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1. INTRODUCTION

The programming models of aspect-oriented (AO) languages [Kiczales et al. 1997] in the
style of AspectJ [Kiczales et al. 2001], support the aspects as a separate module constructs
distinct from the class, and advice as a procedural abstraction mechanism distinct from
the method. Aspects are promoted as, and have demonstrated to some extent the ability
to modularize concerns that cut across traditional abstraction boundaries [Sabbah 2004;
Colyer and Clement 2004]. Other languages that explicitly make such distinctions include
AspectC++ [Spinczyk et al. 2002], AspectR [Bryant and Feldt 2002], AspectWerkz [Bonér
2004], AspectS [Hirschfeld 2003], Caesar [Mezini and Ostermann 2003], and others.

The work described in this article is based on an idea described in the paper entitled “Classpects: Unifying
Aspect- and Object-Oriented Language Design,” published in the Proceedings of the 27th International Confer-
ence on Software Engineering (May 2005) and in the paper entitled “Eos: Instance-level Aspects for Integrated
System Design,” published in the Proceedings of the 2003 Joint European Software Engineering Conference and
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These syntactic distinctions have influenced software development activities beyond just
programming, in so far as they encourage a sharp conceptual separation of world into tra-
ditional and crosscutting modules.

The problem that we identify and address in this paper is an unnecessary lack of orthog-
onality, compositionality, and conceptual integrity in the design of this class of languages,
due to the distinctions between class and aspect modules, and between methods and ad-
vice. By conceptual integrity we refer to the notion promoted by Brooks [Brooks 1995],
that “conceptual integrity is the most important consideration in system design. It is better
to have a system omit certain anomalous features and improvements, but to reflect one set
of design ideas, than to have one that contains many good but independent and uncoordi-
nated ideas.”

The contribution of this work is a new language model that solves these problem to a
significant degree with a novel module construct that unifies classes and aspects, and meth-
ods and advice. We call this construct the classpect. Classpects improve orthogonality and
conceptual integrity by replacing separate but closely related constructs with a straightfor-
ward, unified construct. They improve compositionality by enabling better separation of
integration and higher-order concerns.

The rest of this paper is organized as follows. The next two sections explain our moti-
vation for, and describe, our approach. Sections 4 and 5 report on our tests to validate our
claims. Section 4 discusses validation of the claim that classpects improve the separation
of integration concerns. Section 5 presents our data in support of the claim that our lan-
guage design improves the separation of higher-order concerns. Section 6 and 7 discuss
related work and conclude.

2. NON-ORTHOGONALITY AND ASYMMETRY

In this section,with respect to three principles of programming language design proposed
by MacLennan [MacLennan 1986], we reexamine one of the most fundamental decisions
made early in the design of AspectJ [Kiczales et al. 2001]: to support separate but closely
related class and aspect module constructs. The orthogonality principle suggests that “in-
dependent functions should be controlled by independent mechanisms.” The regularity
principle suggests that “regular rules, without exceptions are easier to learn, use, describe,
and implement.” The simplicity principle suggests that “a language should be as sim-
ple as possible and there should be a minimum number of concepts with simple rules for
their combination.” In what follows, we analyze the design of the class of AspectJ-like
languages with respect to these criteria, taking AspectJ as the most prominent and well-
developed exemplar of this class.

AspectJ is an extension of Java [Gosling et al. 1996]. The central goal of this language
is to enable the modular representation of crosscutting concerns, including the representa-
tion of concerns conceived after the initial system design. Programs in these languages are
typically developed in two phases [Sullivan et al. 2005]. Concerns that can be modular-
ized using traditional object-oriented modularization techniques are expressed as classes.
Concerns that crosscut traditional module boundaries are subsequently expressed as aspect
modules that advise these so called base modules.

AspectJ adds five key constructs to the object-oriented model: join points, pointcuts,
advice, inter-type declarations, and aspects. Such an aspect modifies the state space and
the behavior of a program before, after, or around certain selected execution events (join
ACM Journal Name, Vol. V, No. N, April 2008.
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1 aspect Tracing {
2 pointcut tracedExecution(): execution(* *(..)) && !within(Tracing);
3 before(): tracedExecution() { /* Trace the methods */ }
4 }

Fig. 1. A Simple Example Aspect

points) exposed to such modification by the semantics of the programming language. Fig-
ure 1 presents a simple example. The Tracing aspect performs a tracing action imme-
diately before any join point selected by the pointcut tracedExecution. The pointcut
(line 2) is a predicate that selects a subset of join points for such modification — here,
execution of any method outside the Tracing aspect. The advice (line 3) is a special, im-
plicitly invoked, method-like construct that effects such a modification at each join point
selected by the designated pointcut descriptor. An inter-type declaration (not shown here)
statically introduces members such as fields or methods in other types. The aspect (lines
1-4) is a class-like module that uses these constructs to modify behaviors defined elsewhere
in a software system.

2.1 Aspects and Classes

The motivation for the unification of aspects and classes rests on two observations1. First,
separating classes and aspects reduces the conceptual integrity of the programming model,
arguably making it harder in the long run for programmers to understand and use AOP.
Second, the asymmetry of classes and aspects complicates system composition, and as we
show, can actually harm modularity. Asymmetries occur in two areas. First, while aspects
can advise classes, classes cannot advise aspects, and aspects cannot advise other aspects in
full generality. Second, aspect instances cannot be created or manipulated under program
control in the same ways as class-based objects. In practice, these asymmetries constrain
the architectural styles realizable using advising as an invocation mechanism. For example,
hierarchical layering of aspects is difficult at best.

  
 (a) Non-orthogonal and asymmetric class and aspect       (b) Non-orthogonal and asymmetric method and advice               
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Fig. 2. Non-Orthogonality and Asymmetry in AO Languages

The root of these asymmetries lies in non-orthogonality of aspects and advice constructs
in AspectJ-like languages. By non-orthogonality we mean that the language design does
not comply with the MacLennan’s orthogonality principle [MacLennan 1986]. These lan-
guages introduce the aspect as a separate abstraction mechanism and advice as a separate
procedural abstraction mechanism. The new aspect construct and old class construct are

1These problems were discussed previously in [Rajan and Sullivan 2003b; 2003a; 2005b]
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non-orthogonal. As presented in Figure 2-a, aspects overlap classes in supporting data ab-
straction and inheritance. They are more expressive than classes in their support for point-
cuts, advice, and inter-type declarations. However, they are less expressive than classes
in that aspect instances are not first class objects. Rather, AspectJ embraces a module-like
semantics of aspect instantiation and advising.

2.2 Aspect Instances are not First-class Objects

An AspectJ aspect is a module-like construct in the following sense. First, that it is (in most
cases) treated as a singleton. Second, aspect instantiation is not under program control.
There is no general-purpose mechanism such as new for aspect instances. Rather, a single
global instance is created by the language runtime on the first reference to an aspect. The
interaction with the rest of the system is static in the sense that an aspect modifies the
behaviors of the classes that it advises, and thus all instances of a given class in a given
system are so modified.

There are mechanisms for associating instances of a given aspect with instances of a
given instance on a case-by-case basis. For example, if an aspect definition includes a
perthis modifier, an instance of the aspect is created for each object. If a pertarget
modifier is used, an instance of the aspect is created for each object that is the target
object of the join points e.g. target object of a call. Similarly, when percflow and
percflowbelow modifiers are used, an aspect instance is created for each control flow.
These mechanisms show that there are use cases where support for aspect instantiation
is needed. However, current language design is contrary to the MacLennan’s regularity
principle in that the supporting mechanisms are limited and ad hoc.

In a nutshell, aspect instances are thus not first-class in two different ways. First, pro-
grams cannot manage their creation explicitly. Rather the language runtime manages as-
pect instantiation. Second, aspects cannot generally advise individual object instances.
Rather, instance-level advising has to be emulated by class-level advice, complicating pro-
gram design. This emulation can have significant costs in program design complexity and
runtime performance.

Every instance of an advised class in a system has to pay such a performance penalty,
even if the intention is to advise only some objects of that class. Furthermore, the cost
imposed on each instance, as we will show, increases with the number of aspects that
advise this class. Such a structure is not scalable in general. For example, in the case of
generic classes such as collection classes, instances of which are used in many different
ways throughout a system, such a situation is likely to be unacceptable.

To understand the source of the performance penalty and to explore possible optimiza-
tion techniques that can be applied, consider a typical AO compilation strategy as presented
in Figure 3. This strategy is used by the current compilers for AspectJ language. Imple-
mentation mechanisms have changed slightly in newer releases, e.g. recent releases operate
at the byte code level instead of source code level, but basic strategy remains the same in
that a call to advice is statically inserted at the join point.

The aspect is translated to an object-oriented class. The advice in the aspect is translated
to a method with an automatically generated name. The advice invocation is implemented
by statically inserting a method call to the generated method at the join point. Reflective
information about the join point is also constructed, if necessary. The runtime construction
of reflective information and the method invocation are the primary sources of the perfor-
mance penalties for individual objects. These costs are incurred at join points whether or
ACM Journal Name, Vol. V, No. N, April 2008.
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public class Trace{
public static Trace aspectInstance;
static Trace(){
aspectInstance = new Trace();

}
public static Trace AspectOf(){
return Trace.aspectInstance;

}
public static bool HasAspect(){
return Trace.aspectInstance!=null;

}
public void advice__0(){//Advice
/* ... */

}
}

class Sensor{
boolean Signal;
public void Detect(){

Signal = true;
/** Invoking an after advice **/
Trace.aspectInstance.advice__0();
}

}

Fig. 3. A Typical Underlying Representation of an Aspect (left) and an After Advice Invocation (right)

not that object need to be advised. As we will discuss below, emulating selective instance-
level advising would require a further lookup cost to determine whether an object is subject
to advising. This cost is generally incurred on the advice side.

A clever compiler implementation might be able to optimize away some of these over-
heads in the same vein as Aotani and Masuhara [Aotani and Masuhara 2007] were able to
optimize some conditional pointcuts that can be statically evaluated. Additional optimiza-
tion strategies based on dynamic analysis are also applicable. For example, a compiler
implementation that switches implementation strategies based on the nature of advising
relationships in the system by looking at its execution profile may be able to provide the
right implementation for the advising scenario.

Two possible optimization strategies seem possible: first, a compiler may collect the ex-
ecution trace of the system beforehand and optimize the advising relationships according to
the trace. Second, a compiler may add additional infrastructure to dynamically monitor and
switch the implementation as needed at runtime. The first optimization strategy will incur
a one-time cost of profiling the system. In this case, however, if the actual system behavior
deviates from the profile some optimizations might have to be revisited in the light of the
new execution profile. The second optimization strategy will incur a time and space over-
head for including the monitoring infrastructure, for monitoring the program execution,
and for switching the implementation strategy. Its not clear how such optimizations would
perform. At a minimum they would significantly complicate language implementation.

Note that the design decision made by initial AspectJ language designers to commit to
a non-object-oriented, namely static module-based, view of aspects may have been justi-
fied at the time. However, abandoning the key idea in object-oriented programming that
running systems are composed of object instances, has real opportunity costs.

2.3 Advice and Methods

The advice and method constructs are also non-orthogonal and asymmetric. As shown
in Figure 2-b, advice and method both support procedural abstraction. Advice is more ex-
pressive than method. It can quantify, i.e. it can use pointcuts to bind to join points [Filman
and Friedman 2000]. Advice in other dimensions is less expressive than method. They are
anonymous therefore it is not possible to distinguish between two advice constructs in a
pointcut expression, instead the pointcut descriptor adviceexecution selects all ad-
vice constructs in a program. Note that pointcuts use lexical pattern matching on names to
select join points. As a result, although an advice can advise methods with fine selectivity,

ACM Journal Name, Vol. V, No. N, April 2008.



6 · Rajan and Sullivan

they can select advice bodies to advise only in coarse-grained ways. The granularity of
selection is limited to all advice constructs in an aspect 2.

One may argue that splitting advice into two parts, a delegating advice and a method,
copying the original advice body into the method body, and replacing the advice body
with the call to the new method will solve the problem. In limited cases, it does work;
however, for a large class of advice constructs, namely around advice that use proceed
and before and after advice that use reflective information this approach doesn’t work and
more complicated workarounds are needed. We will revisit this workaround again in detail
in Section 5. Furthermore, this workaround suggests a natural separation between advice
bodies (what) from advice declaration (when). As we will describe in the next section, this
intuition plays a significant role in our unification of advice and method.

