
Modular Reasoning in the Presence of Event Subtyping ?

Mehdi Bagherzadeh1, Robert Dyer2, Rex D. Fernando3, José Sánchez4, and Hridesh Rajan1

1 Iowa State University, USA
{mbagherz,hridesh}@iastate.edu

2 Bowling Green State University, USA
rdyer@bgsu.edu

3 University of Wisconsin, USA
rex@cs.wisc.edu

4 University of Central Florida, USA
sanchez@eecs.ucf.edu

Abstract. Separating crosscutting concerns while preserving modular reasoning
is challenging. Type-based interfaces (event types) separate modularized cross-
cutting concerns (observers) and traditional object-oriented concerns (subjects).
Event types paired with event specifications were shown to be effective in en-
abling modular reasoning about subjects and observers. Similar to class subtyp-
ing, organizing event types into subtyping hierarchies is beneficial. However, un-
related behaviors of observers and their arbitrary execution orders could cause
unique, somewhat counterintuitive, reasoning challenges in the presence of event
subtyping. These challenges threaten both tractability of reasoning and reuse of
event types. This work makes three contributions. First, we pose and explain these
challenges. Second, we propose an event-based calculus to show how these chal-
lenges can be overcome. Finally, we present modular reasoning rules of our tech-
nique and show its applicability to other event-based techniques.

1 Introduction

Separation of crosscutting concerns has generated significant interest over the past
decade or so [2–22]. An interesting challenge in separation of crosscutting concerns
is to preserve modular reasoning and its underlying modular type checking. Recently
some consensus has been formed that a notion of explicit interfaces between modular-
ized crosscutting concerns and traditional object-oriented (OO) concerns enables mod-
ular type checking [11–16, 19, 20, 23], modular reasoning [3, 6–15] as well as design
stability [24–26].

Previous work, such as join point types (JPT) [20], join point interfaces (JPI) [19]
and Ptolemy’s typed events [27], just to name a few, propose a type-based formulation
of these interfaces to enable modular type checking. These type-based interfaces could
be thought of as event types which are announced, implicitly or explicitly, by traditional
OO concerns, or subjects, where modularized crosscutting concerns, or observers, reg-
ister for the events and run upon their announcement [28, 29]. Announcement of an

? The work described in this article is the revised and extended version of an article in the
proceedings of Modularity 2015 [1].

event type could cause zero or more of its observers to run in a chain where observers
can invoke each other. This event announcement and handling model for separation of
concerns has been popularized by AspectJ [2] and is different from models in which the
subject is responsible for invoking all of its observers, as in Java’s event model and the
Observer pattern [30].

Similar to OO subtyping, where a class can subtype another class, an event type
can subtype another event type. Event subtyping enables structuring of event types and
allows for code reuse [19,20,27]. Code reuse allows an observer of an event to run upon
announcement of any of its subevents, i.e. observer reuse, and makes the data attributes
of the event accessible in its subevents, i.e. event inheritance. Modular type checking of
subjects and observers in the presence of event subtyping has been explored by previous
work [19, 20, 27].

Modular reasoning about subjects and observers, unlike their modular type check-
ing, is focused on understanding their behaviors [6, 31], control effects [8, 10, 32], data
effects [3, 33] and exception flows [9]. In modular reasoning [34], a system is under-
stood one module at a time and in isolation using only its implementation and the inter-
faces, not implementations, of other modules it references [13,14]. Previous work, such
as crosscutting programming interfaces (XPI) [6], crosscutting programming interfaces
with design rules (XPIDR) [32] and translucid contracts [8–10, 35], enables modular
reasoning about subjects and observers using event specifications, however, they do not
support event subtyping.

Modular reasoning about behaviors of subjects and observers, using event specifica-
tions of event types that can subtype each other, where announcement of an event allows
not only observers of the event but also observers of all of its superevents, with possibly
unrelated behaviors run in an arbitrary order, faces the following unique challenges:

– Problem ¶ – Combinatorial reasoning: unrelated behaviors of observers may re-
quire a factorial number of combinations of execution orders of observers of the
event and observers of all of its superevents, up to n! for n observers, to be consid-
ered in reasoning about the subject, which makes reasoning intractable;

– Problem · – Behavior invariance: arbitrary execution orders of observers may
force observers of the event and observers of all of its superevents to satisfy the
same behavior, which prevents reuse of event types, their specifications and ob-
servers.

In this work, we solve problem (1) by imposing a novel refining relation among
specifications of an event and its superevents such that for each event in a subtyping
hierarchy its greybox specification [36] refines both behaviors and control effects of the
greybox specification of its superevent. Our refining relation is the inverse of the clas-
sical refining for blackbox specifications [37] and extends it to greybox specifications
with control effect specifications. We solve problem (2) by imposing a non-decreasing
relation on execution orders of observers of an event and observers of its superevents,
such that for each event in a subtyping hierarchy observers of an event run before ob-
servers of its superevents. With the refining and non-decreasing relations combined,
subjects and observers of an event could be understood modularly and in a tractable
manner using only the specification of their event, independent of observers of the

event, observers of its superevents and their execution orders, while allowing reuse.
This is only sound when we impose a conformance relation on subjects and observers
of an event such that each subject and observer of the event respects behaviors and
control effects of their event specifications.

We illustrate problems (1)–(2) in the event-based language Ptolemy [27] by adding
greybox event specifications to it, and propose our solution in the context of a new
language design called PtolemyS. The language PtolemyS has built-in support for the
refining, non-decreasing and conformance relations that together enable modular rea-
soning about behaviors and control effects of subjects and observers. Our proposed
solution could be applied to other event-based systems especially those with event an-
nouncement and handling models similar to AspectJ [2] including join point types [20]
and join point interfaces [19].

Contributions We make the following contributions:

– identification and illustration of problems (1)–(2) of modular reasoning about sub-
jects and observers in the presence of event subtyping (Section 2);

– the refining relation for greybox event specifications, the non-decreasing relation
for execution orders of observers and the conformance relation for behaviors and
control effects of subjects and observers of an event hierarchy, to solve problems
(1)–(2) and enable modular reasoning (Sections 3 and 4);

– PtolemyS, a language design with support for refining, non-decreasing and confor-
mance relations;

– PtolemyS’s Hoare logic [38] for modular reasoning (Section 4);
– applicability of PtolemyS’s reasoning to AspectJ-like event-based systems includ-

ing join point types [20] and join point interfaces [19] (Section 5);
– modular reasoning about control effects of observers and subject-observer control

interference (Section 6);
– event specification inheritance to statically enforce the refining relation for greybox

event specifications and enable specification reuse (Section 7);
– PtolemyS’s sound static and dynamic semantics (Sections 8 and 9);
– binary compatibility rules for PtolemyS’s event types and their specifications to

enable binary reuse (Section 10).

Implementation of PtolemyS’s compiler is publicly available at http://sf.net/p/
ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/. Section 11 dis-
cusses the implementation and limitations of our approach. Section 12 presents related
work and Section 13 discusses future work and concludes. Section A and Section B
present full proofs for soundness of PtolemyS’s modular reasoning and type system.

2 Problems

In this section we illustrate problems (1)–(2), discussed in Section 1, using the event-
based language Ptolemy [27].

As an example of modular reasoning about the behavior of a subject, consider static
verification of the JML-like [39] assertion Φ on line 8 of Figure 1. The assertion says

http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/
http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/

1 /* subject */
2 class ASTVisitor {
3 void visit(AndExp e) {
4 announce AndEv(e, e.left, e.right) {
5 e.left.accept(this);
6 e.right.accept(this);
7 }
8 assert e.equals(old(e)); Φ

9 }
10 void visit(TrueExp e) { announce TrueEv(e) {} } ..
11 }

Fig. 1. Static verification of Φ in subject ASTVisitor.

12 /* event types */
13 void event ExpEv { Exp node; }
14 void event BinEv extends ExpEv {
15 BinExp node; Exp left, right;
16 }
17 void event AndEv extends BinEv { AndExp node; }
18 void event UnEv extends ExpEv { UnExp node; }
19 void event TrueEv extends UnEv { TrueExp node; }
20 /* data types */
21 class Exp {
22 Exp parent;
23 void accept(ASTVisitor v) { v.visit(this); }
24 }
25 class BinExp extends Exp { Exp left, right; .. }
26 class AndExp extends BinExp { .. }
27 class UnExp extends Exp { .. }
28 class TruExp extends UnExp { .. }

Fig. 2. Event AndEv and its superevents BinEv and ExpEv.

that the expression e and its state remain the same after announcement and handling
of the event type AndEv, on lines 4–7, where AndEv is a subevent of BinEv and ExpEv,
in the event subtyping hierarchy of Figure 2. The assertion assumes that e, e.left and
e.right are not null. The method equals checks for equality of two objects and their
states, e.g. two expressions of type AndExp are equal if their object references, parents
and their left and right children are equal. The expression old refers to values of
variables at the beginning of method visit, on line 3. To better understand the problems
of modular reasoning we first provide a short background on Ptolemy.

2.1 Ptolemy in a Nutshell

Ptolemy [27] is an extension of Java for separation of crosscutting concerns [16]. It has
a unified model like Eos [17, 40–43] with support for event types, event subtyping and
explicit announcement and handling of events. In Ptolemy, a subject announces an event
and observers register for the event and run upon its announcement. Announcement of
an event causes observers of the event and observers of its superevents to run in a chain
according to their dynamic registration order, where observers can invoke each other.

29 /* observers */
30 class Tracer {
31 Tracer() { register(this); }
32 void printExp(ExpEv next) {
33 next.invoke();
34 logVisitEnd(next.node()); }
35 when ExpEv do printExp;
36 }
37 class Checker{
38 Stack<Type> typeStack = ..
39 Checker() { register(this); }
40 void checkBinExp (BinEv next) {
41 next.invoke();
42 Bool t1 = (Bool) typeStack.pop();
43 Bool t2 = (Bool) typeStack.pop();
44 typeStack.push(new Bool()); }
45 when BinEv do checkBinExp;
46 void checkUnExp(UnEv next) {
47 next.invoke();
48 typeStack.push(new Bool()); }
49 when UnEv do checkUnExp;
50 }
51 class Evaluator {
52 Stack<Value> valStack = ..
53 Evaluator() { register(this); }
54 void evalAndExp (AndEv next) {
55 next.invoke();
56 BoolVal b1 = (BoolVal) valStack.pop();
57 BoolVal b2 = (BoolVal) valStack.pop();
58 valStack.push(new BoolVal(b1.val && b2.val)); }
59 when AndEv do evalAndExp;
60 void evalTrueExp (TrueEv next) {
61 next.invoke();
62 valStack.push(new BoolVal(true)); }
63 when TrueEv do evalTrueExp; ..
64 }

Fig. 3. Observers Tracer, Checker and Evaluator.

Written in Ptolemy, Figures 1, 2 and 3 together show a simple expression language
with a tracer, type checker and evaluator for boolean expressions such as AndExp, OrExp
and numerical expressions. We focus on the code for boolean expressions but the com-
plete code can be found elsewhere5. A parser generates abstract syntax trees (AST) for
expressions of the language and provides a visitor to visit these abstract syntax trees.

The subject ASTVisitor, in Figure 1, uses announce expressions to announce event
types for each node type in the AST of an expression upon its visit. For example, it
announces the event type AndEv for visiting AndExp, on lines 4–7, with its event body
on lines 5–6. Observers Tracer, Checker and Evaluator, in Figure 3, show interest
in events and register to run upon their announcement. For example, Evaluator shows
interest in AndEv using a when− do binding declaration, on line 59, and registers for it

5 http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/

examples/100-Polymorphic-Expressions

http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/examples/100-Polymorphic-Expressions
http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/examples/100-Polymorphic-Expressions

using a register expression, on line 53. Evaluator runs the observer handler method6

evalAndExp, on lines 54–58, upon announcement of AndEv. The handler pops values
of the left and right children of the visited AndExp node from a value stack conjoins
them together to evaluate the value of the conjunct expression and pushes the result
back to the stack. For a binary boolean expression, Checker ensures that its children
are boolean expressions by popping and casting their boolean values from a type stack.
Types Type and Value and their subtypes, e.g. Bool and BoolVal, denote types and
values of boolean and numerical expressions.

Announcement of AndEv, on lines 4–7, could cause the observer Evaluator of the
event and observers Checker and Tracer of its superevents BinEv and ExpEv to run in
a chain, if they are registered. An observer of an event is bound to the event through
a binding declaration. For example, Evaluator is an observer of AndEv because of its
binding declaration whereas Checker is not, though it may run upon announcement of
AndEv. Observers are put in a chain of observers as they register for an event with the
event body as the last observer. For example, the event body for AndEv is the last ob-
server of the event in the chain. The chain of observers is stored inside an event closure
represented by a variable next and the chain is passed to each observer handler method.
For example, the chain is passed to evalAndExp on line 54. An observer of an event
can invoke the next observer in the chain using an invoke expression which is similar to
AspectJ’s proceed. Dynamic registration allows observers to register in any arbitrary or-
der which in turn means that an observer of an event can invoke another observer of the
same event, an observer of any of its superevents or any of its subevents. For example,
the observer Evaluator for the event AndEv can invoke, on line 55, another observer of
AndEv or any of its superevents or subevents.

Event types must be declared before they are announced by subjects or handled by
observers. An event declaration names a superevent in its extends clause and a set of
context variables in its body. Context variables are shared data between subjects and
observers of an event. An event inherits contexts of its superevents via event inher-
itance, can redeclare contexts of its superevents via depth subtyping or add to them
via width subtyping. For example, the declaration of AndEv extends BinEv as its su-
perevent, inherits its context variables left and right and redeclares its context node.
The declaration of BinEv, on lines 14–16, adds contexts left and right, using width
subtyping, to node that it inherits from its superevent ExpEv. Contexts left and right

serve illustration purposes only, otherwise they could be projected from node. Values
of context variables of an event are set upon its announcement and stored in its event
closure. For example, the contexts node, left and right of AndEv are set with values
e, e.left and e.right upon announcement of AndEv, on line 4.

Event Type Specifications
To verify Φ in Figure 1, the behavior of the announce expression for AndEv, on lines
4–7, must be understood, which in turn is dependent on behaviors of observers of AndEv
and observers of its superevents, running upon its announcement. For such understand-
ing to be modular, only the implementation of the subject ASTVisitor, on lines 2–11,

6 Phrases ’observer’ and ’observer handler method’ are used interchangably.

and interfaces of modules it references, including the event types AndEv and its su-
perevents BinEv and ExpEv, are available. However, neither ASTVisitor nor AndEv,
BinEv or ExpEv say anything about the behaviors of their observers, which in turn
makes modular verification of Φ difficult.

Previous work [8–10] proposes translucid contracts as event type specifications to
specify behaviors and control effects of subjects and observers of an event and enables
their modular reasoning in the absence of event subtyping. We add translucid contracts
to Ptolemy’s event types and illustrate how unrelated event specifications in a subtyping
hierarchy and arbitrary execution of their observers could cause problems (1)–(2) in
modular reasoning about subjects and observers in the presence of event subtyping.

1 void event ExpEv { ..
2 requires node != null
3 assumes {
4 next.invoke();
5 requires true
6 ensures next.node().parent==old(next.node().parent);
7 }
8 ensures node.equals(old(node))
9 }

10 void event BinEv extends ExpEv { ..
11 requires left != null && right != null && node != null
12 assumes {
13 next.invoke();
14 requires next.node().left!=null&&next.node().right!=null
15 ensures next.node().parent==old(next.node().parent);
16 }
17 ensures true
18 }
19 void event AndEv extends BinEv { ..
20 requires left != null && right != null && node != null
21 assumes {
22 next.invoke();
23 requires next.node().left!=null&&next.node().right!=null
24 ensures next.node().parent==old(next.node().parent);
25 }
26 ensures node.equals(old(node))
27 }

Fig. 4. Unrelated contracts of subtyping events.

In its original form [8], a translucid contract of an event is a greybox specifica-
tion [36] that specifies behaviors and control effects of individual observers of the event
with no relation to behaviors and control effects of its superevents or subevents. Fig-
ure 4 shows translucid contracts of a few event types of Figure 2. The translucid con-
tract of AndEv, on lines 20–26, specifies behavior and control effects of the observer
Evaluator of AndEv and especially its observer handler method evalAndExp. The be-
havior of evalAndExp is specified using the precondition requires, on line 20, and the
postcondition ensures, on line 26, which says that the execution of the observer starts
in a state in which the context node, left and right are not null, i.e. left! = null &&
right! = null && node ! = null, and if the execution terminates it terminates in a state

in which the node is the same as before the start of the execution of the observer, i.e.
node.equals(old (node)).

Control effects of evalAndExp are specified by the assumes block, on lines
21–25, that limits its implementation structure. The assumes block is a combina-
tion of program and specification expressions. The program expression next.invoke(),
on line 22, specifies and exposes control effects of interest, e.g. occurrence
of the invoke expression in the implementation of evalAndExp, and the spec-
ification expression requires next.node().left! = null && next.node().right! = null
ensures next.node().parent == old (next.node().parent), on lines 23–24, hides the rest
of the implementation of evalAndExp, allowing it to vary as long as it respects the spec-
ification. The assumes block of AndEv says that an observer evalAndExp of AndEv must
invoke the next observer in the chain of observers, on line 22, and then can do anything
as long as it does not modify the parent field of the context variable node, on lines
23–24. The expression next.node() in the contract retrieves the context node from the
event closure next for AndEv and the expression old refers to values of variables before
event announcement.

Through the specification of behaviors of observers of an event, the translucid con-
tract of an event also specifies the behavior of an invoke expression in the implemen-
tation of an observer of the event. This is true because in the absence of event sub-
typing the invoke expression causes the invocation of the next observer of the same
event. For example, the contract of AndEv specifies the behavior of the invoke ex-
pression in the implementation of the observer handler method evalAndExp to have
the precondition left! = null && right! = null && node! = null and the postcondition
node.equals(old (node)). The precondition of the invoke expression must hold right be-
fore its invocation and its postcondition must hold right after it.

2.2 Combinatorial Reasoning, Problem (1)

Various execution orders of observers of an event and observers of its superevents could
yield different behaviors, especially if there is no relation between behaviors of ob-
servers of the event and its superevents and no known order of their execution. Com-
binatorial reasoning forces all such variations of execution orders to be considered in
reasoning about a subject of an event, which makes the reasoning intractable [29].

To illustrate, reconsider static verification of Φ for announcement of AndEv, on
lines 4–7 of Figure 1, with an observer instance evaluator registered to handle AndEv

and an observer instance checker registered to handle BinEv. Translucid contracts of
AndEv and BinEv in Figure 4 specify the behaviors of evaluator and checker, respec-
tively. Announcement of AndEv could cause the observers evaluator and checker to
run in two alternative execution orders χ1: evaluator ⇀ checker or χ2: checker ⇀
evaluator, depending on their dynamic registration order. In χ1, evaluator runs first,
where it invokes checker using its invoke expression, on line 55 of Figure 3, and the
opposite happens in χ2. The body of AndEv runs as the last observer in χ1 and χ2 (not
shown here).

