
SLEDE: Event-Based Specification of Sensor Network
Security Protocols

Youssef Hanna Hridesh Rajan
Dept. of Computer Science, Iowa State University

226 Atanasoff Hall, Ames, IA, 50011, USA
{ywhanna, hridesh}@cs.iastate.edu

ABSTRACT
The semantic gap between specification and implementation
languages for sensor networks security protocols impedes the
specification and verification of the protocols. In this work,
we present SLEDE, an event-based specification language
and its verifying compiler that address this semantic gap.
We demonstrate the features of SLEDE through an exam-
ple specification of the µTesla, secure broadcast protocol for
sensor networks.

1. INTRODUCTION
A sensor network is a collection of small size, low power,

low-cost sensor nodes that has some computational, com-
munication and storage capacity. These nodes can oper-
ate unattended, sensing and recording detailed information
about their surroundings. Finding flaws in the new security
protocols for these networks is harder compared to tradi-
tional protocols because they protect against more crypto-
graphic failure modes.

Unlike traditional computers, sensor networks are not
used for general-purpose computation. The typical usage is
for data collection and control of local environments where
a node has to react to changes in the environment rather
than being driven by interactive or batch processing [3].
The nodes in these networks are thus event-driven. To ad-
dress the domain specific needs, the languages need to be
event-driven. The implementation language designs have
responded to the need. The dominant language in this do-
main, nesC [3] supports the event-driven paradigm. Most
security protocols in sensor networks are designed to work
in an event-driven paradigm, whereas existing specification
languages are either imperative or use a message passing
style. There is thus an impedance mismatch between the
specification and the implementation paradigm, which may
be a potential reason for the proliferation of informally spec-
ified cryptographic protocols.

This work is a step towards filling the semantic gap be-
tween specification and implementation languages for sensor
networks security protocols. We have developed an event-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’06 Portland, OR
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

based specification language, SLEDE (for Specification Lan-
guage for Event Driven Environments). In the rest of this
document, we briefly describe SLEDE and its verifying com-
piler that internally uses the SPIN model checker [4]. We use
a cryptographic protocol called µTesla [6] for illustration.

2. THE SLEDE LANGUAGE
In this section, we present the specification of an example

protocol called µTESLA [6] in SLEDE to demonstrate the
syntax of the language (See Figure 1, comments appear af-
ter %). µTESLA is a protocol for securing message broad-
casting between a sender (e.g., base station) and multiple
receivers (e.g., ordinary sensor nodes) in a sensor network.

The key component of a specification is the node defini-
tion (nodes Sender (Lines 1-17) and Receiver (Lines 18-
30)). As shown in the figure, a node may contain zero or
more state declarations (keyChain (Line 5)), command dec-
larations (StdControl.start() (Line 6-8)) and event dec-
larations (Timer.fired() (Lines 9-16)). In µTesla protocol,
the sender has a one-way key chain and a timer that fires ev-
ery a predefined time interval. At every time interval (Lines
9-16), sender sets the message authentication code of the
message to the hash of the current key and the message
itself (Line 11) and then sends it (Line 12). The hashing li-
brary and the node implementing the broadcast of messages
and are not included due to space limitation. At every 2
time intervals, the sender sends the current key it used to
send messages (Line 14) and advances to the next key in the
key chain (Line 15).

On the receiver side (Lines
18-30), Receiving.receiveMsg(msg t msg) event handler
(Line 22) is triggered whenever a message is received,
which in turn stores the message in a buffer. The event
handler Receiving.receiveKey(Key kNew) (Lines 23-29) is
triggered when a new key is received. The event handler de-
livers the buffered messages after applying the hash function
on the incoming key to verify that it comes from the authen-
ticated sender (Lines 25-28); otherwise, it signals an error
event (Line 24). The protocol starts from the node Main
(Lines 31-32). Similar to nesC, the wiring of components is
done using the configuration declaration (Lines 34-38).

The figure shows how SLEDE contributes in filling the
semantic gap between the implementation and the speci-
fication language of security protocols in sensor networks.
There are two benefits from having the specification lan-
guage similar to the implementation language. First, it is
easier to understand and write in a specification language
that is similar to the implementation language in terms of
constructs, computation models, etc. Second, it is easier to

1

1 node Sender { % Node declaration
2 %Provided and used interfaces
3 provides interface StdControl;
4 uses interface Timer;
5 OneWayKeyChain keyChain; %States
6 command void StdControl.start() { %commands
7 call Timer.start();
8 }
9 event result_t Timer.fired() { %event handlers

