropout (DropoutCount) is applied to each dense and convolution layer. If
DropoutCount for each layer is greater than 1, Theia reports it as a bug.

4.1.6 Missing Normalization Layer (MNL). Rationale: Batch Normalization is a technique used to train DL model
faster. The goal of Batch Normalization is to generate a consistent distribution of activation values throughout
the training which helps in faster convergence. Therefore, to train DL models faster, Batch Normalization is
recommended after convolution and dense layers before applying non-linearity [82].
Detection: Theia detects this bug by keeping track of layers after dense and convolution layers. If the Batch

Normalization layer is missing after these layers and before the activation layer, Theia reports it as a bug.

4.1.7 Inappropriate Number of Convolution Layers (ICL). Rationale: In CNN program, the convolution layers
are used to extract the local features from the input. The elementary visual features such as edges, lines, etc.,
are learned by the first few convolution layers [70]. And, subsequent convolution layers are used to learn the
higher-order features by combining the features from the previous convolution layers [70]. State-of-the-art CNN
architectures [55, 67, 85] showed the advantage of having more convolution layers in the CNN model designed
for training datasets with color images. For instance, for color images in ImageNet [48] dataset, popular CNN
architectures, e.g., AlexNet [67], VGG [85] used more convolution layers to learn the features in contrast to fewer
convolution layers used by LeNet-5 [70] for grayscale images in MNIST [70] dataset. Therefore, the number of
convolution layers must be selected by considering the type of images in the training dataset, i.e., grayscale or
color.
Detection: This bug is detected by Theia by counting the number of convolution layers. For a dataset with

grayscale images, there must be at least 2 or more convolution layers, and for color images, there must be at least
3 or more convolution layers.

4.1.8 Improper Number of Fully Connected Layers (IFL). Rationale: In CNN programs, the fully connected layers
are used for classification. These layers have a large number of trainable parameters, so more time and memory
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are required to train them. It is advised [67, 70, 85] to use one or two fully connected layers since they save
training time, prevent the model from over-fitting, and improve generalization.

Detection: Theia checks the number of dense layers used in the structure of the CNN model. If the number of
dense layers is more than 3, Theia warns the developer to reduce the number of fully connected layers.

4.1.9 Input Data not Normalized (IDN). Rationale: Backpropagation is a popular algorithm used to train neural
networks [56]. The efficiency of the algorithm depends on the input data [69]. LeCun et al. [68] provides several
guidelines for more efficient back-propagation. Normalization of the input is one of them. If the input data to the
model are close to zero, it results in faster convergence and thus, makes the training faster. Therefore, in the data
preprocessing stage, the training data must be normalized in order to achieve better performance.
Detection: Theia detects this bug by checking the range of input values. If the range is not between [0,1] or

[-1,1], Theia and alerts the developer about it by providing a message in the bug report.

4.1.10 Labels, output layer activation, and Loss Mismatch (LLM). Rationale: For image classification, the ac-
tivation function for the output layer is chosen based on the type of classification, i.e., binary or multi-class
classification. And, for regression tasks, for the output layer, linear activation is preferred over non-linear activa-
tion [57]. Loss is used to evaluate the performance of the model and to compute the error at the time of training.
Cross-entropy is the commonly used loss function for classification problems. As suggested by [52, 78], for binary
classification, it is preferable to use the sigmoid activation function in the output layer and binary cross-entropy
as a loss function to compute the error. For multi-class classification, it is suggested to use the softmax activation
function in the output layer. If the loss function is not selected according to the last layer activation function,
then due to improper gradient, the model will learn inefficiently.
Detection: Theia uses the problem type passed as input to the callbacks and checks the activation function

and loss. If there is any mismatch as explained above, the bug is reported.

4.1.11 Learning Rate Out-of-Bound (LOB). Rationale: Learning rate is an important parameter that controls
how much the model weights are adjusted with respect to the loss during backpropagation [68]. Too low learning
rate increases the training time as the update towards the minima is very small. Sometimes, it is also possible
that due to a small learning rate, the training gets stuck on a sub-optimal solution or never converges [89]. And,
if the learning rate is set too high, the weight updates will be large which may result in an oscillating loss at the
time of training [89].

Detection: Theia looks for an inappropriate learning rate by using the following threshold. If learning_rate is
greater than 0.01 or learning_rate is less than 0.0001, it will be detected as a bug by Theia.

4.1.12 Inadequate Batch Size (IBS). Rationale: Batch size is an important training-related hyperparameter
whose value impacts the performance of the model [89]. With a smaller batch size, even without looking at the
complete training data, the model starts to learn, leading to oscillating loss and it is uncertain that the model will
converge to the global optima [89]. A larger batch size, on the other hand, might make the model get trapped in
the local minima, which leads to poor generalization and low accuracy [64, 89]. LeCun et al. [68] and Bengio et
al. [43] suggest using 32 as the initial batch size and doubling it until 256.

Detection: Theia detects this bug by checking the batch_size used for training. If the batch size is less than 32
or greater than 256, Theia warns the developer to use the appropriate batch size.

Algorithm 1 gives more details about the steps depicted in Fig. 3. The algorithm first captures the configuration
of each layer of the DL model. Then, it iterates through all the layers of the input model and applies the rules,
discussed in Section 4.1, according to the type of the layer considering the type of problem and input. For example,
for a conv2d layer, the rule INF(), is applied considering the type of input. For the pooling layer,IDS() is used.
As dense layers are used as hidden layers and output layer in the model, the algorithm invokes the rule INN() for
hidden dense layers, and for the output layer, LLM() is applied according to the problem type. Then, the rules
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Table 2. Summary of Rules used in Theia.

Bug
Type

Model
Type

Analysis
Technique

API used for
Bug Detection

Bug Detection Rule

CNL
FCNN/
CNN

call-strings
Dense(),
Conv1d(),
Conv2d()

if layer = ‘dense’ or ‘conv’ and activation_count = 0 or >1
before next ‘dense’ or ‘pooling’ or ‘conv’ layer

INF CNN parameter-sensitive
Conv1d(),
Conv2d()

if input_type = ‘color_images’, conv_filters <16 and conv_filters >512 or
if input_type = ‘grayscale_images’ or ‘tabular’, conv_filters <6 and conv_filters >256

INN
FCNN/
CNN

parameter-sensitive Dense() if dense_layer_units >size of input of each layer

IDS CNN call-strings
Conv1d(),
Conv2d()

if consecutive_conv_layer_count >4 and layer_next != ‘pooling’

MDR
FCNN/
CNN

call-strings
Dense(),
Conv1d(),
Conv2d()

if layer_hidden = ‘activation’ and layer_next != ‘dropout’ or
if layer = ‘dense’ or ‘conv’ and dropout_count >1 before the next ‘dense’ or ‘pooling’ or ‘conv’ layer

MNL
FCNN/
CNN

call-strings
Dense(),
Conv1d(),
Conv2d()

if layer = ‘dense’ or ‘conv’ and layer_next != ‘batch_normalization’