For χ1, the assertion Φ could be verified using the contract of AndEv for evaluator,
on lines 20–26 of Figure 4, using its postcondition node.equals(old (node)), on line
26. Recall that the precondition and postcondition of AndEv are the precondition and

postcondition of its observer evaluator. To verify Φ , the postcondition of AndEv is
copied right after the announce expression, using the copy rule [44], and its context
variables node, left and right are replaced respectively with parameters e, e.left
and e.right of the announce expression [8]. This allows use of the postcondition of
the contract of AndEv in the scope of the method visit. Replacing the context variables
in the postcondition of AndEv produces the predicate e.equals(old (e)), which is exactly
the assertion Φ that we wanted to prove.

In χ1, the assertion Φ could be verified using the postcondition of the translucid con-
tract of AndEv alone. An example of a more subtle interplay of behaviors of evaluator
and checker is a scenario in which translucid contracts of AndEv and BinEv look like
requires true assumes { establishes true; next.invoke();} ensures true and requires true
assumes {establishes node.equals (old (node)); next.invoke();} ensures true, respec-
tively. The specification expression establishes q is a sugar for requires true ensures q.
With these contracts, neither the postcondition of AndEv nor BinEv alone are enough
to verify Φ , but their interplay results in a postcondition that implies and consequently
verifies Φ .

In contrast, Φ cannot be statically verified for χ2 because neither the postcondition
true of the contract of BinEv, on line 17 of Figure 4, nor the interplay of behaviors of
observers evaluator and checker in χ2 provides the guarantees required by Φ .

As illustrated, in reasoning about a subject of an event, various execution orders
of its observers and observers of its superevents must be considered. Generally for n
observers of events in a subtyping hierarchy there can be up to n! possible execution
orders [9, 29] which in turn makes the reasoning intractable. Also, dependency of the
reasoning on execution orders of observers threatens the modularity of the reasoning.
This is because any changes in execution orders of observers could invalidate any pre-
vious reasoning. For example, the already verified assertion Φ for the execution order
χ1 is invalidated by changing the execution order to χ2.

2.3 Behavior Invariance, Problem (2)

In reasoning about an observer of an event, arbitrary execution orders of observers of
the event and observers of its superevents in a chain could force observers of the event
and observers of all of its superevents in a subtyping hierarchy to satisfy the same
behavior. This could prevent reuse of event types, their specifications [45] and their
observers [19, 20].

To illustrate, consider reasoning about the behavior of the invoke expression in the
observer evaluator, in Figure 3 line 55, with an observer instance evaluator regis-
tered to handle AndEv and observer instance tracer registered to handle its transitive
superevent ExpEv. Translucid contracts of AndEv and ExpEv in Figure 4 specify behav-
iors of evaluator and tracer, respectively. Upon announcement of AndEv, observers
evaluator and tracer could run in two alternative execution orders χ1: evaluator⇀
tracer or χ2: tracer ⇀ evaluator.

Recall that the translucid contract of an event also specifies behaviors of invoke ex-
pressions in implementations of its observers. In other words, the contract of AndEv

specifies the behavior of the invoke expression in its observer evaluator, on line
55. That is, the precondition left! = null && right! = null && node! = null of AndEv

must hold right before the invoke expression in evaluator and the postcondition
node.equals(old (node)) must hold right after the invoke expression.

In χ1, for the invoke expression of evaluator to invoke tracer, its precon-
dition must imply the precondition node! = null of tracer and the postcondition
node.equals(old (node)) of tracer must imply the postcondition of the invoke ex-
pression in evaluator. In other words, χ1 requires ω1 : P(AndEv) ⇒ P(ExpEv) ∧
Q(ExpEv)⇒ Q(AndEv) to hold for evaluator to invoke tracer. Auxiliary functions
P and Q return the precondition and postcondition of an event type, respectively. In
contrast, χ2 requires ω2 : P(ExpEv)⇒P(AndEv) ∧ Q(AndEv)⇒ Q(ExpEv) to hold
for tracer to invoke evaluator. To allow both execution orders χ1 and χ2, both con-
ditions ω1 and ω2 must hold which in turn requires preconditions and postconditions of
AndEv and ExpEv and consequently preconditions and postconditions of their observers
evaluator and tracer to be the same, i.e. invariant.

3 Solution

To solve combinatorial reasoning and behavior invariance problems we propose to (1)
relate behaviors of observers of an event and its superevent by a refining relation among
greybox event specifications in an event subtyping hierarchy and to (2) limit arbitrary
execution order of observers by a non-decreasing relation on execution orders of ob-
servers. This proposal constitutes a new language design called PtolemyS with support
for these relations. Figure 5 shows an overview of these relations in PtolemyS.

event

body

subtype

refine

specified

..

..

conform

non-decreasing

non-decreasing

2

event contractsubject observer observer

announce refine

invoke

conform

..

conform

non-decreasing1 2

3

Fig. 5. Refining, non-decreasing and conformance relations.

In Figure 5, for an event subtyping hierarchy, the refining relation guarantees that
the specification (contract) of an event refines the specification of its superevent and the
non-decreasing relation guarantees that upon announcement of an event by a subject,
an observer of the event runs before an observer of its superevent. The conformance
relation guarantees that each subject and observer of an event conform to and respect
their event specification.

Detailed formalization of PtolemyS’s sound static and dynamic semantics can be
found in Sections 8 and 9.

3.1 PtolemyS’s Syntax

Figure 6 shows the expression-based core syntax of PtolemyS with focus on event types,
event subtyping and event specifications. Hereafter, term∗ means a sequence of zero or
more terms and [term] means zero or one term.

A PtolemyS program is a set of declarations followed by an expression, which is
like a call to the main method in Java. There are two kinds of declarations: class and
event type declarations. A class can extend another class and it may have zero or more
fields, methods and binding declarations.

Similarly, an event type declaration can extend (subtype) another event type and has
a return type, a set of context variable declarations and an optional translucid contract.
The return type of an event specifies the return type of its observers. An interesting
property of return types of subtyping events is that, because of the non-decreasing rela-
tion, the return type of an event is a supertype of the return type of the event it extends,
see Section 9. An event type declaration inherits context variables of the event types it
extends and can declare more through width subtyping. It can also redeclare the context
variables of the event types it extends through depth subtyping [27], as long as the type
of the redeclaring context is a subtype of the type of the redeclared context. Figure 2
illustrates the declaration of the event type AndEv, on line 17.

prog ::= decl* e
decl ::= class c extends d { form* meth* binding* }
| c event ev extends ev′ { form* [contract] }

meth ::= t m (form*) { e }
binding ::= when ev do m
e, se ::= var | null | new c() | cast c e | if (e) {e} else {e}

| e.m(e*) | e.f | e.f = e | form = e ; e
| announce ev (e*) { e } | e.invoke()
| register(e) | unregister(e)
| refining spec { e } | spec | either {e} or {e}

p, q ::= var | p.f | p == p | p < p | ! p | p && p | old(p)
contract ::= requires p [assumes { se }] ensures q
spec ::= requires p ensures q
t ::= c | thunk ev
form ::= t var

c, d ∈ C ∪{Object} set of class names
ev, ev′ ∈ E ∪{Event} set of event names

f ∈F set of field names
var ∈ V ∪{this,next} set of variable names

Fig. 6. PtolemyS’s core syntax, based on [8, 16, 27].

3.2 Refining Relation of Event Specifications

PtolemyS relates behaviors and control effects of observers of events in a subtyping hi-
erarchy by relating their greybox event specifications through a refinement relation E.
In the refining relation, the specification of an event refines the specification of its su-
perevent, for both behaviors and control effects. PtolemyS’s refinement among greybox
event specifications is the inverse of classical behavioral subtyping for blackbox method
specifications [37], however, blackbox specifications do not specify control effects.

In PtolemyS, a translucid contract [8, 9] of an event is a greybox specification that,
in relation to its superevents, specifies behaviors and control effects of individual ob-
servers of the event and their invoke expressions. A translucid contract of an event
specifies behaviors using the precondition requires and the postcondition ensures. The
behavior requires p ensures q says that if the execution of an observer of the event starts
in state σ satisfying p, written as σ |= p, and it terminates normally, it terminates in a
state σ ′ that satisfies q, i.e. σ ′ |= q.

A translucid contract specifies control effects of its individual observers using its
assumes block. An assumes block is a combination of program and specification expres-
sions. A program expression exposes control effects of interest, e.g. invoke expressions,
in the implementation of an observer whereas a specification expression spec hides the
rest of its implementation allowing it to vary as long it respects its specification. The
contract of an event only names the context variables of the event and must expose in-
voke expressions in the implementation of its observers. Figure 4 illustrates the translu-
cid contract of AndEv, on lines 20–26, with its precondition, on line 20, postcondition,
on line 26, program expression, on line 22 and specification expression, on lines 23–24.
PtolemyS relates translucid contracts of an event and its superevents through the refining
relation E.

Definition 1. (Refining translucid contracts) For event types ev and ev′, where ev is a
subevent of ev′, written as ev�: ev′7, and their respective translucid contracts G = (
requires p assumes {se} ensures q) and G ′ = (requires p′ assumes {se′} ensures q′), G ′

is refined by G , written as G ′EG , if and only if:

(i). requires p′ ensures q′ E requires p ensures q
(ii). se′E se

Figure 7 defines the refinement relation E for PtolemyS expressions.

In Definition 1, for a translucid contract of an event to refine the contract of its
superevent, (i) its behavior must refine the behavior of the contract of the superevent and
(ii) its assumes block must refine the assumes block of the contract of its superevent.

In Figure 7, the rule (R-SPEC) shows the refinement of the behavior spec′ =
requires p′ ensures q′ by the behavior spec = requires p ensures q. For the behavior spec
to refine spec′, its precondition p must imply the precondition p′, i.e. p⇒ p′, and the
opposite must be true for their postconditions, i.e. q′ ⇒ q. That is the subevent can
strengthen the precondition of its superevent and weaken its postcondition which is the

7 The class subtyping relation 4 is different from PtolemyS’s event subtyping relation �:, as
discussed in Section 9.

Event specification refinement relation: Γ ` se′E se

(R-SPEC)
spec = requires p ensures q spec′ = requires p′ ensures q′ p⇒ p′ q′⇒ q

Γ ` spec′ E spec

(R-INVOKE)
Γ ` se′E se

Γ ` se′.invoke() E se.invoke()

(R-VAR)
textualMatch(var′,var)

Γ ` var′ E var

(R-DEFINE)
Γ ` se′1 E se1 Γ , t : var ` se′2 E se2

Γ ` t var = se′1;se′2 E t var = se1;se2

(R-IF)
Γ ` sp′E sp Γ ` se′1 E se1 Γ ` se′2 E se2

Γ ` if(sp′){se′1} else{se′2} E if(sp){se1} else{se2}

Fig. 7. Select rules for the refining relation E.

inverse of classical refinement in class subtyping [37] where a subclass weakens the
precondition of its superclass and strengthens its postcondition. Such inverse relation
of behaviors is necessary in PtolemyS to allow an observer of a superevent to run upon
announcement of its subevents. Also unlike PtolemyS’s refining, the classical refining is
for blackbox contracts and does not directly apply to greybox translucid contracts [36]
and especially their assumes block [46] with control effect specifications.

The assumes block se of the translucid contract of an event refines the assumes block
se′ of the contract of its superevent, i.e. se′E se, if: (a) each specification expression in
se refines its corresponding specification expression in se′ and (b) each program expres-
sion in se refines its corresponding program expression in se. The rule (R-SPEC) for
refinement of behaviors also applies for refinement of specification expressions since
they similarly are behavior specifications with a precondition and postcondition [46]. A
specification expression in a subevent can strengthen the precondition of its correspond-
ing specification expression in its superevent and weaken its postcondition. For a pro-
gram expression to refine another program expression, they must textually match. The
rule (R-VAR) checks for textual matching of variable names using the auxiliary function
textualMatch. For other program expressions, such as invoke and conditional, their re-
finement boils down to the refinement of their subexpressions, as in rules (R-INVOKE),
(R-DEFINE) and (R-IF).

To illustrate, the translucid contract of AndEv, on lines 20–26 in Figure 4,
refines the contract of ExpEv, on lines 2–8. This is because (i) the precondi-
tion left! = null && right! = null && node! = null of AndEv implies the precondi-
tion node! = null of ExpEv and the postcondition node.equals(old (node)) of ExpEv

implies the same postcondition of AndEv, and therefore using the rule (R-SPEC)
the behavior of AndEv refines the behavior of ExpEv; (ii) the program expres-

sion next.invoke() of AndEv, on line 22, refines its corresponding program expres-
sion of ExpEv, on line 4, using (R-INVOKE) and (R-VAR), and specification ex-
pression requires next.node().left ==old (next.node().left) && next.node().right ==
old (next.node().right) ensures next.node().parent == old (next.node().parent) of
AndEv, on lines 23–24, refines its corresponding specification expression requires true
ensures next.node().parent ==old (next.node().parent) in ExpEv, on lines 5–6, using
the rule (R-SPEC).

However, the translucid contract of AndEv does not refine the contract of
BinEv, on lines 11–17, because the postcondition true of BinEv does not
imply the postcondition of AndEv. Changing the postcondition of BinEv to
next.node().parent ==old (next.node().parent) makes the contract of BinEv refine the
contract of ExpEv.

Textual matching of program expressions is a simpler alternative to complex higher
order logic or trace verification techniques with its tradeoffs [46]. Textual matching
works because PtolemyS’s semantics enforces depth subtyping, ensuring that a redeclar-
ing context variable in an event is a subtype of the redeclared context in its superevents
and a next variable in the contract of an event is a subtype of the next variable in the
contract of its superevent.

The refining relation E defines the refinement for corresponding program and spec-
ification expressions. That is, only structurally similar contracts may refine each other.
Two translucid contracts are structurally similar if for each specification (program) ex-
pression in the assumes block of one, a possibly different specification (program) ex-
pression exists in the assumes block of the other at the same location. PtolemyS’s struc-
tural similarity for the refining relation allows definition of PtolemyS’s event specifica-
tion inheritance, see Section 7, such that it statically guarantees the refining relation by
combining translucid contracts of an event and its superevents in a subtyping hierarchy.

3.3 Non-Decreasing Relation of Observers’ Execution

PtolemyS limits the arbitrary execution order of observers of an event and its superevents
by enforcing a non-decreasing relation on execution orders of observers. In the non-
decreasing order, an observer of an event runs before an observer of its superevent.
PtolemyS’s semantics for announce, invoke, register and unregister expressions and the
relation of return types of events in an event hierarchy guarantee the non-decreasing
order on execution of the observers.

In PtolemyS, a subject announces an event ev using the announce expression
announce ev(e*){e′}. The announce expression evaluates parameters e* to values v*,
creates an event closure for the event ev and binds values v* to context variables of ev
in the closure. The announce expression also creates, in the event closure, a chain con-
taining registered observers of ev and observers of all its superevents and runs the first
observer in the chain. To construct the chain, the announce expression adds observers
of the event ev to an empty chain followed by adding observers of the direct superevent

of ev and recursively continues until it reaches the root event Event8. The event body e′

is added to the end of the chain.
By construction, the announce expression ensures that an observer of an event

shows up before an observer of its superevent in the chain, which basically is the non-
decreasing order of observers. Observers of the same event in the chain maintain among
themselves the same order as their dynamic registration order, i.e. an observer registered
earlier shows up in the chain before the ones registered later. This makes PtolemyS back-
ward compatible with its earlier versions [8, 9, 16] that do not support event subtyping.
The expression next is a placeholder for an event closure and the type thunk ev is the
type of the event closure of an event ev.

After construction of the chain and running the first observer in the chain, by the
announce expression, observers in the chain can invoke each other using an invoke
expression e.invoke(). The invoke expression evaluates e to an event closure containing
the chain of observers and runs the next observer in the chain, which is according to
the non-decreasing order. For observers to run according to the non-decreasing order,
the return type of an observer of an event must be a supertype of the return type of
the observers of its superevent. PtolemyS’s static semantics, in Section 9, guarantees
this by ensuring that the return type of an event is a supertype of the return type of its
superevent.

Upon announcement of an event, only registered observers of the event and its su-
perevents run. In PtolemyS, observers show interest in events through binding decla-
rations and register to handle the events. A binding declaration when ev do m in an
observer says to run the observer handler method m when an event of type ev is an-
nounced. The expression register(e) evaluates e to an object and adds it to the list of
observers A[ev] for each event type ev that is named in binding declarations of the ob-
server, and unregister(e) removes the object e from the list of observers of those events.
Announce expression for an event ev recursively concatenates the list of observers A[ev]
and the list of observers of its superevents to construct the chain of observers.

3.4 Refining + Non-decreasing Relations

Any of refining or non-decreasing relations alone cannot solve both combinatorial rea-
soning and behavior invariance problems. With the refining relation alone, because of
the arbitrary execution order of observers, still up to n! possible execution orders of
n observers of the event and observers of its superevents should be considered in rea-
soning, which threatens its tractability; changes in execution orders of observers of the
event or observers of its superevents can still invalidate any previous reasoning, which
threatens modularity of reasoning; and observers of events in a subtyping hierarchy
still could be forced to satisfy the same behavior, which threatens reuse. A trivial refin-
ing relation in which events of a hierarchy satisfy the same behavior enables modular
reasoning, however, it is undesirable as it prevents reuse of event types, their specifica-
tions [45] and observers [19, 20].

8 Event is not accessible to programmers and does not have observers, as a simple design choice,
to not allow programmers to affect behaviors of events of a system by defining a specification
for Event.

With the non-decreasing relation alone, because of unrelated behaviors of observers,
observers of events in a subtyping hierarchy may still be forced to satisfy the same
behavior and any changes in behaviors of superevents of an event could invalidate any
previous reasoning about subjects and observers of the event.

Interestingly, reversing both refining and non-decreasing relations still allows mod-
ular reasoning. To reverse these relations, the translucid contract of a superevent refines
the contract of its subevent and an observer of a superevent runs before any observer of
its subevent. We chose the current design, as it seemed more natural, to us, for observers
of an already announced event to run before observers of its superevents.

4 Modular Reasoning

This section formalizes PtolemyS’s Hoare logic for modular reasoning, its conformance
relation for subjects and observers and soundness of its reasoning technique.

PtolemyS’s refining and non-decreasing relations enable its modular reasoning about
subjects and observers of an event, as shown in Figure 8. The main idea is to use the
translucid contract of an event as a sound approximation of the behaviors of its ob-
servers and observers of its superevents to reason about:

(1) a subject of the event, especially its announce expression, independent of its ob-
servers and observers of its superevents and their execution orders; and

(2) an observer of the event, especially its invoke expressions, independent of its sub-
jects as well as observers it may invoke and their execution orders.