10 %every 1 time firing, set MAC of msg and send it
11 msg.MAC = hash(keyChain.current,msg); %library command call
12 call Transmission.broadcast(msg);
13 %every 2 firings, bdcst key and move key to next in keychain
14 call Transmission.broadcast(key); % command call
15 currentKey = Next(keyChain);
16 }
17 }
18 node Receiver {
19 Key k; % Revealed Key
20 Buffer b; %Message Buffer
21 %Stores the message in buffer
22 event result_t Receiving.receiveMsg(msg_t msg) { ... }
23 event result_t Receiving.receiveKey(Key kNew) {
24 if (hash(kNew) != k) signal Error.error() %signal statement
25 if (hash(kNew) == k) {
26 % set k=kNew, deliver msg from buffer if msg.MAC==hash(k,msg)
27 call Transmission.deliver(msg)
28 }
29 }
30 }
31 node Main { % Program starts from this node
32 }
33 %configuration responsible for wiring components
34 configuration sender { }
35 implementation {
36 components Main, Sender, Comm, TimerM, ClockM;
37 Main.StdControl -> TimerM.StdControl; ...
38 }
39 % A simple example objective
40 objective {
41 Sender.Transmission.broadcastMsg(msg)=>
42 Reciever.Transmission.deliver(msg) ||
43 Receiver.Error.error()
44 }

Figure 1: Specification of µTESLA

generate an implementation, either automatically or manu-
ally, from a protocol specification written in such a language.

Figure 1 also demonstrates how security objectives of the
protocol are presented in SLEDE. This simple objective
(Lines 40-44) checks that any secure broadcast message sent
by the sender is either received by a receiver correctly, or an
error event is generated. Note that the events used in this
specification are also used to describe the objectives of the
protocol, which gives an easier and more expressive way to
represent objectives of the protocol in terms of user-defined
events.

At this point, SLEDE is only providing the means to ver-
ify properties of the security protocols with no presence of
attacks. We are working on SLEDE so that the user can
specify the types of attacks he/she wants to verify the pro-
tocols against.

3. THE SLEDE COMPILER
The verifying compiler for SLEDE is built on the SPIN

model checker [4]. The input language for the compiler is
SLEDE and its target language is PROMELA, the input
language for SPIN. The compiler translates the event han-
dlers of SLEDE into processes. The commands are in-lined
in the processes. The communication between the nodes of
the protocol is simulated using channels. Events and com-

mands are modeled as Boolean variables. Throwing an event
or calling a command are translated to setting of the corre-
sponding Boolean variable. Finally, the objectives are trans-
lated to Boolean formulas that may use the event/command
Boolean variables.

4. RELATED WORK
The common authentication protocol specification lan-

guage (CAPSL) developed by Millen et al. [5], is closely
related. The motivation for the CAPSL project was that
it is difficult to apply most cryptographic protocol verifi-
cation mechanisms. They argued that the reason for this
difficulty is that a protocol has to be re-specified for each
verification technique that is applied to it and translating
published description to the input of the verification tool
is difficult [1]. CAPSL project solves this problem by de-
veloping a two-layered language design, where higher-level
specification is translated to the CAPSL intermediate lan-
guage (CIL). CAPSL allows clear specification of security
properties in the style of Dolev and Yao [2]; however, it is
also a message driven specification language that does not
fit the sensor network paradigm very well.

5. CONCLUSION
Impedance mismatch between current specification and

implementation languages for sensor network security pro-
tocols makes specification and verification of the protocols
hard. We proposed SLEDE as a new event-based specifica-
tion language for sensor network security protocols that fills
this mismatch. We presented an example protocol µTesla in
SLEDE that demonstrated the syntax of the language. The
verifying compiler for SLEDE that is built on SPIN model
checker was described to reveal how verification is achieved.

6. ACKNOWLEDGEMENTS
This work is supported in part by NSF Grant ITR-

0627354. The discussions with Wensheng Zhang were very
helpful.

7. REFERENCES
[1] G. Denker and J. Millen. CAPSL integrated protocol

environment. In DARPA Information and Survivability
Conference and Exposition (DISCEX’00), pages
207–221, Hilton Head, South Carolina, Jan 2000.

[2] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
IT-29(12):198–208, mar 1983.

[3] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In PLDI ’03:
Proceedings of the 2003 conference on Programming
language design and implementation, pages 1–11, 2003.

[4] G. J. Holzmann. The model checker spin. IEEE
Transactions on Software Engineering, 23(5):279–95,
May 1997.

[5] J. K. Millen. CAPSL: Common authentication protocol
specification language. In NSPW ’96: Proceedings of
the 1996 workshop on New security paradigms, page
132, 1996.

[6] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and
J. Tygar. Spins: security protocols for sensor netowrks.
In Proceedings of ACM Mobile Computing and
Networking (Mobicom’01), pages 189–199, 2001.

2