ICL CNN call-strings Conv2d()
if input_type = ‘color_images’, conv_layer_count <3 or
if input_type = ‘grayscale_images’, conv_layer_count <2

IFL CNN call-strings Dense() if dense_layer_count >3

IDN
FCNN/
CNN

parameter-sensitive fit() if input_range != [0,1] or [-1,1]

LLM
FCNN/
CNN

parameter-sensitive
Dense(),
compile()

if problem_type = ‘binary_classification’,
output_layer_activation != ‘sigmoid’ and loss != ‘binary_crossentropy’ or
if problem_type = ‘multiclass_classification’,
output_layer_activation != ‘softmax’ and loss != ‘categorical_crossentropy’ or
if problem_type = ‘regression’, output_layer_activation != ‘linear’ and loss != ‘mse’ or ‘mae’

LOB
FCNN/
CNN

parameter-sensitive compile() if learning_rate >0.01 and learning_rate <0.0001

IBS
FCNN/
CNN

parameter-sensitive fit() if batch_size <32 and batch_size >256

CNL(), MRD(), MNL(), which are common for different layers, i.e., conv1d, conv2d, and dense layers are applied.
After looping through all the layers of the model, if the model is designed for an image classification task, then
the two rules ICL() and IFL() are applied. Finally, the rules IBS() and LOB() common for any architecture
(FCNN or CNN) are invoked. Each rule localizes different types of bugs discussed in Section 4.1 and records an
error message in a list, bug_report1 or bug_report2. The two bug reports, bug_report1 and bug_report2 are finally
concatenated. If the final_report list is not empty, the training process is aborted and the messages, which contain
the bug’s location and actionable fix, are provided to the user. Otherwise, the algorithm terminates and training
starts normally.

The bug detection rules and the analysis techniques used to identify each bug in Theia are summarized in
Table 2.

5 EVALUATION
In this section, we discuss the experimental setting and report an empirical evaluation to demonstrate the
effectiveness of Theia.

5.1 ResearchQuestions
In this paper, we answer the following research questions.
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Algorithm 1: Theia Algorithm
Input :M, problem_type, input_type
Output :Report with bug location and actionable fix

1 1D6_A4?>AC1← []
2 1D6_A4?>AC2← []
3 ;0~4A_=0<4 ← []
4 ;0~4A_2>=5 86← []
5 for ! in".!0~4AB do
6 layer_names.append(!.#0<4) layer_config.append(!.64C_2>=5 86())
7 ConvCount = layer_names.count(“conv2d”)
8 DenseCount = layer_names.count(“dense”)
9 bug_report1.append(IDN(M.input))

10 for 8 in range(len(layer_names)) do
11 if ;0~4A_=0<4 [8] == “conv2d” then
12 bug_report2.append(INF(8=?DC_C~?4 , ;0~4A_2>=5 86[8] .5 8;C4AB))
13 if ;0~4A_=0<4 [8] == “maxpooling2d” or ;0~4A_=0<4 [8] “averagepooling2d” then
14 bug_report1.append(IDS(�>=E�>D=C ))
15 if ;0~4A_=0<4 [8] == “dense” then
16 if ;0~4A_=0<4 [8] is the last layer of" then
17 bug_report2.append(LLM( ?A>1;4<_C~?4 , ;0~4A_2>=5 86[8] .02C8E0C8>=, ".;>BB , ".;014;B))
18 else
19 bug_report2.append(INN(;0~4A_2>=5 86[8] .D=8CB))
20 if ;0~4A_=0<4 [8] == “conv1d” or ;0~4A_=0<4 [8] == “conv2d” or ;0~4A_=0<4 [8] == “dense” then
21 bug_report2.append(CNL(;0~4A_2>=5 86[8] .02C8E0C8>=))
22 bug_report1.append(MRD())
23 bug_report1.append(MNL())
24 bug_report1.append(ICL(8=?DC_C~?4 , �>=E�>D=C ))
25 bug_report1.append(IFL(8=?DC_C~?4 , �4=B4�>D=C ))
26 bug_report2.append(IBS(".10C2ℎ_B8I4))
27 bug_report2.append(LOB(".;40A=8=6_A0C4))
28 final_report = bug_report1 + bug_report2
29 if final_report != null then
30 Abort training
31 return final_report

• RQ1 (Evaluation): How effective is Theia in localizing and providing the actionable fixes for bugs in DL
programs compared to state-of-the-art?
• RQ2 (Ablation): To what extent does Theia detect each category of bugs correctly?
• RQ3 (Limitation): In which cases does our technique fail to detect and localize the bugs?
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5.2 Experimental setup
5.2.1 Implementation. We implemented Theia on top of Keras 2.3.0 [51], TensorFlow 2.1.0 [50], and PyTorch
1.13.1 [78]. The meta-model is built by parsing the DL program. The data characteristics are obtained using
training data provided as input to the DL program. The configuration of the layers and learner are obtained by
using get_config() and modules() APIs provided by Keras and PyTorch, respectively. Algorithm 1 is implemented
as a Python class which can be imported with Keras/PyTorch program. We conducted all the experiments on a
computer with a 4.2 GHz Quad-Core Intel Core i7 processor and 32 GB 2400 MHz DDR4 GB of RAM running the
64-bit MacOS X version 10.15.7.

5.2.2 Benchmark. We collected buggy DL programs developed using Keras and PyTorch from Stack Overflow
posts to construct our benchmark. We followed [61] and used the keywords “bug,” “poor performance,” “CNN,”
“low accuracy” to search for posts. We obtained 172 posts. In some posts, we found that pre-trained models
provided by deep learning libraries were used. We removed such posts and obtained 63 posts. In most of the posts,
the complete code is not provided by the developer. Since Theia needs a complete DL program for evaluation,
we considered the posts with full code script. Therefore, we ended up with 40 posts [1–40]. Additionally, we
examined the benchmark of NeuraLint [76]. As NeuraLint supports both crash and performance bugs, we filtered
out the programs with performance bugs. We obtained 9 programs with bad performance. As Theia needs a
DL program with the dataset and DL model for evaluation, we obtained 4 programs (SO# 50079585, 34311586,
51749207, 58844149) with datasets from NeuraLint’s benchmark. These programs were already included in our
benchmark. We also examined the artifacts provided by the previous works [53, 88]. Due to the overlapping of
programs in these benchmarks and 40 programs in our benchmark, we found that these programs were already
included in our benchmark (40 posts) during our filtration process. In total, we have 40 buggy DL programs
from Stack Overflow in our benchmark. The bug dataset contains 22 multi-class classifier models (16 CNNs and
3 FCNNs designed for image data, and 3 FCNNs designed for structural data), 13 binary classifier models (8
CNNs designed for image data, 2 CNNs designed for structural data, and 3 FCNNs designed for structural data),
3 regression models (3 FCNNs designed for structural data) and 1 multi-label classifier (1 FCNNs designed for
structural data). The 40 programs in our benchmark are “unseen”, i.e., these programs are not considered while
determining the thresholds (using 105 programs) in verification rules.