Figure 8 shows PtolemyS’s Hoare logic [38] for modular reasoning about behaviors
of subjects and observers. PtolemyS’s reasoning rules use a reasoning judgement of
the form Γ ` {p} e {q} that says the Hoare triple {p} e {q} is provable using the
variable typing environment Γ , which maps variables to their types. The judgement Γ `
{p} e {q} is valid, written as Γ |= {p} e {q}, if for every state σ that agrees with type
environment Γ , if p is true in σ , i.e. σ |= p, and if the execution of e terminates in a state
σ ′, then σ ′ |= q. This definition of validity is for partial correctness where termination
is not guaranteed. PtolemyS’s reasoning rules use a fixed class table CT , which is a set
of the program’s class and event type declarations. The notation ep[e*/var*] denotes
replacing variables var* with e* in the expression ep. PtolemyS’s rules for reasoning
about standard object-oriented expressions remain the same as in previous work [38,
46–48] and are omitted.

In Figure 8, the rule (V-ANNOUNCE) reasons about the behavior of an announce
expression in a subject. The rule says that the behavior of an announce expression an-
nouncing an event ev is the behavior requires p ensures q of the translucid contract of
the event ev. To use the precondition p of the contract and its postcondition q in the
scope of the announce expression, their context variables var* are replaced by argu-
ments e* of the announce expression [44]. The rule (V-ANNOUNCE) does not require
and is independent of any knowledge of individual observers of ev or observers of its
superevents, their implementations or execution orders which in turn makes it modular
and tractable.

Reasoning judgement: Γ ` {p} e {q}

(V-ANNOUNCE)
(c event ev extends ev′{(t var)* contract}) ∈ CT

contract = requires p assumes {se} ensures q
topContract(ev) = requires p′ assumes {se′} ensures q′

Γ ` {p′[e*/var*]} e′ {q′[e*/var*]}
Γ ` {p[e*/var*]} announce ev(e*){e′} {q[e*/var*]}

(V-INVOKE)
thunk ev = Γ (next) (c event ev extends ev′{ f orm* contract}) ∈ CT

contract = requires p assumes {se} ensures q

Γ ` {p} next.invoke() {q}

(V-REFINING)
Γ ` {p} e {q}

Γ ` {p} (refining requires p ensures q { e }) {q}

(V-SPEC)
Γ ` {p} requires p ensures q {q}

(V-CONSEQ)
p⇒ p′ q′⇒ q {p′} e {q′}

Γ ` {p} e {q}

Fig. 8. Select reasoning rules in PtolemyS’s Hoare logic [38], inspired by [10, 46].

To illustrate (V-ANNOUNCE), reconsider verification of the assertion Φ for the an-
nounce expression of AndEv, on lines 4–7 of Figure 1. Using the translucid contract of
AndEv, on lines 20–26, the conclusion of (V-ANNOUNCE) replaces parameters e, e.left
and e.right of the announce expression for context variables of node, left and right

of AndEv in the precondition and postcondition of the contract of AndEv and yields the
following Hoare triple:

Γ ` {e.left! = null && e.right! = null && e! = null}
announce AndEv(e, e.left, e.right)
{e.left.accept(this); e.right.accept(this);}

{e.equals(old (e))}

The above judgement says, if e, e.left and e.right are not null, the expression
e and its state remain the same after announcement and handling of AndEv, i.e.
e.equals(old (e)), which is exactly the assertion Φ we wanted to verify.

The rule (V-INVOKE) reasons about the behavior of an invoke expression, in an ob-
server. The rule says that the behavior of an invoke expression in an observer of the
event ev, is the behavior of the translucid contract of ev. The type of the event that
the observer handles, i.e. ev, is part of the type of the event closure next. The function
Γ (next) returns the type of the next expression in the typing environment Γ . Recall
that the event closure next is passed as a parameter to each observer handler method.
Again, the rule (V-INVOKE) does not require and is independent of any knowledge about

subjects of the event ev or observers it may invoke in the chain of observer next and
therefore is modular and tractable.

The rule (V-REFINING) says that the behavior of the body e of a refining expression
is the behavior of its specification expression requires p ensures q. This is true, because
the body of the refining expression claims to refine its specification. The rule (V-SPEC)
is straightforward [46] and the rule (V-CONSEQ) is standard [38].

4.1 Soundness of Reasoning

In PtolemyS, the translucid contract of an event is a sound approximation of behaviors
of its subjects and observers independent of observers of the event, observers of its
superevents and their execution orders. This is sound because of the following:

1. conformance of each observer and subject of an event to the translucid contract of
the event;

2. refining relation among specifications of the event and its superevents; and
3. non-decreasing relation on execution orders of observers of the event and observers

of its superevents.

For a greybox translucid contract of an event, all subjects and observers of the event
must conform to the contract of the event. This is different from a blackbox method
specification, e.g. in JML, in which only a single method has to respect a contract [9,37].
PtolemyS’s semantics, in Sections 8 and 9, guarantees the conformance using a combi-
nation of type checking and runtime assertion checking. PtolemyS’s event specification
inheritance, in Section 7, statically guarantees the refining relation and PtolemyS’s dy-
namic semantics guarantees the non-decreasing relation. Figure 5 shows the interplay
of conformance, refining and non-decreasing relations.

Conforming Observers

Definition 2. (Conforming observer) For an event type ev with a translucid contract
G = (requires p assumes {se} ensures q), its observer handler method m with its im-
plementation e is conforming if and only if there exists a typing environment Γ such
that:

(i). Γ |= {p} e {q}
(ii). sevs e

where Figure 9 defines the structural refinement relation vs between the assumes block
se and the body e of its observer.

Definition 2 says that for an observer handler method of an event ev to be conform-
ing, its implementation e must satisfy the precondition p and postcondition q of the
translucid contract of the event, i.e. requirement (i). An expression e satisfies a precon-
dition p and a postcondition q in a typing environment Γ , written as Γ |= {p} e {q}, if
and only if for every program state σ that agrees with the type environment Γ , if the pre-
condition p is true in σ , and if the execution of e terminates in a state σ ′, then q is true

in σ ′. Currently PtolemyS uses runtime assertions to check for satisfaction of precon-
ditions and postconditions of a contract by its observers. Static verification techniques
could also be used to check for such satisfaction [10]. Figure 10 shows the conforming
observer Evaluator and its observer handler method evalAndExp, on lines 21–32. In
evalAndExp, assertions on lines 22 and 31 check for preconditions and postconditions
of the contract of AndEv on lines 2 and 8.

Structural refinement relation: Γ ` sevs e

(S-REFINING)
Γ ` spec vs refining spec {e}

(S-INVOKE)
Γ ` sevs e

Γ ` se.invoke()vs e.invoke()

(S-VAR)
textualMatch(var′,var)

Γ ` var′ vs var

(S-ANNOUNCE)
Γ ` se*vs e* Γ ` sevs e

Γ ` announce ev(se*){se} vs announce ev(e*){e}

(S-EITHEROR)
Γ ` se1 vs e∨Γ ` se2 vs e

Γ ` either {se1} or {se2} vs e

(S-DEFINE)
Γ ` se1 vs e1 Γ ,var : t ` se2 vs e2

Γ ` t var = se1;se2 vs t var = e1;e2

(S-IF)
Γ ` spvs ep Γ ` se1 vs e1 Γ ` se2 vs e2

Γ ` if(sp){se1} else{se2} vs if(ep){e1} else{e2}

Fig. 9. Select rules for structural refinement vs [8, 46].

Definition 2 also requires the implementation e of a conforming observer to struc-
turally refine the assumes block se of its translucid contract, i.e. requirement (ii). The
structural refinement vs guarantees that an observer of an event, in its implementa-
tion has the control effects exposed in its translucid contract [8, 9] using its program
expressions. Figure 9 shows select rules for PtolemyS’s structural refinement.

The implementation e of an observer handler method structurally refines the as-
sumes block se of its translucid contract if: (a) for each specification expression spec in
se there is a corresponding refining expression in e with the same specification and (b)
for each program expression in se, there is a corresponding textually matching program
expression in e. The rule (S-REFINING) checks for structural refinement of a specifica-
tion expression by a refining expression. (S-VAR) checks for textual matching of vari-
able names using the auxiliary function textualMatch. For other program expressions,
structural refinement boils down to structural refinement of their subexpressions. The
rule (S-EITHEROR) allows an observer to choose between behaviors in its either-branch
or its or-branch. Similar to the refining relation, structural refinement requires structural
similarity between the implementation of a conforming observer and the assumes block
of its contract.

1 void event AndEv extends BinEv { ..
2 requires left != null && right != null && node != null
3 assumes {
4 next.invoke();
5 requires next.node().left!=null&&next.node().right!=null
6 ensures next.node().parent==old(next.node().parent);
7 }
8 ensures node.equals(old(node))
9 }

10 class ASTVisitor {
11 void visit(AndExp e) {
12 announce AndEv(e, e.left, e.right) {
13 assert(e != null);
14 e.left.accept(this);
15 e.right.accept(this);
16 assert(node.equals(old(node)));
17 }
18 } ..
19 }
20 class Evaluator { ..
21 void evalAndExp (AndEv next) {
22 assert(next.node().left!=null&&next.node().right!=null

&&next.node()!=null);
23 next.invoke();
24 assert(next.node().left!=null&&next.node().right!=null);
25 refining
26 requires next.node().left!=null&&next.node().right!=null
27 ensures next.node().parent==old(next.node().parent){
28 BoolVal b1 = (BoolVal) valStack.pop();
29 }
30 assert(next.node().parent==old(next.node().parent));
31 assert(next.node().equals(old(next.node())));
32 }
33 when AndEv do evalAndExp; ..
34 }

Fig. 10. Conforming Evaluator and ASTVisitor.

In Figure 10, the assumes block, on lines 3–7, is structurally refined by the imple-
mentation of the conforming observer evalAndExp, on lines 22–31 (ignoring runtime
assertion checks), because the program expression next.invoke() on line 4 is structurally
refined by the program expression in the implementation on line 23 and the specification
expression on lines 5–6 is refined by a refining expression with the same specification on
lines 25–29. Structural refinement guarantees that the implementation of evalAndExp
has a next.invoke() expression as its control effect, as specified by the program expres-
sion next.invoke() in its contract.

A refining expression claims that its body satisfies its specification. PtolemyS uses
runtime assertions to check this claim. In Figure 10, runtime checks on lines 24 and 30
check that the body of the refining expression satisfies its precondition and postcondi-
tion on lines 26 and 27.

Though similar, in the structural refinement vs the implementation of an observer
refines the assumes block of the translucid contract of its event, whereas in the refining
relation E the contract of an event refines the contract of its superevent. A specification

expression in a contract is structurally refined by a refining expression in vs whereas it
is refined by another specification expression in E.

Conforming Subjects

Definition 3. (Conforming subject) For an event type ev with a translucid contract
G = (requires p assumes {se} ensures q), its subject with an announce expression
announce ev(e*){e′} in its implementation, is conforming if and only if:
Γ |= {p′} e′ {q′} where requires p′ assumes {se′} ensures q′ = topContract(ev)

The definition says that for a subject of ev to be conforming its event body e′ must
satisfy the precondition p′ and postcondition q′ of the translucid contract of the event
on top of the subtyping hierarchy of ev, right before the root event Event. The auxiliary
function topContract returns the translucid contract of this event. As shown in Figure 5,
this is necessary for the non-decreasing relation in which observers of the event and
observers of its superevent run before the event body e′ in the chain of observers. Fig-
ure 10 shows the conforming subject ASTVisitor, on lines 10–19. Runtime assertions
on lines 13 and 16 check for satisfaction of the precondition and postcondition of the
top contract of AndEv, i.e. the translucid contract of ExpEv, by the event body.

Soundness of Hoare Logic for Modular Reasoning
Theorem 1 formalizes soundness of PtolemyS’s Hoare logic.

Theorem 1. (Soundness of PtolemyS’s Hoare logic) PtolemyS’s Hoare logic, in Fig-
ure 8, is sound for conforming PtolemyS programs. In other words, any Hoare triple
provable using PtolemyS’s logic, i.e. Γ ` {p} e {q}, is a valid triple, i.e. Γ |= {p} e {q}.

The proof is based on induction on the number of events in a subtyping hierarchy
and the number of their observers and uses conformance, refining and non-decreasing
relations. Full proof of the theorem can be found in Section A.

4.2 Revisiting Reasoning about Announce and Invoke

PtolemyS’s reasoning rules (V-ANNOUNCE) and (V-INVOKE) are sound because the con-
formance, refining and non-decreasing relations allow, in any chain of observers, the
implementation of an invoked observer to be inlined in place of invoke expressions of
its invoking observer without violating the precondition and postcondition of the invok-
ing observer. This in turn allows the chain of observers of an event and observers of its
superevents, starting from the event body at the end of the chain back to its beginning,
to be recursively inlined in an announce expression without violating the precondition
and postcondition of the contract of the event.

To illustrate, reconsider reasoning about the behavior of the announce expression
announce AndEv(e, e.left, e.right), in Figure 1. Upon announcement of AndEv, if there
are no observers of AndEv or observers of its superevents BinEv or ExpEv in the chain
of observers, then the event body e.left.accept(this);e.right.accept(this) executes. The
subject ASTVisitor of AndEv is conforming and thus the event body satisfies the be-
havior of the contract of ExpEv, which is the top event in the hierarchy of AndEv.

That is, the event body satisfies the precondition node ! = null and the postcondition
node.equals(old (node)) of ExpEv after the context node is replaced with parameter e
of the announce expression:

(H-BODY)
Γ |= {e ! = null}

e.left.accept(this); e.right.accept(this);
{e.equals(old (e))}

The refining relation guarantees that the behavior of AndEv refines the behavior
of ExpEv. That is, the precondition of AndEv implies the precondition of ExpEv, i.e.
left! = null && right! = null && node! = null⇒ node ! = null, and the opposite is true
for their postconditions, i.e. node.equals(old (node))⇒ node.equals(old (node)). Us-
ing these implications, the rule (V-CONSEQ) and after replacing the context node with
e, one can conclude that the event body satisfies the behavior of AndEv:

Γ |= {e.left! = null && e.right! = null && e! = null}
e.left.accept(this); e.right.accept(this);

{e.equals(old (e))}
Since the event body is the only observer that executes upon announcement of

AndEv, the announce expression can be replaced with the event body:

(H-ANNOUNCE-BODY)
Γ |= {e.left! = null && e.right! = null && e! = null}

announce AndEv(e, e.left, e.right)
{e.left.accept(this); e.right.accept(this);}

{e.equals(old (e))}
The judgement (H-ANNOUNCE-BODY) says the announce expression of AndEv with

event body as its only observer satisfies the behavior of the translucid contract of AndEv.
However, the event body may not be the only observer of AndEv. Consider observers

evaluator and tracer of event AndEv and ExpEv and the event body of AndEv, shown
as B(AndEv), run in a chain χ1 : evaluator⇀ tracer⇀ B(AndEv). Again, confor-
mance of ASTVisitor means that the event body satisfies the behavior of the contract
of ExpEv, i.e. (H-BODY). Recall that an observer of an event and the invoke expres-
sions in its implementation have the precondition and postcondition of the contract of
the event. The precondition of the invoke expression in the implementation of tracer
implies the precondition of the event body, i.e. node! = null⇒ node! = null and the
postcondition of the event body implies the postcondition of the invoke expression,
i.e. node.equals(old (node))⇒ node.equals(old (node)). This in turn allows the event
body, in grey, to be inlined in the place of the invoke expression in the implementation
of tracer, in Figure 3, without violating the precondition and postcondition of tracer:

(H-TRACER)
Γ |= {e ! = null}

e.left.accept(this); e.right.accept(this);
refining requires true
ensures e.parent == old (e.parent){..}

{e.equals(old (e))}

Using the refining relation, the precondition of AndEv implies the precondition of
ExpEv and the opposite is true for their postconditions. This means the precondition
of the invoke expression in the implementation of evaluator implies the precondi-
tion of tracer, i.e. left! = null && right! = null && node! = null⇒ node ! = null,
and the postcondition of tracer implies the postcondition of the invoke expression in
evaluator, i.e. node.equals(old (node))⇒ node.equals(old (node)). This allows the
implementation of tracer in (H-TRACER) to be inlined, in grey, in place of the in-
voke expression in evaluator without violating its precondition and postcondition of
evaluator:

(H-EVALUATOR)
Γ |= {e.left! = null && e.right! = null && e! = null}

e.left.accept(this); e.right.accept(this);

refining requires true

ensures e.parent == old (e.parent){..};
refining
requires e.left! = null && e.right! = null
ensures e.parent == old (e.parent){..};
{e.equals(old (e))}

Since the announcement of AndEv causes the chain χ1 to run, the inlined chain of
observers in (H-EVALUATOR) can be replaced with the announce expression:

(H-ANNOUNCE-χ1)
Γ |= {e.left! = null && e.right! = null && e! = null}

announce AndEv(e, e.left, e.right)
{e.left.accept(this); e.right.accept(this);}
{e.equals(old (e))}

The judgement (H-ANNOUNCE-χ1) says that the behavior of the announce expres-
sion of AndEv with the chain of observers χ1 satisfies the behavior of the contract of
AndEv. (H-ANNOUNCE-BODY) and (H-ANNOUNCE-χ1) say that the behavior of a chain
of observers of AndEv and observers of its superevents, can be approximated with the
precondition and postcondition of the translucid contract of the AndEv which is what the
rule (V-ANNOUNCE) in PtolemyS’s reasoning logic says. A similar justification holds for
the rule (V-INVOKE).

5 Applicability

Our proposed modular reasoning technique is not exclusive to PtolemyS and could be
adapted to similar AspectJ-like [2] event-based systems such as join point types (JPT)
[20] and join point interfaces (JPI) [19].

5.1 Join Point Types
With join point types, a subject (base) exhibits a join point type (event) using an exhibits
statement and aspects (observers) advise the event and handle it using advises state-
ments. A join point type can extend another join point type, inherit its context variables

and add to them through width subtyping. Exhibiting a join point type causes its aspects
and aspects of its super join point types to run in a chain where aspects can invoke each
other using proceed statements. The execution order of aspects is specified using prece-
dence declarations. Join point types do not support depth subtyping, however, this does
not affect the applicability of PtolemyS’s reasoning technique to them.

