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Abstract

Verifying whether a service implementation is conform-
ing to its service-level agreements is important to inspire
confidence in services in a service-oriented architecture.
A part of these agreements, in particular those that are
functional in nature, can be checked by observing the
published interface of the service, but other agreements
that are more non-functional in nature, are often verified
by deploying a monitor that observes the execution of
the service implementation. A key problem is that such
a monitor must execute in an untrusted environment (at
the service provider’s site). Thus, integrity of the results
reported by such a monitor crucially depends on its
integrity. The key technical contribution of this article is
an extension of the traditional notion of a service-oriented
architecture that allows clients, brokers and providers to
negotiate and validate the integrity of a requirements mon-
itor. We describe an approach, based on hardware-based
root of trust, for verifying the integrity of a requirements
monitor executing in an untrusted environment. We make
two basic claims: first, that it is feasible to realize our
approach using existing hardware and software solutions,
and second, that integrity verification can be done at
a relatively small overhead. To evaluate our feasibility
claim, we present a realization of our approach using a
commercial requirements monitor. To measure overhead,
we have conducted a case study using a collection of
web service implementations available with Apache Axis
implementation.

I. Introduction

Service-Oriented Computing (SoC) is a new program-
ming paradigm that promotes dealing with modules or
components, often called services [1]. These modules
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could be represented as reusable entities with specific goals
or objectives. Furthermore these entities can be composed
to form larger applications or solutions [1]. Among other
goals, service-oriented computing promotes abstraction,
loose coupling and interoperability among services [2].
This is often achieved by introducing a published interface
(often a description written in an XML-based language
such as WSDL [3]), for communication between services
and clients [2]. This interface is used by three types of
entities: providers, brokers, and clients, for communica-
tion. The exchange follows the sequence publish-find-bind-
execute to discover and use services [2]. By allowing
components to be decoupled using a specified interface,
service-oriented computing enables platform-independent
integration. These new integration possibilities are valuable
for constructing today’s interoperable, large-scale, complex
software-intensive systems.

The published interface of a service describes the
functional requirements for co-ordination between service
implementations and clients. For example, the published
interface for a credit card processing service may expect
clients to provide the transaction details and expect the
service implementation to produce a confirmation number.
The specification of input (transaction details) and output
(confirmation number) describe the functional require-
ments for this service. Verifying whether a service (or
its composition) satisfies its requirements is an important
problem [4], [5], [6], [7].

To verify whether a service is satisfying its functional
requirements it suffices to observe or test the published
interface [4], [5], [6], [7]. However, to validate a non-
functional requirement such as “R2: the service shall not
persist the credit card number supplied by the client”, it
may not be sufficient to validate just the external interface.
Validation of such requirements may only come from a
monitor (such as those described in [8], [9], [10], [11])
that is executing in the same domain as the service
implementation and that can validate — by observing the
running service implementation — that the requirements
such as R2 are indeed satisfied.



Service providers may deploy such monitors and make
the monitor’s functionality available to their clients, possi-
bly using an XML-based interface. However, presence of
such monitor itself is insufficient. This is primarily because
services are often deployed on servers that are not owned
or operated by the clients. Even if the client is willing to
trust the results of the monitor, there is no guarantee that
the monitor itself has not been compromised.

An important contribution of this article is the iden-
tification of the need for validating the integrity of the
monitor operating at the service providers site. To illustrate
the need, let s (∈ S) be a service specification, i (∈ I) be
a service implementation, M : S × I → {true, false}
be a monitor that is capable of detecting deviations in the
execution of the service implementation from its specifica-
tion running in a trusted environment, and M ′ : S × I →
{true, false} be a monitor that is similarly capable, but
may be running in an untrusted environment. The problem
is to validate whether M ≡M ′.

Let us assume that a validation mechanism V ′ : M ×
M ′ → {true, false} exists. We argue that part of V ′,
however small that may be, must run in the same untrusted
environment to observe M ′ so that it can be compared with
M . If not, V ′ will depend on the untrusted environment to
observe M ′, which in turn may mask the true responses of
M ′ with expected responses for M thereby invalidating the
premise that V ′ exists. On the other hand, if some part of
V ′, say δV ′ is running in the same untrusted environment
to observe M ′, we will need another monitor to verify that
the integrity of δV ′ is not compromised, which will need
to be verified again, ad infinitum. In summary, V ′ may not
exist without an adequate mechanism in which trust can
be placed by all involved entities.

The second important contribution of this work is the
insight that a hardware-based mechanism can be used
as a root of trust in the presence of distributed services
in a service-oriented computing environment. The main
intuition is that if the hardware-based root of trust ensures
that there exists a δV ′ such that we do not need another
monitor to verify its integrity, δV ′ would make V ′ realiz-
able. Recent research results on Trusted Platform Module
(TPM) [12], [13] make realization of such hardware-based
root of trust feasible. TPM is a co-processor that is now
being shipped with every CPU of major processor vendors
such as Intel and AMD and is therefore available broadly.

The technical underpinnings of this work include an
architectural extension and associated verification algo-
rithms1 that utilize TPM and check whether the monitor
executing on the service provider’s site is not corrupted.
Formally using the terminology above, it validates whether
M ≡ M ′. Together these make trusted service-oriented

1Initial ideas were proposed in our prior work [14], [15].

architectures realizable. In the next subsection, we define
the scope of our approach.