5.2.3 Results Representation. As discussed in Section 1, among the existing approaches for localizing bugs in
the DL programs, only NeuraLint detects bugs before training and also supports CNN architecture-related bugs.
Therefore, we compared Theia with NeuraLint on 40 buggy DL programs in our benchmark. Table 5 summarizes
the results of evaluating Theia and NeuraLint for a multiclass classification task. And, Table 6 summarizes the
results of evaluating Theia and NeuraLint for a binary classification and regression task. In both the tables, Table 5
and Table 6, for each DL program, we categorized the buggy programs into different categories indicated by
“Bug type” which is obtained by mapping to the bugs specified in our verification rules, “Problem Type” provides
the details about the type of task, i.e., regression or classification, “SO #” represents the Stack Overflow post #,
“Recommended Fix from SO” describes the recommended fix provided by the other users on Stack Overflow . The
next two columns represent the results of Theia and NeuraLint on our benchmark. The well-known practice
is to perform an evaluation on Stack Overflow posts with accepted answers [76]. It guarantees the suggested
fix is a real fix for the problem and can be used as ground truth for evaluation. In our benchmark, we found 6
posts from Stack Overflow without accepted answers. We observed that some of the answers in these posts are
marked as useful by users. We considered them as a fix for the problem mentioned in the post. To verify that
the recommended fix effectively addressed the issue outlined in the post, we evaluated the performance of the
buggy model before and after applying the suggested patch/fix. Loss and accuracy are the common metrics used
to evaluate the performance of the DL models. We manually fixed the model following the suggestions from the
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Table 3. Performance Comparison of Buggy and Repaired Models Designed for Multiclass Classification Task.

SNo. SO # Problem Type
Performance

of Buggy Model
Performance

After Applying Patch from SO

Loss Accuracy
(in %) Loss Accuracy

(in %)
Improvement

(in %)
1 64522751 Multiclass 2.761 82.000 0.298 89.250 7.250 ↑
2 50079585 Multiclass 0.482 76.220 0.511 79.100 2.880 ↑
3 47272383 Multiclass 0.990 64.610 0.480 80.500 15.890 ↑
4 51118032 Multiclass 2.309 9.900 0.599 79.580 69.680 ↑
5 37229086 Multiclass 0.384 86.250 0.314 88.530 2.280 ↑
6 48594888 Multiclass 0.765 73.480 0.424 85.810 12.330 ↑
7 59325381 Multiclass 0.010 9.870 0.050 98.830 88.960 ↑
8 64188884 Multiclass 1.236 48.740 0.899 65.760 17.020 ↑
9 70554413 Multiclass 2.770 6.670 1.072 76.500 69.830 ↑
10 65275387 Multiclass 1.946 14.500 0.413 84.500 70.000 ↑
11 54923573 Multiclass 0.151 93.840 0.160 94.000 0.160 ↑
12 63027146 Multiclass 2.303 9.890 0.253 91.000 81.110 ↑
13 65659888 Multiclass 0.676 49.900 0.076 90.100 40.200 ↑
14 58666904 Multiclass Crash 0.112 70.100 70.100 ↑
15 55198221 Multiclass 0.998 60.320 0.935 63.840 3.520 ↑
16 55343875 Multiclass 0.064 97.240 0.051 98.290 1.050 ↑
17 38648195 Multiclass 0.201 47.810 0.727 68.190 20.380 ↑
18 48385830 Multiclass nan 9.870 0.290 91.200 81.330 ↑
19 51930566 Multiclass 0.808 63.330 0.454 91.670 28.340 ↑
20 55328966 Multiclass nan 9.860 0.008 99.770 89.910 ↑
21 58609115 Multiclass 0.016 99.780 0.070 99.800 0.020 ↑
22 59278771 Multiclass 0.107 50.100 0.059 96.670 46.570 ↑

improvement % = accuracy (in %) after fix - accuracy (in %) of buggy model.
↑ represents increase percentage, ↓ represents decrease percentage.

accepted/useful answers of posts and computed the loss and accuracy before and after applying the fix shown in
Table 3 and Table 4. We found that the recommended fix aided in resolving the issue described in the post in
35 out of 40 posts in our benchmark. In 5 out of 40 posts, we observed that the accuracy did not improve much
following the fix suggestions from the accepted/useful answers. Therefore, two authors further investigated these
posts and found that some fix suggestions are not marked as accepted or useful by developers. However, upon
applying these fixes, the two authors found that these patches helped in improving the model’s performance. We
considered these fix suggestions as correct fixes and included them in the ground truth. These patches led to an
average performance improvement of 38% across 40 buggy DL programs. In Table 5 and Table 6, the column
labeled “Recommended Fix from SO” serves as the ground truth, which is used to determine the number of true
positive and false negative cases. Both the approaches, Theia, and NeuraLint, also detect the bugs that are not
recommended by Stack Overflow users. For analyzing these results, we adopted the approach used by Nikanjam
et al. [76]. Two authors independently checked the output and examined the DL program. We found that some
structural inefficiencies are not pointed as a fix by any Stack Overflow user but are trivial and result in abnormal
behavior during training, e.g., multiple activation functions or dropout used for convolution or dense layers,
missing pooling layer. For instance, in SO# 47272383, we observed that multiple dropouts are used for the same
convolution layer, which is not reported as a fix by the Stack Overflow user. The removal of one dropout layer,
combined with the suggested fix from the Stack Overflow user led to an improvement in the model’s performance.
We do not consider such fixes as false positives as addressing these structural inefficiencies helps improve the DL
program’s structure as discussed in Section 4.1 which in turn helps improve the model’s performance. Therefore,
we have not encountered any false positive cases and do not report them in Table 5 and Table 6. For both the
approaches Theia and NeuraLint, the “Yes” indicates whether the bug is identified and localized successfully or
not. “–” denotes that the target problem is not yet supported by the approach.
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Table 4. Performance Comparison of Buggy and Repaired Models Designed for Binary Classification & Regression Task.

SNo. SO # Problem Type
Performance

of Buggy Model
Performance

After Applying Patch from SO

Loss Accuracy
(in %) Loss Accuracy

(in %)
Improvement

(in %)
1 58844149 Binary 7.645 49.860 0.485 76.030 26.170 ↑
2 60261103 Binary 0.894 50.700 0.100 96.400 45.700 ↑
3 56914715 Binary 7.682 49.630 0.490 84.750 35.120 ↑
4 60003876 Binary Crash 0.938 50.000 50.000 ↑
5 70428592 Binary Crash 0.000 98.100 98.100 ↑
6 40045159 Binary 0.490 72.880 0.441 80.100 7.220 ↑
7 45378493 Binary 7.620 50.000 0.076 99.000 49.000 ↑
8 51749207 Binary 7.655 49.800 0.011 99.600 49.800 ↑
9 58844149 Binary 7.645 49.860 0.485 76.030 26.170 ↑
10 31880720 Binary 7.660 50.000 0.005 99.900 49.900 ↑
11 39525358 Binary 0.670 61.590 0.575 92.310 30.720 ↑
12 31627380 Binary 9.797 39.040 0.643 68.120 29.080 ↑
13 34673164 Binary 0.128 77.780 0.422 88.890 11.110 ↑
14 34311586 Regression 0.667 33.300 0.684 66.670 33.370 ↑
15 48221692 Regression 2288.030 – 95.283 – 2192.747 ↓
16 48251943 Regression 736.928 – 1.84 ×10−5 – 736.928 ↓
17 48934338 Regression 1354.247 – 248.703 – 1105.544 ↓
18 44164749 Multi Label

classification nan 29.630 0.449 79.210 49.580 ↑

improvement % = accuracy (in %) after fix - accuracy (in %) of buggy model (for classification).
improvement = loss after fix - loss of buggy model (for regression).
↑ represents increase percentage, ↓ represents decrease percentage.