1 joinpointtype AndEv extends BinEv {
2 /*@ requires node!=null && left!=null &&right!=null;
3 @ model_program {
4 @ proceed(next);
5 @ requires node.left!=null && node.right!=null;
6 @ ensures node.parent == old(node.parent);
7 @ }
8 @ ensures node.equals(old(node)); */
9 }

10 class ASTVisitor exhibits AndEv,.. {
11 void visit(AndExp e) {
12 exhibits new AndEv(e, e.left, e.right) {
13 e.left.accept(this);
14 e.right.accept(this);
15 }; ..
16 } ..
17 }
18 aspect Evaluator advises AndEv,.. { ..
19 void around(AndEv jp) {
20 proceed(jp);
21 refining
22 requires node.left!=null && node.right!=null;
23 ensures node.parent == old(node.parent){
24 .. //same as before
25 }
26 } ..
27 }

Fig. 11. Join point type AndEv and its translucid contract.

Figure 11 shows parts of the expression language example rewritten using join point
types where the subject ASTVisitor exhibits a join point instance AndEv, on lines 12–
15, and the observer Evaluator advises the join point, on lines 19–26. Evaluator
invokes the next observer in the chain of observers using a proceed statement on line
20, which takes as argument a join point instance jp of join point type AndEv. The join
point type AndEv is declared on lines 1–9 and extends the join point type BinEv.

Figure 11 shows the syntactic adaptation of the translucid contract of the join point
type AndEv, on lines 2–8, using a JML-like syntax. JML syntax is specifically chosen
to minimize required syntactic changes. In a contract of a join point type, a JML model
program [46] is similar to an assumes block and a proceed statement is equivalent to an
invoke expression [8]. A variable next in the contract of a join point type is a placeholder
for join point instances of that type, which contains values of its contexts.

Although, a translucid contract of a join point type uses JML’s syntax, its verifi-
cation is completely different from JML. This is because a JML contract specifies the
behavior and structure of only a single method whereas a translucid contract of a join

point type specifies all bases and aspects of the join point type. Consequently, for the
conformance relation, for each join point type, all of its bases and aspects must conform
to the translucid contract of their join point type, i.e. structurally refine the contract and
satisfy its preconditions and postconditions. Type checking rules of join point types
could be augmented to check for structural refinement and runtime assertions could be
added to bases and aspects to check for their satisfaction of preconditions and post-
conditions of their contract and their specification expressions. In addition to syntactic
adaptations of structural refinement, the rule (S-VAR) should be slightly modified to
allow for structural refinement of placeholder variables next by join point instance vari-
ables. Unlike PtolemyS in which a variable next is structurally refined by a textually
matching variable next, in join point types a variable next in a contract of a join point
type is structurally refined by a join point instance variable in the implementation of an
observer if their types are the same. For example, in Figure 11, the variable next in the
translucid contract of AndEv, on line 4, is structurally refined by the join point instance
variable jp in the observer Evaluator, on line 20, because they both are of the same
type AndEv.

Another difference between translucid contracts and JML contracts is that JML re-
quires model programs of a type and its supertype to be the same [46], whereas in
translucid contracts the assumes block of an event refines the assumes block of its su-
perevent. Consequently, for the refining relation, PtolemyS’s specification inheritance
could be adapted to join point types, mostly through syntactic adaptations, to statically
guarantee the refining relation between translucid contracts of a join point type and its
super type.

For the non-decreasing relation, precedence declarations of aspects could be stat-
ically checked to ensure that an aspect of a join point type runs before aspects of its
super join point type or execution of aspects can be reordered dynamically at runtime
to guarantee the non-decreasing relation.

5.2 Join Point Interfaces

In join point interfaces [19, 49], similar to join point types, a subject exhibits a join
point interface (event) and observers advise the event and handle it. Exhibiting a join
point interface causes its observers and observers of its super join point interfaces to
run in a chain. PtolemyS’s modular reasoning is applicable to join point interfaces in the
absence of global join point interfaces [19].

Figure 12 shows parts of the boolean expression example rewritten using join point
interfaces. The subject ASTVisitor exhibits a join point instance AndEv, on line 33, and
the observer Evaluator advises the join point, on lines 40–50. Evaluator invokes the
next observer using a proceed statement on line 43 passing node, left and right for
corresponding context variables of its event AndEv. The join point interface is declared
on line 29 and extends the join point interface BinEv. The join point interface AndEv

is declared similar to method signatures and its context variables are explicitly named
in its observer Evaluator and its proceed statement. Translucid contracts can be added
to join point interfaces in a JML-like syntax, similar to join point types. Translucid
contract of a join point interface appears right before its declaration. Figure 12 shows
the translucid contract for the join point interface AndEv, on lines 21–28.

1 /* join point interfaces */
2 /*@ requires node != null;
3 @ model_program {
4 @ proceed(node);
5 @ requires true;
6 @ ensures node.parent == old(node.parent);
7 @ }
8 @ ensures node.equals(old(node));
9 @*/

10 jpi void ExpEv(Exp node);

11 /*@ requires left != null && right != null;
12 @ model_program {
13 @ proceed(node, left, right);
14 @ requires node.left!=null && node.right!=null;
15 @ ensures node.parent == old(node.parent);
16 @ }
17 @ ensures node.equals(old(node));
18 @*/
19 jpi void BinEv(Exp node, Exp left, Exp right) extends ExpEv(node);

21 /*@ requires left != null && right != null;
22 @ model_program {
23 @ proceed(node, left, right);
24 @ requires node.left!=null && node.right!=null;
25 @ ensures node.parent == old(node.parent);
26 @ }
27 @ ensures node.equals(old(node));
28 @*/
29 jpi void AndEv(Exp node, Exp left, Exp right) extends BinEv(node, left,

right);
30 /* subject */
31 class ASTVisitor exhibits AndEv,.. {
32 void visit(AndExp e) {
33 exhibit AndEv(e, e.left, e.right) {
34 e.left.accept(this);
35 e.right.accept(this);
36 };
37 } ..
38 }
39 /* observers */
40 aspect Evaluator {
41 Stack<BoolVal> valStack = ..
42 void around AndEv(Exp node, Exp left, Exp right_){
43 proceed(node, left, right_);
44 refining
45 requires node.left != null && node.right_ != null
46 ensures node.parent == old(node.parent){
47 .. // same as before
48 }
49 } ..
50 }

Fig. 12. Join point interface AndEv and its translucid contract on lines 21–28.

For the conformance relation, for each join point interface all of its bases and as-
pects must conform to the JML-like translucid contract of their join point interface.

Structural refinement could be added to type checking rules for join point interfaces
and runtime assertions could be added to bases and aspects to check for their satisfac-
tion of preconditions and postconditions. The rule (S-VAR) should be slightly modified
to allow for structural refinement between possibly different names of a context variable
in the join point interface and observer. Unlike PtolemyS in which a name of a context
variable in a translucid contract is structurally refined by a textually matching variable
name in the observer, a context variable in a contract of a join point interface is refined
by a context variable in the implementation of an observer with the same type and a
possibly different name. For example, in Figure 12, the context variable right in the
contract of AndEv is structurally refined by the context variable right_ in the observer
Evaluator because they both refer to the same context variable and are of the same
type. Positions of context variables right and right_ in the list of context variables in
join point interface declaration, on line 29, and advising of the join point interface, on
line 42, specify if two names refer to the same context variable.

For the refining relation, in addition to syntactic adaptations of the refining rules,
the rule (R-INVOKE) should be slightly modified to allow refinement of corresponding
proceed statements with varying number of context variables in the translucid contracts
of a join point interface and its supertype. A proceed statement in a translucid contract
of a join point interface refines a corresponding proceed statement in the translucid con-
tract of its supertype if the number of context variables of subtype’s proceed is more
than or equal to the number of context variables in supertype’s proceed and types of
context variables of the same names are the same. This is because join point interfaces
do not support depth subtyping of context variables. For example, the proceed statement
on line 13 of the translucid contract of BinEv refines its corresponding proceed state-
ment on line 4 of the contract of ExpEv, i.e. proceed(node)E proceed(node, left,right).
PtolemyS’s specification inheritance could be adapted to join point interfaces, mostly
through syntactic adaptations to statically guarantee the refining between translucid
contracts of a join point interface and its super join point interface.

For the non-decreasing relation, similar to join point types, precedence declarations
of aspects could be statically checked to ensure that an aspect of a join point inter-
face runs before aspects of its super join point interface or execution of aspects can be
reordered dynamically at runtime to guarantee the non-decreasing relation.

Global join point interfaces PtolemyS’s modular reasoning is applicable to join point
interfaces only in the absence of global join point interfaces [19]. A global join point
interface with its implicit event announcement allows a subject to announce an event
without knowing about it. In implicit event announcement an event is announce implic-
itly without any exhibits statement. Reasoning about a subject in the presence of global
join point interfaces requires a global inspection of all global join point interfaces to
determine whether the subject announces any of the events declared by those global
join point interfaces, which is not modular.

global jpi Object AllExcEv(): execution (* * (..));

Fig. 13. Global join point interface AllExcEv.

Figure 13 shows a global join point interface AllExcEv added to the boolean expres-
sion example. This causes AllExcEv to be announced implicitly during the execution
of every method of every module of the example, including methods of the subject
ASTVisitor in Figure 1. With the presence of AllExcEv, to reason about the assertion
Φ in the subject not only the behavior of observers of its event AndEv and its superevents
should be understood but also the behaviors of the observers of AllExcEv. However,
neither the implementation of ASTVisitor nor the events AndEv and its superevents
say anything about announcement of AllExcEv, which in turn hinders modular reason-
ing about the subject and modular verification of Φ [19]. Adding a translucid contract
to AllExcEv does not restore modular reasoning.

6 Modular Reasoning about Control Effects

PtolemyS not only enables modular reasoning about behaviors of observers of an event
but also their control effects [8,32] in the presence of event subtyping. In PtolemyS, sim-
ilar to Aspect-like [2] languages, observers run in a chain and invoke each other using
an invoke expression. This in turn means an observer of an event can skip the execu-
tion of other observers of the event or observers of its superevents, including the event
body, by not executing its invoke expression. Understanding the invocations among ob-
servers of an event and its superevents in a chain of observers falls under the category
of modular reasoning about control effects of observers.

As an example of modular reasoning about control effects consider static verifi-
cation of the control effect assertion Ψ that says upon announcement and handling of
AndEv, its event body, on lines 5–6 of Figure 1 will be executed and will not be skipped9.
This is important because if the execution of the event body of AndEv is skipped, the
right and left children of an AndExp expression and subtrees recursively rooted in these
children are not going to be visited. The execution of the body of AndEv, shown as
B(AndEv), could be skipped in a chain of observers if any of observers of AndEv or
observers of its superevents BinEv or ExpEv, which run before the event body, skip the
execution of their invoke expression and break the invocation chain. For example, in
chain χ2: evaluator⇀ tracer⇀ B(AndEv), the execution of B(AndEv) is skipped
if any or both invoke expressions in the implementations of evaluator, on line 55 of
Figure 3, or tracer, on line 41, goes missing.

To reason about the control effects of an announcement of an event, the control
effects of all of its observers and observers of its superevents for their various exe-
cution orders must be understood, especially regarding the execution of their invoke
expressions. Such reasoning is dependent on control effects of individual observers of
the event and observers of its superevents and any changes in these control effects can
invalidate any previous reasoning, which threatens its modularity.

PtolemyS’s translucid contracts enable modular reasoning about control effects of
observers of an event and observers of its superevents, independent of observers and
their execution orders. This is sound because each conforming observer of an event has
the same control effects as the translucid contract of the event and PtolemyS’s refining

9 PtolemyS’ core does not support throwing or handling of exceptions [9].

relation ensures that the contract of an event refines the control effects of the contract
of its superevent. Control effects are specified by program expressions in translucid
contracts of events.

In PtolemyS, the assertion Ψ could be verified using the translucid contract of AndEv
and especially its assumes block, on lines 21–25 of Figure 4. The program expression
next.invoke(), on line 22, guarantees that each observer of AndEv includes the invoke
expression in their implementations and the refining relation ensures that each observer
of superevents of AndEv contains the invoke expression in their implementations as
well. This means that the invoke expression in the implementation of evaluator or
tracer in χ2 must be present or otherwise these observers will not be conforming to
their translucid contracts. This in turn means that all the observers in the chain χ2,
including the event body at the end of the chain, are invoked and executed.

6.1 Control Interference of Subjects and Observers

Rinard et al. [50] classify the control interactions of a subject and observer of an event
into four categories: (i) augmentation, (ii) narrowing, (iii) replacement and (iv) combina-
tion. These categories are concerned about the number of invoke expressions and their
executions in an implementation of an observer. An augmentation observer executes
its invoke expression exactly once, a narrowing observer executes it at most once, a
replacement observer does not execute any invoke expressions and a combination ob-
server executes its invoke expression zero or more times in its implementation.

PtolemyS’s translucid contracts allow modular reasoning about the control inter-
ference category of interactions of subjects and observers of an event, independent of
observers of the event and observers of its superevents. To reason about the control
interference of subjects and observers of an event, one uses the translucid contract of
the event to decide about the the number of times invoke expressions of the translucid
contract may execute. An invoke expression surrounded by an if conditional executes
at most once, whereas an invoke expression surrounded by a loop may execute zero
times or more. Otherwise, an invoke expression executes exactly once. This is sound
because the structural refinement of the conformance relation requires each observer of
an event to have the same control effects as its translucid contracts, especially regarding
the number of invoke expressions in its implementation. The refining relation ensures
that the control effects of observers of an event refine the control effects of observers of
its superevents.

Augmentation interactions and observers To illustrate the augmentation interaction,
consider the observer Evaluator and subject ASTVisitor of the event AndEv. Using
only the translucid contract of AndEv, on lines 20–26 of Figure 4, one can conclude that
subjects and observers of AndEv have an augmentation interaction in which Evaluator

augments the behavior of its subject, i.e. Evaluator is an augmentation observer. This
is because the assumes block of the contract of AndEv contains an invoke expression, on
line 22, which is not surrounded by any conditionals or loops. This in turn means that the
conforming observer Evaluator has only one invoke expression in its implementation
which executes exactly once. For observers Checker and Tracer of superevents BinEv

and ExpEv of AndEv, the refining relation ensures that they also have only one invoke
expressions in their implementations and thus they are augmentation observers as well.

For an event with augmentation interactions and observers, one can conclude that
upon announcement of the event all observers of the event and observers of its su-
perevent including the event body execute and their executions cannot be skipped.

Replacement interactions and observers To illustrate the replacement interaction,
consider the event AndEv with its translucid contract in Figure 4, but without its invoke
expression. Using this contract one can conclude that subjects and observers of AndEv
have a replacement interaction in which Evaluator replaces the body of its announce
expression in a subject, i.e. Evaluator is a replacement observer. To structurally re-
fine its contract, Evaluator cannot have any invoke expression in its implementation.
The refining relation ensures that superevents BinEv and ExpEv cannot have invoke
expressions in their contracts either and therefore observers Checker and Tracer are
replacement observers as well.

For an event with replacement observers, one can conclude that upon announcement
of the event the first observer of the event or its superevents executes and executions of
the rest of the observers including the event body are skipped. This is because none of
the observers have an invoke expression in their implementations.

Narrowing and combination interactions and observers One can modularly reason
about narrowing and combination interactions and observers in a similar fashion.

7 Event Specification Inheritance

To manually guarantee the refining relation among translucid contracts of an event and
its superevent could be error prone and cause (partial) repetition of the contract of the
superevent in the subevent. Repetition of contracts in turn could make their understand-
ing and maintenance difficult [37, 45].

To illustrate specification repetition, consider translucid contracts of events in Fig-
ure 4 in which the postcondition of BinEV, on line 17, is changed from true to
node.equals(old (node)) for the contracts to manually refine each other. The code in
grey shows specification repetitions such as the repetition of the whole contract of
BinEv in AndEv, lines 11–17 and 20–26. Specification inheritance for translucid con-
tracts of subtyping events can statically guarantee the refining relation among the con-
tracts of events and avoid the specification repetition. Definition 4 defines inheritance
for translucid contracts of subtyping events.

Definition 4. (Inheritance for translucid contracts) For event types ev and ev′, where
ev is a subevent of ev′, i.e. ev�: ev′, and their respective structurally similar translucid
contracts G = (requires p assumes {se} ensures q) and G ′ = (requires p′ assumes {se′}
ensures q′), the extended translucid contract G x = requires px assumes {sex} ensures qx
that replaces the contract G of the subevent ev is defined as follows:

(i). px = p∧ p′ and qx = q∨q′

and for its assumes block sex:

(ii). ∀ (spec = requires psensures qs) ∈ se and its corresponding (spec′ = requires p′s
ensures q′s) ∈ se′ then (specx = requires px ensures qx) ∈ sex such that px = ps∧ p′s
and qx = qs∨q′s.

(iii). ∀ prog ∈ se and its corresponding prog′ ∈ se′ where textualMatch(prog, prog′),
then prog ∈ sex.

PtolemyS’s specification inheritance, in Definition 4, combines the translucid con-
tracts of an event and its superevent to produce an extended translucid contract that
replaces the translucid contract of the event. In the extended contract, (i) original pre-
conditions of contracts of the event and its superevent are conjoined and their postcon-
ditions are disjoined. To combine assumes blocks of the event and its superevent (ii)
corresponding specification expressions spec and spec′ of the contracts are combined
by conjoining their preconditions and disjoining their postconditions and (iii) textually
matching corresponding program expressions prog and prog′ of contracts are copied
over to the combined translucid contract.

The event specification inheritance in Definition 4 guarantees the PtolemyS’s refin-
ing relation defined in Definition 1. In other words the translucid contract G ′ of the
superevent ev′ is refined by the extended translucid contract G x of its subevent ev.
Translucid contract G ′ is refined by G x if the behavior requires p′ ensures q′ of G ′ is
refined by the behavior requires px ensures qx of G x and the assumes block se′ of G ′ is
refined by the assumes block sex of G x. The requirement (i) in the definition of event
specification inheritance guarantees that the behavior of G ′ is refined by the behavior
of G x. This behavioral refinement is similar to refinement of blackbox contracts [45].
The assumes block se′ of G ′ is refined by structurally similar assumes block sex of G x if
(1) for each program expression in se′ there is a corresponding textually match program
expression in sex and (2) for each specification expression in se′ there is a correspond-
ing refining specification expression in sex [46]. The requirement (iii) in the definition
of specification inheritance guarantees (1) and the requirement (ii) guarantees (2).

Unlike specification inheritance for blackbox specifications that only combines pre-
conditions and postconditions [45], event specification inheritance combines greybox
specifications containing assumes blocks that specify control effects. Also, event spec-
ification inheritance only combines structurally similar translucid contracts. Structural
similarity is essential to allow for a static and syntactic definition of specification inher-
itance for greybox specifications. Without structural similarity the definition of specifi-
cation inheritance may require complex or runtime trace verification techniques [46].

