
Property-Aware Program Sampling

Harish Narayanappaα Mukul S. Bansalβ Hridesh Rajanα

αIowa State University βTel Aviv University
α{harish,hridesh@cs.iastate.edu} βbansal@tau.ac.il

Abstract
Monitoring or profiling programs provides us with an understand-
ing for its further improvement and analysis. Typically, for monitor-
ing or profiling, the program is instrumented to execute additional
code that collects necessary data. However, a widely-understood
problem with this approach is that program instrumentation can
result in significant execution overhead. A number of techniques
based on statistical sampling have been proposed to reduce this
overhead. Statistical sampling based instrumentation techniques,
although effective in reducing the overall overhead, often lead to
poor coverage or incomplete results. The contribution of this work
is a profiling technique that we call property-aware program sam-
pling. Our sampling technique uses program slicing to reduce the
scope of instrumentation and slice fragments to decompose large
program slices into more manageable, logically related parts for in-
strumentation, thereby improving the scalability of monitoring and
profiling techniques. The technical underpinnings of our work in-
clude the notion of slice fragments and an efficient technique for
computing a reduced set of slice fragments.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors - Optimization; D.2.7 [Software Engineer-
ing]: Enhancement

General Terms Algorithms, Experimentation, Performance

Keywords static analysis, program slicing, slice fragments, pro-
filing, sampling, instrumentation, property-aware monitoring

1. Introduction
An insight into the run-time behavior of a deployed software ap-
plication provides potential opportunities for its improvement. Pro-
filing or monitoring software provides such insights. The dynamic
information gathered can be used in performance tuning of applica-
tions [8], coverage-based testing [20], analyzing the application’s
usability etc. For monitoring or profiling and for tasks such as
bug detection [23, 15], continuous testing [1], dynamic optimiza-
tion [4], it is often necessary to instrument programs.

Full instrumentation to collect data about all interesting pro-
gram points reportedly causes between 10% and 390% time and
space overhead [10, 23]. A number of techniques have been pro-
posed to reduce the instrumentation overhead. Sampling-based
techniques, for example, instrument a randomly selected, relatively

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PASTE’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0082-7/10/06. . . $5.00

smaller, subset of program points [3, 23]. A problem with random
sampling of program points is that obtaining an adequate profile of
program points relevant to a property of interest may require a large
amount of samples [15]. Among other things, profiling with respect
to a property of interest is helpful for focussing the developer’s at-
tention, and for reducing the complexity of profiling results [28].

To illustrate, consider the program shown in Figure 1 which,
given a userId, itemId, and itemCost processes an order.
A property of interest for this example is the use of userId in
processing orders. If random sampling of program points is applied
then a subset of all statements (lines 1–52) will be instrumented
and monitored randomly. A majority of elements in these samples
are likely to be irrelevant with respect to the property of interest.
Thus to adequately cover the statements relevant to the property
of interest, an unnecessarily large number of samples would be
needed, which will add to the instrumentation overhead. If, on the
other hand, the instrumentation overhead is to be kept low, one must
settle for a lower coverage with respect to the property of interest.

To increase coverage, while keeping the cost of instrumentation
low, we introduce the notion of property-aware program sampling.
A key insight, which we borrow from Hatcliff et al. [14] among
others, is to focus the instrumentation efforts on parts of the pro-
gram that are relevant for a property of interest, i.e. the program
slice with the property as slicing criterion [31, 26]. Our profiling
technique randomly samples statements from the program slice, as
opposed to sampling from all statements in the program as in ear-
lier approaches [3, 23]. For example, in Figure 1, only a subset of
program statements will be instrumented, shown as shaded. These
statements are relevant to the property of interest. This helps focus
instrumentation efforts on the desired parts of a program.

Another issue is that randomly sampling statements provides in-
adequate coverage of the implicit control relation between sampled
statements. These implicit path profiles have potential applications
in performance tuning, hot-path prediction, profile-directed compi-
lation, continuous program optimizations and software test cover-
age with respect to the property under consideration. For example,
in Figure 1, the program path that traverses statements on lines 5, 6,
8, 14, 16, 22, 30 is the most likely executed path while processing
orders. For e-commerce vendors optimizing this path is of utmost
importance, which would require profile information for this path.
A random sample of statements may eventually cover all elements
on this path, thus giving the profile information, however, such cov-
erage would be infrequent. Moreover, if such coverage is essential
more samples would be needed, which would increase instrumen-
tation overhead.

To address this issue, we introduce another strategy based on
sampling a population that consists of slice fragments. Informally, a
slice fragment consists of a subset of the statements in the program
slices (we provide formal definitions in Section 2). The statements
in a slice fragment are logically related. The set of slice fragments
captures the implicit control structure between the statements of the
program slice. In Figure 1, for example shaded statements are part

1 public int processOrder(Order order) {
2 int discount = 0; // Irrelevant code elided ...
5 int userName = order.userName;
6 int userId = getCustomerId(userName);
7 int itemId = order.itemId;
8 if (! validateCustomer(userId)) {

...
10 logInvalidOrder(userId, itemId);
11 return ERROR_CODE;
12 }

...
14 if (paymentMode == CREDIT_CARD) {

16 if (! creditCardValid(order.card)) {
...