5.3 RQ1 (Evaluation)
5.3.1 Evaluation on Multiclass Classification Task. We evaluated our approach and compared the state-of-the-art
approach, i.e., NeuraLint [76], and reported the results in Table 5. Below, we discuss the different categories of
bugs and how NeuraLint performs compared to our approach. For bug type LLM, there are 14 programs in Table 5.
Theia identified this bug in 14/14 programs (12 Keras and 2 PyTorch programs). To detect this bug, Theia considers
the type of problem, e.g., binary classification, and multiclass classification, the last layer activation, and the loss
function for which the DL model is built. Whereas, NeuraLint supports this bug type and checks whether the loss
function is correctly defined considering the last layer activation function. As discussed in Section 4.1, the last
layer activation function and loss functions are defined according to the type of problem, e.g., binary classification,
and multiclass classification. As NeuraLint does not consider the type of problem while detecting this bug, it failed
to detect bugs in SO # 65275387, 54923573, 55198221, 48385830, 51930566, 55328966, 59278771. The
bugs in SO # 65659888, 58666904 belong to LLM, as these are PyTorch programs, NeuraLint does not support
PyTorch programs. For programs SO # 37229086, 63027146, 48385830, our results (in Table 5) show that by
considering the characteristics of the dataset, Theia is able to detect all the bugs belonging to different categories
ICL, IDN, INF, LLM, CNL, whereas, NeuraLint failed to detect all the bugs and detected 2/7 bugs in 3 programs. In
total, Theia detected 34/45 bugs found in 22 buggy real-world programs, whereas, NeuraLint detected 13/45 bugs.

5.3.2 Evaluation on Binary Classification & Regression Task. To evaluate the effectiveness of Theia on binary
classification and regression tasks, we performed the evaluation on 18 buggy programs obtained from Stack
Overflow in our benchmark. Table 6 reports the evaluation results of usingTheia and NeuraLint on these programs.
There are 13 programs for binary classification tasks in Table 6. Most of the programs have LLM bugs, Theia
successfully detected 12/12 bugs of this category by taking into account the dataset characteristics - number
of classes. Whereas, NeuraLint detected 2/12 bugs (SO# 31627380, 34673164) in this category. Both Theia and
NeuraLint support CNN program-specific bugs, therefore for SO# 64188884, both the approaches detected bug
in IDS category. For the regression task, there are 4 programs in Table 6, Theia successfully detected 4/4 bugs
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Table 5. Comparison of Bugs Localized by Theia and NeuraLint in Buggy DL Programs Designed for Multiclass Classification
Task.

Theia NeuraLintSNo. Bug Type Problem Type SO # Recommended Fix from SO
Identify Bug TP FN Identify Bug TP FN

LLM Change loss function Yes Yes1
LOB

Multiclass 64522751
Reduce the learning rate Yes

2 0
–

1 1

LLM Change last layer activation function Yes Yes2
LLM

Multiclass 50079585
Change loss function Yes

2 0
Yes

2 0

ICL Increase network depth Yes –3
–

Multiclass 47272383
Increase dataset size –

1 1
–

0 2

4 LOB Multiclass 51118032 Reduce the learning rate Yes 1 0 – 0 1
5 ICL Multiclass 37229086 Increase network depth Yes 1 0 – 0 1

– Change weight initializer – –
INF Increase convolution layer filters while going deeper Yes Yes
– Change kernel size – Yes

6

–

Multiclass 48594888

Decrease dropout rate –

1 3

–

2 3

7 IDN Multiclass 59325381 Normalize the test data Yes 1 0 – 0 1
– Reduce Dropout layers No –8

IDS
Multiclass 64188884

Add pooling layer Yes
1 1

Yes
1 1

– Increase dataset size and randomize the data – –9
ICL

Multiclass 70554413
Improve network design Yes

1 1
–

0 2

CNL Change Dense layer activation Yes –
LLM Change last layer activation function Yes No
– Use data augmentation – –

10

–

Multiclass 65275387

Remove input_shape from all layers except input layer –

2 2

–

0 4

11 LLM Multiclass 54923573 Change last layer activation function Yes 1 0 No 0 1
IDN Normalize train and test data Yes –
ICL Increase network depth Yes –12
INF

Multiclass 63027146
Increase convolution layer filters while going deeper Yes

3 0
Yes

1 2

13 LLM Multiclass 65659888 Remove last softmax activation layer Yes 1 0 – – –
LLM Remove last layer activation Yes –14
LLM

Multiclass 58666904
Change loss function Yes

2 0
–

– –

15 LLM Multiclass 55198221 Change last layer activation function Yes 1 0 No 0 1
LLM Change last layer activation function Yes Yes16
LLM

Multiclass 55343875
Change loss function Yes

2 0
Yes

2 0

LLM Change loss function Yes Yes17
–

Multiclass 38648195
Change optimizer –

1 1
–

1 0

CNL Add activation function in hidden layers Yes Yes
CNL Add last layer activation function Yes No18
LLM

Multiclass 48385830
Change loss function Yes

3 0
No

1 2

19 LLM Multiclass 51930566 Change last layer activation function Yes 1 0 No 0 1
LLM Change last layer activation function Yes No
IDN Normalize the data Yes –20
CNL

Multiclass 55328966
Add activation for first dense layer Yes

3 0
No

0 3

LLM Change last layer activation function Yes Yes21
LLM

Multiclass 58609115
Change loss function Yes

2 0
Yes

2 0

IFL Add more dense layer No –
INN Increase units in dense layers No –22
LLM

Multiclass 59278771
Change last layer activation function Yes

1 2
No

0 3

Total 34 11 13 29

belonging to LLM, LOB bug categories. On the other hand, NeuraLint was not able to find any of these bugs.
There is 1 program for the multi-label classification task, SO# 44164749, both Theia and NeuraLint failed to
detect the bug in this program. We investigated the reason for it and found that for multi label classification, the
mapping between the last layer activation function and loss function is different than the multiclass classification
as discussed in 4.1. Therefore, in the verification rule, LLM, there is a need to add a proper mapping.
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Table 6. Comparison of Bugs Localized by Theia and NeuraLint in Buggy DL Programs Designed for Binary Classification &
Regression Task.