To illustrate event specification inheritance, consider Figure 14 that rewrites the
translucid contracts of events in Figure 4 using event specification inheritance. The
contract of ExpEv remains the same. However, its subevent BinEv inherits the assumes
block of its superevent ExpEv and does not repeat it. Precondition and postcondition of
BinEv, on lines 15 and 16, are combined by the precondition and postcondition of its
superevent ExpEv, on lines 3–9. The contract for AndEv is completely inherited from its
superevent BinEv and therefore is not repeated in AndEv.

Measuring specification reuse Event specification inheritance decreases specification
repetition by 62% in the full version of the simple expression example, discussed in
Section 1. Figure 15 shows specification reuse for events in this example. Specification

1 void event ExpEv {
2 Exp node;
3 requires node != null
4 assumes {
5 establishes next.node().parent==old(next.node().parent);
6 next.invoke();
7 establishes next.node().parent==old(next.node().parent);
8 }
9 ensures node.equals(old(node))

10 }
11 void event BinEv extends ExpEv {
12 BinExp node;
13 Exp left;
14 Exp right;
15 requires left!=null && right!=null
16 ensures node.equals(old(node))
17 }
18 void event AndEv extends BinEv {
19 AndExp node;
20 }

Fig. 14. Translucid contracts of ExpEv, BinEv and AndEv using specification inheritance and with-
out specification repetition of Figure 4.

reuse is measured by counting lines of code for translucid contracts of event declara-
tions in two implementations of the expression example with and without specification
inheritance10. Lines of code are measured using the cloc tool11 ignoring comments and
whitespace lines.

Lines of Code without event subtyping with event subtyping Change
event declarations 174 66 -62.1%
Tracer observer 96 30 -68.7%
Checker observer 126 60 -52.3%
Evaluator observer 160 139 -13.1%
ASTAnnouncer subject 57 57 -0.0%
all other code 179 179 -0.0%
Total 792 531 -33.0%

Fig. 15. Specification and code reuse in PtolemyS for the simple expression example of Section 1.

Specification inheritance and reuse avoids repetition in events and not their ob-
servers and subjects. However, an observer of an event still can benefit from code reuse
enabled by event subtyping which allows the observer to run when a subevent of the

10 These two implementations can be found at http://sf.net/p/ptolemyj/code/HEAD/

tree/pyc/branches/event-inheritance/examples/101-Polymorphic-Contracts/

and http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/

examples/101-Polymorphic-Contracts-No-Reuse/, respectively.
11 Retrieved from: http://cloc.sourceforge.net/

http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/examples/101-Polymorphic-Contracts/
http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/examples/101-Polymorphic-Contracts/
http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/examples/101-Polymorphic-Contracts-No-Reuse/
http://sf.net/p/ptolemyj/code/HEAD/tree/pyc/branches/event-inheritance/examples/101-Polymorphic-Contracts-No-Reuse/
http://cloc.sourceforge.net/

event is announced. Figure 15 shows code reuse for observers in the expression ex-
ample. The observer Tracer benefits the most, because the observer handler methods
for all events are identical and thus with event subtyping only one handler method can
be reused for all the events. More complicated observers Checker and Tracer show
13–52% code reuse. Subjects of events do not benefit from specification or code reuse
because of event subtyping. The same is true for the rest of the code.

8 Dynamic Semantics

In this section, we present a substitution-based small-step operational semantics for
PtolemyS with special focus on announcing and handling of events in an event inheri-
tance hierarchy and the non-decreasing relation on execution order of their observers.
Rest of PtolemyS’s operational semantics can be found in Section B.

8.1 Dynamic Semantic Objects

PtolemyS’s operational semantics relies on few additional expressions that are not part
of its surface syntax, as shown in Figure 16, including loc to represent the locations
in the store and evalpost e q to check that the expression e satisfies the postcondition
q. PtolemyS also uses three exceptions to represent dereferencing null references, i.e.
NPE, runtime cast exceptions, i.e. CCE, and violations of translucid contracts, i.e. TCE.
In PtolemyS’s core semantics, exceptions are terminal states [16]. Figure 16 also shows
the evaluation contexts used in PtolemyS’s dynamic semantics. An evaluation context E
specifies the evaluation order and the position in an expression where the evaluation is
happening. PtolemyS uses a left-most inner-most call-by-value evaluation policy.

PtolemyS’s operational semantics transitions from one configuration to another. A
configuration Σ , in Figure 16, contains an expression e, store S, store typing Π and a
mapping A from events ev to their ordered list of observers O. A store maps locations
to storable values sv which themselves are either an object record or or an event closure
ec. An object record has a class name c and a map F from fields to their values. An event
closure eClosure(H,e,ρ) contains an ordered list of observer handlers H, an expression
e and an environment ρ for running e. An observer handler method h contains a location
loc that points to its observer object and a handler method name m. A value v is either
a location loc or null. A store typing maps a location to its type and is maintained and
updated by the dynamic rules only to be used in the soundness proof.

8.2 Dynamic Semantic Rules

Figure 17 shows dynamic semantic of PtolemyS-specific expressions. In PtolemyS, a
subject announces an event using an announce expression, observers (un)register for the
event using (un)register expressions and invoke each other using invoke expressions.

The rule (ANNOUNCE) says that upon announcement of an event ev an event closure
eClosure(H,e,ρ) is constructed that contains the list (chain) of observer handler meth-
ods of the event and the observer handler methods of its superevent, in H, the event body
e and an environment mapping context variables var* of the event to their values v*, in

Added syntax:
e ::= loc | evalpost e q

| NPE | CCE | TCE
loc ∈L , a set of locations

Evaluation contexts:
E ::= − | E.m(e . . .) | v.m(v . . .Ee . . .) | E . f | E. f=e

| if (E) { e } else { e } | cast c E | t var=E; e
| announce(v . . .Ee . . .){e} | invoke(E)
| register(E) | unregister(E)
| refining requires E ensures q

Evaluation relation: ↪→: 〈e,S,Π ,A〉 → 〈e′,S′,Π ′,A′〉

Domains:
Σ ::= 〈e,S,Π ,A〉 configurations
S ::= {lock 7→ svk} stores
v ::= null| loc values
sv ::= or | ec storable values
or ::= [c.F] object records
F ::= { fk 7→ vk} field maps
ρ ::= {var 7→ vk} environments
ec ::= eClosure(H,e,ρ) event closure
H ::= h+H | • handler records list
h ::= 〈loc,m〉 handler record
A ::= {evk 7→ Ok} active objects map
O ::= loc+O | • active objects list

k ∈K , is finite

Fig. 16. Added syntax, evaluation contexts and configuration.

ρ . The list H is constructed using the auxiliary function handlersOf , in Figure 18. The
function handlersOf first computes the list of observer handler methods of the event ev,
using hbind, and concatenates it to the handlers of the superevents ev′ until the event
Event is reached. This in turn ensures that the observer handler methods of the event ev
appear before the observer handler methods of its superevent ev′ in the list of observer
handler methods H, according to the non-decreasing relation. The event Event has no
observers since is not part of PtolemyS’s surface syntax and observers can not register
for or handle it. The concatenate operator ⊕ ignores empty • elements. The function
hbind binds the observer loc, in the beginning of the A[ev], to observer handler method
m, using the auxiliary function match and concatenates it to the bindings for the rest
of A[ev]. After construction, the event closure is mapped to a fresh location loc and the
execution of the chain of observer handler methods starts using the invoke expression,
i.e. loc.invoke().

(ANNOUNCE) also updates the store typing environment Π with a new mapping from
the location loc to the type thunk ev of the event closure it points to. Recall that thunk
types mark event closure types. The operator] is an overriding union operator.

Evaluation relation: ↪→: 〈e,S,Π ,A〉 → 〈e′,S′,Π ′,A′〉

(ANNOUNCE)
(c event ev extends ev′{(t var)* contractev}) ∈CT

loc 6∈ dom(S) H = handlersOf (ev) ρ = {vari 7→ vi | vari ∈ var*∧ vi ∈ v*}
S′ = S] (loc 7→ eClosure(H,e,ρ)) Π

′ = Π] (loc : thunk ev)

〈E[announce ev (v*) {e}],S,Π ,A〉 ↪→
〈
E[loc.invoke()],S′,Π ′,A

〉
(INVOKEDONE)

eClosure(•,e,ρ) = S(loc)

〈E[loc.invoke()],S,Π ,A〉 ↪→ 〈E[e],S,A,Π〉

(INVOKE)
eClosure(〈loc′,m〉+H,e,ρ) = S(loc) [c.F ′] = S(loc′)

(c2, t m(t1 var1){e′}) = methodBody(c,m) e′′ = [loc1/var1, loc′/this]e′

loc1 6∈ dom(S) S′ = S] (loc1 7→ eClosure(H,e,ρ)) Π
′ = Π] (loc1 : Π(loc))

〈E[loc.invoke()],S,Π ,A〉 ↪→
〈
E[e′′],S′,Π ′,A

〉
(REGISTER)
∀ev ∈ eventsOf (loc) . A′[ev] = A[ev]+ loc

〈E[register(loc)],S,Π ,A〉 ↪→
〈
E[loc],S,Π ,A′

〉
(UNREGISTER)
∀ev ∈ eventsOf (loc) . A′[ev] = A[ev]− loc

〈E[unregister(loc)],S,Π ,A〉 ↪→
〈
E[loc],S,Π ,A′

〉
(REFINING)

n 6= 0
〈E[refining requires n ensures q {e}],S,Π ,A〉 ↪→ 〈E[evalpost e q],S,Π ,A〉

(EVALPOST)
n 6= 0

〈E[evalpost v n],S,Π ,A〉 ↪→ 〈E[v],S,Π ,A〉

(ECGET)
eClosure(H,e,ρ) = S(loc) v = ρ(f)

〈E[loc. f],S,Π ,A〉 ↪→ 〈E[v],S,Π ,A〉

Fig. 17. Select rules for PtolemyS’s dynamic semantics, based on [16].

Rules (INVOKEDONE) and (INVOKE) handle the base case and recursive case of ob-
server invocation. The auxiliary function methodBody emulates dynamic dispatch at
runtime. After the execution of the observer handler method at the beginning of the list
H, the event closure is updated to reflect the execution of the observer and the updated
event closure is stored at a fresh location loc1. (INVOKE) also updates the store typing
environment Π with a mapping between location loc1 of new event closure and its type.

A refining expression claims that its body satisfies the precondition and postcondi-
tion of its specification, which is checked by rules (REFINING) and (EVALPOST). Excep-
tional cases in rules (X-REFINING) and (X-EVALPOST) represent violation of precondi-
tion and postcondition.

handlersOf (Event) = •
(c event ev extends ev′{ f orm* contractev}) ∈ CT

handlersOf (ev) = hbind(ev,S,A[ev])⊕handlersOf (ev′)

hbind(ev,S,•) = •

[c.F] = S(loc) B = bindingsOf (c)

hbind(ev,S, loc+A[ev]) = match(B,ev,S, loc)⊕hbind(ev,S,A[ev])

bindingsOf (Object) = •
(class c extends d { f orm* meth* binding*}) ∈ CT

bindingsOf (c) = binding* ⊕ bindingsOf (d)

match(•,ev,S, loc) = •

match((when ev do m)+B,ev,S, loc) = (〈loc,m〉+match(B,ev,S, loc))

[c.F] = S(loc) B = bindingsOf (c)

eventsOf (loc) = registeredFor(loc,B)
registeredFor(loc,•) = •

registeredFor(loc,(when ev do m)+B) = ev⊕ registeredFor(loc,B)

Fig. 18. Select auxiliary functions for PtolemyS’s dynamic semantics, based on [9, 16].

(X-REFINING)
n == 0

〈E[refining requires n ensures q {e}],S,Π ,A〉 ↪→ 〈TCE,S,Π ,A〉

(X-REGISTER)
〈E[register(null)],S,Π ,A〉 ↪→ 〈NPE,S,Π ,A〉

(X-UNREGISTER)
〈E[unregister(null)],S,Π ,A〉 ↪→ 〈NPE,S,Π ,A〉

(X-EVALPOST)
n == 0

〈E[evalpost v n],S,Π ,A〉 ↪→ 〈TCE,S,Π ,A〉

(X-CAST)
[c.F] = S(loc) c 64 t

〈E[cast t loc],S,Π ,A〉 ↪→ 〈CCE,S,Π ,A〉

Fig. 19. PtolemyS’s exceptional dynamic semantics.

PtolemyS also supports standard object-oriented expressions for object creation, get-
ting and setting the value of a field, if conditionals, etc. Their semantics can be found
in Section B.

9 Type Checking

In this section, we discuss PtolemyS’s static semantics with the focus on event subtyp-
ing, refining relation among greybox event specifications and non-decreasing relation.
Rest of PtolemyS’s static semantics can be found in Section B.

9.1 Type Attributes

Figure 20 defines the type attributes used in PtolemyS’s typing rules. The type attribute
OK shows that a higher level declaration type checks, whereas OK in c shows type
checking in the context of a class c. Other type attributes var t and exp t show vari-
ables and expressions of type t, respectively. Variable and store typing environments Γ

and Π , respectively, map variables and locations to their types. The typing judgment
Γ ,Π ` e : θ says that in the variable typing environment Γ and the store typing envi-
ronment Π , the expression e has the type θ . PtolemyS’s type checking rules use a fixed
class table CT , which is a set of program’s class and event type declarations. Top-level
names in a program are distinct and inheritance relations on classes and events types
are acyclic.

θ ::= type attributes
OK program/top-level decl.
| OK in c method, binding
| var t var/formal/field
| exp t expression

t ::= c | int | bool types

Γ ::= {var : t} variable typing environment
Π ::= {loc : t} store typing environment
Γ ,Π ` e : θ typing judgement

Fig. 20. Type attributes, based on [16].

9.2 Static Semantics Rules

Figure 21 shows select typing rules for PtolemyS. The rest of PtolemyS’s typing rules,
which are mostly standard object-oriented rules can be found in Section B.

(T-EVENT)
(c′ event ev′ extends ev′′ {(t ′ var′)* contractev′}) ∈CT

Γ ,Π ` contractev′ E contractev ` ev�: ev′ isClass(c) ∀ti ∈ t* . isClass(ti)

` c event ev extends ev′ {(t var)* contractev} : OK

(T-SUBEVENT)
contextsOf (ev′)⊆ contextsOf (ev)

(t var)* = contextsOf (ev) (t ′ var′)* = contextsOf (ev′)
∀ (ti vari) ∈ (t var)*, (t ′i vari) ∈ (t ′ var′)* . ti 4 t ′i returnType(ev′)4 returnType(ev)

` ev�: ev′

(T-ANNOUNCE)
(t var)* = contextsOf (ev) ∀ei ∈ e*, (ti vari) ∈ (t var)* . Γ ,Π ` ei : exp t ′i ∧ t ′i 4 ti

c′′ event ev′extends Event{}= topEvent(ev)
c = returnType(ev) Γ ,Π ` e′ : exp c′′

Γ ,Π ` announce ev(e*) {e′} : exp c

(T-BINDING)
(c event ev extends ev′ { f orm* contractev}) ∈ CT
contractev = requires p assumes {se} ensures q

(c m(thunk ev var){e}) = methodBody(c′,m) seE e

` when ev do m : OK in c′

(T-INVOKE)
c event ev extends ev′ { f orm* contractev} ∈ CT Γ ,Π ` e : exp thunk ev

Γ ,Π ` e.invoke() : exp c

(T-REGISTER)
Γ ,Π ` e : exp t

Γ ,Π ` register(e) : exp t

(T-UNEGISTER)
Γ ,Π ` e : exp t

Γ ,Π ` unregister(e) : exp t

(T-EVALPOST)
Γ ,Π ` e : exp t Γ ,Π ` q : exp t2

Γ ,Π ` evalpost e q : exp t

(T-SPEC)
Γ ,Π ` p : exp t1 Γ ,Π ` q : exp t2
Γ ,Π ` requires p ensures q : exp ⊥

(T-REFINING)
spec = requires p ensures q Γ ,Π ` spec : exp⊥ Γ ,Π ` e : exp t

Γ ,Π ` refining spec {e} : exp t

(T-PROGRAM)
∀decl ∈ decl* . ` decl : OK ` e : exp t

` decl* e : exp t

(T-CLASS)
∀meth ∈ meth* . ` meth : OK in c ∀binding ∈ binding* . ` binding : OK in c

isClass(d) ∀(t f) ∈ f orm* . isClass(t)∧ f 6∈ dom(fieldsOf (d))

` class c extends d { f orm* meth* binding*} : OK

Fig. 21. Select typing rules for PtolemyS [9, 27].

The rule (T-EVENT) type checks the declaration of an event ev. Since ev extends
another event ev′, the rule ensures that ev is a valid subevent of ev′, i.e. ev�: ev′, and
its translucid contract refines the translucid contract of ev′, i.e. contractev′ E contractev.
The refinement of the translucid contract of ev′ by the contract of ev is statically guaran-
teed by PtolemyS’s specification inheritance. (T-EVENT) also checks, using the auxiliary
function isClass, that the return type and types of context variables of ev are valid class
types. Figure 22 shows the auxiliary functions used in PtolemyS’s typing rules. The aux-
iliary function isClass simply ensures that its parameter is a class declared in the class
table CT .

(T-SUBEVENT) checks that an event ev is a valid subtype of event ev′, regarding
both width and depth subtyping. Width subtyping allows ev to declare context vari-
ables in addition to the context it inherits from its superevent ev′, i.e. contextsOf (ev′)⊆
contextsOf (ev). The auxiliary function contextsOf returns all the context variables of
an event along with their types, including context inherited from all of its superevents.
Depth subtyping allows ev to redeclare a context variable of its superevent ev′. To re-
declare a context variable vari of type t ′i , the redeclaring context variable must have
the same name vari and its type ti must be a subtype of t ′i , i.e. ti 4 t ′i . Similar to class
subtyping, event subtyping is a reflexive, transitive relation on event types, with a root
event type Event.

(T-SUBEVENT) also ensures that the return type of an event ev is a supertype of the
return type of its superevent ev′. This is necessary for the non-decreasing relation on
observers of an event and its superevent, which ensures that an observer of an event
runs before an observer of its superevents. The auxiliary function returnType returns
the return type of an event.

(T-ANNOUNCE) type checks an announce expression. It ensures that the type of a pa-
rameter expression ei is a subtype of its corresponding context variable vari, i.e. t ′i 4 ti.
Recall that an event can inherit context variables from its superevents and the announce
expression must provide values for all context variables of the event.

(T-ANNOUNCE) also ensures that the type of the event body e′ is the same as the
return type of the top event in the event inheritance hierarchy. The top event of an
event in an inheritance hierarchy is the superevent of the event right before the root
event Event. For example, in Figure 2, the event ExpEv is the top event for AndEv. The
auxiliary function topEvent returns the top event of an event. The relation between the
return type of the event body and the the return type of its top event is necessary for the
non-decreasing relation in which the event body runs as the last observer.