A. Scope of This Article

This section broadly relates our work to other related
ideas to precisely characterize our contributions. In other
words, following should be read as “what we do not
claim”. It can also be safely skipped on first reading.
Requirements monitoring. This article does not propose
an approach for runtime requirements monitoring, there
are many other research papers on this topic e.g. [8], [9],
[10], [11]. To simplify the discussion and our experimental
setup, we have used a trace-based requirements monitor
(see Section IV), however, our ideas are applicable to other
types of requirement monitors as well.
Functional Requirements. Our work does not propose a
heavyweight requirements monitoring for validating func-
tional requirements as they can very well be monitored by
verifying the externally visible interface of the service as
shown by others [4], [5], [6], [7].
Notion of Integrity. We have intentionally not restricted
ourselves to a specific notion of integrity in this article.
Any existing notions, along with a corresponding verifi-
cation mechanism can be used. In the examples presented
in this article, we have used a notion based on checksum.
Briefly, in these examples we consider that a monitor’s in-
tegrity has not been violated, if its checksum as computed
by the trust analyzer and signed by the TPM matches the
cleanroom measurements. Our approach can be adapted
to use more sophisticated models based on functional
equivalence, however, for the proof of concept we consider
checksum-based notion of integrity to be sufficient.
Secrecy and Authenticity Issues. Our work is orthog-
onal and complementary to the secrecy and authenticity
research in the web services security community. We do
not focus on securing the interaction between service
providers, brokers and clients, which has been the main
focus of many existing approaches, e.g. current standards
such as WS-Security [16] and WS-Trust [17] or proposals
such as that by Skogsurd et al. [18].

These approaches address the issue of security-token
interoperability and secure transactions. They do not ad-
dress the integrity issues for components services and
they cannot be used directly to certify indisputable trust
in an untrusted environment. Our approach builds upon
existing work on secrecy and authenticity to develop a
mechanism for trusting loosely-coupled components in a
service-oriented computing environment.

The rest of this article is organized as follows. Section II
describes trusted platform modules, which form the basis
of our proposed architecture. Section III describes key
ideas of this work. Section IV-V evaluate these contri-



butions. In particular, the former evaluates the feasibility
claim and the later evaluates the utility claims. Section VI
compares and contrasts our work with related approaches.
Section VII discusses potential adoption paths for our work
in the current service-oriented computing research and
practice. Section VIII discusses future work and concludes.
We now describe key parts of the trust platform module.

II. Background: Trusted Platform Modules

Over the past few years, a consortium of key industry
players under the umbrella of Trusted Computing Group
(TCG) [19], have developed the specification for the
trusted platform module (TPM) [20] with the goal to guar-
antee security, integrity and confidentiality of data through
innovative hardware-based architectures. Both TCG and
alternatives [21], aim to bootstrap higher level trust from
rudimentary TPM supported trust using some software
trust architecture or design principle.

A TPM is a trusted agent co-processor within a remote
computing platform which derives its root of trust from
its manufacturer or a delegated trusted third party [19]. A
TPM can be trusted to perform certain actions truthfully
despite being an integral part of a potentially malicious
or compromised system. In other words, it is our trusted
ambassador in a friendly or hostile foreign territory. The
TPM hardware, firmware and the software provides a root
of trust. A TPM can extend its trust to higher layers of
the system by building a chain of trust starting from the
hardware and subsequently linking upper layers. In what
follows we describe its key components.

A. Cryptographic Coprocessor

The cryptographic coprocessor implements crypto-
graphic functions executed within the TPM hardware.
Hardware or software entities outside the TPM have no
access to the execution of these functions. A TPM also
contains a RSA accelerator to perform 2048 bit RSA
encryption and decryption. The TPM uses RSA algorithm
for signature operations on internal and external items.
There is also an engine for computing SHA1 hash for small
pieces of data within the TPM. This SHA1 interface is
exposed to the software entities outside the TPM to support
measurements during the platform boot phases.

B. Random Number Generator (RNG)

A RNG is the source of randomness in TPM. It is
provided for key generation, nonce generation and for
randomness in signatures. This capability is protected from
external access.

C. Platform Configuration Registers (PCRs)

PCRs are set of registers that can be used to store
the 160-bit hash values obtained using the SHA1 hashing
algorithm of the TPM. The hardware ensures that the hash
value of any PCR can be changed only by encrypting the
new data over the previous hash value of the PCR. Thus
PCRs can be used to indelibly record the history of the
machine since the last reboot. The PCRs are cleared off at
the time of system reboot.

D. Cryptographic Keys

Every TPM is identified by a built-in key called the
Endorsement Key, which is included in it by the manu-
facturer . The key size is 2048 bits. The trust that one
reposes in a TPM comes from the fact that this key is
unique and is protected at all times in the TPM. An
Endorsement Certificate, which contains the public key of
the Endorsement Key, certifies this property. This key can
be used by the owner to anonymously confirm that the
identity keys were generated by the TPM in their system.
In essence, every computer has a unique identity which
cannot be repudiated. This can serve to be a fool-proof
identity for every user. The TPM manufacturer provides a
certificate for the Endorsement Key.

E. Attestation Identity Keys (AIKs)

AIKs are used by a privacy certification authority to
present different keys to different remote parties to enable
the system to hide its platform identity from other systems.

F. Certificates

The TPM is also equipped with three kinds of certifi-
cates [22]: endorsement, platform, and conformance. An
endorsement certificate attests that a particular platform
configuration is genuine. This contains the public part of
the endorsement key. The platform certificate attests that
the security components of the platform are genuine. This
is provided by the platform vendor, and the conformance
certificate can be provided by a third party to certify the
security properties of the platform.

G. TPM Usage Models

Bajikar [22] describe three usage models of the TPM.
First, hardware protected storage, where TPM is employed
to protect sensitive data of the user by encrypting the
secret data in such a way that it can only be decoded on a
specific hardware that contains the necessary private key.
Second, information binding, where critical data is bound
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Fig. 1. Proposed Architectural Extensions

to a platform such that it is accessible only if the conditions
specified during the binding are met and rendered inacces-
sible if migrated to a different platform, and third platform
authentication, where attestation identity keys are always
bound to the platform. These can be used to authenticate
the user and the platform. Our technique uses the third
model to authenticate the service implementation platform,
including the requirements monitor.

Critics of TPM claim that TPMs will have a huge
impact on user privacy. Service providers with com-
mercial interest will try to misuse the power of TPM
by introducing stricter controls and by eliminating user-
anonymity (c.f. [23]). Alternatives such as PERSEUS are
also proposed [24], [25]. Although the Jury is still out
on the social aspects of TPMs, their wide availability and
advantages combine to warrant research on the use of these
mechanisms for trusted service-oriented architectures.