Theia NeuraLintSNo. Bug Type Problem Type SO # Recommended Fix from SO
Identify Bug TP FN Identify Bug TP FN

1 LLM Binary 58844149 Change last layer activation function Yes 1 0 No 0 1
2 LOB Binary 60261103 Reduce the learning rate Yes 1 0 – 0 1
3 LLM Binary 56914715 Change last layer activation function Yes 1 0 No 0 1

LLM Change loss function Yes –4
–

Binary 60003876
Initialize optimizer to zero gradient –

1 1
–

– –

LLM Remove last softmax activation layer Yes –5
LLM

Binary 70428592
Use proper loss fucntion Yes

2 0
–

– –

ICL Increase network depth Yes –6
INF

Binary 40045159
Increase number of conv filters Yes

2 0
Yes

1 1

7 LLM Binary 45378493 Change last layer activation function Yes 1 0 No 0 1
8 LLM Binary 51749207 Change last layer activation function Yes 1 0 No 0 1
9 LLM Binary 58844149 Change last layer activation function Yes 1 0 No 0 1
10 LLM Binary 31880720 Change last layer activation function Yes 1 0 No 0 1

IDN Normalize the data Yes –
– Increase number of epochs – –11

MRD
Binary 39525358

Add dropout layers after hidden layers Yes
2 1

–
0 3

MRD Add dropout layers No –
LLM Change last layer activation function Yes Yes12
LLM

Binary 31627380
Change loss function Yes

2 1
Yes

2 1

LLM Change loss function Yes Yes
– Change optimizer – –

MNL Add Batch Normalization Yes –
CNL Change hidden layer activation function No –

13

IDN

Binary 34673164

Normalize the data Yes

3 2

–

1 4

14 LLM Regression 34311586 Remove last softmax activation layer Yes 1 0 No 0 1
15 LLM Regression 48221692 Remove last layer activation Yes 1 0 No 0 1
16 LLM Regression 48251943 Remove last layer activation function Yes 1 0 No 0 1
17 LOB Regression 48934338 Reduce learning rate Yes 1 0 – 0 1

LLM Change last layer activation function No No18
LLM

Multi Label
classification

44164749
Change loss function No

0 2
No

0 2

Total 23 7 4 22

5.3.3 Evaluation of Actionable Fixes on Buggy DL Programs. We investigated the impact of the fix suggestions
provided by Theia on improving the performance of the buggy DL program after repair. To investigate this, the
two authors manually addressed the bugs for each of the 40 programs in our benchmark, following the line
numbers and fix recommendations from Theia and NeuraLint, and compared the results with the performance of
the original buggy model. If the fix does not improve the performance of the buggy model, we consider the fix
suggestions as false alarms (FP). Theia localizes the bug and provides developer hints at the potential solutions,
whereas NeuraLint identifies the bug but does not provide guidance on potential solutions. For instance, for
inappropriate loss function, Theia provides the message: “Change loss function –> Use categorical_crossentropy”,
whereas, NeuraLint provides the message: “Learner ==> The loss should be correctly defined and connected to
the layer in accordance with its input conditions (i.e., shape and type)-post_activation”. After fixing the bug, we
rerun Theia and NeuraLint on the modified DL program and repeat the process until no bugs are reported by both
tools. The comparison of loss and accuracy of the original buggy program and the manually repaired program
using actionable fixes from Theia and NeuraLint are reported in Table 7 and Table 8. The results show that Theia
successfully provided actionable fixes, resulting in an average performance enhancement by 41% in 34 out of 40
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Table 7. Comparison of Impact of Actionable Fixes by Theia and NeuraLint on Buggy Models Performance Designed for
Multiclass Classification Task.

Performance
After FixPerformance

of Buggy Model NeuraLint TheiaSNo. SO #
Loss Accuracy

(in %) Loss Accuracy
(in %)

Improvement
(in %) FP Loss Accuracy

(in %)
Improvement

(in %) FP

1 64522751 2.761 82.000 2.327 9.780 -72.220 ↓ Yes 0.510 82.190 0.190 ↑ No
2 50079585 0.482 76.220 0.841 64.380 -11.840 ↓ Yes 0.508 80.890 4.670 ↑ No
3 47272383 0.990 64.610 1.776 19.810 -44.800 ↓ Yes 0.380 88.420 23.810 ↑ No
4 51118032 2.309 9.900 2.309 9.900 0.000→ No 0.509 82.020 72.120 ↑ No
5 37229086 0.384 86.250 0.107 96.370 10.120 ↑ No 0.616 78.560 -7.690 ↓ Yes
6 48594888 0.765 73.480 0.772 73.160 -0.320 ↓ Yes 0.571 79.920 6.440↑ No
7 59325381 0.010 9.870 0.040 9.870 0.000→ No 0.023 99.340 89.470 ↑ No
8 64188884 1.236 48.740 1.111 54.000 5.260 ↑ No 0.946 62.590 13.850 ↑ No
9 70554413 2.770 6.670 2.770 6.670 0.000→ No 1.073 77.440 70.770 ↑ No
10 65275387 1.946 14.500 0.411 85.710 71.210 ↑ No 0.076 98.400 83.900 ↑ No
11 54923573 0.151 93.840 0.177 92.770 -1.070 ↓ Yes 0.916 92.860 -0.980 ↓ Yes
12 63027146 2.303 9.890 0.746 74.240 64.350 ↑ No 0.721 74.920 65.030 ↑ No
13 65659888 0.676 49.900 – – – – 0.007 93.010 43.110 ↑ No
14 58666904 Crash – – – – 0.114 72.500 72.500 ↑ No
15 55198221 0.998 60.320 0.960 62.290 1.970 ↑ No 0.710 72.320 12.000 ↑ No
16 55343875 0.064 97.240 0.039 98.400 1.160 ↑ No 0.064 97.800 0.560 ↑ No
17 38648195 0.201 47.810 0.839 59.030 11.220 ↑ No 0.886 58.030 10.220 ↑ No
18 48385830 nan 9.870 0.094 10.110 0.240 ↑ No 1.086 63.530 53.660 ↑ No
19 51930566 0.808 63.330 0.439 76.890 13.560 ↑ No 0.811 73.330 10.000 ↑ No
20 55328966 nan 9.860 0.136 95.510 85.650 ↑ No 0.040 98.710 88.850 ↑ No
21 58609115 0.016 99.780 0.652 0.340 -99.440 ↓ Yes 0.623 0.400 -99.380 ↓ Yes
22 59278771 0.107 97.330 0.233 87.560 -9.770 ↓ Yes 0.477 88.000 -9.330 ↓ Yes

The highlighted rows indicate programs where Theia’s fix suggestions did not improve model performance.
improvement % = accuracy (in %) after fix - accuracy (in %) of buggy model.

