
83

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem
in Usage-Based Specification Mining

SAMANTHA SYEDA KHAIRUNNESA, Iowa State University, USA
HOAN ANH NGUYEN, Iowa State University, USA
TIEN N. NGUYEN, The University of Texas at Dallas, USA
HRIDESH RAJAN, Iowa State University, USA

Frameworks and libraries provide application programming interfaces (APIs) that serve as building blocks in
modern software development. As APIs present the opportunity of increased productivity, it also calls for
correct use to avoid buggy code. The usage-based specification mining technique has shown great promise in
solving this problem through a data-driven approach. These techniques leverage the use of the API in large
corpora to understand the recurring usages of the APIs and infer behavioral specifications (pre- and post-
conditions) from such usages. A challenge for such technique is thus inference in the presence of insufficient
usages, in terms of both frequency and richness. We refer to this as a “sparse usage problem." This paper
presents the first technique to solve the sparse usage problem in usage-based precondition mining. Our
key insight is to leverage implicit beliefs to overcome sparse usage. An implicit belief (IB) is the knowledge
implicitly derived from the fact about the code. An IB about a program is known implicitly to a programmer
via the language’s constructs and semantics, and thus not explicitly written or specified in the code. The
technical underpinnings of our new precondition mining approach include a technique to analyze the data
and control flow in the program leading to API calls to infer preconditions that are implicitly present in the
code corpus, a catalog of 35 code elements in total that can be used to derive implicit beliefs from a program,
and empirical evaluation of all of these ideas. We have analyzed over 350 millions lines of code and 7 libraries
that suffer from the sparse usage problem. Our approach realizes 6 implicit beliefs and we have observed that
adding single-level context sensitivity can further improve the result of usage based precondition mining. The
result shows that we achieve overall 60% in precision and 69% in recall and the accuracy is relatively improved
by 32% in precision and 78% in recall compared to base usage-based mining approach for these libraries.

CCS Concepts: • Software and its engineering→ Software maintenance tools;

Additional Key Words and Phrases: Implicit Belief, Specification Inference, Usage-based Mining.

ACM Reference Format:
Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan. 2017. Exploiting
Implicit Beliefs to Resolve Sparse Usage Problem in Usage-Based Specification Mining. Proc. ACM Program.
Lang. 1, OOPSLA, Article 83 (October 2017), 29 pages. https://doi.org/10.1145/3133907

Authors’ addresses: Samantha Syeda Khairunnesa, Department of Computer Science, Iowa State University, 226 Atanasoff
Hall, Ames, IA, 50011, USA, sammy@iastate.edu; Hoan AnhNguyen, Department of Computer Science, Iowa State University,
226 Atanasoff Hall, Ames, IA, 50011, USA, hoan@iastate.edu; Tien N. Nguyen, Department of Computer Science, The
University of Texas at Dallas, 800 W. Campbell Road, ECSS 4.229, Richardson, TX, 75080, USA, tien.n.nguyen@utdallas.
edu; Hridesh Rajan, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011, USA,
hridesh@iastate.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 Association for Computing Machinery.
2475-1421/2017/10-ART83
https://doi.org/10.1145/3133907

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

https://doi.org/10.1145/3133907
https://doi.org/10.1145/3133907

83:2 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

1 INTRODUCTION
Behavioral specifications (pre- and post-conditions) of application programming interfaces (APIs)
could help developers effectively utilize the APIs [Hall 1990]. However, currently the efforts needed
to write behavioral specifications can be quite high [Leavens and Clifton 2008; Rajan et al. 2015].
To reduce the costs of producing behavioral specifications of commonly used APIs, prior work
has utilized large scale code corpus to infer preconditions [Nguyen et al. 2014]. Nguyen et al.’s
usage-based precondition mining collects usage of the API methods within a large code corpus (call
sites), at each such call site analyzes the context to identify explicitly written guard conditions
that must be true for the API method to be invoked, and then obtains a consensus among all of
these guard conditions to infer preconditions of the API method. The process of consensus building
eliminates project-specific guard conditions. When applied to a large corpus containing hundreds of
thousands of call sites, this technique has been shown to be very effective for widely used APIs
such as in the Java Development Kit (JDK).
Not all important APIs are very widely-used, however. The API call sites may also not be rich