This restriction that advice bodies can be selected for advising only in coarse-grained
ways constrains application of advising as an invocation mechanism to two-layered struc-
tures. Here, methods at the bottom level are being advised by advices at top level. It also
results in the lack of full aspect-aspect compositionality in the language model.

The lack of full aspect-aspect compositionality precludes use of advising as an invoca-
tion mechanism in a range of architectural styles including layered, hierarchical, and net-
worked systems [Garlan and Shaw 1993]. Rajan and Sullivan [Rajan and Sullivan 2005b]
have previously presented a case study of hierarchical architectures in which connectors
integrate two or more components, and another level of connector treats two or more con-
nectors as components. Another case study is discussed in Section 5. Both case studies
demonstrate the restrictive compositionality. Sullivan and Notkin showed that such re-
quirements are useful in designing systems for ease of evolution [Sullivan and Notkin
1990; 1992]. The inability to support such styles without workarounds–and the tacit con-
straints to two-layered designs, restricts natural use of aspect technology for separating
concerns in a fully compositional style.

The next section describes the unified language design in which advising emerges as a
general alternative to overriding or method invocation. There are two basic requirements
for a unified, more compositional model.

—A new model should preserve the capabilities of AspectJ. This constraint rules out the
use of languages with much more limited join point and pointcut models.

—A unified design should be based on a single unit of modularity (whereas AspectJ-
like languages have both aspect and class), first-class notion of instances, and a sin-
gle method construct for procedural abstraction (whereas AspectJ has both method and
advice).

3. A UNIFIED LANGUAGE MODEL

In this section, we describe the design and implementation of a programming language
model that unifies classes and aspects into a new module construct that we call classpects.
We also present the design and implementation of a programming language Eos that sup-
ports classpect. Eos is an extension of C#. Similar extensions for Java are also possible.
The underpinnings of the language design include:

—support for instantiation under program control,

2A pointcut such as adviceexecution()&& within(TypePattern) will suffice for such selection.
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—instance-level advising,
—advising as a general alternative to method invocation and overriding, and
—the provision of a separate join-point-method binding construct.

3.1 Unifying Aspect and Classes

Eos unifies aspect- and object-oriented language design in three ways (See Figure 4-a).

—It unifies aspects and classes. A classpect supports: all C# class constructs, all essential
capabilities of AspectJ aspects, and extensions to make aspect instances first-class.

—It eliminates advice in favor of using methods only, with a separate and explicit join-
point-method binding construct.

—It supports a generalized advising model. To the object-oriented mechanisms of
method invocation and overriding based on inheritance, we add implicit invocation using
before and after bindings, and overriding using around bindings, respectively.

A classpect is declared using the keyword class for backward compatibility, i.e all C#
classes are legal classpects.

         
(a) Unifying aspect and class as classpect         (b) Unifying method and advice, binding as distinct construct 

 

           Classpect 
 
  ▪ Instantiation 
  ▪ Interact at object-level 
  ▪ Method 
  ▪ Field 
  ▪ Pointcut 
  ▪ Introduction 
  ▪ Binding 
 

 Method 
▪ Quantifiable 
 

 
 
    Advice 
▪ Quantification 

        Binding 
    ▪ Quantification 

 

 

 
Procedural 
abstraction 
 

           Method 
▪ Quantifiable 
▪ Procedural abstraction 
 
 

Fig. 4. A Unified Aspect Language Model

The unification proposed in this work also breaks the commitment to the static, module-
based semantics of aspects. It provides a more general instantiation model in which
classpects can be instantiated just like OO classes using the operator new. Classpects
may also provide constructors like classes.

3.2 Binding Declarations

Eos eliminates anonymous advice in favor of named methods. It also makes join-point-
method bindings separate and abstract, in a style similar to the event-method binding con-
structs of implicit invocation systems [Garlan and Notkin 1991; Sullivan and Notkin 1990;
1992]. Eos separates what we call crosscut specifications from advice bodies, which are
now just methods, as presented in Figure 4-b. A binding declaration defines both a pointcut
and when given advice should run: before, after or around. This separation allows one to
reason separately about binding issues and to change them independently; and it supports
advice abstraction, overloading, and inheritance based on the existing rules for methods.

The grammar production, 〈bdecl〉 (Figure 5) presents the binding declaration. A binding
declaration has four parts. The first, optional modifier static, specifies whether a bind-
ing is static. The default modifier value is nonstatic, i.e. a binding only affects join points
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〈bdecl〉 ::= [static] before 〈pointcut〉 : 〈handler〉 ;
| [static] after 〈pointcut〉 : 〈handler〉 ;
| [static] 〈type〉 around 〈pointcut〉 : 〈handler〉 ;

〈handler〉 ::= 〈identifier〉 ( 〈form〉* )

Fig. 5. Syntax of the Eos Binding Declaration in BNF, [] represent optional

of selected object instances. Rajan and Sullivan have called it instance-level advising [Ra-
jan and Sullivan 2003a]. A static binding affects all instances of advised classes. The
second part of a binding (after/before/around) states when the advising method
executes: after, before, or around. The third part, pointcut, selects the join points at
which an advising method executes. These join points are called subjects of the binding.
The final part 〈handler〉 specifies an advising method. The advising method is called han-
dler of the binding. If several methods are to execute at the join points selected by the
binding, the handler could call a sequence of other methods in its body.

A binding can also pass reflective information about the join point to the methods in-
voked, by binding method parameters to reflective information using the AspectJ pointcut
designators such as this, target, args, etc in a standard fashion. The handler meth-
ods have to follow certain rules. First, a handler method must be in the lexical scope of
a binding. Second, a handler bound before or after a join point can have only void as a
return type. Third, a handler bound around a join point must have a return type that is
a subtype of the return type at the join point. For example, if the handler Foo is bound
around the execution join point execution(public int *.Bar()), then it must
return int. These design decisions are made to preserve the underlying language semantics
for method calls. The methods may produce return value only when there is an explicitly
specified consumer.

1 /* Advice */
2 before():execution(Sensor.detect()){
3 ...
4 }

1 /* Binding */
2 before():execution(Sensor.detect()):
3 beforeDetect();
4 /* Method Equivalent to Advice Body*/
5 void beforeDetect(){ ... }

Fig. 6. An AspectJ Advice and an Equivalent Eos Binding Declaration

The listing in Figure 6 presents an advice construct as it would appear in current as-
pect languages and the equivalent method binding in Eos. The advice executes before
the join point execution(Sensor.detect()). The binding separates the advice
body from the crosscut specification. The advice body becomes the body of the method
beforeDetect. The crosscut specification becomes part of the binding (top right).

3.3 Around Bindings

An around advice in AspectJ is executed instead of a join point, and can invoke the join
point using proceed. In essence, the around advice overrides the join point, with calls to
proceed being analogous to delegating calls to super. In Eos, a method bound around
is also executed instead of the join point. Unifying around advice and methods poses a
question: whether to allow proceed in all methods. Allowing proceed in methods that
are bound around but not in other methods introduces a special case. We instead choose
ACM Journal Name, Vol. V, No. N, April 2008.
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to make inner join point invocations explicit in an object-oriented style, which eliminates
this special case making the language design more orthogonal.

In Eos, if an around-bound method might need to call the overridden join point, it
takes an argument of type AroundADP. This type represents a delegate chain includ-
ing the original join point and other around method bindings, and it provides a method
called innerInvoke to invoke the next element in the delegate chain. The argument to
the method is bound to the delegate chain at the join point using the pointcut designator
aroundptr (line 6 in Figure 7). Note that C# programmers are already familiar with the
notion of delegates as it has been part of the language since its inception. AroundADP is
a type of delegate. Therefore, it does not add any new concept. There has been discussion
about adding closures to Java and C#, which will further simplify the language design.

1 void cache (Eos.Runtime.AroundADP d){
2 if( /* need to invoke inner join point */)
3 d.innerInvoke();
4 }
5 static void around execution(public void SomeClass.someMethod())
6 && aroundptr(d): cache(Eos.Runtime.AroundADP d);

Fig. 7. A Method Bound Around

The binding (lines 5-6) binds the method cache around the execution of
SomeClass.someMethod and exposes the around delegate chain at the join point us-
ing the pointcut expression aroundptr(d), which binds the reference to the delegate
chain to the argument d of the method cache (lines 1-4). The method cache can invoke
the inner delegate in the chain by invoking the method innerInvoke on d (line 3).

A limitation of our current language implementation is that the return type of the method
innerInvoke is object, precluding static type checking. This method’s return type
could be statically set to the common subtype of the overridden join points using generics.

3.4 New Pointcut Designators

To pass reflective information at a join point to a bound method, a binding uses
AspectJ-like pointcut designators args, target and this. In AspectJ-like languages,
three special variables are visible within the bodies of advice: thisJoinPoint,
thisJoinPointStaticPart, and thisEnclosingJoinPointStaticPart.
These variables can be used to explicitly marshal reflective information at a join
point. For example, to access the return value at a join point, one calls the method
getReturnValue on the variable thisJoinPoint.

Unifying advice and methods poses another question: whether to allow these special
variables in all methods. Allowing these variables in methods that are bound before, after
or around, but not in other methods introduces a special case. Eos removes this special case
by requiring that the all required reflective information about the join point is explicitly
supplied. The method arguments are bound to the required reflective information in the
binding construct using pointcut designators.

The pointcut designators in the original Eos are incomplete for this purpose, in that
not all the information available at join points is exposed. Other information, marshaled
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earlier from the three special variables, might be needed. For example, to access the re-
turn value at a join point, one calls the method getReturnValue on the implicit ar-
gument. Eos adds new pointcut designators to fill the gap. For example, the pointcut
designator return exposes the return value at the join point. The pointcut designator
joinpoint exposes all information about the join point by exposing an object of type
Eos.Runtime.JoinPoint. These designators allow previously implicit arguments to
advice to be passed as explicit arguments to the method bound at the join points.

Eos fulfills the requirements laid out for a unified model. There is one unit of modularity,
classpect, and one mechanism for procedural abstraction, method. All of the essential ex-
pressiveness of AspectJ-like languages is present in Eos, along with the extensions needed
for aspect instances to work as first-class objects, as they must in a unified model. In ad-
dition, join-point-to-method bindings are separate, orthogonal, abstract interface elements
in Eos. Eos thus does appear to achieve a novel unity of design in the programming model
with respect to the family of AspectJ-like languages.

3.5 Additional Power of Overriding

In AspectJ-like languages, there are two different ways to override a method: by object-
oriented inheritance and by AO around advice. A consequence of replacing advice bodies
with methods is that methods that serve as advice can be overridden in either of these ways.
These mechanisms differ fundamentally, and in a way consistent with the nature of AOP:
not in their effect on runtime behavior, but rather on the design structure.

Consider two analogies. In object-oriented systems that support implicit invoca-
tion [Garlan and Notkin 1991], there are two ways for an invoker to invoke an invokee:
explicit call or implicit invocation. The runtime result is the same, but the design-time
structures are different. Having both mechanisms gives the designer the flexibility to shape
the static structure independently of the runtime invocation structure. Inter-type declara-
tions in AspectJ-like languages provide a similar capability for class state and behavior.
They allow a third-party aspect to change the members of a class without the involvement
of the class itself. The runtime effects are again the same, but the resulting architectural
properties are different. Supporting inheritance and around advising as two mechanisms
for overriding methods that serve as advice bodies provides just such architectural flexibil-
ity with respect to advice overriding. Object-oriented overriding demands an inheritance
relation; AO around advising does not [Rajan and Sullivan 2005b].

3.6 Static vs. Non-Static Binding

A binding can be static or nonstatic. The (static binding, method) pair is equivalent to
AspectJ advice. The nonstatic binding allows selective instance-level advising. Figure 8
provides an example usage of these constructs. Lines 2-4 in the left and right columns show
an example of static and nonstatic binding respectively. The only syntactic difference is
that the static binding construct is declared by putting the modifier static before it. The
effect of static binding is to execute the method trace after the execution of the method
detect for all sensor instances.