18 logInvalidOrder(userId, itemId);
19 return ERROR_CODE;
20 }

22 if (isPremiumMember(userId))
23 discount += 0.05;

25 if (overStockedItem(itemId))
26 discount += 0.03;

...
28 updateInventory(itemId);

...
30 recordCCTransaction(userId, itemId, price);
31 return SUCCESS;
32 }

...
34 if (isPremiumMember(userId)) {
35 discount += 0.03;
36 }

38 price = price - price * discount;
...

40 updateInventory(itemId);
...

42 recordTransaction(userId, itemId, price);
...

44 logPerformance(...);
...

46 return SUCCESS; }

Figure 1. An example program and a slice

of the program slice with respect to the criterion (userId,5). For
this slice, an example slice fragment is 〈entry, 5, 6, 8, 14, 16, 18〉.
This slice fragment captures one control structure in the program
slice. During sampling, whenever this fragment is selected, there
is a higher probability that the profile data for all constituent state-
ments will be collected. This higher probability in turn translates to
lower instrumentation overhead.

Our sampling strategy based on slice fragments is beneficial
in cases where the slice of a program may itself become very
large [30, 32]; in some cases as large as the program. It provides
a tradeoff between overhead and profile information. It has lesser
overhead compared to full program profiling. It has more overhead
compared to random sampling of program statements, but provides
much more information about implicit control paths, which is ben-
eficial for use cases such as feedback-based optimization.
Outline. Section 2 gives the theoretical basis of our approach. The
experimental evaluation of a prototype implementation is discussed
in Section 3. Section 4 discusses these results, Section 5 compares
and contrasts our work with related ideas and Section 6 concludes.

2. Property-aware Sampling
The basic idea behind our approach is that selecting a subset of
program entities for monitoring and profiling is likely to reduce
instrumentation overhead and facilitate efficient monitoring of a
software application [2]. Program slicing produces a subset of
program entities that are relevant to a slicing criterion. Limiting
the scope of the monitoring technique to the program slice may
help achieve better profile of the parts of the program pertaining to
the slicing criterion. Others have used this insight for verification
tasks but not for guiding instrumentation. For example, Hatcliff et
al. [14] use program slice for reducing the size of the model that
Bandera [18], a model checker for Java verifies. Guo et al. [13]
use similar technique for limiting the input to their shape analysis
technique, etc.

The second insight is that a slice need not be the unit of instru-
mentation as it often has the tendency to become large [30, 32].
Instead, only a part of it can be instrumented at a time. The instru-
mented part may vary guided by a statistical sampling plan. If the
sample population is sufficiently large and samples are taken suffi-
ciently often and at random; attaining reasonably accurate profiles
at a lower overhead may become possible.

Two possible strategies for decomposing a program slice into
parts are possible. Such parts could be formed by randomly select-
ing a set of statements from the slice and grouping them. An alter-
native would be to group statements in the slice based on a logical
relation between them. An example of such logical relation is con-
trol flow relation, although other relations such as data flow relation
are also feasible candidates.

The former approach of decomposition has some advantages.
Due to random selection of the statements in a part, these state-
ments are likely to be spread across the slice. These statements are
also likely to be spread across different control flow paths. If a part
of the slice is selected and instrumented, the probability that one
or more instrumented statements are in the current execution flow
of the program is high. Thus simple profile questions like “Is this
statement ever executed?” can be easily answered. However, a dis-
advantage is that the amount of information collected is likely to
be low and generally only sufficient for asking profile questions
related to individual program points. The profile questions that re-
quire implicit path information are harder to answer without signif-
icant instrumentation overhead.

The latter approach for decomposing a slice solves this problem.
The relationship between statements that constitute a part of the
slice facilitates answering path questions that build on that logical
relation. For example, the logical relation “control flow” would
facilitate answering questions such as “What are the frequently
executed paths in this program?”, “What are the major bottlenecks
on a given path?”, etc. In this work, we only consider control-flow
relations for decomposing a program slice.

The rest of this section describes our sampling technique. We
first present some necessary terminology. Most definitions are
fairly standard and follow from Horwitz et al. [16]. Section 2.2
presents the notion of slice fragments, a logically-related subset
of program slice. Section 2.3 describes the concept of cover. Sec-
tion 2.4 desribes our algorithms for decomposing a program slice
into slice fragments.

2.1 Basic Definitions
Let G = (V,E) be a directed graph, where V is the set of vertices
of the graph and E ⊆ (V × V) is the set of edges. Given vertices
v, v′ ∈ V , a path inG from v to v′, denoted by v →+ v′, is defined
as follows: v →+ v′ ⇒ (v, v′) ∈ E or ∃v1, . . . , vk ∈ V such that
{(v, v1), (v1, v2), . . . , (vk, v

′)} ⊆ E.

Definition 2.1. A control flow graph is a directed graph Gcfg =
(V,E, v0), where V is a set of nodes, representing a statement or
group of statements, E ⊆ (V × V) is the directed edge set of the
graph representing potential flow of execution between the nodes,
and v0 ∈ V denotes a unique entry vertex. For convenience, it
is assumed that all v ∈ V are reachable from v0 i.e. ∀v ∈ V ,
v0 →+ v holds.
Definition 2.2. A forward static slice S constructed from pro-
gram, p with respect to criteria C = (X, c), is the set of statements
and predicates that are affected by the values of any variables inX
starting at program point c.