III. Monitoring the Monitor

A. Overview

Our approach consists of architectural extensions and
algorithms for verifying integrity of a remotely- hosted
requirements monitor. In a spirit similar to the published
functional interface for service negotiation, entities in a
service-oriented architecture are extended to publish a
trust-negotiation and verification interface. New compo-
nents are added to support the trust-negotiation interface.
A trusted platform moduler (TPM) and trust analyzer
are added to the service provider and a TPM is added
to the broker. The trust analyzer verifies the integrity
of the requirements monitor executing in the domain of

the service provider. The TPM on the service provider’s
site is used to attest to the integrity of the provider’s
software stack as well its identity. The TPM on the service
broker’s site is used to attest to the identity of the service
broker. The broker negotiates desired integrity-level with
the provider and provides assurance to the client using the
trust-negotiation and verification interface.

Traditional interaction pattern publish-find-bind be-
tween components in SoAs is augmented with steps for
negotiating requirements monitoring capabilities as shown
in Figure 2. During the publish step, in addition to the
functional properties service providers also make the capa-
bilities of the requirements monitor available to the broker
via the trust negotiation interface. By capabilities, we mean
the type of non-functional requirements that the monitor
can verify. For example, a service provider that deploys a
monitor similar to Barbon et al. [5]’s work would make
the capabilities to verify Boolean, statistical, and timing
properties available.

During the find step, a client sends a request to the
broker for services that satisfy desired functional properties
as well as provide monitoring capabilities to check desired
non-functional properties. The broker responds to this
request with a list of only those services that satisfy
both functional requirements as well as provide monitoring
capabilities for non-functional requirements. During the
bind step, in addition to sending a service request to the
service provider, a client also sends an attestation request
to the service broker. The broker attests to the fact that
for that specific transaction the non-functional properties
claimed by the provider indeed hold. The notification from
broker as well as service together complete the bind step.
The TPM plays a vital role in the publish and bind step.

The rest of this section describes the architectural
extensions and corresponding algorithms.

B. Architectural Extensions

Our architectural extensions are shown in Figure 1. The
key addition is a new interface, which we call trust negoti-
ation and verification interface, between service provider,
client, and broker. Those well-versed with networking
terminologies can think of communication that take place
using this interface as “out-of-band" compared to sequence
of protocols (typically find-bind-execute) that takes place
on the regular channel. The purpose of this interface is to
facilitate negotiation of the desired level of trust between
the components of the SOA.

In our extension, traditional component service broker
also plays the role of a trusted third party. The goal of the
trusted third party is to facilitate trust negotiation between
clients and service providers, detect non-compliance of
service providers, and to notify clients.



Fig. 2. Overview of Interaction between Components

New components on the brokers’ side include a TPM
and on the service providers’ side includes a requirements
monitor, a trust analyzer, and a TPM. No new components
are needed on the client’s side (although if one decides to
have a symmetric notion of trust, a TPM on the client-side
would be able to facilitate that). The role of these new com-
ponents are as follows. The requirements monitor on the
service provider’s side verifies conformance of the service
implementation to the desired non-functional requirements.

The trust analyzer and the TPM on the service provider
together attest to the validity of the monitor. The key
insight that allows this combination to attest to the validity
of the monitor is that the integrity measurements stored
inside a TPM in a local environment cannot be changed,
even by the owner of the system. Such a measurement
can be read by anyone, though. Finally the TPM on the
brokers’ side is used to attest to the identity of the broker.



C. Interaction between Broker and Client

A client and a broker make use of the trust negotiation
interface on two occasions. During the find step, in addi-
tion to the functional requirement, a client will also provide
the trust and data integrity requirements. For example, for
the payment processing service discussed in Section I, in
addition to the desired functional requirement, the client
may also specify that the service must not persist the
argument credit card number. During this step, the TPM
on the service broker’s side is used to sign the response of
the broker to the client. This assures the client that results
of find are received from a genuine broker.

During the bind step, a client also communicates with
the broker to request attestation for a service request. By
attestation we mean that the broker verifies whether the
service provider satisfied the previously agreed upon non-
functional requirements during the service request.

D. Interaction between Provider and Broker

First step in publishing a service is to bootstrap the ser-
vice implementation in a trustworthy manner. To achieve
that a small bootstrapping mechanism similar to Sailer et
al.’s TCG based Integrity Measurement Architecture for
Linux [12] along with the TPM on the service providers’
end is used to measure the integrity of the trust analyzer
(Analyzer in Figure 2). This step is show as an arrow from
TPM to Analyzer in Figure 2.

The small bootstrapping component used to measure
the checksum of the Analyzer is not shown in the figure.
The component essentially compares the current checksum
of the Analyzer with the measurements in the cleanroom
state and bootstraps the trust analyzer, if the current mea-
surements are the same as cleanroom measurement. The
trusted analyzer then bootstraps the requirements monitor
(Monitor in Figure 2), which in turn starts the execution
of the service implementation (Service in Figure 2) in a
similar manner checking for integrity in each step.

During publish step, trust analyzer and requirments
monitor send integrity measurements to the broker after
mutual authentication. The integrity measurements are
stored in the platform configuration registers (PCRs) of
the TPM using SHA1 hashing algorithm. The key idea is
to store integrity measurements as successive hash values.
For example, let us assume that integrity measurements
of trust analyzer resulted in a hash value of hashTA in
the PCR. The integrity measurement for the requirements
monitor now uses hashTA as its base value.

The SHA1 hashing algorithm is very effective for
detecting tampering. If any of the system, configuration
or library files up to the requirements monitor are even
slightly tampered, there will be significant variations in

the final SHA1 hash value. It takes about 269 units of time
to find SHA1 collisions [26], thus collisions are very rare.