As the output at the bottom of the left column in the figure shows, after every call to the
method detect the trace method prints the line Before detect on the console. On
the other hand, the effect of nonstatic binding is to execute the method trace after the
execution of the method detect for sensor instances selected for advising. As the output
at the bottom of the right column in the figure shows, in case of nonstatic binding, the trace
ACM Journal Name, Vol. V, No. N, April 2008.
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1 class Trace{
2 static before execution(
3 public void Sensor.detect()):
4 trace();
5 public void trace(){
6 Console.WriteLine("Before detect");
7 }
8 public static void Main(..){
9 Sensor s1 = new Sensor();

10 Sensor s2 = new Sensor();
11 Sensor s3 = new Sensor();
12 Console.WriteLine("Setting Sensor 1");
13 s1.detect();
14 Console.WriteLine("Setting Sensor 2");
15 s2.detect();
16 Console.WriteLine("Setting Sensor 3");
17 s3.detect();
18 }
19 }
Output (All detect calls are traced):
Setting Sensor 1
Before detect
Setting Sensor 2
Before detect
Setting Sensor 3
Before detect

1 class SelectiveTrace{
2 before execution(
3 public void Sensor.detect()):
4 trace();
5 public void trace(){
6 Console.WriteLine("Before detect");
7 }
8 public SelectiveTrace(Sensor s){
9 addObject(s);

10 }
11 public static void Main(..){
12 Sensor s1 = new Sensor();
13 Sensor s2 = new Sensor();
14 Sensor s3 = new Sensor();
15 SelectiveTrace t = new SelectiveTrace(s1);
16 Console.WriteLine("Setting Sensor 1");
17 s1.detect();
18 Console.WriteLine("Setting Sensor 2");
19 s2.detect();
20 Console.WriteLine("Setting Sensor 3");
21 s3.detect();
22 }
23 }
Output (Selective detect calls traced):
Setting Sensor 1
Before detect
Setting Sensor 2
Setting Sensor 3

Fig. 8. Example Bindings: Static (left) and nonstatic (right): output presented in gray

method prints the line Before detect only when the method detect is called on
sensor instance s1. Here the sensor instance s1 is selected for advising by the classpect
SelectiveTrace. The static binding has the usual semantics of AspectJ advice, in the
rest of this subsection we will look at the semantics of nonstatic binding in more detail.

A classpect provides the ability to selectively advise object instances via nonstatic bind-
ings and new for instantiation. An aspect, on the other hand advises a class and thus all
objects of that class and does not provide a general mechanism for instantiation. Here the
classpect SelectiveTrace binds the method trace to execute before the execution of
the method Sensor.detect using a binding. The Eos compiler implementation reads
the absence of static modifier as a hint to allow instance-level weaving. The Eos com-
piler delays binding of join point to methods until runtime. At compile time, it attaches
event stubs at the matched join points, and generates implicit methods addObject and
removeObject methods in the classpect SelectiveTrace to enable runtime regis-
tration and deregistration. In the next section, we will provide more detail.

The effect of calling addObject with an object as argument is to register all
bound methods to be implicitly invoked. These bound methods are invoked at join
points matched by the pointcut expression declared in bindings. In Figure 8, right col-
umn, calling addObject on line 9 registers trace to execute before the join point
execution(public void Sensor.detect()). As a result, when the detect
method is called on s1, the bound method trace is called on t before the execution of
actual join point. The method removeObject deregisters all bound methods from all
matched join points for that classpect instance.
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3.7 Weaving of Static and Non-Static Bindings

The Eos compiler performs source-leve weaving to process the bindings and to generate
appropriate stubs. In the rest of this subsection, we will discuss this process for both kinds
of bindings. We will use the example described in the previous section to illustrate it. Note
that this is just one realization of the unified model. Other implementations such as in a
virtual machine [Dyer and Rajan 2008] are also possible.

For classpects containing only static bindings, the weaving process is the same as the
AspectJ aspects as presented earlier in Figure 3. The Eos compiler inserts a static instance,
a static constructor to initialize this instance, a method to retrieve this static instance and
a method to check if the classpect contains any bindings. The compiler also inserts a call
to the handler method for the static bindings at the join points. The handler methods are
invoked on the static instance of the classpect. As a result, the Eos implementation does not
incur any additional space and time overhead due to the weaving process when compared
to the AspectJ implementation for the static binding case.

Figure 9 shows the compiler-generated code for Sensor and SelectiveTrace
classpects. Note that SelectiveTrace uses nonstatic binding. The additional code
inserted by compiler is marked. Two synthetic methods are added to a classpect containing
nonstatic bindings, e.g. addObject on lines 18–28 and removeObject on lines 29–37
in the classpect SelectiveTrace in Figure 9.

1 class Sensor{
2 boolean signal;
3 public void detect(){
4 if(ADP_Detect!=null)
5 ADP_Detect.Invoke();
6 Signal = true;
7 }
8 public Eos.Runtime.ADP ADP_Detect;
9 }

10 using Eos.Runtime;
11 class SelectiveTrace{
12 public void trace(){
13 Console.WriteLine("Before ...");
14 }
15 public static void Main(String[] args){
16 ...
17 }

18 public void addObject(object obj){
19 if(obj == null)return;
20 /* An alternative is to use a polymorphic
21 implementation of addObject */
22 if(obj is Sensor){
23 Sensor cobj = ((Sensor)(obj));
24 cobj.ADP_Detect = ADP.Combine(
25 cobj.ADP_Detect,
26 ADP.Create( this,"trace"));
27 }
28 }
29 public void removeObject(object obj){
30 if(obj == null)return;
31 if(obj is Sensor){
32 Sensor cobj = ((Sensor)(obj));
33 cobj.ADP_Detect = ADP.Remove(
34 cobj.ADP_Detect,
35 ADP.Create( this,"trace"));
36 }
37 }
38 }

Fig. 9. Underlying implementation of selective trace: compiler-generated code presented in gray

For each join point that is the subject of any nonstatic binding in the system, a syn-
thetic field of type Eos.Runtime.ADP (line 8) is inserted in the classpect. The type
Eos.Runtime.ADP is an Eos specific implementation of the .NET delegates. The syn-
thetic field is named to avoid conflicts. Here, the field ADP_Detect3 is inserted in the
Sensor corresponding to the join point “before the execution of the detect method”. For

3For presentation purposes the original name of the field ADP_Eos_before_execution_detect is short-
ened to ADP_Detect.
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each (join point, binding) pair such that the join point is a subject of the binding, a delega-
tee corresponding to the handler of the binding is added to this field. The location of the
join point is instrumented to invoke this delegate, if it is not null(left column).

The generated method addObject takes an instance of type object as argument.
The selective weaving process is applied to this instance. The addObject method first
checks if the supplied instance is null. If it is null the method returns immediately. An
if statement block is generated in the method addObject for each type that contains
any subject join points for a nonstatic binding in the classpect. The if statement block
checks if the argument obj matches any subject type, and casts it into a properly typed
object accordingly. An alternative is to generate customized addObject methods for
each subject type.

Here, the only subject join point is “execution of the method Detect” and it is con-
tained in the classpect Sensor, hence only one if statement block is generated for type
Sensor. After casting, a delegatee for the method trace is created by calling the
operation Create of the runtime type Eos.Runtime.ADP. The operation Create
takes an instance and a method name as argument and creates a delegate to call the
named method on the supplied instance. The delegate is then combined with the dele-
gate ADP_Detect of the Sensor instance cobj using the operation Combine of the
runtime type Eos.Runtime.ADP. The operation Combine takes two delegate instances
and combines their delegate chains such that the delegates in the chain of the second del-
egate instance are appended at the end of the delegate chain of the first delegate instance.
Duplicates are not eliminated. The method removeObject works similarly.

In our implementation strategy, for a nonstatic binding, every instance of an advised
classpect incurs a constant time overhead of a simple null check to determine if it is being
advised. This overhead is very small compared to the cost of an advice invocation in case
of the workaround. Only those instances that are actually advised by calling addObject
invoke the delegate chain to run the handler methods. The space overhead for each instance
of a classpect is an additional field of type Eos.Runtime.ADP corresponding to each
subject join point in the classpect. The space overhead for classpects that also have bind-
ings are two additional methods addObject and removeObject. The implementation
strategy illustrates that in usecases where there is a need to emulate AspectJ-like aspects,
a nonstatic binding can be used without incurring any additional overhead with respect to
the AspectJ implementation. In usecases where there is a need to selectively advise object
instances, nonstatic bindings can be used. The only additional overhead for every advised
instance is a null check. These overheads are analyzed in detail in the next subsection.

3.8 Performance Analysis of Static vs. Non-Static Bindings

The provision of static and nonstatic bindings naturally leads to the question: When should
a static binding be used as opposed to nonstatic binding?. This subsection analyzes the sys-
tem structures and their fit, performance-wise, with either of these two levels of granularity
of bindings, and offers guidelines for organizing bindings. In this analysis, relevant factors
are total number of instances of a class and the subset of these instances that are affected by
a binding. Let us assume that a set of instances of a classpectCi isNi and a set of instances
of classpects Ci that are affected by a binding Bj is Mij . The fraction of the instances of
class Ci being affected by binding Bj is |Mij |

|Ni| , where |Ni| denotes the cardinality of the
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set Ni and |Mij | denotes the cardinality of the set Mij . Depending on the value of this
fraction, different implementation strategies are warranted.

Consider the following five cases:

(1) |Mij |
|Ni| = 1,

(2) |Mij |
|Ni| → 1,

(3) 1− δ > |Mij |
|Ni| > δ, where δ → 0,

(4) |Mij |
|Ni| → 0,

(5) |Mij |
|Ni| = 0.

For the first case, the fraction is one (i.e., the total number of instances of the class is
equal to the number of instances that should be advised). These bindings should always be
static. For the bindings in the fifth partition, the fraction is zero (i.e., no instance is being
affected). For the second, third, and fourth case, the fraction is between 0 and 1 (i.e., some
instances are being affected). In the second case, the fraction tends to 1, in other words
nearly all instances are being affected but not all. In the fourth case, the fraction tends to
0, which means that a very small fraction is being affected.

Ideally, bindings in the second, third, and fourth cases need to be nonstatic or in other
words these bindings should be selective instance-level. If the language does not support
selective instance-level bindings, it can be implemented in at least two different ways. In
the first implementation strategy, the method bound by Bj keeps a list of instances (Mij)
being advised and then looks up the invoking instance in that list. This implementation
strategy will incur lookup overhead and method invocation overhead. Let us assume the
method invocation overhead to be Oinvoke and the constant lookup overhead of looking up
an instance in the list of instance (Mij) to beOlookup(assuming an O(1) lookup algorithm).
Total overhead of this implementation technique is:∑

j

∑
∀i(where|Mij |>0)((|Ni| − |Mij |) ∗Oinvoke + |Ni| ∗Olookup).

This overhead has two parts: the overhead incurred by each instance that should not be
affected by the binding and the overhead of looking up an instance to determine whether
it should be affected by the binding. The second part of the overhead is constant. For
the second case, the first part of this overhead is not significant, whereas for bindings in
the fourth partition, the first part of the overhead is significant. For bindings in the third
partition, as the fraction of instances affected decreases, this overhead will increase. It
might be possible, however, for a language implementation to employ static or dynamic
analysis techniques such as profiling to optimize these overheads as previously discussed.

In the second implementation technique, an object instance will keep a list of bindings
affecting it and invoke all bound methods in the list one by one or depending on some
precedence. There is no lookup overhead in this case; however, a zero check will be nec-
essary to determine whether the list is empty. This condition check will only be necessary
for the join points that are potentially affected by the binding. Let us assume constant
overhead of this condition check is Ozero. The total overhead in this case will be:∑

∀i∃j(|Mij |>0) |Ni| ∗Ozero.
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Given that Ozero � Olookup the overhead in first case will be significantly larger than
second case. The Eos compiler implements the second technique (to achieve minimal
overhead) without introducing design dependence.

3.9 Summary

In this section, we showed that the unification of aspects and classes in a language design
is possible. The unification brings conceptual unity to the programming model. In the new
language design, aspect-like constructs support all of the capabilities of classes-notably
new. Classes support AO advising as a generalized alternative to traditional invocation
and overriding. Supporting the new operator eliminates the need for the irregular per* con-
structs from the language design. The anonymous, asymmetric, and non-orthogonal advice
was replaced in favor of methods as the sole mechanism for procedural abstraction. The
asymmetric and non-orthogonal aspects were eliminated and quantified binding surfaced
as the central notion of AOP.