In this paper, any reference to a “slice” or “program slice” refers
to a forward static slice [27, 26].

For the program in Figure 1, the shaded lines of the code denote
statements of forward program slice. The slicing criteria used here
was C = ({userId}, 5) i.e. slice criteria for the variable userId
starting at statement 5 in the program.

5

6

8

10 14

16 34

18 22

23

30

35

38

42

entry

Figure 2. Slice-pruned CFG for program in Figure 1

Definition 2.3. A slice-pruned control flow graph for a given
control flow graph Gcfg = (V,E, v0) and forward static slice S,
is defined to be the graph Gs = (V ′, E′, v0, C) where:

• V ′ is a set of nodes representing slice statements i.e. ∀v ∈
V ′, v ∈ S,

• E′ = {(vi, vj) | (vi, vj) ∈ E, and vi, vj ∈ V ′}
∪ {(vi → vj) such that there exists a path
< vi, v1, v2, . . . , vk, vj > in Gcfg ,
where vi, vj ∈ V ′ and v1, v2, . . . , vk 6∈ V ′,

• v0 is the special entry node, and
• C = (X, c), for c ∈ V ′, represents the slicing criteria.

The pruned graph captures the implicit control flow relation-
ships between the statements of the slice. An example of slice-
pruned control flow graph is shown in Figure 2. The computation
of this graph is an important step towards property-aware program
sampling, as it is used to generate the slice fragment population.

Definition 2.4. A back edge in a control flow graph Gcfg =
(V,E, v0) is any edge e ∈ E that points to an ancestor in depth-
first(DFS) traversal of the graph.

Back-edges in control flow graphs are encountered in case of
loops, recursion and return from method invocation.

2.2 Slice Fragments
A crucial part of our approach is to group the program points such
that each group – slice fragment – is a logically complete set with
respect to a property of interest. The following defines this.
Definition 2.5. A slice fragment δGs of a slice-pruned control
flow graphGs = (V ′, E′, v0, C) is a sequence 〈v0, v1, v2, . . . , vn〉
where:

• v0, v1, v2, . . . , vn ∈ V ′, and vi 6= vj , where 0 ≤ i, j ≤ n and
i 6= j,

• for any i, where 1 ≤ i ≤ n−1, either (vi, vi+1) ∈ E′, or there
exists a path in Gs from vi to vi+1 such that all vertices on this
path belong to the set {v1, . . . , vi+1}, and,

• either @v ∈ V ′ such that (vn, v) ∈ E′, or ∃v ∈
{v1, . . . , vn−1} such that (vn, v) ∈ E′.
A slice fragment captures partial order(s) of implicit control

relations between statements in the program slice.
A desirable property of our decomposition, as shown in the

following lemma, is that none of the slice fragments can be any
larger than the corresponding program slice .

Lemma 2.6. Let δGs be a slice fragment of a slice-pruned control
flow graph Gs = (V ′, E′, v0, C). Then, |δGs | ≤ |V ′|.

Proof. According to Definition 2.5, (i) each node in δGs belongs
to V ′, and (ii) all the nodes in δGs must be distinct. The lemma
follows immediately.

5

6

8

10

entry

5

6

8

14

16

18

entry

5

6

8

14

16

22

23

30

entry

5

6

8

14

16

22

30

entry 5

6

8

14

34

35

38

42

entry

5

6

8

14

34

38

42

entry

(#1) (#2) (#3) (#4) (#5) (#6)

Figure 3. Slice fragments for the slice-pruned control-flow graph
shown in Figure 2.

The five slice fragments computed for the graph in Figure 2 are
shown in Figure 3. Consider slice fragment #2 in Figure 3: it is a
sequence 〈entry, 5, 6, 8, 14, 16, 18〉. Each node and its successor
in this sequence is part of the edge set E′ of the pruned graph.
During the computation of fragments, the back edges, if any (due
to loops, recursion or method return) are ignored. Some properties
worth mentioning are that entry node is included in all fragments
and that the fragments do not contain duplicate vertices.

2.3 Cover and Reduced Cover
The elements of the sample space in our technique are slice frag-
ments. For this sample space to be meaningful, it is required that
each statement in the program slice be covered by at least one slice
fragment in sample space. More precisely, the slice fragments in
the sample space must form a cover of the program slice.
Definition 2.7. Given a slice-pruned control flow graph Gs =
(V ′, E′, v0, C), we define a cover of Gs, denoted by ΘGs , to be
a set of slice fragments of Gs, such that for each v ∈ V ′, there
exists δ ∈ ΘGs such that v ∈ δ.

For example, in Figure 3, fragments 1, 2, 3 and 5 together form a
cover of the slice shown in Figure 2. Each vertex in the slice is part
of atleast one slice fragment. Note however, that fragments 4 and 5
together do not form a cover, because they do not cover statements
represented by nodes 10, 18 and 23.

A simple way to construct a cover of the program slice is to
simply include all the slice fragments. This, however, may cause
many of the included slice fragments in a sample to be subsumed

by other fragments, which in turn may prove unproductive with
regard to a chosen sampling strategy. This motivates the following
definition.
Definition 2.8. A cover ΘGs of a slice-pruned control flow graph
Gs is called a reduced cover if there do not exist δ, δ′ ∈ ΘGs such
that each element of δ is also an element of δ′.