Before sending the integrity measurements to the
provider, the trust analyzer uses the TPM to sign this
measurements. The TPM’s attestation identity key (AIK)
is used to sign the PCR hash. AIK is a special purpose
asymmetric signature key created by the TPM owner. The
signing key of AIK is non-migratable and protected by the
TPM. Since the signing key of the TPM’s AIK cannot be
retrieved by any user, this provides a proof that the data
signed by this key was generated on the platform with the
key. This provides platform authentication.

The cryptographic capabilities of the TPMs are lever-
aged to establish a secure communication channel between
the service provider and the broker. This channel is used to
convey the integrity measurements to the broker. Standard
cryptographic mechanisms such as nonce are applied to
prevent against attacks such as replay attacks, man-in-the-
middle attacks, etc. A nonce is a random number that
is used only once. It is included in all interactions of a
particular session to prove the freshness of data. These are
abbreviated as mutual authentication in Figure 2.

While publishing a service description (interface) with
the broker the service provider also provides capabilities
of the requirements monitor deployed in its environment.
These capabilities represent the class of non-functional
requirements that can be monitored during the service
execution. The properties that can be monitored depends
on the capabilities of the requirements monitor available
at the service provider’s location. In this work we focus
on trace-based requirements monitor, but our notion is not
limited to these.

In a trace-based monitor requirements are specified as
logical formulas over program traces. An example of such
trace-based requirement for the payment processing service
could be, “in no trace of the service implementation, the
argument credit card number directly or indirectly flows to
a persistence-related method e.g. File.write(...).”
Such properties can be expressed in standard logic such as
Linear Temporal Logic (LTL) [27]. The detailed discussion
of such logic is beyond the scope of this work. The
provider would also facilitate a one time verification of the
capabilities of the requirements monitor and implementa-
tion. We will discuss this in more detail in the context of
our prototype.

During service execution, the broker and the provider
must communicate to verify that: the provider and the
broker are indeed the same principals that agreed to the
contract during the publish step, the requirements monitor
as well as the software stack on the provider’s end is not
compromised, and the trace provided by this monitor does
not violate the properties desired by the client.

The trust analyzer component, which derives its root



of trust from the TPM on the provider’s side, serves to
verify the integrity of the requirements monitor. It provides
a report that includes an immutable integrity measurement
of the local architecture along with a time stamp to indicate
the freshness of the measurement. The requirements mon-
itor in turn determines whether trace of service execution
satisfied desired non-functional requirements. TPM is also
used to attest to the identity of the service provider.

The interaction between a client and a provider remains
the same as in traditional service-oriented architectures.

IV. Evaluation: Feasibility

The goal of this section is to examine whether our
proposed architecture can be realized using existing hard-
ware platforms and software solutions. To that end, we
describe the design and implementation of a prototype
system that supports our proposed architecture. The rest
of this section discusses various components starting with
the experimental setup in the next section.

A. Experimental Setup

The hardware platform used for our prototype imple-
mentation was two Dell Precision 390 stations each with
Intel Core2 Duo Processors running at 1.86 GHz and 2
GB of RAM. The processors on these stations have a
TPM (Version 1.2) manufactured by Atmel Corporation,
embedded in them with 24 PCRs each. One of the stations
was assigned the role of a service provider while the other
played the role of the broker. We used tpm4java for de-
veloping our trust analyzer to take integrity measurements
of the requirements monitor on the service provider’s side.
The Java library tpm4java, developed by Tews et al. [28],
is also used for accessing the TPM functionality from Java
applications.

The test environment consists of Apache Web server
version 2.2, Tomcat Servlet Container version 5.5.23 and
Axis SOAP Server Version 1.2 running on Windows XP
Professional operating system. For evaluating the require-
ments of the web service implementation, we used a
commercial software called CodeMonitorTM (monitor)
from Tangentum Technologies [29] as our subject monitor.
The monitor instruments the Java bytecode to log certain
actions and this makes it possible to monitor web services
that have already been deployed. For doing these, it must
be installed in the same environment as that of the web
service. For the purpose of this experiment, we defined
the requirement as, “The execution trace of the program
involving the variables and methods dealing with client
data labeled as sensitive, should not include APIs dealing
with persistence or serialization.”

For the purpose of this prototype implementation, we
assumed that the operating system on the service provider’s
environment is secure, implying that the service provider
will not be able to change the monitoring software without
knowledge of the TPM in the system. A number of
techniques such as the approach proposed by Sailer et al.
to secure the operating system kernel can be used [13] to
attain this goal. Interested readers are referred to this work
for a detailed discussion of this issue.

B. Service Provider’s Implementation

In our prototype, the service provider’s implementation
is augmented with requirements monitor and trust analyzer
as shown in Figure 2.

Procedure 1 Publish step for providers’ end
Input: Broker Address: brokerAddr, Service Id: Id

1: sendImpl(brokerAddr, Id);
2: sendMonitor(brokerAddr, Id);
3: sendConf(brokerAddr, Id);
4: progPoints = recvProgPoints(brokerAddr, Id);

The publish step on the service provider’s side is shown
in Procedure 1. The first step is to accept the requirements
to be monitored. In our current prototype, requirements are
expressed as fields and methods in the implementation that
need to be monitored. We emulated the requirements iden-
tification process which consists of determining variables
and methods dealing with data labeled as sensitive, using
Kaveri [30], a tool for program slicing.

Program slicing is a technique for computing a subset of
the program relevant to a property, often called the slicing
criteria and expressed as either a value or a statement [31],
[32], [33]. In future, we plan to have the requirement
specifications (or slicing criteria) as a part of the web
service interface itself, thereby making the process of
requirements identification independent of the implemen-
tation of the web service. Our prototype can also be easily
extended to support a full-fledged specification language
such as the one we are currently developing [34], which
allows policies specified in linear temporal logic [35] to be
checked. However, we believe that the current workaround
is sufficient to show the proof of concept.