We presented the design and implementation of Eos, an extension of C# that embodies
the unification. In Eos, classpects are the basic unit of modularity. The classpect instances
are first class in all respects: they can be created at will, passed as parameters, returned
as values, etc. Besides OO method invocation, classpects also offer AO method-join point
binding as a generalized invocation mechanism.

4. SEPARATION OF INTEGRATION CONCERNS

Component integration creates value by automating the costly and error-prone task of
imposing desired behavioral relationships on components manually. A problem is that
straightforward software design techniques map integration requirements to scattered and
tangled code, compromising modularity in ways that dramatically increases development
and maintenance costs. This section presents the first data point in the overall evaluation of
our approach. It validates the claim that the unified model improves the separation of inte-
gration concerns. It compares the implementation of a simple but representative integration
scenario using AspectJ and Eos.

This section is organized as follows. First, we present a representative example system
and its simple object-oriented implementation. The latter demonstrates that component in-
tegration is indeed fragmented, scattered, and tangled with the component code. Secondly,
we briefly describe mediator-based design style [Sullivan and Notkin 1992] to separate in-
tegration concerns and present the implementation of our representative system using this
technique. This design style largely modularizes integration concerns, but leaves event
declarations, announcements, and registrations scattered and tangled, which suggests that
AO languages could be a good candidate to fully modularize this concern. Finally, we
discuss and analyze AO implementations of our example system using AspectJ and the
unified model of Eos and compare these two versions to verify the claim that the unified
model improves modularization of integration concerns.

4.1 A Running Example

A simple but representative example system is shown in Figure 10. This system has com-
ponents of two types: sensors (black boxes) and cameras (grey boxes). There are two
sensors s1, s2, and two cameras c1 and c2 in the system. These components are required
to behave together such that whenever sensor s1 detects a signal, the cameras c1 and c2
take a picture and whenever sensor s2 detects a signal only camera c2 takes a picture.
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s1:Sensor

s2:Sensor

c1: Camera

c2: Camera

sc1: SC

sc2: SC

sc3: SC

Fig. 10. Sensor System and a Simple Object-oriented Design

Furthermore, when the cameras are done taking pictures, a flag in corresponding sensor
is reset so that it can sense again. These relationships coordinate the control, actions, and
states of subsets of system components to satisfy overall system requirements. They are
also called behavioral relationships [Sullivan and Notkin 1992].

From here on, we will use the terms behavioral relationship and integration concern
interchangeably. The behavioral relationship “whenever a sensor detects a signal, the cam-
era takes a picture” is also called the sensor-camera integration concern. Figure 10 shows
the behavioral relationships between components as double-headed arrows. The integra-
tion relationship between a sensor and a camera is labeled SC and shown as a grey arrow.
There are three instances of this relationship SC, sc1 between sensor s1 and camera c1,
sc2 between sensor s1 and camera c2, and sc3 between sensor s2 and camera c2.

This example system is a representative of a broad class of systems called integrated sys-
tems. An integrated system is one in which logically unrelated objects, such as compilers,
editors, debuggers, or any other kinds of discrete components must interact dynamically to
meet system-level requirements (e.g., that the editor must automatically open the right file
and scroll to the right line when the debugger encounters a breakpoint). The key ideas that
this example demonstrates are, first, a component type may be integrated using more than
one kind of integration relationship, and second, an instance of a component might partici-
pate in more than one instance of any given kind of relationship. The next subsection looks
at a simple implementation of this system using object-oriented programming techniques.

4.2 Simple Object-Oriented Integration

In this implementation strategy, components are represented as instances of object-oriented
classes. Figure 10 (right) shows classes implementing sensor and camera components.
Realizing desired behavioral relationships between components requires sensors, and
cameras to keep track of the other component instances with which they are integrated.
One way to do so is to keep a list of other component instances with which a given com-
ponent is integrated. As shown in Figure 10, the sensor class keeps a list of cameras
with which it is integrated and vice-versa, thereby referring to these components.

Components to observe the desired behavior will need to invoke each other, which will
be achieved by calling each other and thus there will a name dependence between these
components resulting in coupling and preventing their separate compilation, link, test, use,
etc. For example, in Figure 10, sensor s1 will invoke camera camera c1, c2 and s2
will invoke camera c2 to take pictures. Cameras, when done taking pictures, will invoke
respective sensors to reset them. Figure 11 shows the object-oriented implementation of
the class Sensor to make the points concrete.

In this implementation, the code that implements the sensor-camera integration concern
is scattered across the sensor and the camera implementation. Let us assume that the sensor
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class Sensor{
boolean signal;
// Sensor-Camera Integration Concern
List cameraList = new LinkedList();
public void addCamera(Camera camera){
cameraList.add(camera);
}

public void invokeCameraClick(){
Iterator iter = CameraList.iterator();
while (iter.hasNext())
((Camera)iter.next()).click();
}

boolean sense = true;
public void detect(){
if ( sense ) {/*Recursion Guard*/
sense = false;
signal = true;
if(cameraList.iterator().hasNext())
invokeCameraClick();
}

}
public void reset(){ sense = true; }
}

Fig. 11. Scattered and tangled integration concerns in OO implementation of sensor - the integration concern
is marked in gray. In this figure a simple reset mechanism is added to prevent mutually recursive calls between
detect and click. From here onwards, we will elide this mechanism.

component was also integrated with another component type (say display). The code that
would have implemented the sensor-display integration would also have been scattered
across sensor and the display components. Moreover, this code would have been tangled
with the sensor concern and the sensor-camera integration concern in the method detect
of the class Sensor.

4.3 Mediator-Based Design

The fragmented, scattered, and tangled integration code increases the probability of faulty
software due to inconsistencies and leads to costly time-consuming development mak-
ing software evolution hard. The mediator-based design style [Sullivan and Notkin 1990;
1992] was introduced to ease the design and evolution of integrated systems. As previously
described, integrated systems are a very broad class of systems in which objects have to
work together to achieve system objectives. This design style advocates structuring de-
signs as behavioral entity relationships (ER) models and preserving the modular structure
of these designs in programs. The key idea is to modularize behavioral relationships or in-
tegration concerns as separate mediator modules. An implementation of the sensor-camera
system using this design style is described and analyzed in this subsection.

Fig. 12. Mediator-based Design of the System

The programming solution using the mediator approach involves two ideas. First, the
entities and relationships are now represented as abstract behavioral types (ABTs) instead
of abstract data types (ADTs) [Liskov and Zilles 1974], as in OO languages. The abstract
behavioral type is an extension of the abstract data type (ADT). ADTs define abstractions
in terms of method interfaces; ABTs, in contrast, also include explicitly exported events.
An ADT defines a class of objects in terms of operations that can be applied to an object
of that class. An ABT defines a class of objects in terms of the operations that can be
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class Sensor{
boolean signal;
List dList = new LinkedList();
public void registerDetect
(Mediator mediator){
dList.add(mediator);
}

public void invokeAfterDetect(){
Iterator iter = dList.iterator();
while (iter.hasNext())
((Mediator)iter.next()).onDetect();
}
public void detect() {
signal = true;
if(dList.iterator().hasNext())
invokeAfterDetect();
}

}

class SenCamMediator implements Mediator {
Sensor s; Camera c;
public SenCamMediator(Sensor s, Camera c){
this.s = s; this.c = c;
}
s.registerDetect(this);
c.registerClick(this);
}
public void onDetect(){c.click();}
public void onClick(){s.reset();}

}

Fig. 13. Scattered Event Code in Mediator-Based Implementation (shown in gray)

applied to an object of that class and in terms of events that such an object can announce.
Announcing an event invokes (meta-level) operations implemented by other objects that
have registered to receive such events from a given object. For example, consider a simple
ABT Sensor, which provides operation to convey detection of a signal. Apart from this
operation, the SensorABT also defines an event Detected that is announced whenever
any Sensor instance detects a signal.

Second, entities and relationships are mapped to corresponding ABT-based objects in a
way that would avoid crosscutting implementations of behavioral relationships. For exam-
ple, the behavioral integration relationship Sensor-Camera, will be modeled as a separate
ABT, SenCamMediator. An instance, sc1, of this ABT SenCamMediator will reg-
ister with events announced by sensor s1 and camera c1. When sensor s1 announces
the event Detected, the mediator sc1 will invoke the method click on c1. On the
other hand, when camera c1 announces the event Clicked, the mediator sc1will invoke
the method reset on s1. Other behavioral relationships will be modeled similarly. The
integration concern is thus largely modularized in the SenCamMediator.

At the source code level, in a mediator-based implementation of the sensor system (see
Figure 13), components are represented as instances of object-oriented classes Sensor
and Camera. The classes representing components expose events as well as methods
in their interfaces. Objects announce events to notify registered mediators of occur-
rences. The behavioral relationships between component instances are represented as in-
stances of separate classes, called mediators. Mediator instances function as observers
that effect component integration upon notification. Here the sensor-camera integration
concern is represented as the SenCamMediator mediator. A SenCamMediator in-
stance would maintain references (s, c) to Sensor and Camera instances to be inte-
grated; implement method onDetect and onClick that explicitly invokes c.click
and s.reset respectively; and, registers onDetect and onClick to be implicitly in-
voked by s.Detected and c.Clicked events.

Now when the sensor detects a signal, the mediators respond by clicking the cameras and
vice versa. Yet the representations of the sensor and camera are not statically tied to each
other or to the mediator. The sensor and camera components also remain uncomplicated
by integration code and the behavioral relationships are largely modularized. Behavioral
integration is thus reconciled with component independence, resulting in a modular struc-
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ture that supports the independent implementation, testing, use, and evolution of the sensor
and camera components, and easier evolution of the now separately abstracted integrating
behavioral relationship.

However, at least one problem remains. Components to be integrated have to declare
and announce events sufficient to meet the needs of observing mediators. There is thus
design dependence between components and mediators, even though there is no naming
dependence: Component designers have to be aware of requirements for event notifications
imposed by extant or admitted mediator types; and unanticipated changes in that set can
require changes in mediated component types. Filman and Friedmann would argue that the
components are not oblivious to mediators [Filman and Friedman 2004]. These changes
may not even be possible to controlled source code or to components in a third party
supplied library. Kiczales would argue that the behavioral relationships are not entirely
modularized, insofar as the required event code has to be produced and maintained by the
component developers [Kiczales et al. 1997]. Moreover, the event declaration, announce-
ment and registration code is fragmented, scattered, and tangled with the component code
as shown in the Figure 13. Thus, adding a new behavioral relationship and corresponding
mediator class can require changes to multiple component classes–in the worst case, across
a whole system.

Aspect-oriented programming (AOP) has emerged to address precisely the problem of
scattered and tangled concerns. A crucial difference between the mediator-based design
style and AOP is in the underlying event model. The mediator approach assumes ex-
plicit event declaration, announcement, and registration. On the other hand, in the aspect-
oriented programming model, language semantics makes a subset of events in program
execution available as implicitly declared join points. Pointcut expressions are provided to
register with a set of these implicit join points.

Aspects lead to an idea for improving mediator-based design: implement mediators as
aspects, and use join points and pointcuts in place of explicit events. The solution for our
example simultaneously preserves the name independence of the components being inte-
grated by providing a mechanism that enables one component to invoke another without
naming it and eliminates the need for fragmented, scattered, and tangled event concern.
Sullivan et al. [Sullivan et al. 2002] investigated the mapping of mediators to aspects in
AspectJ-like languages. They showed that mediators can be implemented as aspects in
current AspectJ-like languages, with one caveat. Most current, major aspect languages,
including AspectJ and HyperJ, suffer from two shortcomings with respect to the mediator
style. First, aspects are essentially global modules, rather than class-like constructs sup-
porting first-class instances under program control. Second, aspects advise entire classes,
not object instances. The next subsection summarizes and significantly extends the results
presented there.