For example, in Figure 3, fragments 1, 3 and 5 together form a
reduced cover of the slice depicted in Figure 2. Note however, that
fragments 1, 2, 3 and 5 together form a cover, but not a reduced
cover of the slice.

2.4 Program Slice Decomposition
Our sampling approach rests on our technique for decomposing a
program slice into slice fragments. Such a program slice can be
computed using any of the numerous techniques proposed in the
literature (cf. [30]). The discussion of program slice computation
is orthogonal to the scope of this paper.

2.4.1 Slice Fragments Computation
The initial step in program slice decomposition is to prune the con-
trol flow graph of the program to contain statements only from the
slice. This gives us the slice-pruned control flow graph. A depth-
first search beginning at the root (criteria) is then performed on
this slice pruned control flow graph to generate the slice fragments.
During this search we record each root to leaf node sequence as
a slice fragment. The back edges encountered in loops, recursion
and method return are ignored during the computation. This is to
ensure that fragments are acyclic paths. This also implies that a
method end point is treated as a leaf during the search.

The algorithmic complexity of program slicing depends on vari-
ous factors (ref. [30, 32]). The time complexity of pruning a control
flow graph G = (V,E) of a program to contain statements from
the slice is O(|V |, |E|). The subsequent depth-first search takes up
another O(|V |, |E|) time to determine the raw population of slice
fragments.

2.4.2 Reduced Cover Construction
A brute-force way to construct a reduced cover is to first compute
all possible slice fragments for the slice, and then to delete, one at a
time, those slice fragments in which all the vertices also appear in
some other slice fragment. We now show how a much more elegant
and efficient algorithm can be used to achieve the same result. One
of the other desirable properties of this method is that it produces a
reduced cover which is not much larger than the smallest possible
(because it is based on a well-known approximation algorithm for
the set cover problem [12]).

Let Θ denote the set of slice fragments generated. We now
apply Algorithm 1 on Θ. The main idea here is to repeatedly
identify a slice fragment from Θ that contains the largest number
of uncovered vertices in the slice and add it to the set Θ′, until all
the vertices of the slice have been covered.

Algorithm 1 is in fact a well known heuristic (and approxima-
tion algorithm) for the set cover problem [19]. Here, the vertices of
the slice form the elements of the universe, and each slice fragment
in Θ can be viewed as a subset of this universe. It is possible to im-
plement Algorithm 1 such that its time complexity isO(

P
δ∈Θ |δ|),

i.e. it is linear in the size of all the slice fragments in Θ (see [7]).
Let Θ∗ denote the set of slice fragments returned by Algo-

rithm 1. We claim that Θ∗ must be a reduced cover for the slice.

Lemma 2.9. Θ∗ is a cover of the slice.

Proof. Consider the set Θ. Since Θ consists of all possible slice
fragments of the slice, Θ must be a cover of the slice. Algorithm 1
does not terminate until all vertices of the slice are covered. In the

Algorithm 1 Generating a reduced cover for the slice
Require: The set of slice fragments Θ

1: Let Θ′ ⇐ ∅
2: Let V be the set of all vertices in the flow graph corresponding

to the slice.
3: for each v ∈ V do
4: Set label(v) = false
5: repeat
6: α ∈ arg maxs∈Θ |{v ∈ s : label(v) = false}|
7: Add α to Θ′

8: for each vertex v in α do
9: Set label(v) = true

10: until label(v) = true for each v ∈ V
11: Return Θ′

worst case, this might entail adding all the slice fragments in Θ to
Θ∗. Therefore, Θ∗ will always be a cover of the slice.

Proposition 2.1. Θ∗ is a reduced cover of the slice.

Proof. By Lemma 2.9 we already know that Θ∗ is a cover of the
slice. Therefore, for the sake of contradiction, let us assume that
the cover Θ∗ is not reduced. Then, there must exist δ, δ′ ∈ Θ∗ such
that v ∈ δ ⇒ v ∈ δ′. There are two possible cases: (i) Algorithm
1 adds δ to Θ∗ before it adds δ′, or (ii) Algorithm 1 adds δ′ to Θ∗

before it adds δ. We analyze each of these cases separately.
Case (i): Let bΘ denote the set Θ′ in Algorithm 1 immediately
before the addition of δ. Since Algorithm 1 adds δ before adding
δ′, all the vertices in δ′ \ δ must already be covered by bΘ. This
implies that as soon as δ is added to bΘ, all the elements of δ′ are
also covered. Hence, Algorithm 1 would not add δ′ to Θ∗. This
case is therefore infeasible.
Case (ii): After the addition of δ′ to Θ∗, all the elements of δ have
already been covered. Therefore, Algorithm 1 would not add δ to
Θ∗. This case is therefore infeasible.

Since neither of these two cases is possible, we have arrived at
a contradiction. Hence, Θ∗ must be a reduced cover.