(T-BINDING) type checks a binding declaration. It ensures that the body e of the
observer handler method m refines the assumes block se of the translucid contract of its
event ev, i.e. seE e, as defined in Figure 9. The auxiliary function methodBody returns
the body of a method of a class defined in the class table CT . The rule also ensures that
the return type of the observer handler method m is the same as the the return type of
the event.

(T-INVOKE) type checks an invoke expression. The invoke expression invokes the
next observer in the chain of observers. The chain of observers is included in the event
closure receiver object e. The rule ensures that the event closure of an event ev is of
type thunk ev. A thunk type marks the type of an event closure. The type of an in-

voke expression is the same as the return type c of its event ev. This is sound because
the non-decreasing relation ensures that observers of an event run before observers of
its superevent. Typing rules for register, unregister, specification, refining and evalpost
expressions are intuitive.

(T-PROGRAM) type checks a program. A program type checks if declarations of
each of event types and classes type check. (T-CLASS) type checks a class declaration.
It ensures that each binding declaration of the class type checks.

(c event ev extends ev′ {(t var)* contractev}) ∈CT (t ′ var′)* = contextsOf (ev′)

contextsOf (ev) = (t ′ var′)* ⊕ (t var)*

contextsOf (Event) = •
(c event ev extends ev′ { f orm* contractev}) ∈ CT

returnType(ev) = c

(c event ev extends ev′ { f orm* contractev}) ∈ CT

isEvent(ev)

class c extends d{ f orm* meth* binding*} ∈ CT

isClass(c)

t = thunk ev

isThunkType(t)

isClass(t)∨ isThunkType(t)

isType(t)

class c extends d{(t var)* meth* binding*} ∈ CT

fieldsOf (c) = (var : t)*

class c extends d{ f orm* meth* binding*} ∈ CT (c′′ m (t var)* {e}) ∈ meth*
methodBody(c,m) = (c′′ m (t var)* {e})

class c extends d{ f orm* meth* binding*} ∈ CT (c′′ m (t var)* {e}) 6∈ meth*
methodBody(c,m) = methodBody(d,m)

Fig. 22. Select auxiliary functions for PtolemyS’s typing rules, based on [9, 16].

9.3 Soundness of Type System

Theorem 2. (Soundness of PtolemyS’s semantics) PtolemyS’s semantics is sound re-
garding its progress and preservation [51].

The proof follows standard progress and preservation arguments. Full proof of the
theorem can be found in Section B.

10 Binary Compatibility

A language such as Java defines a set of binary compatibility rules to enable reuse of
binaries of the already compiled classes and prevent their unnecessary recompilation.

A change to a class type is binary compatible if types that linked without error before
the change to the type’s binary continue to link without error after the change [52–54].
For example in Java adding a field to a subtype with the same name as a supertype’s
field or changes to the body of a method are binary compatible changes. To promote
binary reuse, PtolemyS and its compiler extend Java’s binary compatibility rules to its
event types using the following rules (1)–(6).

1. Adding context variables Adding a context variable declaration in an event type
is not binary compatible. This is because a subject that announces the event now fails
to link and a subevent of the event may violate its depth subtyping. After addition of a
context variable to an event, an announce expression in a subject of the event or a subject
of its superevent must be changed to pass in a value for the newly added context. Also, a
subevent of the event with a context of the same name as the newly added context must
be verified to ensure that the types of the two contexts are in a subtyping relationship
to satisfy the depth subtyping. This is different from Java in which adding a field to a
class is considered binary compatible.

2. Removing context variables Similar to adding a context variable declaration, remov-
ing a context from an event is not binary compatible. This is because a subject of the
event that announced the event and its observers that access the removed context now
fail to link. An announce expression in a subject of the event or a subject of its subevent
must be changed to pass in one less value for the newly removed context variable. An
observer of the event or an observer of its subevent that access the removed context
must be changed to not access the context. This is similar to Java where removing a
public field of a class is binary incompatible.

3. Changing superevent Changing the superevent of an event is binary compatible
if it does not change the set of inherited context variables of the event and does not
violate the subtyping and refining relations between return types and contracts of the
event and its new superevent, respectively. Changes in the inherited context variables
of the event could cause recompilations or verifications similar to adding or removing
context variables, discussed above. The event must be verified to ensure that its return
type is a supertype of the return type of its new superevent to satisfy the subtyping
relation between return types of events. Finally, the event must be verified to ensure
that its translucid contract refines the translucid contract of its new superevent to satisfy
the refining relation. The verifier ensures there are no cyclic event inheritance relations.
This is somewhat similar to Java in which changing a superclass of a class is binary
compatible if it does not change the inherited fields and methods of the class.

4. Changing behavior changing the behavior of an event by changing precondition
and postcondition of its translucid contract is binary compatible. This is because of run-
time assertion checking of contracts and event specification inheritance. In PtolemyS’s
compiler, assertions that check for precondition and postcondition of the event invoke
methods of a static class Contract in the event. To implement specification inheritance
in a subevent of the event the assertions for the precondition and postcondition of the
subevent invoke the methods of superevent’s Contract class that check for precondi-
tion and postcondition of the event. Therefore, changing the behavior of the event does
not require any changes in its subevent and is binary compatible. Without specification

inheritance changing the behavior of an event is not binary compatible. This is because
the behavior of a subevent must be changed to guarantee the refining relation between
the subevent and its superevent.

5. Changing control effects Changing control effects of an event by changing its
assumes block and especially its program expressions is not binary compatible. This is
because a translucid contract of a subevent of the event now fails to refine the translucid
contract of the event and an observer of the event fails to conform to the contract of the
event. The assumes block of a subevent must change to guarantee the refining relation
between translucid contracts of the subevent and its superevent. The implementation of
an observer of the event must change to conform to the assume block of the contract of
the event.

6. Changing subjects and observers Changing the implementation of a subject or an
observer of an event is binary compatible if the subject or observer type check. For
a changed observer of an event, type checking ensures that the conformance relation
between the implementation of the observer and translucid contract of the event is not
violated. For a changed subject of the event, type checking ensures that types of argu-
ments of its announce expression are subtypes of the types of the context variables of
its event.

Changed event Change Description Declaration Subjects Observers
ExpEv BinEv ExpEv BinEv ExpEv BinEv

superevent ExpEv

1. add context int pos R V R V X V
2. remove context node R V R V V V
3. change superevent to BinEv R V V V V V
4. change requires to true R X X X X X
5. change assumes R R X X R R

subevent BinEv

1. add new context int pos X R X R X X
2. remove context node X R X X X V
3. change superevent to Event X R X V X V
4. add requires pos >= 0 X R X X X X
5. change assumes X R X X R R

Fig. 23. Binary compatibility change scenarios.

To illustrate, Figure 23 shows different change scenarios and their binary compati-
bility for the event ExpEv and its subevent BinEv declared in Figure 14 and their subjects
and observers. In this figure, X means binary compatible (no recompilation is required),
R means binary incompatible (recompilation is required) and V means conditional bi-
nary compatibility under a set of conditions that should be verified; if the conditions
are met, it is binary compatible and otherwise it is not. For example, adding an integer
context variable pos to the declaration of the event ExpEv is not binary compatible and
forces the event declaration to be recompiled. This requires the subevent BinEv to ver-
ify that it does not violate event depth subtyping after the addition of the context pos to
ExpEv especially that BinEv may have a context variable with the same name pos and

different type. Subjects of ExpEv should be recompiled to pass an extra argument for the
newly added context and subjects of the subevent BinEv should verify that considering
event subtyping they pass correct numbers and types of arguments for its context vari-
ables. Finally observers of ExpEv do not need any recompilation or verification because
they are not accessing the newly added context pos. Observers of BinEv should be
verified to ensure they assume correct types of context variables when accessing them
especially if BinEv has a context variable with the same name as the added context pos
to its superevent ExpEv.

11 Discussion

Implementation To prove the feasibility of our proposed language, we implemented
PtolemyS’s compiler on top of Ptolemy’s compiler [27], which itself is an extension
of the OpenJDK Java compiler. To the previous compiler, we added translucid con-
tracts, static structural refinement, static event specification inheritance, runtime asser-
tion checking of preconditions and postconditions of contracts and their specification
expressions and a non-decreasing execution order of observers of an event and its su-
perevents. Compared to Ptolemy’s compiler, maintaining separate lists for observers of
separate events, rather than a single global list, simplified the implementation of event
announcement and handling especially with dynamic (un)registration of observers.

Limitation A non-decreasing relation among observers of an event and its su-
perevent(s) limits execution order of observers and could require a programmer to co-
design the event subtyping hierarchy of a program and execution order of their ob-
servers. Without such a co-design there could be some execution orders of observers
that may not be allowed by a specific event subtyping hierarchy. For example, with
the event hierarchy in our expression language example, observer evaluator always
runs before checker. Placement of invoke expressions in observers plays an important
role in the functionality of a system. For example, although evaluator runs before
checker, an expression is not evaluated unless it is first type checked. This is enforced
because evaluator invokes the handler chain before evaluating an expression. An al-
ternative to non-decreasing relation is an observer chain in which the precondition of
an observer ob1 implies the precondition of the next observer ob2 in the chain and the
postcondition of ob2 implies the postcondition of ob1.

Static conformance checking In addition to static enforcing of the refining relation,
PtolemyS’s event specification inheritance enables static checking of conformance be-
tween the implementations of subjects and observers of an event and its translucid
contract. This is because, the event specification inheritance combines the translucid
contracts of an event and its superevent in an inheritance hierarchy without requiring
any dynamic information. This is in contrast to previous work on refinement of black-
box contracts [55] where dynamically resolved pseudo-variables such as original are
used to refer to the specification of previous observer in a chain of observers. Use of
such dynamic features hinders static conformance checking because the value of the
pseudo-variable original is determined at runtime depending on dynamic registration

order of observers in the chain. For static conformance checking, following [56], sub-
jects and observers of an event are combined with the extended translucid contract of
the event into OpenJML [57] code for static verification of precondition, postcondition
and specification expressions of the contract. Extended translucid contract of an event
is constructed using event specification inheritance. Currently refinement of precondi-
tion, postcondition and specification expressions by the implementation of subjects and
observers is checked using runtime assertions, as discussed in Section 4.1.

12 Related Work

Modular type checking Previous work on join point types (JPT) [20], join point inter-
faces (JPI) [19] and Ptolemy’s typed events [27] enables modular type checking of sub-
jects and observers of subtyping event types. EventJava [12] extends Java with events
and event correlation in distributed settings and Escala [7] extends Scala with explic-
itly declared events as members of classes. However, previous work is not concerned
with modular reasoning about behaviors and control effects of subjects and observers
of events using specification of subtyping event types.

Modular reasoning Previous work on MAO [33], EffectiveAdvice [58], Effective
Aspect [59], MRI [60] and the work of Khatchadourian et al. [31] enables modular
reasoning, however, it does not use explicit interfaces among subjects and observers
and therefore is not concerned about their subtyping. Previous work on crosscutting
programming interfaces (XPI) [6], crosscutting programming interfaces with design
rules (XPIDR) [32] and open modules [3] enables modular reasoning using explicit
interfaces, however, it is not concerned about subtyping of these interfaces. Translucid
contracts [8–10,35,61] proposes event type specifications to enable modular reasoning,
however, they are not concerned with event subtyping. Other previous work [62] enable
compositional global reasoning and not modular reasoning.

Modular reasoning about dynamic dispatch Supertype abstraction [63] enables mod-
ular reasoning about invocation of a dynamically dispatched method in the presence of
class subtyping [63], relying on a refinement relation among blackbox contracts of a su-
pertype and its subtypes [37,64]. PtolemyS’s refining of event contracts is the inverse of
the refinement in supertype abstraction and extends it to greybox contracts with control
effects. Refinement in supertype abstraction relies on known links among method in-
vocations and method names, whereas in PtolemyS there is no link among subjects and
observers of an event [9, 29]. Subjects and observers do not know about each other and
only know their event. Unlike a method invocation which invokes exactly one method,
announcement of an event in PtolemyS by a subject could invoke zero or more observers
of the event and observers of its superevents where all these observers and the subject
must conform to their event specifications. The challenge in supertype abstraction is
modular reasoning about a method invocation independent of the dynamic types of its
receiver, whereas in PtolemyS the challenge is tractable reasoning about announcement
and handling of an event, independent of its observers, observers of its superevents and
their execution orders, while allowing reuse of events.

13 Conclusion and Future Work

In this work we identified combinatorial reasoning and behavior invariance as two prob-
lems of modular reasoning about subjects and observers in the presence of event sub-
typing. We proposed a refining relation among greybox event specifications of events
in an inheritance hierarchy, a non-decreasing relation on execution orders of their ob-
servers and a conformance relation among subjects and observers of an event and their
translucid contract to solve these problems in the context of a new language design
called PtolemyS. We formalized PtolemyS’s sound static and dynamic semantics and
Hoare logic for modular reasoning. We showed the applicability of PtolemyS’s mod-
ular reasoning to other event-based systems including join point types [20] and join
point interfaces [19, 49] and its use in modular reasoning about control interference.
We proposed event specification inheritance to statically enforce the refining relation
and enable specification reuse and defined the binary compatibility rules for PtolemyS’s
event types and their specifications to enable binary reuse.

Future work includes a large experimental study similar to [24–26] to further in-
vestigate benefits of PtolemyS’s event model and its modular reasoning. It would also
be interesting to examine the interplay between semantics of invoke and execution or-
der of observers. Recent work has explored asynchronous execution of observers [65].
Examining the interplay of concurrency and event inheritance will also be interesting.

Acknowledgements

The authors would like to thank the anonymous TOMC and MODULARITY 2015 re-
viewers for valuable comments . Bagherzadeh, Dyer and Rajan were partly supported
by the NSF grant CCF-10-17334. Fernando and Rajan were partly supported by the
NSF grant CCF-08-46059. Rajan was also partly supported by the NSF grant CCF-11-
17937. Sanchez was partly supported by NSF grant CCF-1017334.

A Soundness of Reasoning

Theorem 1. (Soundness of PtolemyS’s Hoare logic) PtolemyS’s Hoare logic, in Fig-
ure 8, is sound for conforming PtolemyS programs. In other words, any Hoare triple
provable using PtolemyS’s logic, i.e. Γ ` {p} e {q}, is a valid triple, i.e. Γ |= {p} e {q}.

Proof: To prove the soundness of PtolemyS’s Hoare logic, it is sufficient to prove
the soundness of PtolemyS’s specific expressions [10], i.e. announce, invoke, refining
and specification expressions in the rules (V-ANNOUNCE), (V-INVOKE), (V-REFINING)
and (V-SPEC) in PtolemyS’s Hoare logic. This is because, previous work [38, 47, 48]
proves the soundness of Hoare logic for object-oriented programs including PtolemyS’s
standard object-oriented expressions.

The proof is based on induction on the number of events, i.e. number of superevents
of an event, in a subtyping hierarchy and the number of their observers and uses con-
formance, refining and non-decreasing relations. The induction goes over the number
of superevents first and then number of observers.

A.1 Invoke Expression

To prove soundness of (V-INVOKE) for an invoke expression, we should prove that in
an observer ob of an event ev if the Hoare triple {p} next.invoke() {q} is provable for
its invoke expression, i.e. Γ ` {p} next.invoke() {q}, then it is a valid Hoare triple, i.e.
Γ |= {p} next.invoke() {q}. We assume an arbitrary chain of observers χ0 ⇀ ob ⇀ χ in
which χ0 contains observers in the chain before ob and χ is the remainder of the chain
after ob. The event body is at the end of the chain in χ . The invoke expression in ob
invokes the next observer in χ .

There are two inductions. The first induction goes over the number of superevents
of ev with base cases of zero and one superevent for ev. The second induction goes over
the number of its observers in χ .

No superevent for ev For the induction over the number of observers in χ , we assume
a base case with zero and one observer in χ .

For the base case with zero observers, the invoke expression in ob causes the execu-
tion of the event body, say e′, in χ . The subject conformance relation, in Definition 3,
guarantees that the event body e′ respects the precondition p′ and postcondition q′ of
the top contract of ev, i.e. Γ |= {p′} e′ {q′}. The top contract of ev is the same as the
contract for ev, i.e. p = p′ and q = q′, because ev does not have any superevents. This in
turn means that (a) Γ |= {p} e′ {q}. Because the execution of next.invoke() in ob results
in the execution of the event body, then in the judgement (a) the event body e′ could
be replaced with the invoke expression next.invoke() to arrive at the goal judgement
Γ |= {p} next.invoke() {q} which we watned to prove.

For the base case with one observer ob1 in χ , the invoke expression in ob causes
the execution of the body e1 of ob1. The observer conformance relation, in Definition 2,
guarantees that the body e1 of the observer ob1 respects the precondition p and post-
condition q of the contract of ev, i.e. (b) Γ |= {p} e1 {q}. And because the execution
of next.invoke() in ob results in the execution of e1, then in the judgement (b) the body
e1 of ob1 could be replaced with the invoke expression to arrive at the goal judgement
Γ |= {p} next.invoke() {q} which we wanted to prove.

For the inductive case over the number of observers, we assume the induction hy-
pothesis that the judgement Γ |= {p} next.invoke() {q} holds for the invoke expression
in the observer ob with n observers in χ , and prove the judgement still holds for n+1
observers in χ . If the newly added observer is added right after ob and to the beginning
of χ , then the observer conformance relation guarantees that its body respects the pre-
condition and postcondition p and q of ev and the rest of the proof continues as in the
base case with one observer. If the newly added observer is not added to the beginning
of χ and is added somewhere down the chain χ , then using the induction hypothesis the
judgement Γ |= {p} next.invoke() {q} holds mainly because the hypothesis ensures the
invoke expression causes the invocation of an observer which respects p and q.

The inductive proof of the invoke expression for the case in which there is no su-
perevent for ev is similar to the proof of soundness of reasoning using translucid con-
tracts in previous work [8], in the absence of event subtyping.

One superevent ev′ for ev For the induction over the number of observers in χ , we
assume base cases with (1) zero observer for ev and ev′, (2) one observer for ev and zero

observer for ev′, (3) zero observer for ev and one observer for ev′ and (4) one observer
for ev and one observer for ev′.

The proof for the base case (1) is similar to the previous case with no superevent for
ev and zero observers for ev. The subject conformance relation guarantees that the body
e′ of the event ev respects the precondition p′ and postcondition q′ of the top contract
for ev, which is the contract of ev′, i.e. (a) Γ |= {p′} e′ {q′}. The refining relation
guarantees that the contract of ev refines the contract of ev′, i.e. p⇒ p′ and q⇒ q′.
Using these implications among preconditions and postconditions, the judgement (a)
and the standard rule (V-CONSEQ) one can arrive at the conclusion Γ |= {p} e′ {q} and
replace e′ with the invoke expression.

The proof for case (2) is similar to the previous case with no superevent for ev and
one observer for ev.