4.4 Mediators as Aspects

In the Mediator-based design style, behavioral relationships between component instances
are represented as instances of separate classes, informally called mediators. These medi-
ator instances then register selectively with component instances to receive event notifica-
tions. From the description of the design style, two feature requirements emerge for any
abstraction that is used to represent mediators. First, it should have instantiation capabili-
ties. Second, it should be able to create associations selectively with component instances.
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class Sensor{
boolean signal;
public void detect() {
signal = true;
}

/* reset mechanism elided */
}
class Camera{
boolean clicked;
public void click(){
clicked = true;
}

}
class SCMediator implements Mediator {
Sensor s; Camera c;
public SCMediator(Sensor s, Camera c){
this.s = s; this.c = c;
}

public void onDetect(){ c.click(); }
public void onClick(){ s.reset(); }
}

aspect SenCamMediatorModule {
static WeakHashMap map;
static{map = new WeakHashMap();}
public void connect(Sensor s, Camera c){
SCMediator sc =
new SCMediator(s, c);
map.put(sc, s); map.put(sc, c);

}
before():execution(void Sensor.detect()){
Sensor s = (Sensor)
thisJoinPoint.getThis();
SCMediator sc =
(SCMediator)map.get(s);
if(sc!= null)sc.onDetect();

}
before():execution(void Camera.click()){
Camera c = (Camera)
thisJoinPoint.getThis();
SCMediator sc =
(SCMediator)Map.get(c);
if(sc!= null) sc.onClick();
}

}

Fig. 14. An AO Implementation: Emulating Instance-level advising using Hashmaps

These two requirements translate to two key features in the AO world – the ability to arbi-
trarily instantiate aspects and the ability to selectively advise object instances.

Unfortunately, most major current aspect-languages lack these features. A survey of a
subset of AO languages and approaches is presented in Section 6. The survey showed that
the combination of features required for mediator-based design style is not present in any
of the extant languages and approaches.

The mediator approach requires instance-level weaving and first-class aspect instances
because it requires that each type of behavioral relationship be represented as a media-
tor class, with class instances representing relationship instances. Moreover, the class in-
stances register with the events of the instances to be integrated. Recall, for example, that
in our sensor system we have three instances of the SenCamMediator, one connecting
the sensor s1 to the camera instance c1, second connecting the sensor s1 to the cam-
era instance c2 and the third connecting the sensor s2 to the camera instance c2. Each
SenCamMediator instance registers with the detected event of the sensor instance, and
with the clicked event of its particular camera instance.

Mediators cannot be mapped directly to aspect instances in AspectJ-like languages be-
cause aspects cannot be instantiated in a general way, nor can they selectively advise in-
stances of other classes. Work-arounds are possible in AspectJ, but even the best ones
known incur unnecessary, non-negligible costs in performance or design complexity. The
next subsection looks at two such work-arounds.

4.5 Work-Arounds and Their Costs

There are at least two basic work-arounds consistent with the use of aspects as behavioral
relationship modules. In both cases, behavioral relationship types are mapped to aspect
modules programmed to simulate first-class aspect instances and instance-level advising.

To simulate instances, the aspect provides methods to create, delete, and manipulate
instances implemented as records. The difference is in the simulation of instance-level
advising. In the first approach shown in Figure 14, the aspect advises relevant join points
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Fig. 15. Runtime Object Structure for an Aspect-based implementation (left) and Performance Curve for AspectJ,
HyperJ, and Mediator-Based Design (right)

class Sensor{
boolean signal;
public void detect() {

signal = true;
}

/* reset mechanism elided */
}

class Camera{
boolean clicked;
public void click(){

clicked = true;
}

}
class SCMediator implements Mediator {

Sensor s; Camera c;
public SCMediator(Sensor s, Camera c){

this.s = s; this.c = c;
s.registerDetect(this);
c.registerClick(this);
}

public void onDetect(){ c.click(); }
public void onClick(){ s.reset(); }
}

aspect SensorExtension{
introduce in Sensor {
List dList = new LinkedList();
public void registerDetect(Mediator mediator){
dList.add(mediator);
}

public void invokeAfterDetect(){
Iterator iter = dList.iterator();
while (iter.hasNext())
((Mediator)iter.next()).onDetect();
}
}

}
after(Sensor s):
execution(public void Sensor.detect())
&&this(s){
s.invokeAfterDetect();

}
}
aspect CameraExtension{
/* Similar to SensorExtension introduce

the list MediatorListClick, the method
RegisterClick for mediators to register,
and the method InvokeAfterClick for
advice to invoke mediators.*/

}

Fig. 16. Alternative AO Implementation: Emulating Instance-level advising using Introductions

of the classes whose instances are to be integrated. All instances invoke the aspect at each
such join point. The aspect maintains tables recording the identities of objects to be treated
as advised instances. When the aspect is invoked, it looks up the invoker to see if it is
such an instance. If so, the aspect delegates control to a simulated advice method, if not it
returns immediately (See Figure 15 (left)).

This work-around works in the sense that it both modularizes the behavioral relationship
code, data, and invokes relations, and relieves the developer of having to work with explicit
events. However, the approach is less than ideal for several reasons. First, it is awkward
to have to simulate instances in an otherwise object-oriented language. Second, such pro-
grams are actually harder to understand: the aspects read as advising classes, when, in
fact the intent is to advise instances. Third, the approach adds unnecessary design com-
plexity and thus cost and undependability with simulation implementations. Fourth, the
workaround adds runtime overhead in two dimensions. In particular, at each join point,
each instance of an advised class has to invoke each advising aspect, if only to have it re-
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turn upon failing the check for a simulated advised instance. The sensor instance marked
with unnecessary invocation in Figure 15 (left) is one such instance.

To understand the performance impact of the work-around, we did a study of the penal-
ties associated with implementing mediators using AspectJ and HyperJ. The HyperJ imple-
mentation is not discussed here but described in detail elsewhere [Rajan 2005]. Figure 15
(right) presents the results. The X-axis shows the number of different mediators or as-
pects that advise the Detected event of the simple Sensor type. The Y-axis shows
the normalized execution time of invoking the detect member function 108 times aver-
aged over 15 runs. The normalization factor was the absolute execution time in the case
of a single integration relationship. These experiments were conducted on Sunfire v210
workstation with Dual 1.0 GHz UltraSparc IIIi and 2GB RAM. The cost per invocation
clearly rises, as expected, with the number of aspects advising the type–and will do so
for every instance of the type. The advice code in this case did nothing but return im-
mediately. Having additional code in the advice will affect the study in two ways. First,
the fraction (overhead-time / advice-execution-time) will decrease if the advice-execution
time increases. Second, additional lookup code will have to be added to execute the advice
only when required. Note that the results presented here represent the state of the imple-
mentation of AspectJ and HyperJ compilers and not of the language model. Also note that
it might be possible for the compiler implementation to optimize some of these overheads
but no compiler implementation as of this writing appears to provide these optimizations,
nor is it entirely clear that effective optimization is even technically f easible.

By contrast, as the chart shows, a mediator style of integration using plain Java imposes
a very small, constant overhead. Event code needs to be present in the class Sensor to
notify registered mediators, but if none are registered, the cost is constant, a single zero
check, to see if any mediators are registered to be invoked. A slightly larger cost is paid
only for mediators registered with specific object instances. It does not matter how many
mediator types might advise a given object, but only how many mediator instances actually
do so. It does not matter how many join points are advisable.

There are situations in which the cost of this work-around might be unacceptable. An
example would be the case of a mediator implemented as an aspect that has to respond to
insertions on just one instance of a widely used, basic List class. It would be unreasonable,
and is unscalable, for all clients of all instances of List to have to pay a price for one,
isolated client.

The second work-around uses AspectJ-like introductions to extend the classes to be
integrated with explicit event interfaces and code (See Figure 16). The aspect also advises
the join point at which the event is to be announced. The advice announces the event.
The objects registered are not themselves aspects but ordinary mediators. The effect is
to implement a traditional mediator design, but with explicit events modularized with the
mediators that need them.

This work-around works, too, achieving integration without loss of modularity. It re-
lieves the component developer of having to anticipate the events that mediators might
need. In that sense, it arguably improves on the original mediator style; however, it also in-
curs the performance overhead of the first work-around. The additional advice call, which
in turn calls invokeAfterDetect, is made for all sensor instances. Finally, the ap-
proach has two other problems. First, it does not really implement mediators as aspects
at all, but only modularizes the explicit events that mediators need. It misses the point:
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we want to use join points rather than explicit events to invoke mediators. Having join
points invoke advice that announce events that invoke mediators is at best a complex, rel-
atively costly approach, using redundant mechanisms (events, join points). Second, if
several mediators need to respond to the same event, each introduces its own event code
and interface–bloating the code–rather than using the same event or join point.

4.6 The Conceptual Gap

In his famous 1968 letter to the editors of the Communications of the ACM, Go To State-
ment Considered Harmful [Dijkstra 1968], Edsger Dijkstra wrote:

We should do . . . our utmost to shorten the conceptual gap between the static
program and the dynamic process, to make the correspondence between the
program (spread out in text space) and the process (spread out in time) as
trivial as possible.

Dijkstra’s argument in the context of conceptual gap between code and runtime struc-
ture is equally applicable to the mapping between specification and runtime structure. In
essence, Dijkstra argues that the runtime conceptual model of the system should in fact
be very close to any static model of the system including its specification. MacLennan’s
structure principle [MacLennan 1986] of programming language design similarly suggests
that “the static structure of the program should correspond in a simple way to the dynamic
structure of the corresponding computations”.

Figure 19 (top) shows the ideal object structure and Figure 19 (bottom-right) shows the
actual AO-mapping from specification of the sensor system to its runtime structure. The
conceptual model of the system at runtime is far removed from that at specification time in
two significant ways: first, instances of the behavioral relationships in the specification are
represented by one global aspect-instance at runtime, and second, associations between
component instances and behavioral relationship instances are mangled in the runtime
structure. The gap between these two models leads to unnecessarily hard to understand
programs, as well as design time complexity. This conceptual gap can be traced back to
the static module-based view of aspects.

To recall, Eos unifies aspects and classes in favor of a more compositional block of
program design, namely classpects. Like classes, classpects are first class (i.e. they can
be instantiated). Similar to aspects, classpects can advise using bindings. In addition
to advising at the type-level, classpects can also selectively advise instances. Eos has a
rich join point model and expressive pointcut language. These features promise to fill the
gap in the realization of the mediator-based design style using AOP techniques. The next
subsection shows the implementation of the sensor system in Eos.

4.7 Mediator as Classpects

Figure 17 shows the implementation of Sensor-Camera integration concern using
classpects. The implementations of Sensor and Camera components are elided for pre-
sentation. The implementations of these concerns, however, remain unchanged, separate
from the implementation of the integration concerns and from each other. A modulariza-
tion of component concerns is thus achieved in this implementation.

Mediator is declared as classpect using the keyword class (line 1). The implicit
method addObject is used on line 5 to selectively advise objects s and c.
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1 class SenCamMediator{
2 Sensor s; Camera c;
3 public SenCamMediator(Sensor s, Camera c){
4 this.s = s; this.c = c;
5 addObject(s); addObject(c);
6 }
7 after():execution(public void Sensor.detect()):onDetect();
8 public void onDetect(){c.click();}
9 after():execution(public void Camera.click()):onClick();

10 public void onClick(){s.reset();}
11 }

Fig. 17. Classpect-Based Implementation of the Integration Concern

1 public static void Main(string[] arg){

3 Sensor s1 = new Sensor();
4 Sensor s2 = new Sensor();
5 Camera c1 = new Camera();
6 Camera c2 = new Camera();
7 ...
8 SenCamMediator sc1 = new SenCamMediator(s1,c1);
9 SenCamMediator sc2 = new SenCamMediator(s1, c2);

10 SenCamMediator sc3 = new SenCamMediator(s2, c2);
11 ...
12 }

Fig. 18. Modular Composition of Components and Connectors

The classpect SenCamMediator declares two nonstatic bindings (lines 7 and 9). To
recall, nonstatic bindings allow selective advising of object instances. The first binding on
line 7 binds the method onDetect to execute after the execution of the method detect
in Sensor. The second binding on line 9 is similar. The methods onDetect and
onClick in the classpect SenCamMediator encapsulate the integration logic. The
solution therefore achieves modularization of integration logic. The join point/pointcut
model of AO languages is used instead of explicit event declaration, announcement, and
registration code modularizing the scattered and tangled event concern as well. This solu-
tion thus achieves a complete modularization of the integration concern.

Due to selective instance-level advising, the method onDetect is only invoked when
the method detect is called on sensor instance s. Unlike type-based aspect implementa-
tion shown in Figure 14 and 16, there is no need to maintain a hash-table in the classpect-
based implementation to emulate instance-level advising resulting in a significant decrease
in code complexity. There are no unnecessary invocations so the implementation does not
exhibit performance overheads such as those shown in Figure 15.