We illustrate this algorithm using an example. Consider the slice
fragments depicted in Figure 3. Algorithm 1 takes these as input,
and produces a reduced cover for the slice. At each step the algo-
rithm chooses a slice fragment that covers the largest number of un-
covered nodes. For the first step, slice fragments #3 and #5 are both
equally good candidates. Suppose the algorithm chooses slice frag-
ment #5 which is 〈entry, 5, 6, 8, 14, 34, 35, 38, 42〉. In the next
step, fragment #3 encompassing 〈entry, 5, 6, 8, 14, 16, 22, 23, 30〉
is chosen. In the end, nodes 10 and 18 are the ones not covered so
far, resulting in fragment #1 and #2 being picked. It is easy to see
that they form a reduced cover of the slice.

2.4.3 Efficient Reduced Cover Construction
Observe that the algorithm seen above requires us to first compute
the set of all slice fragments for the slice. In cases where the number
of slice fragments is prohibitively large, we can use an add-on
algorithm to reduce the number of slice fragments that need to be
generated. Such an algorithm would begin with the slice-pruned
control flow graph, and modify it by deleting edges. This produces
a smaller graph, which will have fewer slice fragments.

Consider the following problem: Given a directed graph, find
a smallest subset of edges in the graph that maintains all reacha-
bility relations between the vertices. This problem is known as the
minimum equivalent graph (MEG) [24] problem1. As shown in the

1 Also known as the minimum equivalent digraph problem.

following proposition, solving the MEG problem provides a way
to reduce the size of the slice-pruned control flow graph while still
preserving the required coverage and connectivity properties.

Proposition 2.2. Given a slice-pruned control flow graph Gs =
(V ′, E′, v0, C), let G′ = (V ′, E′′, v0, C) be a minimum equivalent
graph ofGs. Then, the set of all slice fragments ofG′ forms a cover
of the slice Gs.

Proof. Let Θ and Θ′ denote the set of all slice fragments of G and
G′ respectively. We know that Θ is a cover of the slice. We will
show that for any slice fragment δ ∈ Θ, there exists some slice
fragment δ′ ∈ Θ′ such that v ∈ δ ⇒ v ∈ δ′. Given any δ ∈ Θ, let
u, v be any two consecutive vertices in δ. Since G contains a path
from u to v, by definition, G′ must also contain a path from u to
v. This is true for every consecutive pair of nodes u, v in δ; which
implies that there must be a path, not necessarily simple, in Θ′ with
the same start and end vertices as δ, and which passes through all
the nodes of δ. If we let δ′ be the slice fragment corresponding to
such a path, then v ∈ δ ⇒ v ∈ δ′.

The MEG problem is known to be NP-hard [11], however, sev-
eral constant factor approximation algorithms exist for it (cf. [21]).
These algorithms are guaranteed to produce, within polynomial
time, a solution that is within some fixed percentage of an opti-
mum solution. Note that the property stated in Proposition 2.2 is
monotone. Proposition 2.2 therefore implies that any approxima-
tion algorithm for the MEG problem can be used to reduce the size
of the flow graph, without adversely affecting our construction of a
reduced cover for the slice.

3. Evaluation
To show the feasibility of our technique, we implemented our
fragment computation and reduced cover construction algorithms
as a stand-alone tool. Our tool uses some functionalities of the IBM
T. J. Watson Libraries for Analysis (WALA) [33]. WALA is a static
analysis framework for Java bytecode, and provides a rich set of
APIs for static analyses.

The objective of the rest of this section is to evaluate the po-
tential utility of our approach. To that end, we analyze two prop-
erties. The first property of interest is whether, for a representa-
tive set of programs, our slice decomposition technique produces
a statistically significant population of slice fragments. This prop-
erty is a necessary pre-condition for applying any random sampling
technique. The empirical assessment of this property is described
in Section 3.2. Second, we are also interested in exploring the re-
duction in scope that our approach helps achieve for typical pro-
grams. The empirical assessment of this property is also presented
in Section 3.2. To study the properties of our technique, we simu-
lated a random sampling process on the reduced population to de-
termine the number of samples necessary to cover the population.
This study is discussed in Section 3.3.

All experiments were conducted on a Dell Precision workstation
with a 3.20GHz Intel Pentium D Processor and 2 GB of RAM
using Sun JDK version 1.5_06 that was limited to use at most
1.5GB of heap space. In all the experiments, core Java libraries
were excluded from the analysis.

3.1 Subject Programs
For our experiments, we selected a variety of subject programs
from different sources. Two programs, namely nanoxml and jmeter
were selected from the software-artifact infrastructure repository
(SIR) [17] maintained by researchers at University of Nebraska,
Lincoln. Nanoxml is a simple SAX parser. Jmeter is an application
to load test functional behavior and measure performance. We also

selected three other open source programs, namely: jaxen - a XPath
engine for Java, htmlcleaner - which transforms HTML to XML,
and xstream - a library to serialize objects to XML. In addition,
mtrt, compress and jess from SPECjvm98 benchmarks were also
used. Figure 4 shows some static properties of these programs.

Subjects # of Classes # of Methods Bytecode size (in KB)
nanoxml 24 541 35
jaxen 217 1153 389
xstream 331 1519 774
jmeter(core) 242 476 640
htmlcleaner 26 263 79
spec/compress 12 33 18
spec/mtrt 25 470 32
spec/jess 192 1061 67

Figure 4. Static characteristics of subjects

3.2 Assessment of Statistical Significance
We used our prototype tool and a set of slicing criteria to generate
slice fragments for the programs mentioned in the previous section.
Our tool first computed the entire set of fragments and then applied
the reduced cover algorithm (Algorithm 1) discussed in Section 2.4
to create a reduced population of fragments.