Each transaction is validated by executing a series
of steps shown in Procedure 2. First, the trust analyzer
receives a nonce from the broker. Standard mechanisms
for avoiding replay attacks and verifying the authenticity
of the trusted third party are used here. A key part in this
authentication session is played by the service provider’s
TPM, which signs the message containing the nonce with
its key. During the computation of the results by the service



Procedure 2 Bind step for providers’ end
Input: Broker Address: brokerAddr, Service Id: Id

1: nonce = recv(brokerAddr, Id);
2: startTraceCollection();
3: continueService();
4: trace = collectTrace();
5: checksum = computeSHA1Hash();
6: response = signAIK(trace, nonce, checksum);
7: send(brokerAddr, Id, response);

implementation a trace is generated and maintained by the
requirements monitor (steps 2-4).

This trace along with static checksum of the software
stack is sent to the trusted third party (step 7). To remind
the reader, the static checksum is created by computing the
SHA1 hash of the software stack up to the requirements
monitor and is essential to validate the current state of
the service implementation (step 5). This hash is signed
using the AIK on the TPM of the service provider (step
6). The message to the third party also contains the nonce
originally obtained from the trusted third party to protect
against replay attacks by the provider.

C. Broker’s Implementation

In our prototype, during the publish step, the broker is
provided with a copy of the service implementation, the
requirements monitor and configuration files as shown in
Procedure 3. This step is supervised (steps 1–3). Based on
these three inputs, the set of requirements are translated
to the list of fields and methods that would need to be
monitored (step 4). Note that the service provider is never
aware of the actual requirements and if the publish step is
compromised no information about the intended require-
ments is leaked. During this step, reference measurements
are also stored for the software stack upto the require-
ments monitor (steps 8–9). Finally, representative traces
are stored by instrumenting the service implementation
(steps 5–7).

As described in the next section, a client triggers a
trust verification step by sending a request to certify to the
trusted third party. On receiving such request, the trusted
third party initiates a trust verification step by sending a
nonce to the service provider. For every transaction, the
broker generates a unique nonce to guard against replay
attacks. This nonce is sent to the requesting provider with
appropriate credentials to certify that it is from the correct
third party and not an imposter. These steps are shown in
detail in Procedure 4.

During the service, the trust analyzer monitors and
creates a trace of the execution containing the field and
method information identified during the initialization

Procedure 3 Publish step for brokers’ end
Input: Provider Address: providerAddr, Service Id: Id
Input: Property as Criterion: sliceCriterion

1: impl = recvImpl(providerAddr, Id);
2: reqMonitor = recvMonitor(providerAddr, Id);
3: confFiles = recvConf(providerAddr, Id);
4: progPoints = slice(impl, sliceCriterion);
5: instImpl = instrument(impl, progPoints);
6: progTrace = genTrace(instImpl, reqMonitor, conf-

Files);
7: store(progTrace);
8: checksum = computeSHA1Hash();
9: store(checksum);

10: send(providerAddr, Id, progPoints);

Procedure 4 Bind step for brokers’ end
Input: Provider address: providerAddr
Input: Service Id: Id
Input: Client address: clientAddr

1: Nonce n = generateNonce();
2: send(providerAddr, Id, n);
3: Trace t = receive(providerAddr, Id);
4: result = verifyPK(t,signature);
5: if result == false then
6: reportViolation(clientAddr, Id);
7: else
8: result = checkFresh(t.Nonce);
9: if result == false then

10: reportViolation(clientAddr, Id);
11: else
12: result = checkTrace(t);
13: if result == false then
14: reportViolation(clientAddr, Id);
15: end if
16: end if
17: end if

phase. Authentication server is responsible for verifying
this trace. To that end, after receiving the signed data
from the provider, the public verifying key of the AIK is
used to verify the data and it’s signature (step 3). At this
stage, two violations can be detected. First, if the data from
the provider and it’s signature do not match, it represents
corruption of provider’s information and hence a violation
of trust. Second, if the nonce contained in the data is not
fresh, it represents a possible replay attack attempt by the
provider. Client is notified of such violations (steps 6, 10).

On successfully verifying the data and the nonce, the
next step is to verify the trace (step 12). The traces from
two different executions may differ due to modifications
of service implementation as well as difference in input
values. Thus, exact equivalence may not be used to report



violations. Instead, we use the trace received from the
provider to check if it contains a sequence that violates the
requirements. In our example, persistence and serialization
of data is assumed to be a violation of requirements, thus
presence of an API call that persists or serializes data will
be reported as violation. The main purpose of recording the
trace during the publish step is to optimize this checking.
The recorded trace represents the normal execution of the
service implementation. An abstract form of stored trace is
then used to quickly identify aberrations in current trace.
Such behavior is then checked in detail.

Finally, if all checks pass, the system configuration is
checked. If any of these checks fail, the clients are notified
of a violation, otherwise an assurance is sent to the client.

D. Client’s Implementation

For every transaction involving sensitive data, the client
sends an attestation request to the broker and also si-
multaneously invokes the web service. The integrity of a
transaction is assumed only if an assurance is received
from the broker. On receiving this assurance the results of
the service can be used as intended. These steps are shown
in detail in Procedure 5. Note that the standard find and
bind steps are omitted for simplicity.

Procedure 5 Bind step for client’s end
1: initTransaction();
2: requestCert(brokerAddr,providerAddr,Id);
3: sendRequest(providerAddr, params);
4: result = receiveCert(brokerAddr,Id);
5: if result == violationNotification OR timeOut then
6: abortTransaction();
7: else
8: commitTransaction();
9: end if

10: return;

E. Illustrative Example

We now use the example web service from Section I to
illustrate the working of our prototype. Figure 3 shows this
example. This payment processing service consumes the
credit card number, the card validation code (cvc) and the
purchase order, as the input from the client and produces
confirmation number as the output. In this example, the
client is unaware of the fact that the web service provider
has processed the client’s input for adversarial purposes
and that it has stored the input credit card number within its
local database. The web service implementation could have
been certified to be compliant at the time of deployment,

but later, it might have been reprogrammed by the service
provider with a malicious intent.