The sensor system is now composed naturally with component and connector instances
as shown in Figure 18. The main routine constructs component instances and connector
instances and connects component instances using connector instances.

The runtime structure of the system shown in Figure 19 (bottom-right) now mirrors the
specification of the system, eliminating the conceptual gap between the static program
structure and dynamic program structure. The behavioral relationships that were hidden
until runtime by the instance-emulation and instance-level weaving emulation code are
now explicit in the design and the implementation. In summary, the integration using
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Fig. 19. Runtime Object Structure for Aspect (bottom-left) and Classpect Based (bottom-right) Implementations
of the Sensor Camera System (top)

classpects achieves a natural mapping from specification and design to implementation
without resorting to unnecessary design complexity and performance overhead.

Fig. 20. Increasing overhead with number of integration relationships in the system, left: AspectJ, HyperJ, and
plain Java implementation of Mediator, right: Eos static bindings and Eos instance-level bindings

We measured the performance of selective instance-level bindings using the benchmarks
described in Section 4.5. The slight complication in the comparison due to differences in
host languages (Java, C#) was resolved by comparing only the normalized execution time
as discussed previously. We substituted type-level Eos bindings for AspectJ aspects for this
comparison. Figure 20 (right) shows that Eos type-level bindings replicate the degrading
performance of AspectJ aspects, while Eos selective instance-level bindings indeed exhibit
the constant overhead of mediator-based designs.

Figure 21 shows the side-by-side SeeSoft view of all implementations of the sensor-
camera integration concern discussed so far. The first, second, third, and fourth columns
show the mediator based implementation, the AspectJ first work-around, the AspectJ sec-
ond work-around, and the Eos implementation respectively. The first box in all four
columns shows the implementation of the sensor concern. The second box shows the
implementation of camera concern, and the third box shows the implementation of the
sensor-camera integration concern. As can be observed, in the mediator-based style sensor
and camera concerns are complicated by the event code. The first work-around in AspectJ
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Fig. 21. A Comparative View of Implementations

replaces explicit events with implicit join points, but the additional design complexity to
emulate aspect instantiation and selective weaving complicates the integration concern.
The second work-around emulates mediator-based design, but without modifying the ac-
tual components, bringing back the event code. The Eos version, however, is free of both
explicit event-related code and additional design complexity. The length of the columns
also suggests that the Eos implementation is shorter compared to other implementations.
Eos clearly achieved a significant improvement in the separation of integration concerns.

4.8 Summary

In this section, we analyzed the ability of type-based aspects to modularize a broad class
of concerns known as integration concerns using a simple but representative example. The
comparative analysis of various possible design structures revealed that for improved mod-
ularization of this class of concerns, the key requirements for aspects are generalized in-
stantiation and ability to selectively advise instances. In the absence of these features,
workarounds are needed that add unnecessary design-time and runtime complexity in de-
sign structures. Usefulness of a classpect-based language design over aspect-based lan-
guage design in improving the modularization of integration concern was manifested in
precisely these dimensions. These capabilities of classpects also enable improved mod-
ularization of behavioral design patterns [Gamma et al. 1995] as shown by our closely
related work [Rajan 2007]. In general, the class of crosscutting concerns where the behav-
ior to be modularized is instance-specific, and/or where a separate copy of the state need
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to be maintained as part of the modularized behavior for each participant in the behavior
or a combination thereof, is likely to benefit from classpects.

5. SEPARATION OF HIGHER-ORDER CONCERNS

AOP is a relatively new paradigm. The adoptability and interest in the current language
models and approaches shows promise. The interest of the developer community makes
it important for researchers to investigate the new technology by applying it to new ap-
plication areas. In the last section, we described separation of integration concerns as
a challenge problem for AspectJ-like languages. The experiments revealed an important
shortcoming largely due to the commitment to have aspects as separate abstraction mech-
anism different from classes. The unified model of Eos significantly improved the mod-
ularization of integration concerns. This section provides the second data point of the
overall evaluation of our approach. It supports the claim that the unified model improves
the modularization of higher-order crosscutting concerns.

   
 
 (a) Layered advising to modularize higher-order concerns   (b) Need for layered advising in the example system 
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Fig. 22. Constructing Hierarchical Systems Using Advising as an Invocation Mechanism

To recap, a concern is a dimension in which a design decision is made and it is cross-
cutting if its realization using prevailing decomposition techniques leads to scattered and
tangled code. A crosscutting concern is higher-order if its realization would be scat-
tered and tangled across the implementations of other crosscutting concerns. For exam-
ple, in Figure 22 (a) the aspect in the top layer modularizes concerns that were scat-
tered and tangled across the second layer of aspects. A simple higher-order concern,
Delayed Propagation is introduced in the next subsection in the context of the Sen-
sor system discussed in Section 4. The rest of the section analyzes the attempts to modu-
larize this simple higher-order concern using prevalent AOP techniques.

5.1 Delayed Propagation Concern

Let us consider an evolution scenario for the sensor system discussed in Sec-
tion 4. A new type of component Display, a new behavioral relationship
sensor-display integration, and a new higher-order crosscutting concern
Delayed Propagation is introduced in the system as shown in Figure 22-b. The
new behavioral relationship requires sensor and display component instances to behave
together such that whenever the sensor instance detects a signal, the display instance is
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updated and vice versa. The implementation of this concern is similar to that of sensor-
camera integration concern discussed in Section 4.

The requirements for the higher-order concern Delayed Propagation dictates that
the system should provide means to control the propagation of behavioral relationships re-
lated updates. Delayed propagation can be switched on or switched off. When the delayed
propagation is turned on, all updates required by the behavioral relationships, to coordi-
nate the control, actions, and states of subsets of system components to satisfy overall
system requirements, are cached until delayed propagation is turned off. Turning off de-
layed propagation causes all cached updates to be flushed to restore the system state and
for the subsequent updates to be handled immediately.

This feature is representative of caching feature commonly found in software systems.
A common use-case is to avoid updating other views of a model, while the user is editing
in one view to avoid screen flickering. For example, in Galileo [Sullivan et al. 1997]
that provides a graphical and a textual view of a fault tree, updates of the graphical view
could be avoided, when the fault-tree model is being edited in the textual view. The next
subsection describes a simple implementation of the delayed propagation concern.

5.2 Simple Realization of the Delayed Propagation Concern

Figure 23 shows a straightforward realization of the delayed propagation concern using
the AspectJ language model. The implementation of this concern crosscuts the aspects
SenCamMediatorModule and SenDispMediatorModule that in turn are them-
selves representations of crosscutting integration concerns. Following three changes are
made to each aspect representing an integration concern. First, a Boolean flag delay and
a mutator/accessor pair are added to each aspect to store and change the state of delayed
propagation. Second, each advice is modified to handle the delayed propagation. If the
delayed propagation flag is false, the advice works normally. If it is true, the advice
caches the update and skips the update.

This implementation strategy results in a scattered and tangled implementation of the de-
layed propagation concern. The integration logic that was well modularized before in ad-
vice constructs is now coupled with the delayed propagation concern. The implementation
also does not provide a single interface to switch delay propagation on/off; instead, delayed
propagation has to be toggled for each mediator. An alternative solution is to extract the
common functionality related to the delayed propagation concern as an abstract aspect.
The concrete aspects SenCamMediatorModule and SenDispMediatorModule
inherit from this abstract aspect. This solution is an advance over the simple solution
in that the common functionality is being reused. However, much of the delayed prop-
agation concern still remains scattered and tangled with the advice constructs in aspects
SenCamMediatorModule and SenDispMediatorModule. AOP aims to solve
precisely this problem. The next subsection analyzes how delayed propagation can be
modularized using aspects.

5.3 Modularizing The Delayed Propagation Concern

An alternative strategy is to implement delayed propagation as an aspect. This as-
pect can provide a single interface to turn delayed propagation on and off. It can
override the execution of the advice constructs in the SenCamMediatorModule and
SenDispMediatorModule aspects using around advice. The around advice will call
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aspect SenCamMediatorModule {
boolean delay; /*Delay concern begin*/
int detectCount = 0;
int clickCount = 0;
public boolean getDelay(){return delay;}
public void setDelay(boolean value){
delay = value;
if(value==false){
for(int i=detectCount; i>0; i++)
// Flush cached detects;
for(int j=clickCount; j>0; j++)
//Flush cached clicks;
} /*Delay concern end*/
...

after():execution(* Sensor.detect()){
if(delay) /* Delay concern */
detectCount++; /*Delay concern*/
else {
...
}

}
after():execution(* Camera.click()){
if(delay)/* Delay concern*/
clickCount++;/* Delay concern*/
else {
...
}

}
}

aspect SenDispMediatorModule {
bool delay; /*Delay concern end*/
int detectCount = 0;
int updateCount = 0;
public boolean getDelay(){return delay;}
public void setDelay(boolean value){
delay = value;
if(value==false){
for(int i=detectCount; i>0; i++)
// Flush cached detects;
for(int j=updateCount; j>0; j++)
//Flush cached updates;
} /*Delay concern end*/
...

after():execution(* Sensor.detect()){
if(delay)/* Delay concern */
detectCount++;/* Delay concern */
else {
...
}

}
after():execution(* Display.update()){
if(delay)/* Delay concern */
updateCount++;/* Delay concern */
else {
...
}

}
}

Fig. 23. Scattered Implementation of the Delayed Propagation Concern (in gray)

proceed if delay is false, so that the updates in the mediators proceed as usual, or else,
cache the updates and omit original join point execution.

This solution approach promises to modularize the scattered and tangled delayed con-
cern. It also satisfies the requirement to provide a single interface to turn delayed propa-
gation on and off. This approach solves the problems of the simple solution discussed in
previous section. The code for delayed propagation is now a separate, modularized, and
reusable aspect. To add or remove this feature from the system, we just need to add or
remove the aspect. The component code is now independent of the integration code. Un-
fortunately, this solution cannot always be easily realized using the AspectJ-like language
model due to a key restriction–while aspects can advise classes in many ways, they can
advise other aspects only in restricted ways.

In the current model, individual advice bodies are anonymous, therefore pointcut ex-
pressions cannot select a subset of them based on their names. The pointcut designa-
tor adviceexecution selects all advice-execution join points in the program. One
can narrow down this selection by composing the adviceexection pointcut with
the within pointcut. For example, the pointcut expression adviceexecution()
&& within(SenCamMediatorModule) selects execution of every advice in the
aspect SenCamMediatorModule (Figure 14). However, to implement delayed
propagation for sensor-camera and sensor-display integration concerns, addressing each
advice in the aspect SenCamMediatorModule and SenDispMediatorModule in-
dependently is necessary. Current model does not allow such fine-grained selection over
advice bodies.

A workaround discussed in Section 2 was to have advice delegate to corresponding as-
pect methods and to advise these methods. The need for such a workaround is an evidence
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of the limitation of the current language design. Moreover, the workaround itself is un-
satisfactory in general. First, it requires either ubiquitous up-front use of the delegation
pattern, or–contrary to the central purpose of aspect-orientation–that scattered changes be
made to aspect modules whenever any of their advice bodies become subject to advising.
Both approaches require source code, which is not always available. Second, delegation
is not entirely straightforward. Advice bodies have to be analyzed to determine whether
or not they use implicitly declared reflective information, such as thisJoinPoint or
implicit constructs, e.g. proceed.

1 void around(): <pointcut> {
2 if(shallProceed)proceed();
3 }

1 void around():<pointcut> {
2 originalAdviceCodeInMethod();
3 }
4 void originalAdviceCodeInMethod(){
5 if(shallProceed) proceed();
6 }

Fig. 24. An Example Around Advice (left), and the Delegation Work-Around Applied to it (right)

Passing all such parameters to the delegate methods incurs additional design-time and
runtime costs and the risks of error. The situation is even more complicated in cases of
around advice bodies, which execute instead of the original join point and which can call
the original join point using proceed. Figure 24 presents an example (left column, lines 1-
4): if shallProceed is true, the original join point is invoked. Applying the workaround
results in the proceed call being moved to a delegatee (right column, lines 4-6). In current
languages, proceed is not allowed in methods bodies. A closure to the proceed ex-
pression will thus have to be passed from the advice body to the delegatee, perhaps using
the worker object pattern of Laddad [Laddad 2003]. The work-around is both complicated
and incurs the need f or scattered changes, undermining the purpose of aspects.