Figure 5 shows the results of the slice decomposition to generate
raw population and its subsequent reduction. For each program, the
slicing criteria used is shown in the second column. The slicing
criterion was selected to be representative of its typical usage.
Analysis. The size of the generated slice is shown in the third
column of the figure. All subject programs, when decomposed,
showed a statistically significant population of slice fragments. It
was observed that program slices of different programs which were
almost of the same size, showed huge disparity in corresponding
raw populations (nanoxml/mtrt and htmlcleaner/jaxen), primarily
because of different control structures.

The resulting reduced population remained statistically signif-
icant, except in the case of spec/jess, which showed one of the
largest drops in population on application of the reduced cover al-
gorithm. This benchmark applies a set of if-then statements to a set
of data. The raw population was low to begin with and most of the
branches in the code were subsumed leading to significant drop in
population.

The least reduction was observed in htmlcleaner. A major por-
tion of htmlcleaner is a main controller method that calls a large
number of other helper methods as needed. As a result, the control
flow of this program demonstrates a large number of acyclic paths
out of few nodes that all terminate with JDK calls to write XML
file. As a result, no reducible slice fragments are generated. The
size of these fragments is a direct reflection of the size of the helper
methods that just write the html element and return.

With the exception of the benchmark programs spec/mtrt and
spec/jess, the average fragment length was a small percentage of the
slice (well within 30%). As we discussed previously control flow
of jess benchmark contains fewer and longer paths. This resulted in
longer slice fragments. The mtrt benchmark is also similar, where
much of the control flow is within a long method RenderScene
with a number of small branches. We also observed that slice size
was determined mostly by the slicing criteria and slice configura-
tion options and not by the size of the program.

3.3 Assessment of Sampling and Coverage
In this section, we empirically evaluate (i) the rate at which the slice
fragments are covered (selected) under random sampling (slice

Subjects Slicing criteria Slice size (S) Slice fragment population
Raw Reduced

POP Fragment
len.(avg)

Fragment
len.(% of S)

POP Reduction
(% of Raw
POP)

Fragment
len.(avg)

Fragment
len.(% of S)

nanoxml <XML> to be processed 140 1417 43 30.71 97 93.15 42 30

jaxen XPath expression 232 79 12 5.17 50 41.42 13 5.60

xstream <Object> for XML con-
version

173 9482 31 17.91 322 96.6 26 15.02

jmeter <File> to the core utility 57 48 10 17 34 29.2 10 17.5

htmlcleaner <File> to clean 265 295 26 9.8 292 1.02 26 9.8

spec/compress Arg. to benchmark 397 3267 94 23.67 46 98.59 79 19.899

spec/mtrt Arg. to benchmark 130 269 50 38.46 37 86.24 56 43.07

spec/jess Arg. to benchmark 42 53 15 35.71 13 71.69 15 35.71

Figure 5. Slice decomposition and reduction algorithm on subject programs: for each subject, the size of the computed slice (S-number
WALA statements) and characteristics of the generated slice fragment populations(POP) are tabulated.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

C

S

nanoxml

Sample Size: 3 (66)
Sample Size: 5 (84)

Sample Size: 10 (102)
0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

C

S

jaxen

Sample Size: 2 (22)
Sample Size: 3 (30)
Sample Size: 5 (43)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

C

S

xstream

Sample Size: 5 (57)
Sample Size: 10 (79)
Sample Size: 15 (90)

0

20

40

60

80

100

0 5 10 15 20 25 30

C

S

mtrt

Sample Size: 2 (66)
Sample Size: 5 (86)
Sample Size: 8 (96)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70

C

S

htmlcleaner

Sample Size: 4 (42)
Sample Size: 7 (51)

Sample Size: 15 (49)
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

C

S

jmeter

Sample Size: 2 (8)
Sample Size: 5 (9)

Figure 6. Statistical Analysis of Slice Fragment Coverage: Fragment Coverage(C as %) vs Number of Samples(S)

fragment coverage), (ii) the rate at which slice statements are cov-
ered by the samples from reduced population (slice statement cov-
erage), and (iii) the average number of unique statements per sam-
ple. To this end, our approach employed a basic sampling technique
on the reduced population of slice fragments. We experimented
with simple random sampling without replacement, whereby a frag-
ment of the population is not chosen more than once in a sample
and each fragment had equal probability of being selected in a sam-
ple. This approach is intuitively appropriate as we have minimum
advance information about the population of slice fragments. For
select programs, the results of (i) and (iii) are presented in Figure
6. The numbers beside the sample sizes in the labels indicate the
average number of unique statements for a corresponding sample.
The experiments were repeated for a number of different sample

sizes. The range of sample sizes that we experimented with was
proportional to the population of slice fragments, but we only show
representative set of the sample data for the subject programs. Fig-
ure 7 depicts the corresponding details on (ii).
Analysis. Across all programs, it was observed that slice state-
ments were covered in less number of sampling iterations when
compared to slice fragments. Slice fragments tend to share a lot of
common statements between them and therefore coverage of state-
ments during sampling need not lead to coverage of fragments. The
results were in line with this intuition. This disparity was most pro-
nounced in case of xmlstream. It showed that under different sam-
ple sizes, sampling 25 times was sufficient to reach near optimal
statement coverage, whereas 150 samples were required to observe
the same in case of slice fragments. jmeter and mtrt showed skewed

fragment coverage, due to small population. The average number
of unique statements (indicated in the label of Figure 6) per sam-
ple was observed to be significantly small subsets of their program
slices.