↑ represents increase percentage, ↓ represents decrease percentage,→ represents no change, and – indicates the model not supported yet.

buggy DL programs. In contrast, the fix suggestions from NeuraLint led to an average performance improvement
of 30% in 19 out of 40 programs. This highlights the effectiveness of our approach in detecting structural bugs
that lead to suboptimal performance during training.

5.3.4 Evaluation on Normal Programs. We conducted a more thorough investigation into the effects of applying
Theia on normal programs, aiming to investigate any instances of false alarms in these programs. As shown in
Table 3 and Table 4, the patches/fixes suggested by Stack Overflow users successfully resolved the bugs present in
all 40 programs in our benchmark, resulting in improved performance. Therefore, we utilized these patches to
create a benchmark of 40 normal programs. These programs are available in our repository [72]. We evaluated
the impact of fix suggestions provided by Theia on these 40 normal programs. We followed the same procedure as
described in Section 5.3.3. Two authors manually addressed the bugs for each of the 40 normal programs, following
the line numbers and fix recommendations from Theia and NeuraLint and compared it with the performance of
the normal model. If the fix does not improve the performance of the model, we consider the fix suggestions as
false alarms (FP). The impact on the performance of the normal programs after applying patches is shown in
Table 9 and Table 10. On normal programs both Theia (average performance improvement of 6%) and NeuraLint
(average performance improvement of 4%) demonstrated a comparable performance on 40 programs, leading to
performance improvements in 28 out of the 40 normal programs. Both tools negatively impacted the performance
of 12 programs, resulting in 12 false alarms (FP). We investigated the reason for false alarms produced by Theia
in 12 out of 40 programs. Theia suggests to add Batch Normalization and Dropout layers after convolution and
dense layers (Rules - MNL and MRD). We observed that for less complex models, the addition of these layers after
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Table 8. Comparison of Impact of Actionable Fixes by Theia and NeuraLint on Buggy Models Performance Designed for
Binary Classification & Regression Task.

Performance
After FixPerformance

of Buggy Model NeuraLint TheiaSNo. SO #
Loss Accuracy

(in %) Loss Accuracy
(in %)

Improvement
(in %) FP Loss Accuracy

(in %)
Improvement

(in %) FP

1 58844149 7.645 49.860 0.359 83.710 33.850 ↑ No 0.398 81.520 31.660 ↑ No
2 60261103 0.894 50.700 0.723 49.600 -1.100 ↓ Yes 0.752 50.900 0.200 ↑ No
3 56914715 7.682 49.630 0.607 74.250 24.620 ↑ No 0.136 95.380 45.750 ↑ No
4 60003876 Crash – – – – 0.016 91.700 91.700 ↑ No
5 70428592 Crash – – – – 0.003 98.600 98.600 ↑ No
6 40045159 0.490 72.880 0.485 76.790 3.910 ↑ No 0.485 76.750 3.870 ↑ No
7 45378493 7.620 50.000 0.116 97.000 47.000 ↑ No 0.073 97.000 47.000 ↑ No
8 51749207 7.655 49.800 0.008 99.000 49.200 ↑ No 0.031 99.000 49.200 ↑ No
9 58844149 7.645 49.860 0.359 83.710 33.850 ↑ No 0.398 81.520 31.660 ↑ No
10 31880720 7.660 50.000 0.003 99.000 49.000 ↑ No 0.004 99.810 49.810 ↑ No
11 39525358 0.670 61.590 0.670 61.590 0.000→ No 0.543 92.310 30.720 ↑ No
12 31627380 9.797 39.040 0.640 68.260 29.220 ↑ No 0.428 81.180 42.140 ↑ No
13 34673164 0.128 77.780 0.776 77.780 0.000→ No 0.450 77.780 0.000→ No
14 34311586 0.667 33.300 0.689 66.670 33.370 ↑ No 0.686 66.670 33.370 ↑ No
15 48221692 2288.030 – -68722.021 – 71010.051 ↑ Yes 916.983 – 1371.047 ↓ No
16 48251943 736.928 – 736.928 – 0.000→ No 131.660 – 605.268 ↓ No
17 48934338 1354.247 – 1354.247 – 0.000→ No 42.927 – 1311.320 ↓ No
18 44164749 nan 29.630 nan 29.630 0.000→ No nan 29.630 0.000→ No

The highlighted rows indicate programs where Theia’s fix suggestions did not improve model performance.
improvement % = accuracy (in %) after fix - accuracy (in %) of buggy model (for classification).

improvement = loss after fix - loss of buggy model (for regression).
↑ represents increase percentage, ↓ represents decrease percentage,→ represents no change, and – indicates the model not supported yet.

each convolution and dense layer leads to excessive regularization, thereby compromising the performance of
these models.

5.4 RQ2 (Ablation)
Table 11 shows the performance of Theia on different types of bugs found in DL programs in our benchmark.
LLM is the most prevalent bug type occurring in real-world buggy programs obtained from Stack Overflow in our
benchmark. Theia successfully detected 33/35 bugs in this category. Whereas, NeuraLint successfully detected
11/35 bugs of this category. For the second-most prevalent bug type CNL, Theia correctly identified 4/5 bugs, and,
NeuraLint detected 1/5 bugs. For bugs specific to CNN programs, INF and IDS, both Theia and NeuraLint were
able to detect all the bugs of these categories. There are 12 bugs represented by the “Other” column in Table 11
which are not supported by both Theia and NeuraLint. Theia detected 57/75 bugs from different categories, while
NeuraLint detects 17/75 bugs in these real-world buggy programs.

5.5 RQ3 (Limitation)
The scope of Theia is defined as FCNN and CNN programs designed for regression and classification tasks using
two deep-learning libraries, Keras and PyTorch. Other architectures like Recurrent Neural Networks (RNNs) or
pretrained DL models are not supported by Theia. Theia can be extended to support other architectures by adding
new rules specific to those architectures. Theia is designed to detect 12 structural bugs; therefore, as shown
in Table 11 (Bug Categories - Other), it failed to find bugs due to insufficient data, wrong optimizer, incorrect
weight initializer, epochs, and dropout rate. As Theia detects bugs at the beginning of the training, some of
these bugs, e.g., insufficient data cannot be detected before training. Similarly, different optimizers have different
convergence rates which cannot be determined at the early stage of training. Identifying such bugs is a limitation
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Table 9. Comparison of Impact of Actionable Fixes by Theia and NeuraLint on Normal Models Performance Designed for
Multiclass Classification Task.