The unified model replaces non-orthogonal and asymmetric aspect and class as well
as advice and method by symmetric classpects, bindings, and methods. We claimed that
this reorganization of language constructs improves the compositionality of the resulting
language model under advising as an invocation mechanism and improves the modulariza-
tion of higher-order concerns. To validate these claims, the next subsection presents the
classpect-based implementation of the delayed propagation concern.

5.4 Delayed Propagation as Classpect

A key advance that the classpect-based implementation of mediators makes over an aspect-
based implementation is that the integration logic is now modularized in a named con-
struct, method. Figure 17 shows the representation of integration logic as normal methods.
These methods can be selected individually using existing pointcut designators and pat-
terns. The refactoring of an advice construct into binding and method thus solves the
problems encountered by the second solution, making the complete modularization of the
delayed propagation concern feasible without work-arounds.

Figure 25 shows the delayed propagation concern as a classpect. The Delay classpect
declares four methods to cache the sensor detects, camera clicks, and display updates.
It binds these methods to the execution of methods in the SenCamMediator and
SenDispMediator. For example, the first binding binds the method cacheDetect
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1 class Delay {
2 static void around execution(SenCamMediator.onDetect())
3 && this(sc) && aroundptr(p): cacheDetect(SenCamMediator sc, AroundADP p)
4 public void cacheDetect(SenCamMediator sc, AroundADP p){
5 if(delay) detectCache.enQueue(sc); /* cache detects */
6 else p.innerInvoke(); /* Equivalent to proceed call */
7 }
8 /* Similarly for SenCamMediator.onClick, SenDispMediator.onUpdate
9 SenDispMediator.onDetect there are separate around

10 bindings and around-bound methods. */
11 ...
12 Queue detectCache; /* A FIFO data structure to model cache */
13 bool delay;
14 public bool Get(){return delay;}
15 public void Set(bool value){
16 delay = value;
17 if(value==false)
18 /* Propagate updates */
19 while(detectCache.next())((SenCamMediator)(detectCache.current())).onDetect();
20 /* Similarly for other cached updates */
21 }
22 }

Fig. 25. Delayed Propagation Concern as a Classpect

to execute around the method SenCamMediator.onDetect. The effect of this bind-
ing is that whenever SenCamMediator.onDetect is called, instead of executing its
body, control is transferred to the method cacheDetect. The method cacheDetect
either caches the call or allows it to proceed as usual. Caching in this simple case, only
keeps track of the SenCamMediator instance in a FIFO queue. When the delayed prop-
agation is turned off each instance is retrieved from the queue and the method onDetect
is called on the mediator instance. This solution can be further optimized by only applying
the updates that do not cancel each other but for simplicity we omit that.

Note that the method SenCamMediator.onDetect is called whenever a Sensor
instance detects a signal, to propagate the change to the Camera instance. So caching
its execution is equivalent to caching the propagation of the sensor-camera integration
concern and replaying its execution is equivalent to flushing all updates, precisely the re-
quirement of the delayed propagation concern. This solution thus shows that classpects
were able to improve the modularization of the higher-order concern without the need for
workarounds. Moreover, the classpect Delay remains amenable to be advised by another
layer of classpects, demonstrating the full compositionality of the unified language model.

5.5 Summary

In this section, we validated the claim that the unified model improves the modulariza-
tion of higher-order concerns. We demonstrated and compared the implementation of a
simple but representative concern using aspects and classpects. The aspect based imple-
mentation required crosscutting use of delegation pattern to expose the right set of join
points. The need for such work-around also demonstrated that in the current language
model aspect-aspect compositionality is restrictive. The classpect-based implementation
was able to modularize the delayed propagation concern completely, showing improve-
ment in the modularization of higher-order concerns and the compositionality of the lan-
guage model. Getting rid of aspect and advice as a separate abstraction mechanism and
including bindings thus opens up new architectural possibilities using advising as an in-
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vocation mechanism. Widespread adoption of AOP has just begun, and we are starting
to see a number of crosscutting concerns. With the continued adoption, it is likely that
more higher-order crosscutting concerns will be discovered that will benefit from the new
architectural possibilities that classpects enable.

6. RELATED WORK

The description of related ideas is categorized along two main themes, unification of as-
pects and classes and techniques that allow instances of be advised selectively.

6.1 Unification of Aspects and Classes

AspectJ [Kiczales et al. 2001], AspectWerkz [Bonér 2004], and Caesar [Mezini and Oster-
mann 2003] are all related to our work. In at least one early version of AspectJ, aspect was
not a separate construct. Rather, the class was extended to support advice. No evidence in-
dicates, however, that those early designs achieved the synthesis of OO and AO techniques
of Eos. Advice bodies and methods were still separate; it is unclear to what extent advice
could be advised at all; and there was no support for flexible aspect instantiation.

AspectWerkz [Bonér 2004] is the design most closely related to our work. The aim of
this project was to provide the expressiveness of AspectJ [Kiczales et al. 2001] without
sacrificing pure Java and the supporting tool infrastructure. The solution is to use normal
Java classes to represent both classes and AspectJ-like aspects, with advice represented
in normal methods, and to separate all join-point-advice bindings either into annotations
in the form of comments, or into separate XML binding files. AspectWerkz provides a
proven solution to the problem of AspectJ-like programming in pure Java, but it does not
achieve the unification that we have pursued. Spring Framework is similar [Johnson and
et al. 2007]. JBoss AOP framework [Khan et al. 2007] is also similar, except that it also
provides capabilities of aspect instantiation.

First, and crucially, these approaches do not support the concept of aspects as objects
under program control; rather they are really an implementation of the AspectJ model. In-
stead, the use of Java classes as aspects is highly constrained so that the runtime system can
maintain control. For example, in AspectWerkz, a class representing an aspect must have
either no constructor or one with one of two predefined signatures, and a method represent-
ing an advice body has one argument of type JoinPoint. AspectWerkz uses this interface to
manage aspect creation and advice invocation. AspectWerkz also lacks a single-language
design, in that it uses both Java and XML binding files. Third, AspectWerkz lacks static
type checking of advice parameters. Rather, reflective information is explicitly marshaled
in advice methods.

The design of Caesar [Mezini and Ostermann 2003] is also closely related to our ap-
proach. The aim of Caesar was to decouple aspect implementation and the aspect binding
with a new feature called an aspect collaboration interface (ACI). By separating these con-
cepts from aspect abstraction, Caesar enables reuse and componentization of aspects. This
approach is similar to ours and to AspectWerkz in that it uses plain Java to represent both
classes and aspects; however, it represents advice using AspectJ like syntax. Methods and
advices are still separate constructs, and advice constructs couples crosscut specifications
with advice bodies. Consequently, as in AspectJ, advice bodies are still not addressable as
individual entities. They can be advised as a group using an advice-execution pointcut. In
Caesar, as in Eos, advice can be bound statically or dynamically; however, aspects in Cae-
sar cannot directly advise individual objects on a selective basis. Previously, we showed
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that both first-class aspect instances and instance-level advising are essential for expressing
integration concerns as aspects [Rajan and Sullivan 2003b; Sullivan et al. 2002].

HyperJ [Tarr et al. 1999; Ossher and Tarr 1999] has one unit of modularity, classes, with
a separate notation for expressing bindings. However, they do not support program control
over aspects as first-class objects, and to date the join point models that they have imple-
mented have been limited mainly to methods [Harrison et al. 2003]. Object team [Her-
rmann 2003], an approach for collaboration-based designs, is related in that they also pro-
vide a separate dimension for decomposing crosscutting functionalities. Object teams are
instatiable collection of roles, unlike hyperslices in HyperJ and aspects in AspectJ, and
similar to classpects. Compared to the unification proposed by our approach, object teams
are separate and distinct entities from classes. Moreover, their join point model is also
limited mainly to methods as pointed out by the author himself [Herrmann 2003].

Tucker and Krisnamurthi [Tucker and Krishnamurthi 2003] consider making both point-
cuts and advice first-class entities in the functional language context. Their approach builds
upon a base language that already provides functions as first-class entities expressing point-
cuts and advices as a function easy. On the other hand, in languages such as Java and C#
functions are not first-class entities making the design of aspect languages difficult.

Suvée et al. [Suvée et al. 2003] in their work JAsCo also raise the question of dynamic
deployment of aspects and propose a solution based on a new concept that they call aspect
beans. Their aspect beans utilize an enhanced component model that provides mecha-
nisms for dynamic component adaptation model that is clearly superior to AspectJ-like
languages. In essence, interesting events in the components are exposed so that aspects
can be deployed against them. JAsCo also allows separate pointcut and advice specifica-
tions grouped inside the hook mechanisms. However, JAsCo still maintains the conceptual
separation between a base and an aspect model and does not address the issues of selective
adaptation of component instances.

Finally, our previous work on unified AO model [Rajan and Sullivan 2005a] and
instance-level aspects [Rajan and Sullivan 2003b; 2003a] forms the basis of this work.
This work significantly expands on the previous work describing the performance trade-
off, interesting compilation techniques, etc. The notion of association aspects developed
by Sakurai et al. [Sakurai et al. 2004] is also related. Association aspects addressed the
limitation of instance-level aspects that they always select by the target object; however,
association aspects also maintain the conceptual distinction between aspects and classes
and therefore share the difficulties of modularizing higher-order concerns with AspectJ.

6.2 Affecting Behaviors of Instances Selectively

The idea to affect behaviors of instances selectively is not new. It has appeared in many
forms including, the observer-pattern based design style in which observers selectively
registers with objects to observe and affect their behavior. Many AO approaches, e.g. As-
pectS [Hirschfeld 2003], Composition Filters [Aksit et al. 1994], AMF [Constantinides
and Elrad 2001], OIF [Filman et al. 2005], and EAOP [Douence and Südholt 2002], that
take a wrapper-based approach, in which messages sent to and from components are inter-
cepted for processing by aspect wrapper objects, also have the ability to selectively affect
behaviors of instances. The wrapper-based approach has appeared in many forms over
the decades: from Common Lisp, to tool integration frameworks. It has been picked up
and given an AOSD interpretation by efforts such as Sina/st [Koopmans 1995] and ility-
insertion [Filman et al. 2005].
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Many such languages are called AO; however, by taking the wrapper-based approaches
they generally give up on the richness of the join point model and limit themselves to
what has been called operational-level composition [Harrison et al. 2003]. They provide
a limited or non-existent pointcut language. Other AspectJ-like languages, such as As-
pectC++ [Gal et al. 2001] and AspectR, on the other hand, do not support first-class aspect
instances and instance-level advising. Languages such as HyperJ [Tarr et al. 1999] and
DJ [Marshall et al. 1999], in which the pointcut concept does not apply, also lack the
instance-level capabilities.

Table I. A Characterization of a Subset of AO Languages and Approaches

Abbreviations for the table
IL: Instance-level aspect weaving FI: First-class Aspect Instances
CL: Call, execution and return join point FS/FG: Field set and get join points

E: Exception handling join points OI: Object initialization join points
M: Messages as join points D: Dynamic deployment
Language IL FI CL FS/FG E OI M D
AspectJ [Kiczales et al. 2001] X X X X
HyperJ [Tarr and Ossher 2000] X
EAOP [Douence and Südholt 2002] X X X X
Composition filter model [Bergmans and Akşit 2005] X X X X X
Aspect Moderator Framework [Constantinides and Elrad
2001]

X X X X

Object Infrastructure Framework [Filman et al. 2005] X X X X X
DJ [Marshall et al. 1999] X
AspectC# [Kim 2002] X
Claw X
AOP# X
AspectR [Bryant and Feldt 2002] X X X X
AspectC++ [Gal et al. 2001] X X
AspectS [Hirschfeld 2003] X X X X
AspectWerkz [Bonér 2004] X X X
JBoss AOP [Khan et al. 2007] X X X X X
Spring Framework [Johnson and et al. 2007] X X
Caesar [Mezini and Ostermann 2003] X X
JAsCo [Suvée et al. 2003] X X X X
CARMA [Gybels and Brichau 2003] X X X X X
Eos [Rajan and Sullivan 2003a] X X X X X X X

As part of this research, a survey of a range of AOP languages was conducted. The
survey showed that none except Eos support first-class aspect instances and generalized
weaving model. The required language should have support for the following:

—Rich join point model: the approach defines join points well beyond function call and
return. Important join points include field get and set, exception and message passing,
and object creation and deletion.