4. Discussion
Our experimental results showed that the population of slice frag-
ments were statistically significant in almost all cases. These results
offer preliminary evidence that our technique is likely to produce
statistically significant population for large slices, which is essen-
tial for sampling.

The slice fragments are units of monitoring tasks. Our results
showed that their average size was small in most cases, thus our
approach is likely to reduce the number of instrumented points.

Our study of random sampling of slice fragments showed that
the number of iterations required for covering all the slice frag-
ments in the population depended largely on the sample size. These
results show that if the samples are taken frequently, the fragments
in the population will be covered often for the profile to be useful.

In addition, the average number of unique slice statements per
sample was found to be a small fraction of slice. This implies that
on average only a small fraction of slice is likely to be instrumented
when a sample is taken, leading to low monitoring overhead.
Scalability. Our experiments demonstrate that our approach is
more likely to be beneficial in cases where the program slice size is
large, resulting in a statistically significant population after decom-
position and reduction. Fortunately, this is precisely the scenario
where an approach for reducing the scope of instrumentation would
be needed. If sample sizes are chosen prudently with respect to the
slice fragment population, then the average number of statements
instrumented per sample is likely to be low, resulting in scalable
monitoring processes
Comparison with random sampling of statements. A process
based on random sampling of statements in the entire program
would have a significantly lower probability of capturing implicit
control paths that our technique captures. This is because a random
selection of statements is not constrained to be along partial paths
(fragments). Thus we didn’t find it necessary to do a comparative
empirical evalutation against this technique as it would have simply
served to validate the obvious.
Runtime overhead. We have focused on what parts of the pro-
gram to instrument. The issue of how to instrument was not con-
sidered, which to a large extent would determine the actual run-
time overhead. “How to instrument” is an active topic with several
results that are complementary to our approach. For example, our
approach can be used in combination with the instrumentation tech-
nique proposed by Arnold and Ryder [3]. Such combination could
maintain two versions of the code - Version V1, instrumented at all
program points part of the computed slice in the program (based
on some criteria), and Version V2, the original code. These two
versions would have lightweight instrumentation to switch control
between them. This lightweight instrumentation would be respon-
sible for control switch at runtime from V1 to V2, if the control
statement happens to be a part of the selected sample of slice frag-
ments. In a similar manner, the control would switch from V2 to
V1 when a control statement is not a part of the selected sample.

5. Related Work
In this work, we have proposed selecting subset of program slice
entities for monitoring and profiling software, using statistical sam-
pling based schemes. This section discusses closely related ideas.

We share a similar objective of reduction in monitoring over-
head with Santelices et al. [28], which proposes a subsumption
algorithm based on the type of control-flow entities and Apiwat-

tanapong et al. [2], which proposes a method to monitor selective
paths of a program. Our approach differs in that it uses program
slicing and sampling to attain similar results.

Arnold and Ryder [3] use a profiling framework combined
with code duplication to reduce the instrumentation overhead.
This framework samples the instrumented version of the code for
bounded amounts of time to collect the required profiles from the
program. On the other hand, our approach samples on the decom-
posed slice fragments restricted to a property of interest.

We share a similar goal with the GAMMA system [5, 25];
that is, a reduction of monitoring overhead in deployed software
instances. Their main idea is to divide and allot the monitoring
tasks across several instances of the software. They then collects
the data from these instances to compute monitoring information
for the complete application. MOP [6] is a runtime verification
framework, which generates monitors from the specified properties
and integrates it with the application. It uses decentralized indexing
to reduce the overhead of monitoring at execution time. In contrast,
we apply slicing and sampling to reduce the scope of monitoring.

Thin Slicing [29] proposes a selective notion of relevance based
on a seed computation to reduce the scope of debugging and pro-
gram understanding tasks. The application of thin slicing is geared
towards debugging and program understanding tasks, whereas our
approach is oriented towards profiling and monitoring software.

Liblit et al. [22] propose a sampling infrastructure based on a
Bernoulli process to gather information about a software from user
executions with low overhead. Their main focus is on bug isolation
using statistical analysis. We use sampling to control the amount of
instrumentation over the relevant set of program points.

Dwyer et al. [9] propose adaptive online program analysis
(AOPA) to reduce overhead of dynamic analyses. AOPA adaptively
varies instrumentation to observe program behavior, assuming a re-
duced scope for analyses. In contrast, we use sampling on precom-
puted property-relevant fragments for profiling.

6. Conclusion and Future Work
The key technical contributions of this work are: (i) the notion of
slice fragments, (ii) a method to compute them, and (iii) a use case
of slice fragments for a statistical sampling-based instrumentation
technique. Our technique first uses slicing to narrow down the
scope of the instrumentation to that of interest with respect to a
property (expressed as slicing criterion). We then provide a method
to further decompose the slice into (smaller) slice fragments. A
subset of these slice fragments is then instrumented for monitoring
or profiling tasks. We also presented empirical results to validate
that our technique can collect profiles at high assurance levels, at a
significantly lower overhead.