For the case (3) the conformance relation guarantees that the body e′1 of the only
observer ob′1 of ev′ respects the contract of its event, i.e. (b) Γ |= {p′} e′1 {q′}. The
refining relation guarantees that the contract of ev refines the contract of ev′, i.e. p⇒ p′

and q⇒ q′. Using these implications, the judgement (b) and (V-CONSEQ) one can arrive
at the goal conclusion Γ |= {p} e′1 {q} and then replace e′1 with the invoke expression.

For the base case (4), the ordering relation guarantees that the only observer ob1
of ev is before the only observer ob′1 of ev′ in the chain χ . The observer conformance
relation guarantees that the body e1 of ob1 respects the precondition p and postcondition
q of ev. The rest of the proof is similar to the base case with no superevent and one
observer.

For the inductive case over the number of observers, we assume the induction hy-
pothesis that the judgement Γ |= {p} next.invoke() {q} holds for the invoke expression
in the observer ob of event ev with n observers of ev and its superevent ev′ in χ , and
prove the judgement holds for n+1 observers in χ . The newly added observer can be an
observer of ev or ev′. If the newly added observer is an observer of ev and it is added to
the beginning of χ , the proof continues similar to the inductive case for no superevent
case in which a new observer is added to the beginning of χ . If the newly added ob-
server of ev is not added to the beginning of χ , then the ordering relation guarantees that
it is added before any observer of ev′, then the judgement Γ |= {p} next.invoke() {q}
holds mainly because the induction hypothesis ensures the invoke expression causes the
invocation of an observer which respects p and q. If the newly added observer is an ob-
server of ev′, then the ordering relation guarantees that it is added after any observer of
ev, then the judgement Γ |= {p} next.invoke() {q} holds mainly because the induction
hypothesis ensures the invoke expression causes the invocation of an observer which
respects p and q.

k superevents for ev For induction over the number of superevents, we proved the
base case with zero and one superevent for ev. For the inductive case we assume the
induction hypothesis that the judgement Γ |= {p} next.invoke() {q} holds for the invoke
expression in the observer ob of event ev with n observers of ev and its k superevents
in χ , and prove the judgement holds for k + 1 superevents with arbitrary number of
observers for the newly added superevent.

If there are no observers in χ , i.e. n = 0, and the newly added superevent ev(k) has
no observers too, then the proof is the same as the case with no superevent and no ob-

servers. n is the number of observers in χ . If ev(k) has observers with n = 0 then the
observer conformance relation guarantees that its first observers respect its precondition
pk and postcondition qk and the refining relation guarantees that p⇒ pk and q⇒ qk. Us-
ing these implications and the induction hypothesis we can arrive at the goal judgement
Γ |= {p} next.invoke() {q}, similar to the case for one superevent with no observer for
the event and one observer for its superevent. If there are observers in χ , i.e. n 6= 0, then
the ordering relation guarantees that observers of the newly added superevent evk are
added to the end of χ , and then the judgement Γ |= {p} next.invoke() {q} holds mainly
because the induction hypothesis ensures the invoke expression causes the invocation
of an observer which respects p and q.

A.2 Announce, Refining and Specification Expressions

Announce expressions The proof for an announce expression is similar to the proof
for the invoke expression, especially that the semantics of an announce expression is
given in terms of invoke expression in (ANNOUNCE) rule in Figure 17. Both announce
and invoke expression cause execution of a chain of observers of an event and its su-
perevents.

Refining and specification expressions For the refining expression in the rule
(V-REFINING), the assumption of the rule that the body e of the refining expression
satisfies its specification, i.e. Γ ` {p} e {q} makes the conclusion valid. The validity of
the rule (V-SPEC) is straightforward [46]. The rule (V-CONSEQ) is standard [38].

B Soundness of Type System

Theorem 2. (Soundness of PtolemyS’s semantics) PtolemyS’s semantics is sound re-
garding its progress and preservation [51].

Proof: Soundness proof of PtolemyS’s type system follows standard progress and
preservation arguments [51] using the refining and non-decreasing relations. Some de-
tails and definitions are adapted from previous work [8, 9, 15, 16]. Figures 17, 18, 21,
22, 24 and 25 together show a complete list of PtolemyS’s static and dynamic semantics
rules used in the proof.

B.1 Background Definitions and Lemmas

The following definitions are used in the progress and preservation arguments of
PtolemyS’s soundness proof.

Definition 5. (Location loc has type t in store S [16]) Location loc has type t in store
S, written as S(loc) : t where t = Π(loc), if one of the following conditions hold:

(I). type t is a class, i.e. isClass(t), and for some class name c with a set of fields F all
the following holds:
(a) S(loc) = [c.F] and Π(loc) = t and c 4 t
(b) dom(F) = dom(f ieldsO f (c)) and rng(F)⊆ (dom(S)∪{null})

(T-METHODDECL)
(var : t)*, this : c ` e : exp t ′′

t ′′ 4 t ′ class c extends d{..} override(m,d, t*→ t ′)

` t ′ m((t var)*) {e} : OK in c

(T-CALL)
Π ` e : exp t

t ′′ m((t var)*) {e′}=CT (t,m) ∀ ei ∈ e* . Γ ,Π ` ei : exp t ′i ∀ ti ∈ t*, t ′i . t ′i 4 ti
Γ ,Π ` e.m(e*) : exp t ′′

(T-NEW)
isClass(c)

Γ ,Π ` new c() : exp c

(T-CAST)
isClass(c) Γ ,Π ` e : exp t

Γ ,Π ` cast c e : exp c

(T-GET)
Γ ,Π ` e : exp c f ieldsO f (c)(f) = t

Γ ,Π ` e. f : exp t

(T-SET)
Γ ,Π ` e : exp c f ieldsO f (c)(f) = t Γ ,Π ` e′ : exp t ′ t ′ 4 t

Γ ,Π ` e. f = e′ : exp t ′

(T-DEFINE)
Γ ,Π ` e1 : exp t1 Γ ,Π ,var : t ` e2 : exp t2 isType(t) t1 4 t

Γ ,Π ` t var = e1;e2 : exp t2

(T-IF)
Γ ,Π ` e1 : exp t Γ ,Π ` e2 : exp t Γ ,Π ` ep : exp t

Γ ,Π ` if(ep){e1} else {e2} : exp t

(T-NULL)
isClass(c)

Γ ,Π ` null : exp c

(T-VAR)
(var : t) ∈ Γ

Γ ,Π ` var : var t

(T-LOC)
Π(loc) = t

Γ ,Π ` loc : exp t

Fig. 24. Standard PtolemyS’s type checking rules [16].

(c) ∀ f ∈ dom(F) if F(f) = loc′ and fieldsOf (c)(f) = u and S(loc′) = [u′.F ′] then
u′ 4 u.

(II). type t is an event closure type, i.e. isThunkType(t), where t = thunk ev for some
event type ev with return type c, list of handlers H, environment ρ , expression e and
class name c′ all the following holds:

(a) S(loc) = eClosure(H,e,ρ)
(b) Γ ,Π ` e : c′ and c′ 4 c
(c) ∀ f ∈ dom(contextsOf(ev)), either ρ(f) = null or ρ(f) = loc′′ where S(loc′′) =

[c′′.F ′] and c′′ 4 contextsOf(ev)(f)

(NEW)
loc 6∈ dom(S)

S′ = S] (loc 7→ [c.{ f 7→ null | f ∈ dom(fieldsOf (c))}]) Π
′ = Π] (loc : c)

〈E[new c()],S,Π ,A〉 ↪→
〈
E[loc],S′,Π ′,A

〉
(GET)

[c.F] = S(loc) v = F(f)

〈E[loc. f],S,Π ,A〉 ↪→ 〈E[v],S,Π ,A〉

(SET)
[c.F] = S(loc) S′ = S] (loc 7→ [c.F] (f 7→ v)])

〈E[loc. f = v],S,Π ,A〉 ↪→
〈
E[v],S′,Π ,A

〉
(DEF)

e′ = e[v/var]

〈E[t var = v;e],S,Π ,A〉 ↪→
〈
E[e′],S,Π ,A

〉
(CALL)

[c.F] = S(loc)
(c2, t m((t var)*){e}= methodBody(c,m) e′ = e[v*/var*, loc/this]

〈E[loc.m(v*)],S,Π ,A〉 ↪→
〈
E[e′],S,Π ,A

〉
(CAST)
[c′.F] = S(loc) c′ 4 t

〈E[cast t loc],S,Π ,A〉
↪→ 〈E[loc],S,Π ,A〉

(NCAST)
〈E[cast c null],S,Π ,A〉
↪→ 〈E[null],S,Π ,A〉

(IFTRUE)
v 6= 0

〈E[if(v){e1} else{e2}],S,Π ,A〉 ↪→ 〈E[e1],S,Π ,A〉

(X-GET)
〈E[null. f],S,Π ,A〉 ↪→ 〈NPE,S,Π ,A〉

(IFFALSE)
v == 0

〈E[if(v){e1} else{e2}],S,Π ,A〉 ↪→ 〈E[e2],S,Π ,A〉

(X-SET)
〈E[null. f = v],S,Π ,A〉 ↪→ 〈NPE,S,Π ,A〉

Fig. 25. PtolemyS’s operational semantics for standard OO expressions, based on [16].

(d) ∀h = 〈loc′,m〉 ∈ H . Π(loc′) = c′′′ and
(c2,c m(t1 var1)) = methodBody(c′′′,m) then t1 = t

Definition 6. (Store S is consistent with store typing Π) Store S is consistent with store
typing Π and typing context Γ , written as Γ ,Π ∼= S, if and only if all the following
conditions hold:

(a). dom(S) = dom(Π)

(b). ∀loc ∈ dom(S),S(loc) : Π(loc), i.e. S(loc) has type Π(loc).

The following lemmas are used in progress and preservation arguments of
PtolemyS’s soundness proof. Proofs of these lemmas could be easily adapted from pre-
vious work on MiniMAO0 [15] and therefore are skipped.

Lemma 1. (Substitution) If Γ ,var1 : t1, ..,varn : tn,Π ` e : t and ∀i ∈ [1,n] . Γ ,Π `
ei : t ′i where t ′i 4 ti then Γ ,Π ` e[var1/e1, ..,varn/en] : t ′ for some t ′ 4 t.

Lemma 2. (Environment contraction) If Γ ,a : t ′,Π ` e : t and a is not free in e, then
Γ ,Π ` e : t

Lemma 3. (Environment extension) If Γ ,Π ` e : t and a∈ dom(Γ) then Γ ,a : t ′,Π `
e : t

Lemma 4. (Replacement) If Γ ,Π ` E[e] : t and Γ ,Π ` e : t ′ and Γ ,Π ` e′ : t ′ then
Γ ,Π ` E[e′] : t.

Lemma 5. (Replacement with subtyping) If Γ ,Π ` E[e] : t and Γ ,Π ` e : u and
Γ ,Π ` e′ : u′ such that u′ 4 u then Γ ,Π ` E[e′] : t ′ where t ′ 4 t.

B.2 Progress

Theorem 3. (Progress) Let 〈e,S,Π ,A〉 be a configuration with a well typed expression
e, store S, store typing Π and active object map A, such that store S is consistent with
store type Π , i.e. Γ ,Π ∼= S. If e has type t, i.e. Γ ,Π ` e : t, then either

– e = loc and loc ∈ dom(S)
– e = null, or
– one of the following holds:
• 〈e,S,Π ,A〉 ↪→ 〈e′,S′,Π ′,A′〉.
• 〈e,S,Π ,A〉 ↪→ 〈x,S′,Π ′,A′〉 and x ∈ {NPE,CCE,TCE}

Proof: The proof is by cases on the evaluation of expression e:

1. e = loc. Since e is well-typed and using (T-LOC), loc ∈ dom(Π). Using store con-
sistency Γ ,Π ∼= S, loc ∈ dom(S).

2. e = null. The case is trivial.

Proof of cases for PtolemyS’s announcement and handling of events, and registration
and unregistration of observers are adapted from Ptolemy [16].

3. e = E[announce ev(v*)]. Using well-typedness of e and (T-ANNOUNCE), event type
ev is a declared event type in class table CT . (T-ANNOUNCE) ensures that all the
context variables of ev are passed to the announce expression with appropriate types
which in turn allows (ANNOUNCE) to construct the event closure and take a step.

4. e = E[loc.invoke()]. Using (T-INVOKE) and store consistency, loc ∈ dom(S) and
Π(loc) = thunk ev which ensures that loc is pointing to an event closure in the
store for event ev. If the list of observer handlers H is not empty, then based on part
(d) of Definition 5 the location loc′ that is pointing to the first observer handler in
the event closure is well-typed and therefore loc′ ∈ dom(S) which in turn allows
(INVOKE) to take an step. Otherwise, if H is empty (INVOKEDONE) takes an step.

5. e = E[register(loc)]. Using (T-REGISTER) and store consistency, (REGISTER) can
take a step by adding a well-type location loc to the list of active objects A[ev].
(T-BINDING) ensures that the event ev that observer instance loc is bound to, in the
auxiliary function eventsOf , is a valid event type declared in the class table CT .

6. e = E[unregister(loc)]. Similar to previous case, using (T-UNREGISTER) and store
consistency, (UNREGISTER) can take a step by removing a well-typed location loc
from the list of active objects A[ev].

Proof of cases for PtolemyS’s checking of translucid contracts are:

7. e = E[refining requires n ensures q]. (T-REFINING) ensures that precondition is well-
typed which in turn allows (REFINING) to take an step and reduce to an evalpost
expression, if the precondition holds, i.e. n 6= 0. Otherwise, (X-REFINING) takes a
step.

8. e = E[evalpost n q]. (T-REFINING) ensures well-typedness of its postcondition q and
body e, which in turn allows (EVALPOST) to take an evaluation step, if its postcon-
dition holds, i.e. n 6= 0. In case the postcondition is violated, the rule (X-EVALPOST)
takes a step.

The following cases takes a step into exceptional terminal states and thus are trivial.

9. e = E[register(null)], e = E[unregister(null)], e = E[null.m(e*)], e = E[null. f], e =
E[null. f = v], e = E[cast c null].

The following cases for standard object-oriented expressions either are trivial or
could be easily adapted from MiniMAO0 [15].

10. e = E[loc. f], e = E[loc. f = v], e = E[cast t loc], e = E[loc.m(v*)].
11. e = E[t var = v;e], e = E[if(v){e1} else{e2}], e = E[new c()] are trivial.

B.3 Preservation

Theorem 4. (Preservation) Let e be an expression, S a store, Π a store typing and A a
map of active objects where store S is consistent with store typing Π , i.e. Γ ,Π ∼= S. If
Γ ,Π ` e : t and 〈e,S,Π ,A〉 ↪→ 〈e′,S′,Π ′,A′〉 then Γ |Π ′ ∼= S′ and there exists a type t ′

such that t ′ 4 t and Γ |Π ′ ` e′ : t ′.

In the above definition Π ′ is the store typing built and maintained in PtolemyS’s dynamic
semantic rules.

Proof: The proof is by cases on the evaluation relation ↪→ :
Proofs for expressions which announce and handle events and (un)register observers

are adapted from Ptolemy [9, 16].

1. (ANNOUNCE). e = E[announce ev (v*) {e}] and e′ = E[loc.invoke()], where
(c event ev extends ev′{(t var)* contractev}) ∈ CT , loc 6∈ dom(S), H =
handlersOf (ev), ρ = {vari 7→ vi | vari ∈ var* ∧ vi ∈ v*}, S′ = S] (loc 7→
eClosure(H,e,ρ)), and Π ′ = Π] (loc : thunk ev).
To show the store consistency Γ |Π ′ ∼= S′, part (a) of Definition 6 holds since
(ANNOUNCE) adds a fresh location loc to domains of both store S and store typ-
ing Π . Part (b) of store consistency definition holds for all locations loc′ 6= loc,
according to Γ ,Π ∼= S. To show that part (b) holds for loc, we have to show that
part (II) of Definition 5 holds for loc.

Part (a) of part (II) of Definition 5 holds, since S′(loc) = eClosure(H,e,ρ) and
Π ′(loc) = thunk ev. Part (b) holds since using (T-ANNOUNCE), the fact that be-
cause of the refining relation the return type of the event body e is the same
as the top event of ev and considering that the return type c of ev is the super-
type of the return type of its top event, if Γ ,Π ` e : c′ then c′ 4 c. For part
(c) for all f ∈ dom(contextsOf (ev)), ρ(f) = null or ρ(f) = loc′′. Part (c) holds
trivially if ρ(f) = null. Otherwise if ρ(f) = loc′′ then according to store con-
sistency Γ ,Π ∼= S, loc′′ ∈ dom(S). If [c′′.F] = S(loc′′) then Γ ,Π ` loc′′ : c′′

and (T-ANNOUNCE) ensures c′′ 4 contextsOf (ev)(f). Then sing Lemma 3 we have
Γ |Π ′ ` loc′′ : c′′ where c′′ 4 contextsOf (ev)(f).
Now we show E[loc.invoke()] : t ′ for some t ′ 4 t. Let Γ ,Π ` announce ev(v*){e} :
t. Using (T-ANNOUNCE), t event ev extends ev′{..} ∈CT and using the relation be-
tween return types of the event body and the return type of events in its hierarchy
for the refining relation, if Γ ,Π ` e : u then u 4 t. Let Γ ,Π ` loc.invoke() : t ′.
Using (T-INVOKE), Π(loc) = thunk ev where S(loc) = eClosure(H,e,ρ) such that
u 4 t ′. Thus we have u 4 t and u 4 t ′ which means t = t ′. Since subtyping relation
4 is reflexive then t ′ 4 t.

2. (INVOKEDONE). e= [loc.invoke()] and e′=E[e′′], where eClosure(•,e′′,ρ) = S(loc).
Store consistency is trivial since neither store nor store typing changes.
Now we show Γ ,Π ` E[e′′] : t ′ for some t ′ 4 t. Let Γ ,Π ` e′′ : u′ and Γ ,Π `
loc.invoke() : u. Using (T-INVOKE), Γ ,Π ` loc : thunk ev for some ev with return
type u. Using store consistency and Definition 5 part (II) item (b) and assumption
eClosure(•,e′′,ρ) = S(loc), we have u′ 4 u. Finally using Lemma 4 we have t ′ 4 t.