—Expressive pointcut language: the approach permits declarative expression of join points
to be advised by an aspect. The ability to quantify [Filman and Friedman 2004] join
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points across a program is a key enabler of modular representation of far-reaching cross-
cutting concerns, such as call tracing.

—Instance-level weaving: the approach allows advice to be woven with selected object
instances. Instance level weaving is different from runtime aspect weaving. The former
allows the developers to say, Weave this aspect to only these instances of that class,
whereas the later allows them to say either explicitly or implicitly When the control
reaches this point of execution weave this aspect and when it reaches that point unweave
it. An implementation of instance level aspect weaver may provide additional abilities
to dynamically attach and detach aspects from base object at runtime or the ability to
instantiate an aspect but by definition it is not required to do so.

—First-class aspect instances: First-class objects of given aspect types are typically used
to maintain separate aspect state for separately advised objects. The ability to create an
instance of an aspect using a general-purpose mechanism is available.

Table I presents the state of the art in aspect language design as reflected in a broad sur-
vey of extant aspect languages. Rows name languages; columns, features. For languages
such as HyperJ, the table reflects current implementation status, rather than hypothesized
capabilities. The compiler for other languages, such as Sina/St is not available for experi-
mentation. In these cases, the table reflects the language designs as described in published
works. The detailed survey of aspect-languages in Table I show that the combination of
features is indeed non-existent in current AOP languages and approaches.

AspectJ supported instance-level advising, but without first-class aspect instances
through version 0.5. The AspectJ mailing list records discussions on the need for
addObject, with several use cases presented by users. The current form provides con-
structs like per this and per target for associating aspect-instances and object-instances.
These constructs are inadequate. First, per this and per target aspect instances are not un-
der program control but are associated automatically with all instances of advised types,
and each instance is associated with just one other object. AspectJ, to the best of author’s
knowledge, never supported both instance-level advising and first-class aspect instances.
This is the combination needed for an adequate generalization to the instance level.

7. CONCLUSION

The main contribution of this work is a demonstration that it is both possible and useful
to eliminate the conceptual distinction between classes and aspects in AspectJ-like lan-
guages and programming design methods, in favor of a single generalized module con-
struct supporting both class-like and aspect-like composition. Our unification is based on
a reasonably elegant new module construct that we have called the classpect.

This unification is not just a matter of programming mechanism design, however. It
also suggests that we can do without the two-level class/aspect ontology that decomposes
system design in two separate layers and phases: an object-oriented base subject to trans-
formation by subsequently developed aspect modules. This thus also work provides a
way to reconcile the differences between asymmetric and symmetric language models. In
particular, our approach has restored symmetry to the domain of AspectJ-like languages
without fundamentally altering the language model in the way that, for example, HyperJ
does.

To test the potential practicality and utility of our ideas, we have developed, imple-
mented and described a substantial language supporting classpects, a compiler that imple-
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ments the language, and a number of design experiments that support the claims that we
have made for the unification we have proposed. In particular, we showed that separate
aspect and advice are not essential; instead, quantified binding is at the core of AOP.

Several questions remain for future work. Is there merit in exploring language designs
in which bindings, pointcut descriptors, and advices are first-class objects? Does the unifi-
cation we report on here provide a better starting point for developing a better semantics of
aspect languages? How might a classpect-based language be extended to model crosscut
programming interfaces (XPIs) explicitly [Sullivan et al. 2005]? We believe that this XPI
question merits particular attention, and that the Eos language and compiler provide a solid
launching pad for the research needed to answer the question.
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BONÉR, J. 2004. What are the key issues for commercial AOP use: how does AspectWerkz address them? In
AOSD ’04: Proceedings of the 3rd international conference on Aspect-oriented software development. ACM
Press, New York, NY, USA, 5–6.

BROOKS, F. P. 1995. The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary Edition,
Second ed. Addison Wesley, Reading, Mass.

BRYANT, A. AND FELDT, R. 2002. AspectR - simple aspect-oriented programming in Ruby.
COLYER, A. AND CLEMENT, A. 2004. Large-scale AOSD for middleware. In AOSD ’04: Proceedings of the 3rd

international conference on Aspect-oriented software development. ACM Press, New York, NY, USA, 56–65.
CONSTANTINIDES, C. A. AND ELRAD, T. 2001. Composing concerns with a framework approach. In Proc.

Int’l Workshop on Distributed Dynamic Multiservice Architectures (ICDCS-2001), Vol. 2, Z. Choukair, Ed.
IEEE Computer Society, Washington, DC, 133–140.

DIJKSTRA, E. W. 1968. Go to statement considered harmful. Communications of the ACM 11, 3 (Mar.), 147–
148.
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GAL, A., SCHRÖDER-PREIKSCHAT, W., AND SPINCZYK, O. 2001. AspectC++: Language proposal and proto-
type implementation. In Workshop on Advanced Separation of Concerns in Object-Oriented Systems (OOP-
SLA 2001), K. De Volder, M. Glandrup, S. Clarke, and R. Filman, Eds.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design patterns: elements of reusable object-
oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

GARLAN, D. AND NOTKIN, D. 1991. Formalizing design spaces: Implicit invocation mechanisms. In VDM ’91:
Proceedings of the 4th International Symposium of VDM Europe on Formal Software Development-Volume I.
Springer-Verlag, London, UK, 31–44.

GARLAN, D. AND SHAW, M. 1993. An introduction to software architecture. In Advances in Software Engi-
neering and Knowledge Engineering, V. Ambriola and G. Tortora, Eds. Vol. 1. World Scientific Publishing
Company, 1–40.

GOSLING, J., JOY, B., AND STEELE, G. L. 1996. The Java Language Specification. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

GYBELS, K. AND BRICHAU, J. 2003. Arranging language features for more robust pattern-based crosscuts. In
Second International Conference on Aspect-oriented Software Development (AOSD).

HARRISON, W., OSSHER, H., AND TARR, P. 2003. Asymmetrically vs. symmetrically organized paradigms
for software composition. In SPLAT: Software engineering Properties of Languages for Aspect Technologies,
L. Bergmans, J. Brichau, P. Tarr, and E. Ernst, Eds.

HERRMANN, S. 2003. Object teams: Improving modularity for crosscutting collaborations. In NODe ’02:
Revised Papers from the International Conference NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World. Springer-Verlag, London, UK, 248–264.

HIRSCHFELD, R. 2003. AspectS - Aspect-Oriented Programming with Squeak. In NODe ’02: Revised Pa-
pers from the International Conference NetObjectDays on Objects, Components, Architectures, Services, and
Applications for a Networked World. Springer-Verlag, London, UK, 216–232.

JOHNSON, R. AND ET AL. 2007. The spring framework - reference documentation 2.03.
KHAN, K., BURKE, B., RAINONE, F., PEDERSEN, S., FLEURY, M., BROCK, A., HUSSENET, C., AND

CULPEPPER, M. 2007. JBoss AOP reference documentation.
KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRISWOLD, W. G. 2001. An

overview of AspectJ. In ECOOP 2001 — Object-Oriented Programming 15th European Conference, J. L.
Knudsen, Ed. Lecture Notes in Computer Science, vol. 2072. Springer-Verlag, Budapest, Hungary, 327–353.

KICZALES, G., LAMPING, J., LOPES, C. V., MAEDA, C., MENDHEKAR, A., AND MURPHY, G. 1997. Open
implementation design guidelines. In Proceedings of the 19th International Conference on Software Engi-
neering. IEEE, Boston, Massachusetts, 481–90.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C. V., LOINGTIER, J.-M., AND IRWIN,
J. 1997. Aspect-oriented programming. In ECOOP’97: Proceedings of the European Conference on Object-
Oriented Programming. Springer-Verlag, 220–42.

KIM, H. 2002. AspectC#: An aosd implementation for c#. Tech. Rep. TCD-CS-2002-55, Department of Com-
puter Science, Trinity College, Dublin.

KOOPMANS, P. 1995. Sina user’s guide and reference manual. Tech. rep., Dept. of Computer Science, University
of Twente.

LADDAD, R. 2003. AspectJ in Action: Practical Aspect-Oriented Programming. Manning.
LISKOV, B. AND ZILLES, S. 1974. Programming with abstract data types. In Proceedings of the ACM SIGPLAN

symposium on Very high level languages. 50–59.
MACLENNAN, B. J. 1986. Principles of programming languages: design, evaluation, and implementation (2nd

ed.). Holt, Rinehart & Winston, Austin, TX, USA.
MARSHALL, J., ORLEANS, D., AND LIEBERHERR, K. J. 1999. DJ: Dynamic structure-shy traversal in pure

Java. Tech. rep., Northeastern University. May.
MEZINI, M. AND OSTERMANN, K. 2003. Conquering aspects with caesar. In AOSD ’03: Proceedings of the

2nd international conference on Aspect-oriented software development. ACM Press, New York, NY, USA,
90–99.

OSSHER, H. AND TARR, P. 1999. Multi-dimensional separation of concerns using hyperspaces. IBM Research
Report 21452, IBM. Apr.

ACM Journal Name, Vol. V, No. N, April 2008.



38 · Rajan and Sullivan

RAJAN, H. 2005. Unifying aspect- and object-oriented program design. Ph.D. thesis, The University of Virginia,
Charlottesville, Virginia.

RAJAN, H. 2007. Design patterns in Eos. In PLoP ’07, Conference on Pattern Languages of Programs.
RAJAN, H. AND SULLIVAN, K. 2003a. Eos: instance-level aspects for integrated system design. In ESEC/FSE-

11: Proceedings of the 9th European software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering. ACM Press, New York, NY, USA, 297–306.

RAJAN, H. AND SULLIVAN, K. 2003b. Need for instance level aspect language with rich pointcut language.
In SPLAT: Software engineering Properties of Languages for Aspect Technologies, L. Bergmans, J. Brichau,
P. Tarr, and E. Ernst, Eds.

RAJAN, H. AND SULLIVAN, K. 2005a. Aspect language features for concern coverage profiling. In AOSD ’05:
Proceedings of the 4th international conference on Aspect-oriented software development. ACM Press, New
York, NY, USA, 181–191.

RAJAN, H. AND SULLIVAN, K. J. 2005b. Classpects: unifying aspect- and object-oriented language design. In
ICSE ’05: Proceedings of the 27th international conference on Software engineering. ACM Press, New York,
NY, USA, 59–68.

SABBAH, D. 2004. Aspects: from promise to reality. In AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development. ACM Press, New York, NY, USA, 1–2.

SAKURAI, K., MASUHARA, H., UBAYASHI, N., MATSUURA, S., AND KOMIYA, S. 2004. Association aspects.
In AOSD ’04: Proceedings of the 3rd international conference on Aspect-oriented software development. ACM
Press, New York, NY, USA, 16–25.

SPINCZYK, O., GAL, A., AND SCHROEDER-PREIKSCHAT, W. 2002. AspectC++: an aspect-oriented extension
to the c++ programming language. In CRPITS ’02: Proceedings of the Fortieth International Confernece on
Tools Pacific. Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 53–60.

SULLIVAN, K., GU, L., AND CAI, Y. 2002. Non-modularity in aspect-oriented languages: integration as a
crosscutting concern for aspectj. In AOSD ’02: Proceedings of the 1st international conference on Aspect-
oriented software development. ACM Press, New York, NY, USA, 19–26.

SULLIVAN, K. J., DUGAN, J. B., KNIGHT, J., ET AL. 1997. Galileo: An advanced fault tree analysis tool.
SULLIVAN, K. J., GRISWOLD, W. G., SONG, Y., CAI, Y., SHONLE, M., TEWARI, N., AND RAJAN, H. 2005.

Information hiding interfaces for aspect-oriented design. In The Joint 10th European Software Engineering
Conference and 13th ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE
2005). 166–175.

SULLIVAN, K. J. AND NOTKIN, D. 1990. Reconciling environment integration and component independence.
SIGSOFT Software Engineering Notes 15, 6 (Dec.), 22–33.

SULLIVAN, K. J. AND NOTKIN, D. 1992. Reconciling environment integration and software evolution. ACM
Transactions on Software Engineering and Methodology 1, 3 (July), 229–68.
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