Several interesting avenues remain to be explored. An empir-
ical study could be conducted for larger programs (perhaps with
millions of line of code) to revalidate our current results on a rep-
resentative subset of Java programs. An automated technique for
determining an optimal sample size for programs would also com-
plement our approach.

With the growing size, complexity, and adaptability of software
systems both the instrumentation overhead as well as the need for
monitoring and profiling is likely to increase. Our approach thus
provides a timely advance towards enhancing the scalability of
monitoring and profiling processes to cope with these challenges.
Acknowledgement. This work was supported in part by the US
NSF under grant CNS-06-27354 and by CNS-08-08913.

References
[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,

S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger,

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

C

S

nanoxml

Sample Size: 3
Sample Size: 5

Sample Size: 10
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

C

S

jaxen

Sample Size: 2
Sample Size: 3
Sample Size: 5

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

C

S

xstream

Sample Size: 5
Sample Size: 10
Sample Size: 15

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

C

S

mtrt

Sample Size: 2
Sample Size: 5
Sample Size: 8

0

20

40

60

80

100

0 10 20 30 40 50 60 70

C

S

htmlcleaner

Sample Size: 4
Sample Size: 7

Sample Size: 15
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

C

S

jmeter

Sample Size: 2
Sample Size: 5

Figure 7. Statistical Analysis of Statement Coverage: Statement Coverage (C as %) vs Number of Samples(S)

and W. E. Weihl. Continuous profiling: where have all the cycles
gone? ACM Trans. Comput. Syst., 15(4):357–390, 1997.

[2] T. Apiwattanapong and M. J. Harrold. Selective path profiling. In
PASTE ’02, pages 35–42, 2002.

[3] M. Arnold and B. G. Ryder. A framework for reducing the cost of
instrumented code. In PLDI ’01, pages 168–179.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In PLDI ’00, pages 1–12.

[5] J. Bowring, A. Orso, and M. J. Harrold. Monitoring deployed
software using software tomography. In PASTE ’02, pp. 2–9.

[6] F. Chen and G. Roşu. Mop: an efficient and generic runtime
verification framework. In OOPSLA ’07, pages 569–588.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Second Edition. The MIT Press and McGraw-Hill
Book Company, 2001.

[8] S. Debray and W. Evans. Profile-guided code compression. In PLDI
’02, pages 95–105, 2002.

[9] M. B. Dwyer, A. Kinneer, and S. Elbaum. Adaptive online program
analysis. In ICSE ’07, pages 220–229.

[10] S. Elbaum and M. Diep. Profiling deployed software: Assessing
strategies and testing opportunities. IEEE Trans. Softw. Eng.,
31(4):312–327, 2005.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability : A
Guide to the Theory of NP-Completeness. W. H. Freeman, January
1979.

[12] R. S. Garfinkel and G. L. Nemhauser. Integer Programming. John
Wiley & Sons, New York, 1972.

[13] B. Guo, N. Vachharajani, and D. I. August. Shape analysis with
inductive recursion synthesis. In PLDI ’07,pp. 256–265.

[14] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model

construction. Higher Order Symbol. Comput., 13(4):315–353, 2000.

[15] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In ASPLOS-XI, pages
156–164, 2004.

[16] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. TOPLAS, 12(1):26–60, 1990.

[17] S. E. Hyunsook Do and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering, 10:405–435,
2005.

[18] James C. Corbett et al.. Bandera: extracting finite-state models from
Java source code. In ICSE ’00, pages 439–448.

[19] D. S. Johnson. Approximation algorithms for combinatorial
problems. In STOC ’73: Proceedings of the fifth annual symposium
on Theory of computing, pages 38–49, 1973.

[20] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE ’02, pages 467–477,
2002.

[21] S. Khuller, B. Raghavachari, and N. Young. Approximating the
minimum equivalent digraph. SIAM J. Comput., 24(4):859–872,
1995.

[22] B. Liblit, A. Aiken, and A. Zheng. Distributed program sampling. In
PLDI ’03, pages 141–154.

[23] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In PLDI ’03, pages 141–154.

[24] D. M. Moyles and G. L. Thompson. An algorithm for finding a
minimum equivalent graph of a digraph. J. ACM, 16(3):455–460,
1969.

[25] A. Orso, D. Liang, M. J. Harrold, and R. Lipton. Gamma system:
continuous evolution of software after deployment. In ISSTA ’02,
pages 65–69, 2002.

[26] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. In Symposium on Practical
software development environments, pages 177–184, 1984.

[27] T. Reps and T. Bricker. Illustrating interference in interfering
versions of programs. In 2nd International Workshop on Software
configuration management, pages 46–55, 1989.

[28] R. Santelices, S. Sinha, and M. J. Harrold. Subsumption of program
entities for efficient coverage and monitoring. In SOQUA ’06, pages
2–5.

[29] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In PLDI ’07,
pages 112–122.

[30] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[31] M. Weiser. Program slicing. In ICSE ’81, pages 439–449.

[32] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of
program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[33] T.J. Watson libraries for analysis. http://wala.
sourceforge.net.