Performance
After FixPerformance

of Normal Model NeuraLint TheiaSNo. SO #
Loss Accuracy

(in %) Loss Accuracy
(in %)

Improvement
(in %) FP Loss Accuracy

(in %)
Improvement

(in %) FP

1 64522751 0.298 89.250 0.282 89.740 0.490 ↑ No 0.492 82.920 -6.330 ↓ Yes
2 50079585 0.511 79.100 0.816 63.240 -15.860 ↓ Yes 0.526 79.830 0.730 ↑ No
3 47272383 0.480 79.600 1.763 20.450 -59.150 ↓ Yes 0.392 87.340 7.740 ↑ No
4 51118032 0.599 79.580 0.599 79.580 0.000→ No 0.315 88.690 9.110 ↑ No
5 37229086 0.314 88.530 0.237 91.550 3.020 ↑ No 0.429 84.790 -3.740 ↓ Yes
6 48594888 0.424 85.810 0.424 85.810 0.000→ No 0.333 88.270 2.460 No
7 59325381 0.050 98.830 0.040 98.950 0.120 ↑ No 0.024 99.270 0.440 ↑ No
8 64188884 0.899 65.760 0.899 65.760 0.000→ No 0.760 71.440 5.680 ↑ No
9 70554413 1.072 76.500 2.770 7.440 -69.060 ↓ Yes 1.098 78.330 1.830 ↑ No
10 65275387 1.946 84.500 1.854 16.700 -67.800 ↓ Yes 1.854 20.000 -64.500 ↓ Yes
11 54923573 0.160 94.000 0.233 90.150 -3.850 ↓ Yes 0.194 94.100 0.100 ↑ No
12 63027146 0.253 91.000 0.414 85.390 -5.610 ↓ Yes 0.495 82.840 -8.160 ↓ Yes
13 65659888 0.076 90.100 – – – – 0.004 94.410 4.310 ↑ No
14 58666904 0.112 70.100 – – – – 0.114 72.500 2.400 ↑ No
15 55198221 0.935 63.840 0.935 63.840 0.000→ No 0.807 68.570 4.730 ↑ No
16 55343875 0.051 98.290 0.051 98.290 0.000→ No 0.022 99.760 1.470 ↑ No
17 38648195 0.727 68.190 0.727 68.190 0.000→ No 0.728 68.400 0.210 ↑ No
18 48385830 0.290 91.200 0.290 91.200 0.000→ No 0.723 76.760 -14.440 ↓ Yes
19 51930566 0.454 91.670 0.454 91.670 0.000→ No 0.698 81.670 -10.000 ↓ Yes
20 55328966 0.008 99.770 0.008 99.770 0.000→ No 0.030 99.770 0.000→ No
21 58609115 0.070 99.800 0.776 0.170 -99.630 ↓ Yes 0.633 0.500 -99.300 ↓ Yes
22 59278771 0.059 96.670 0.059 96.670 0.000→ No 0.106 96.670 0.000 No

The highlighted rows indicate the false positives reported by Theia.
improvement % = accuracy (in %) after fix - accuracy (in %) of buggy model (for classification).

improvement = loss after fix - loss of buggy model (for regression).
↑ represents increase percentage, ↓ represents decrease percentage,→ represents no change, and – indicates the model not supported yet.

of our approach. Therefore, Theia failed to detect 12 bugs in our benchmark. We aim to address these bugs by
integrating training monitoring into Theia in the future.

5.6 Result and Discussion
Our technique, Theia focuses on identifying structural defects, which are mainly caused by mistakes made by
developers during the design of DL programs. These design mistakes may have severe consequences which lead
to incorrect output or poor generalization after training the DL model. Detecting these flaws at an early stage of
the training process has potential to save computational resources and the developer’s time. The results show
that Theia outperforms state-of-the-art NeuraLint. Specifically, for real-world programs from Stack Overflow,
Theia identified and localized 34/45 bugs found in 22 buggy DL programs designed for multiclass classification
tasks. However, NeuraLint detected 13/45 bugs in 22 buggy DL programs. For binary classification and regression
tasks, Theia detected and localized 23/30 bugs found in 18 buggy DL programs, whereas, NeuraLint identified
4/30 bugs. In total, Theia successfully detected 57/75 bugs in 40 real-world buggy programs obtained from Stack
Overflow . However, Theia failed to detect 12 bugs from our benchmark as these bugs provide symptoms during
training and Theia does not support them. We plan to investigate these bugs in our future work.
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Table 10. Comparison of Impact of Actionable Fixes by Theia and NeuraLint on Normal Models Performance Designed for
Binary Classification & Regression Task.

Performance
After FixPerformance

of Normal Model NeuraLint TheiaSNo. SO #
Loss Accuracy

(in %) Loss Accuracy
(in %)

Improvement
(in %) FP Loss Accuracy

(in %)
Improvement

(in %) FP

1 58844149 0.485 76.030 0.350 84.210 8.180 ↑ No 0.392 81.910 5.880 ↑ No
2 60261103 0.100 96.400 0.732 51.100 -45.300 ↓ Yes 0.755 52.100 -44.300 ↓ Yes
3 56914715 0.490 84.750 0.490 84.750 0.000→ No 0.154 95.880 11.130 ↑ No
4 60003876 0.938 50.000 – – – – 0.014 92.100 42.100 ↑ No
5 70428592 0.000 98.100 – – – – 0.494 81.200 -16.900 ↓ Yes
6 40045159 0.441 80.100 0.441 80.100 0.000→ No 0.467 80.400 0.300 ↑ No
7 45378493 0.076 99.000 0.113 98.000 -1.000 ↓ Yes 0.069 99.100 0.100 ↑ No
8 51749207 0.011 99.600 0.011 99.600 0.000→ No 0.013 99.600 0.000→ No
9 58844149 0.485 76.030 0.350 84.210 8.180 ↑ No 0.392 81.910 5.880 ↑ No
10 31880720 0.005 99.900 0.003 99.000 -0.900 ↓ Yes 0.027 99.900 0.000→ No
11 39525358 0.575 92.310 0.575 92.310 0.000→ No 0.527 99.000 6.690 ↑ No
12 31627380 0.643 68.120 0.643 68.120 0.000→ No 0.423 82.580 14.460 ↑ No
13 34673164 0.422 88.890 3.931 77.780 -11.110 ↓ Yes 0.479 88.900 0.010 ↑ No
14 34311586 0.684 66.670 0.679 66.670 0.000→ No 0.680 66.670 0.000→ No
15 48221692 95.283 – 95.283 – 0.000→ No 917.720 – -822.437 ↑ Yes
16 48251943 0.000018446 – 0.000018446 – 0.000→ No 131.660 – -131.660 ↑ Yes
17 48934338 248.703 – 248.703 – 0.000→ No 76.370 – 172.333 ↓ No
18 44164749 0.449 79.210 nan 29.630 -49.580 ↓ Yes nan 29.630 -49.580 ↓ Yes

The highlighted rows indicate the false positives reported by Theia.
improvement % = accuracy (in %) after fix - accuracy (in %) of buggy model (for classification).

improvement = loss after fix - loss of buggy model (for regression).
↑ represents increase percentage, ↓ represents decrease percentage,→ represents no change, and – indicates the model not supported yet.

Table 11. Comparison of Bugs Localized by Theia and NeuraLint Across Different Bug Categories.