3. (INVOKE). e = E[loc.invoke()] and
e′ = E[e1[loc1/var1, loc′/this]], where eClosure(〈loc′,m〉+H,e′′,ρ) = S(loc),
[c.F ′] = S(loc′), (c2, t m(t1 var1){e1}) = methodBody(c,m), loc1 6∈ dom(S),
S′ = S] (loc1 7→ eClosure(H,e′′,ρ)), and Π ′ = Π] (loc1 : Π(loc)).
To show store consistency, Γ |Π ′ ∼= S′, part (a) of Definition 6 holds since (INVOKE)
adds a fresh location loc1 to the domain of both store S and store typing Π . Part (b)
of store consistency definition holds for all locations loc 6= loc1, using Γ ,Π ∼= S.
To show that part (b) holds for loc1 as well, we have to show that part (II) of
Definition 5 holds for loc1. Part (a) of part (II) of Definition 5 holds since S′(loc1) =
eClosure(H,e′′,ρ) and Π ′(loc1) = Π(loc). Using (T-INVOKE) then Π(loc1) is an
event closure thunk type thunk ev for some event ev with return type c. Part (b)
holds since using (T-ANNOUNCE), if Γ ,Π ` e′′ : c′ then c′ 4 c. For part (c) for
all f ∈ dom(contextsOf (ev)), ρ(f) = null of ρ(f) = loc′′. Part (c) holds trivially if
ρ(f) = null. Otherwise if ρ(f) = loc′′ according to store consistency Γ ,Π ∼= S,
loc′′ ∈ S. If [c′′.F] = S(loc′′) then Γ ,Π ` loc′′ : c′′ and (T-ANNOUNCE) ensures
c′′ 4 contextsOf (ev)(f). Using Lemma 3 we have Γ |Π ′ ` loc′′ : c′′ where c′′ 4
contextsOf (ev)(f).
Now we show that E[e1[loc1/var1, loc′/this]] : t ′ for some t ′ 4 t. Let Γ ,Π `
loc.invoke() : u and e1 : u′, which also hold in Γ |Π ′ , using Lemma 3. Using
(T-INVOKE) then Γ |Π ′ ` loc : thunk ev for some ev with return type u. Location
loc′ in the event closure eClosure(〈loc′,m〉+H,e′′,ρ) = S′(loc) points to the class
which contains the next handler method m to be run by the invoke expression. Ex-
pression e1 is the body of m where using (T-BINDING) and (T-SUBEVENT), u′ 4 u.

Using Lemma 1 then Γ |Π ′ ` e1[loc1/var1, loc′/this] : u′′ such that u′′ 4 u′. Since
u′ 4 u and u′′ 4 u′ then u′′ 4 u. Using Lemma 4, t ′ 4 t.

4. (ECGET). e = E[loc. f], e′ = E[v] where eClosure(H,e′′,ρ) = S(loc) and v = ρ(f).
Showing store consistency is trivial.
Now we show Γ ,Π `E[v] : t ′ for some t ′ 4 t. Let Γ ,Π ` loc. f : u and Γ ,Π ` v :
u′. Using store consistency and part(c) of Definition 5 part (II), u′ 4 u. And using
Lemma 5, t ′ 4 t.

5. (REGISTER). e = E[register(loc)], and e′ = E[loc].
Store consistency is trivial.
Now we show Γ ,Π ` E[loc] : t ′ for some t ′ 4 t. Let Γ ,Π ` register(loc) : u and
Γ ,Π ` loc : u′. Using (T-REGISTER), u′ = u. Using Lemma 5 we have Γ ,Π `
E[loc] : t ′ for some t ′ 4 t. Note that subtyping relation 4 is reflexive and transitive.

6. (UNREGISTER). e = E[unregister(loc)], and e′ = E[loc]. Similar to the case for
(REGISTER).

Proofs for expressions that check translucid contracts are:

7. (REFINING). e = E[refining requires n ensures q {e}], e′ = E[evalpost e q] where n 6=
0.
Store consistency is trivial.
Now we show Γ ,Π ` E[evalpost e q] : t ′ for some t ′ 4 t. Let Γ ,Π `
[refining requires n ensures q {e}] : u. Using (T-REFINNING) then Γ ,Π ` e : u. Us-
ing (T-EVALPOST) then Γ ,Π ` evalpost e q : u. Using Lemma 4 and reflexivity of
subtyping relation we have t ′ 4 t.

8. (EVALPOST). e = E[evalpost v n], e′ = E[v] where n 6= 0.
Store consistency is trivial since neither store nor store typing changes.
Now we show Γ ,Π ` E[v] : t ′ for some t ′ 4 t. Let Γ ,Π ` v : u. Using
(T-EVALPOST) then Γ ,Π ` evalpost v n : u. Using Lemma 1 and reflexivity of
subtyping relation we have t ′ 4 t.

Proof for expressions that throw exceptions are the following:

9. (X-REFINING). e = E[refining requires n ensures q {e}], e′ = TCE where n == 0.
Here e is reduced to a terminal condition TCE which is not applicable to subject
reduction theorem [15].

10. (X-SET), (X-GET), (X-CALL), (X-CAST), (X-(UN)REGISTER), (X-EVALPOST). The
same argument used for (X-REFINING) applies to these rules as well.

Proofs for standard object-oriented (OO) expressions are as the following:

11. Proofs for standard OO expressions in (NEW), (SET), (GET), (CAST), (NCAST) and
(CALL) could be easily constructed by adapting MiniMAO0 [15] proofs for the
same rules.

References

1. Bagherzadeh, M., Dyer, R., Fernando, R.D., Sánchez, J., Rajan, H.: Modular reasoning in
the presence of event subtyping. In: Proceedings of the 14th International Conference on
Modularity. MODULARITY 2015, New York, NY, USA, ACM (2015) 117–132

2. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview
of AspectJ. In: Proceedings of the 15th European Conference on Object-Oriented Program-
ming. ECOOP ’01, London, UK, UK, Springer-Verlag (2001) 327–353

3. Aldrich, J.: Open modules: Modular reasoning about advice. In: Proceedings of the 19th
European Conference on Object-Oriented Programming. ECOOP’05, Berlin, Heidelberg,
Springer-Verlag (2005) 144–168

4. Sullivan, K., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N., Rajan, H.: Informa-
tion hiding interfaces for aspect-oriented design. In: Proceedings of the 10th European Soft-
ware Engineering Conference Held Jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ESEC/FSE-13, New York, NY, USA, ACM
(2005) 166–175

5. Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.: Modular
software design with crosscutting interfaces. IEEE Softw. 23(1) (January 2006) 51–60

6. Sullivan, K., Griswold, W.G., Rajan, H., Song, Y., Cai, Y., Shonle, M., Tewari, N.: Modular
aspect-oriented design with XPIs. ACM Trans. Softw. Eng. Methodol. 20(2) (September
2010) 5:1–5:42

7. Gasiunas, V., Satabin, L., Mezini, M., Núñez, A., Noyé, J.: Escala: Modular event-driven ob-
ject interactions in Scala. In: Proceedings of the Tenth International Conference on Aspect-
oriented Software Development. AOSD ’11, New York, NY, USA, ACM (2011) 227–240

8. Bagherzadeh, M., Rajan, H., Leavens, G.T., Mooney, S.: Translucid contracts: Expressive
specification and modular verification for aspect-oriented interfaces. In: Proceedings of the
Tenth International Conference on Aspect-oriented Software Development. AOSD ’11, New
York, NY, USA, ACM (2011) 141–152

9. Bagherzadeh, M., Rajan, H., Darvish, A.: On exceptions, events and observer chains. In:
Proceedings of the 12th Annual International Conference on Aspect-oriented Software De-
velopment. AOSD ’13, New York, NY, USA, ACM (2013) 185–196

10. Sánchez, J., Leavens, G.T.: Separating obligations of subjects and handlers for more flex-
ible event type verification. In: Software Composition: 12th International Conference, SC
2013, Budapest, Hungary, June 19, 2013. Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013) 65–80

11. Hoffman, K., Eugster, P.: Bridging Java and AspectJ through explicit join points. In: Pro-
ceedings of the 5th International Symposium on Principles and Practice of Programming in
Java. PPPJ ’07, New York, NY, USA, ACM (2007) 63–72

12. Eugster, P., Jayaram, K.R.: EventJava: An extension of Java for event correlation. In: Pro-
ceedings of the 23rd European Conference on ECOOP 2009 — Object-Oriented Program-
ming. Genoa, Berlin, Heidelberg, Springer-Verlag (2009) 570–594

13. Clifton, C., Leavens, G.T.: Obliviousness, modular reasoning, and the behavioral subtyp-
ing analogy. In: Software-engineering Properties of Languages for Aspect Technologies.
SPLAT’03 (2003)

14. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning. In: Pro-
ceedings of the 27th International Conference on Software Engineering. ICSE ’05, New
York, NY, USA, ACM (2005) 49–58

15. Clifton, C., Leavens, G.T.: A design discipline and language features for modular reasoning
in aspect-oriented programs. Technical Report 05-23, Iowa State University (2005)

16. Rajan, H., Leavens, G.T.: Ptolemy: A language with quantified, typed events. In: Proceedings
of the 22Nd European Conference on Object-Oriented Programming. ECOOP ’08, Berlin,
Heidelberg, Springer-Verlag (2008) 155–179

17. Rajan, H., Sullivan, K.J.: Unifying aspect- and object-oriented design. ACM Trans. Softw.
Eng. Methodol. 19(1) (August 2009) 3:1–3:41

18. Rajan, H., Leavens, G.T.: Quantified, typed events for improved separation of concerns.
Technical Report 07-14, Iowa State University (2007)

19. Bodden, E., Tanter, E., Inostroza, M.: Join point interfaces for safe and flexible decoupling
of aspects. ACM Trans. Softw. Eng. Methodol. 23(1) (February 2014) 7:1–7:41

20. Steimann, F., Pawlitzki, T., Apel, S., Kästner, C.: Types and modularity for implicit invo-
cation with implicit announcement. ACM Trans. Softw. Eng. Methodol. 20(1) (July 2010)
1:1–1:43

21. Rebêlo, H., Leavens, G.T., Bagherzadeh, M., Rajan, H., Lima, R., Zimmerman, D.M.,
Cornélio, M., Thüm, T.: Modularizing crosscutting contracts with AspectJML. In: Pro-
ceedings of the Companion Publication of the 13th International Conference on Modularity.
MODULARITY ’14, New York, NY, USA, ACM (2014) 21–24

22. Sánchez, J., Leavens, G.T.: Reasoning tradeoffs in languages with enhanced modularity fea-
tures. In: Proceedings of the 15th International Conference on Modularity. MODULARITY
2016, New York, NY, USA, ACM (2016) 13–24

23. Rajan, H., Dyer, R., Hanna, Y.W., Narayanappa, H.: Preserving separation of concerns
through compilation. In: Software-engineering Properties of Languages for Aspect Tech-
nologies. SPLAT’06 (2006)

24. Dyer, R., Rajan, H., Cai, Y.: An exploratory study of the design impact of language features
for aspect-oriented interfaces. In: Proceedings of the 11th Annual International Conference
on Aspect-oriented Software Development. AOSD ’12, New York, NY, USA, ACM (2012)
143–154

25. Dyer, R., Rajan, H., Cai, Y.: Language features for software evolution and aspect-oriented in-
terfaces: An exploratory study. In: Transactions on Aspect-Oriented Software Development
X. Springer (2013) 148–183

26. Dyer, R., Bagherzadeh, M., Rajan, H., Cai, Y.: A preliminary study of quantified, typed
events. In: Workshop on Empirical Evaluation of Software Composition Techniques. ES-
COT’10 (2010)

27. Fernando, R.D., Dyer, R., Rajan, H.: Event type polymorphism. In: Proceedings of the
Eleventh Workshop on Foundations of Aspect-Oriented Languages. FOAL ’12, New York,
NY, USA, ACM (2012) 33–38

28. Xu, J., Rajan, H., Sullivan, K.: Understanding aspects via implicit invocation. In: Proceed-
ings of the 19th IEEE International Conference on Automated Software Engineering. ASE
’04, Washington, DC, USA, IEEE Computer Society (2004) 332–335

29. Dingel, J., Garlan, D., Jha, S., Notkin, D.: Towards a formal treatment of implicit invocation
using rely/guarantee reasoning. Form. Asp. Comput. 10(3) (March 1998) 193–213

30. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1995)

31. Khatchadourian, R., Dovland, J., Soundarajan, N.: Enforcing behavioral constraints in evolv-
ing aspect-oriented programs. In: Proceedings of the 7th Workshop on Foundations of
Aspect-oriented Languages. FOAL ’08, New York, NY, USA, ACM (2008) 19–28

32. Rebelo, H., Leavens, G.T., Lima, R.M.F., Borba, P., Ribeiro, M.: Modular aspect-oriented
design rule enforcement with XPIDRs. In: Proceedings of the 12th Workshop on Foundations
of Aspect-oriented Languages. FOAL ’13, New York, NY, USA, ACM (2013) 13–18

33. Clifton, C., Leavens, G.T., Noble, J.: MAO: Ownership and effects for more effective rea-
soning about aspects. In: Proceedings of the 21st European Conference on Object-Oriented
Programming. ECOOP’07, Berlin, Heidelberg, Springer-Verlag (2007) 451–475

34. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM 15(12) (December 1972) 1053–1058

35. Bagherzadeh, M.: Enabling expressive aspect oriented modular reasoning by translucid con-
tracts. In: Proceedings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion. OOPSLA ’10, New York,
NY, USA, ACM (2010) 227–228

36. Büchi, M., Weck, W.: The greybox approach: When blackbox specifications hide too much.
Technical Report 297, Turku Center for Computer Science (1999)

37. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance, and modular
reasoning. ACM Trans. Program. Lang. Syst. 37(4) (August 2015) 13:1–13:88

38. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10)
(October 1969) 576–580

39. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Softw. Eng. Notes 31(3) (May 2006) 1–38

40. Rajan, H.: Unifying Aspect- and Object-oriented Program Design. PhD thesis, Char-
lottesville, VA, USA (2005) AAI3189305.

41. Rajan, H.: Design pattern implementations in Eos. In: Proceedings of the 14th Conference
on Pattern Languages of Programs. PLOP ’07, New York, NY, USA, ACM (2007) 9:1–9:11

42. Rajan, H., Sullivan, K.J.: Classpects: Unifying aspect- and object-oriented language design.
In: ICSE’05

43. Rajan, H., Sullivan, K.: Eos: Instance-level aspects for integrated system design. In: Pro-
ceedings of the 9th European Software Engineering Conference Held Jointly with 11th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ESEC/FSE-
11, New York, NY, USA, ACM (2003) 297–306

44. Morgan, C.: Procedures, parameters, and abstraction: Separate concerns. Science of Com-
puter Programming 11(1) (1988) 17 – 27

45. Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through specification inheritance.
In: Proceedings of the 18th International Conference on Software Engineering. ICSE ’96,
Washington, DC, USA, IEEE Computer Society (1996) 258–267

46. Shaner, S.M., Leavens, G.T., Naumann, D.A.: Modular verification of higher-order methods
with mandatory calls specified by model programs. In: Proceedings of the 22Nd Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications.
OOPSLA ’07, New York, NY, USA, ACM (2007) 351–368

47. Abadi, M., Leino, K.R.M.: A logic of object-oriented programs. In: Verification: Theory and
Practice: Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday. Springer
Berlin Heidelberg, Berlin, Heidelberg (2003) 11–41

48. Boer, F.S.d.: A WP-calculus for OO. In: Proceedings of the Second International Confer-
ence on Foundations of Software Science and Computation Structure, Held As Part of the
European Joint Conferences on the Theory and Practice of Software, ETAPS’99. FoSSaCS
’99, London, UK, UK, Springer-Verlag (1999) 135–149

49. Inostroza, M., Tanter, E., Bodden, E.: Join point interfaces for modular reasoning in aspect-
oriented programs. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering. ESEC/FSE ’11, New York,
NY, USA, ACM (2011) 508–511

50. Rinard, M., Salcianu, A., Bugrara, S.: A classification system and analysis for aspect-
oriented programs. In: Proceedings of the 12th ACM SIGSOFT Twelfth International Sym-
posium on Foundations of Software Engineering. SIGSOFT ’04/FSE-12, New York, NY,
USA, ACM (2004) 147–158

51. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput. 115(1)
(November 1994) 38–94

52. Forman, I.R., Conner, M.H., Danforth, S.H., Raper, L.K.: Release-to-release binary com-
patibility in SOM. In: Proceedings of the Tenth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications. OOPSLA ’95, New York, NY, USA,
ACM (1995) 426–438

53. Gosling, J., Joy, B., Steele, Jr., G.L., Bracha, G., Buckley, A.: The Java language specifica-
tion, Java SE 7 edition. 1st edn. Addison-Wesley Professional (2013)

54. Drossopoulou, S., Wragg, D., Eisenbach, S.: What is Java binary compatibility? In: Proceed-
ings of the 13th ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications. OOPSLA ’98, New York, NY, USA, ACM (1998) 341–361

55. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S., Saake, G.: Applying design by contract
to feature-oriented programming. In: Proceedings of the 15th International Conference on
Fundamental Approaches to Software Engineering. FASE’12, Berlin, Heidelberg, Springer-
Verlag (2012) 255–269

56. Sánchez, J., Leavens, G.T.: Static verification of PtolemyRely programs using OpenJML.
In: Proceedings of the 13th Workshop on Foundations of Aspect-oriented Languages. FOAL
’14, New York, NY, USA, ACM (2014) 13–18

57. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: NASA Formal Meth-
ods: Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 472–479

58. Oliveira, B.C.d.S., Schrijvers, T., Cook, W.R.: EffectiveAdvice: Disciplined advice with
explicit effects. In: Proceedings of the 9th International Conference on Aspect-Oriented
Software Development. AOSD ’10, New York, NY, USA, ACM (2010) 109–120

59. Figueroa, I., Tabareau, N., Tanter, É.: Effective Aspects: A Typed Monadic Embedding
of Pointcuts and Advice. In: Transactions on Aspect-Oriented Software Development XI.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014) 145–192

60. Oliveira, B.c.d.s., Schrijvers, T., Cook, W.r.: MRI: Modular reasoning about interference in
incremental programming. J. Funct. Program. 22(6) (November 2012) 797–852

61. Bagherzadeh, M., Rajan, H., Leavens, G.T., Mooney, S.: Translucid contracts for aspect-
oriented interfaces. In: Proceedings of the 9th Workshop on Foundations of Aspect-oriented
Languages. FOAL’10 (2010)

62. Figueroa, I., Schrijvers, T., Tabareau, N., Tanter, E.: Compositional reasoning about aspect
interference. In: Proceedings of the 13th International Conference on Modularity. MODU-
LARITY ’14, New York, NY, USA, ACM (2014) 133–144

63. Leavens, G.T., Weihl, W.E.: Specification and verification of object-oriented programs using
supertype abstraction. Acta Inf. 32(8) (August 1995) 705–778

64. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst. 16(6) (November 1994) 1811–1841

65. Long, Y., Mooney, S.L., Sondag, T., Rajan, H.: Implicit invocation meets safe, implicit con-
currency. In: Proceedings of the Ninth International Conference on Generative Programming
and Component Engineering. GPCE ’10, New York, NY, USA, ACM (2010) 63–72

	 Modular Reasoning in the Presence of Event Subtyping