Fig. 3. An Illustration of Trust Violation

We created a sample implementation of this service.
The web service is invoked from a web browser of another
machine. The web service accepts the credit card details
and a list of items in the shopping cart as the input for
the transaction and outputs the invoice, carrying out all
the intermediate tasks from fulfilling the order to billing
the client appropriately. We used our prototype to observe
the definition and use of data fields carrying sensitive data.
The trace produced by the monitor is shown in Figure 4.
The monitor produces trace preceded by PUT and GET
corresponding to the data fields carrying sensitive data.

ENTRY Connect.initialize()
PUT Connect.name="John Doe"
...
GET Connect.name "John Doe"
...
Order successfully processed: John Doe

Fig. 4. Output trace for the original service

Since the monitor is also in the service provider’s
environment it can be compromised to not report the
violations. We mimicked the compromise by instrumenting
the monitor to ignore any violations that might have
occurred. Such a requirement’s monitor can be used by a
service provider to report wellness when all is not well
with the web service. This is when our technique can
falsify a wrong claim of the service provider. We used
our prototype to validate the monitor to ensure that it is
not compromised or changed. Two cases of requirements
violation are possible:
• The monitor detects a violation in the web service.
• The monitor itself is compromised and hence the

violations are not reported. Such a compromise is
detected by the hardware-based trust mechanism.

1) Detecting Requirements Violation: This class of
compromise can be detected by current approaches for



requirements monitoring (e.g. [8], [9], [10], [11]). Using
similar techniques, our prototype requirement’s monitor
was also able to detect the compromise.

ENTRY com.mysql.jdbc.Statement.executeQuery
("SHOW VARIABLES")
ENTRY com.mysql.jdbc.Connection.prepare
Statement
("INSERT INTO cnumbers(name,ccn,cvc) VALUES
(?,?,?)")
...

Fig. 5. Trace for compromised web service

Figure 4 shows the trace generated for the clean-room
web service and the Figure 5 shows the execution trace
of the compromised web service. Here, storing the credit
card number in the database is considered a violation of
integrity by the web service. Since the monitor checks
the execution trace for the presence of calls to persistence
APIs, it detected this violation.

2) Detecting a Compromised Monitor: Since the mon-
itor has to be installed in the service provider’s environ-
ment, the monitor itself can be compromised without much
difficulty in a realistic setting. One such case is presented
in Table I in which one of the library files of the monitor
was altered using bytecode instrumentation.

TABLE I. Comparison of TPM Measurements
File 160-bit SHA1

Hash of Genuine
Monitor

160-bit SHA1
of the Modified
Monitor

codemonitor.license 6476...DB8F 6476...DB8F
Connect.class 9F2B...A638 9F2B...A638

...
codemonitor.config 8D9E...5FA8 8D9E...5FA8
codemonitor.jar 23F9...5BA2 D843...1531
jbcs-client.jar 86AA...BE56 0F66...00F7

...
jdax.jar 85F7...30E2 2020...8D15
xjbc-jdax.jar 944E...1F3E 99CA...547F

The first column of the Table I presents the abbreviated
list of files of monitor being monitored. The second column
shows the 160-bit hash values of PCR #10 during the
clean-room measurement of the software. The third column
shows those measurements that were obtained after the
class files of one of the library files were altered. It can be
observed that the hash values in the third column starting
from the entry corresponding to the file codemonitor.jar
differ significantly from their corresponding entries in
the second column. This is because the SHA1 hashing
algorithm in the TPM not only hashes the contents of the
candidate files but also preserves the order in which the
files were hashed. This implies that at least one of the

library files including codemonitor.jar was altered without
the knowledge of the broker.

F. Summary

In this section, we evaluated our claim that the realiza-
tion of our technique is feasible using currently available
hardware and software platforms. Our prototype although
limited serves to satisfy our feasibility claims. It also points
to interesting directions for further investigation such as
design of a specification language for representing the
requirements, more efficient mechanisms for monitoring
such requirements on the service provider’s end.

V. Evaluation: Potential Utility

The goal of this section is to validate the potential utility
of our technique. To that end, two properties are important.
First, that our approach should be effective in detecting
compromises that the previous techniques couldn’t detect.
Second, that is should not have prohibitive overhead.

To analyze these properties, we evaluated our prototype
using some standard subject web services. The subjects for
our case study were selected from the web service imple-
mentations available from the Apache Axis distribution.
Table II briefly describes the web services used for this
case study and the sections of the service implementation
that were traced by the requirements monitor for each web
service. Some of these sections were chosen randomly
while others were chosen to monitor certain methods
handling specific data, labeled as sensitive.

The Section V-B presents a detailed analysis of the
overheads incurred in monitoring the web services for their
corresponding non-functional properties. It is also shown
that the time lag caused by such monitoring is negligible
and thus, the proposed architecture efficiently monitors the
integrity of the web services.

A. Violations

The class of compromise involving only the violation
of requirements can be detected by current approaches for
requirements monitoring (e.g. [10], [11]). Using similar
techniques, our subject monitor was also able to give the
execution trace for methods that caused either persistence
or serialization of data. In case of such violations, the
broker will notify a breach of trust to the client.

Current approaches do not detect violation when the
requirement monitor is itself compromised. Since the mon-
itor has to be installed in the service provider’s environ-
ment, the monitor can be compromised in many ways. For
this paper, we instrumented the monitor to report a normal
trace even when there was a violation of trust. Thus, the



TABLE II. Subjects for our Case Study
Service
name

Short description Traced Sections of the Service
Implementation

Stock Gets quote for the
stock "symbol"

1. Instructions invoking setters.
2. Methods with private access.

Echo Echoes a string 1. Method entries and exits.
2. Methods with public access.

Encoding Serialization of a
message

1. Methods with private access.
2. Instructions which invoke get-
ters.

Message Simple XML mes-
saging service

1. Methods with private access.
2. Instructions invoking getters.

Bidbuy Request for a
quote, purchase
a given quantity
of a specified
product and process
purchase order.