Bug Categories Total Bugs Theia NeuraLint
LLM 35 33 11
CNL 5 4 1
ICL 5 5 –
IDN 5 5 –
LOB 4 4 –
INF 3 3 3
MRD 2 1 –
INN 1 0 –
IDS 1 1 1
MNL 1 1 –
IFL 1 0 –
IBS 0 0 –

Other 12 – –

6 THREATS TO VALIDITY
External Threat: We meticulously selected 105 posts from the dataset provided by [58] to understand the
mapping between different types of bugs and dataset characteristics used in these posts to fix the bug. To enhance
the generalizability of our research for future work, we propose incorporating additional sources, such as GitHub,
to validate the applicability of the proposed approach across a broader range of real-world use cases. Additionally,
the design of our verification rules was influenced by insights from the literature [41, 43, 56, 65–67, 69, 70, 77, 85],
which could impact the generalizability of the study. To mitigate potential biases, we utilize the defect4ML
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benchmark, which comprises 100 buggy DL programs collected from Stack Overflow and GitHub, encompassing
various bug categories. This benchmark serves as a reliable means to evaluate our proposed methodology. We
acknowledge that the conclusions drawn from this study provide an initial exploration of the bug categories
and the challenges DL developers face in addressing these issues. To evaluate our approach, we considered
“Recommended Fix from SO” as ground truth. To mitigate the bias due to the selection of the fixes as the ground
truth, we applied the patch/fix to the buggy models and evaluated the model’s performance before and after the
fix. Also, to mitigate the bias due to randomness in DNN models, we ran each program three times and compared
the average accuracy of both the buggy and repaired programs. We observed that these patches improved the
performance of all the 40 models.
Internal Threat: We were primarily concerned about the implementation of our verification rules. Each

rule requires to exact different layers of the model in sequence. To mitigate this threat, after designing and
implementing Theia, the authors carefully reviewed the code to reduce the chances of errors. We evaluate our
approach, Theia on 40 buggy DL programs. We considered “Recommended Fix from SO” as ground truth to
evaluate our approach. As Theia detects some bugs that were not specified in the ground truth, we need to verify
the bugs reported are not false positive. To mitigate this threat, we verified the correctness of these bugs. Two
authors independently examined the output generated by Theia. They fixed the bugs using the actionable fixes
reported by Theia and checked the accuracy before and after the fix. If the model’s performance is improved, the
reported bugs are not considered false positives.

7 RELATED WORK

7.1 Empirical study on Deep Learning Bugs
In recent years, several empirical studies have investigated types of bugs in DL programs [58, 61, 90]. These
studies have examined the symptoms and root causes of the deep learning bugs using the Stack Overflow posts
and GitHub commits. Zhang et al. [90] have studied the TensorFlow program bugs and identified 4 symptoms
and 7 root causes for these bugs. Meanwhile, Islam et al. [61] studied real-world bugs in programs based on five
deep-learning libraries Caffe, Keras, Tensorflow , Theano, and PyTorch, and identified 5 types of bugs and 10 root
causes for these bugs. They have also studied the impacts of these bugs on DL programs. Another study was
conducted by Islam et al. [62] to understand the bug fix patterns in DL programs and the challenges and risks
involved in fixing them. The study finds that bug localization and fixing is very difficult in DL programs as fixing
one bug may introduce new bugs in the code. Humbatova et al. [58] has provided a taxonomy of real faults in
Deep Learning Systems. The faults are divided into 5 broad categories. Their study states that the faults in Model
and Training categories mostly lead to performance-related issues. whereas faults in the other three categories
”GPU Usage”, ”API” and ”Tensors and Inputs” leads to a crash. Cao et al. [45] conducted the first comprehensive
study to characterize performance problems in the Deep learning systems designed using TensorFlow and Keras.
However, this work focused on the impact of time and resources (e.g., GPU memory and power), whereas our
work emphasizes localizing the structural bugs in FCNN and CNN models by analyzing the characteristics of
datasets in real-world models written in PyTorch and Keras.

7.2 Fault localization for Deep Learning Programs
Due to the reliability on a lot of hyperparameters, the bugs in DL programs are different from the traditional
software programs. As the traditional fault localization techniques cannot be applied directly to DL programs
which drew the researcher’s attention to develop new techniques for fault localization in DL programs. Therefore,
various approaches have been proposed in the past for automatically detecting, localizing, and repairing DL
program bugs. Nikanjam et al. [76] proposed NeuraLint, a static analysis approach for automatic fault detection
in deep learning programs. NeuraLint identifies the root cause of the bug based on pre-defined verification rules
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and also provides a message suggesting how to fix the bug. Although NeuraLint can detect bugs in FCNN models
and is also capable of detecting bugs specific to CNN architecture, the goals of NeuraLint and Theia are the same.
However, Theia considers the characteristics of the training dataset to automatically detect bugs, which allows
it to outperform NeuraLint by detecting more structural bugs. Schoop et al. [81] proposed UMLAUT, which
debugs DL programs using program structure and model behavior. Eniser et al. [49] proposed DeepFault, which
identifies suspicious neurons for fault localization in DL programs. Wardat et al. [88] propose DeepLocalize, a
dynamic fault localization technique for DL programs. DeepDiagnosis [87] is another dynamic fault localization
technique that detects various symptoms during training and provides actionable fixes. A learning-based fault
diagnosis and localization approach DeepFD is proposed by Cao et al. [46] which maps fault localization tasks to
a learning problem. Braiek et al. [42] proposed a property-based debugging approach that detects bugs in three
phases, i.e., pre-training, during training, and post-fitting. Although [42, 46, 49, 81, 87, 88] can detect bugs in
DL programs, however, these approaches do not support CNN-architecture-specific bugs. Ghanbari et al. [53]
proposed a mutation-based fault localization approach for DL programs in which the mutants of pre-trained
model are created to detect the bugs in DL programs. Despite supporting faults related to CNN architecture, such
as strides and filters in the convolution layer, it discovers bugs post-training. In contrast to these dynamic fault
localization approaches, our approach, Theia, works at the beginning of the training process and identifies the
inappropriate configurations that results in faulty behavior during training. This makes Theia significantly faster
than these approaches.

8 CONCLUSIONS AND FUTURE WORK
We propose an approach, named Theia, to automatically detect 12 structural bugs in DL programs designed using
two deep learning libraries, Keras and PyTorch. We considered the characteristics of the training dataset and
defined verification rules to localize them. Theia utilizes these rules to detect the bugs, localize them, and alert the
developer with an informative message containing actionable fixes in buggy DL programs. The bug’s location and
descriptive message help the developer easily locate the bug and improve the structure of the DL program. Theia
performs bug localization at the beginning of the training process, thereby saving the time and computational
resources of the developer. Theia outperforms state-of-the-art NeuraLint by localizing and suggesting the correct
fixes for 57/75 buggy programs in our benchmark. In the future, we plan to expand Theia to support other
architectures like RNNs.

9 DATA AVAILABILITY
The benchmark consisting of 40 buggy DL programs obtained from Stack Overflow, files associated with our
manual labeling process, and source code of Theia are available in this repository [72] which allows other
researchers to reproduce the results for future research.
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