1. Method entries and exits.
2. Instructions that invoke getters
and setters.

integrity of the web service is a function of the integrity
of the requirements monitor. We presented one such case
in Table I in Section IV-E, in which one of the library files
of the monitor was altered. Since the monitor itself was
being monitored, such violations were detected.

B. Overhead of Monitoring

Table III compares the average time taken to execute a
web service in a standalone manner, when CodeMonitor is
used and when custom Aspects are applied for monitoring
the web service implementation for the properties listed
in Table II. These values are the averages of the time
taken to execute the service over several client requests.
The overhead due to CodeMonitor was greater because,
it instruments all the instructions used in the web service
implementation including those of the libraries, at run time.
Since the source code for CodeMonitor was not available,
we could not circumvent this overhead. To work around the
problem, we wrote custom AspectJ aspects [36] to mon-
itor the same sections of the service implementation. As
Table II shows this achieved a much better performance,
which serves to show that if instrumentation techniques
with less overhead are applied our approach is likely to
have negligible overhead. This serves to validate our claim
that web services can be monitored for integrity without a
tangible time lag in responding to the client’s request.

VI. Related Work

In this section we discuss closely related ideas. For
reader’s convenience these ideas are categorized along
three key areas: techniques based on trust computing
group’s initiative, approaches that provide distributed attes-
tation functionality for web-services, and those that allow
modeling of non-functional aspects of SOA.

TABLE III. Overhead of Monitoring
Service Execution

time without
any monitor
(in seconds)

Execution
time with
CodeMonitor
(in seconds)

Execution
time with
Aspect
Monitor

Stock 0.944 10.688 1.283
11.476 1.005

Echo 1.299 42.375 1.609
12.812 1.640

Encoding 0.738 11.828 0.922
9.621 1.026

Message 0.945 7.200 1.209
20.641 1.208

Bidbuy 0.993 83.110 1.349
10.900 1.341

A. TCG based integrity measurement

Sailer et al. proposed a TCG based Integrity Mea-
surement Architecture for Linux [12]. This architecture
made use of a Trusted Platform Module (TPM) hardware
to store the integrity measurements of the system using
the SHA1 hash function module of the TPM hardware.
Unlike AEGIS, this system only takes measurements and
does not have a recovery process. Also, this system can
take selective measurements of the software to create
a representative evidence that can be interpreted by the
remote party.

The purpose of this architecture is to present an ordered
list of measurements to a remote party. The remote system
determines the integrity of the attested system by recon-
structing the image of the attested system’s software stack
on the local system using these measurements and then by
applying the security policy on the local software stack. To
establish mutual trust, this process has to be carried out
on both sides involved in the transaction [13]. This was
implemented by instrumenting the Linux kernel to create
measurements and to store them in the TPM hardware
to protect against compromised systems. This architecture
takes measurements of the kernel modules, executables
and shared libraries, configuration files and other important
files before they are loaded into the system. The advantage
of this architecture is that it could verify integrity of a
system up to its application layer (web server).

This process of mutual attestation is quite complex
involving recreating the image of the other party on the
local system based on the measurements obtained and
then applying a security policy to it. The task of taking
measurements is implemented by making modifications
to the Linux kernel code. In case of online transactions,
common users may not have the Linux operating system.
In a majority of the cases, the two communicating parties
may not have the same operating system in their environ-
ments. This makes it difficult to recreate the image locally
based on the measurements sent out by the other party.



Our architecture is designed to address these issues.
Haldar et al. discuss about the broad problems with

remote attestation in [37]. According to them, the most
critical shortcoming regarding remote attestation is that
it is not based on program behavior. In our architecture,
this problem is solved by having the requirement’s mon-
itor report the program behavior. Another problem they
point out is that remote attestation is static and inflexible.
Though this is true, it does not affect the viability of our
architecture because we are not directly measuring the
applications which may change frequently, but all that we
monitor is the specific requirements of the applications that
are not supposed to change.

B. Distributed Attestation Models

WS-Attestation, an attestation architecture proposed by
Yoshihama et al. [38], also leverages TCG technologies
and allows establishing trust among distributed parties.
WS-Attestation is built on top of existing web services
standards. Four kinds of attestations are proposed - direct
attestation, pulled validation, pushed validation and dele-
gated attestation. This model is similar to our architecture,
in that, a third party validates or performs attestation on
behalf of the requester. They use an integrity database as
a infrastructure for supporting attestation. This database
stores the hash of the packages installed at the provider’s
site. Further, the authors have mapped this model to WS-
Trust [17] by implementing the challenge-response proto-
col through message exchanges. The goal of this research
is to validate the platform on which the web services are
running. WS-Attestation can report errors if the remote
platform is affected by viruses or other malware. Our
approach goes beyond validating the remote platforms.
Using our proposed architecture, platform along with the
web services themselves can be monitored for integrity
violations and compromises.

Katsuno et al. proposed a new model of a distributed
coalition, called Trusted Virtual Domain (TVD) [39] for
establishing trust among components in a heterogeneous
distributed computing environment. TVD supports dis-
tributed mandatory access controls whose security policies
can be different in each domain. A TVD can enforce the
security policies on any component that wishs to join that
domain. They propose a layered negotiation approach for
negotiating trust. This design makes use of Trusted Com-
puting Base (hardware) as the lowest layer. Assurances
of Trusted Components and TVD agent are achieved by
chains of trust which derive the root of trust from the
TCB. Attestation occurs in two stages - local and global.
The global attestation verifies primitives generated by the
TCB and the local attestation verifies component-specific
parts depending on the usage-scenarios.

Park et al. present an attack resilient trust model to
capture the trustworthiness of the web service in [40].
Unlike our approach, this approach depends on the cumu-
lative measurements of trust through multiple requests and
responses exchanged among the participants.

Another approach towards achieving trust is aglet [41].
An aglet is a java object with a code component and a
data component. The key idea here is to use these mobile
agents to preserve privacy. An aglet consists of two distinct
parts: the aglet core and the aglet proxy. The aglet core
contains all the internal variables and methods. It provides
interfaces through which the environment can make use
of the aglet or vice versa. The core is encapsulated with
an aglet proxy which acts as a shield against any attempt
to directly access the private variables and methods of
the aglet. This aglet proxy can be programmed to enforce
local privacy requirements on the site of the remote entity.
Aglets are deployed into aglet servers, which enforces the
requirement of the security model. A key problem with
aglets is that the integrity of aglets depends on the integrity
of aglet servers, which cannot be guaranteed in an untrust-
worthy environment. In comparison, our architecture can
be used to ensure the integrity of the aglet server, which
would then provide a basis of integrity for aglets.

C. Verifying Non-functional Properties for
Service-oriented Architectures

Some approaches have recently been proposed to verify
contracts for web services, as seen in the works of Kuo
et al. [7], Baresi et al. [4], Barbon et al. [5], Mahbub and
Spanoudakis [6], etc. These ideas focus on verifying the
behavioral contracts as defined by the externally visible
interface of the web services, whereas our work provides
a technique for verifying such requirements that require
inspecting the web service implementation via a monitor.

The focus of Kuo et al.’s approach is on facilitating
a more concise representation of the message exchange
protocols as Boolean formula associated with each ex-
changed message, which in turn helps verify whether a
given message exchange is legal. On the other end of the
spectrum are approaches to validate the functional and non-
functional requirements of a web service such as by Baresi
et al. [4], Barbon et al. [5], Mahbub and Spanoudakis [6],
etc, which use dynamic monitoring to ensure that a service-
oriented architecture is satisfying its requirements. These
techniques rely on monitoring the functional interface,
often during service composition, to determine confor-
mance of a web service to its requirement. Non-functional
requirements that can be verified by a monitor bootstrapped
using our approach are not addressed.

Wada et al. proposed a UML profile to graphically
model non-functional aspects in SOA so that they are



incorporated in the development phase [42]. This model
driven development (MDD) paradigm for addressing non-
functional concerns such as security and integrity in the
service oriented architecture is an encouraging step for de-
veloping a secure service oriented architecture, however, it
does not help with verification of service implementations
for existing service-oriented architectures.

Last but not least, Canfora et al. have presented a
detailed analysis of the fundamental issues and solutions
related to various perspectives of testing a service-centric
model [43]. Our work addresses some of the challenges
motivated by this work, but more work remains to be done.

VII. Discussion: Relation to the State of Prac-
tice in Service-oriented Computing

It would be important to put our work in the context of
existing research and practice in service-oriented comput-
ing. To that end, in this section we first consider how our
proposed architecture can be realized as a straightforward
extension of existing publish-find-bind-execute paradigm.
We then consider how our approach integrates with exist-
ing standards in service-oriented computing area such as
WS-Security and WS-Trust.

Our approach requires minimal modification to the roles
of the service providers and service brokers to provide
additional capabilities to the clients. The service providers
will need to deploy requirements monitors, if they intend
to provide the additional assurance to their clients. This
is not such an impediment, as service providers already
go to lengths to provide assurances to clients, e.g. it is
common to buy and install SSL certificates for assuring
authenticity. Furthermore, such monitors are going to be
the same for every client. Also, it is likely that interaction
protocols with such monitor can be standardized in a way
similar to other standards in service-oriented computing
arena. Service brokers will assume an additional role of
trusted-third party as discussed in Section III.

The traditional notions of publish-find-bind-execute will
only be slightly modified to account for our approach.
During the publish step, in addition to the functional
specification, service providers will send the capabilities of
their deployed monitor and integrity measurements. During
the find step, in addition to the desired functional properties
a client will also send the desired non-functional policies
to the broker as shown in Figure 2 in Section III.

The broker, which also acts as trusted-third party will
use functional properties as well as desired policies to
select a service provider. The available list of service
provider could be first filtered by the functional specifi-
cation. For each service provider in this filtered list, the
broker would determine whether the capabilities of the
deployed monitor satisfies trust and data integrity policies

desired by the client. The broker will then send a list of
such providers to the client as a response to the find request
as shown in Figure 2 in Section III. Note that this simple
model can be further enhanced by considering the trust
history of service providers. A cost-benefits model could
also be superimposed, where based on the price that the
client is willing to pay for the service, a subset of service
providers can be made available.

WS-Trust is used to secure the interactions with secure
token exchanges and exchange of credentials. The value
addition of our architecture to these protocol is in verifying
the integrity requirements of the services as well. Just
the security of message exchange between components
involved in a transaction is not enough. Verification of
integrity of involved services is also important along with
making the transactions secure. Our proposed architecture
can thus be used as an enabling platform for web service
security standards such as WS-Trust and WS-Security.

VIII. Conclusion and Future Work

Verifying conformance to non-functional requirements
is important for inspiring client’s confidence in remotely-
hosted web services. In this work, we proposed a tech-
nique, its implementation, and experimental validation,
which serves to verify the integrity of a remotely-hosted
requirements monitor. The implementation of the proposed
technique was evaluated using the standard web services
available with the Apache Axis Distribution. The eval-
uation demonstrated the feasibility of implementing our
technique. It also demonstrated that our technique was
effective in monitoring the non-functional requirements of
the web services. Our current experimental results have
looked at static checksum as a method of ensuring the in-
tegrity of the monitor. In the future, besides conducting an
extensive evaluation of the overheads associated with this
mechanism, we will also explore dynamic mechanisms.

Furthermore, we have only informally validated the
claims for our approach. In future, we plan to formalize
our approach that will allow us to provide more rigorous
evaluation. This would include developing a core calculus
for the TPM’s machine model based on Spi calculus [44].
This semantics would account for the authentication, se-
crecy, and integrity properties of the TPM. Furthermore,
a formal semantics for our approach can be built on top
of this core calculus similar to the techniques proposed
by Gordon and Pucella [45]. Some of this work is under-
way [34] and the reader is encouraged to visit the URL
http://www.cs.iastate.edu/~tisa, where latest results from
the Tisa project are regularly published.
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