to mean that few (potential) preconditions are present as explicit guard conditions. This in turn
makes true preconditions indistinguishable from project-specific guard conditions. We observed
this phenomenon when examining the precondition mining results for infrequently-used APIs in
JDK from our prior work [Nguyen et al. 2014]. We call this the sparse usage problem in precondition
mining. In this paper, we propose a technique to solve the sparse usage problem by leveraging
implicit beliefs (IBs). First, a fact about a program is what is directly derived from the code, e.g.,
an object is instantiated via a constructor. Second, an implicit belief is the knowledge about the
program that can be implied from a fact(s). For example, the programmer might expect that the first
parameter of the API call is non-null. An IB can be implied by the use of certain language constructs
or semantics. Our intuition is that since these facts are implied, developers don’t check it explicitly,
but they can still be leveraged for usage based precondition mining. Techniques such as symbolic
execution [Păsăreanu et al. 2008; Păsăreanu and Rungta 2010] and abstract interpretation [Cousot
and Cousot 1977] could also be used to expand the set of available invariants at program points, and
help with the sparse usage problem. However, the cost of running these techniques on hundreds
of thousands of call sites could be prohibitive. To solve this problem, we propose several kinds of
implicit beliefs that can be identified by lightweight program analysis, realize a subset of these
analyses, and propose an integrated usage based precondition miner leveraging implicit beliefs.

Implicit beliefs can help filter project-specific conditions. Figure 1 presents an example
that uses xy package from the library org.jfree.data to measure the ordinary least square regression.
At line 3, the condition n < 2 assures that no regression computation is needed if insufficient data
points are provided. The intention of the loop at line 7 is to include data from each observation to
compute regression coefficient.

The API method getXValue() in line 8 is our API of interest. Existing mining approaches extract
the explicit guard conditions that must be satisfied before reaching the API call at line 8. In line 3,
if the value of n is less than 2 then the if branch throws an exception. For the control flow to reach
line 6, the condition n ≥ 2 needs to be true. In line 7, the guard condition of the loop needs to be
satisfied to reach the statement at line 8 inside the loop. These are two explicit guard conditions
that can be extracted from the call site at line 8 shown in Figure 1.
Now if we statically analyze the language constructs and semantics in the source code, we see

that from lines 3-5 the programmer is throwing a regression exception, which is clearly project
specific. It can be inferred automatically as this exception is neither an exception from API signature
nor any runtime exception thrown by the language itself. Therefore, a technique based on implicit
belief could ignore such false positive explicit conditions. In other words, for such client-specific

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:3

1 public static double[] getOLSRegression(XYDataset data, int series) throws RegressionException {
2 int n = data.getItemCount(series);
3 if (n < 2) {
4 throw new RegressionException("Not enough data to calculate regression.");
5 }
6 ... // explicit condition: n >= 2
7 for (int i = 0; i < n; i++) {
8 double x = data.getXValue(series, i); // explicit condition: i < n, implicit belief: i >= 0
9 // implicit belief: condition n >= 2 is not required
10 ... }
11 ... }

Expected Precondition(s) = { i ≥ 0, i < data.дetItemCount (series) }
Explicit Conditions(s) = { data.дetItemCount (series) ≥ 2, i < data.дetItemCount (series) }
Implicit Belief(s) = { i ≥ 0, data.дetItemCount (series) ≥ 2 not required }
Combined Precondition(s) = { i ≥ 0, i < data.дetItemCount (series) }

Fig. 1. Control-related code elements to derive implicit beliefs, API of interest is highlighted in bold font.

exception, its guard condition is less trustworthy to lead to true preconditions than the conditions
for API exceptions.

Implicit beliefs can help fill missing data. As discussed before, in line 7 of Figure 1, the
loop initializes the counter i with a value of 0 and increases it by 1 for each iteration while the
guard condition is still satisfied. Therefore, for any statement inside the loop, the belief i ≥ 0
implicitly holds although it is not explicitly present as a condition in the code. If we consider these
implicit beliefs and the explicit guard conditions together then we can extract the correct set of
preconditions as expected (Figure 1).
The table below the listing in Figure 1 shows the expected preconditions, explicit conditions,

implicit beliefs and the combined set of preconditions extracted for this API.
Figure 2 shows an example on creating monthly login chart, that uses org.jfree.chart library. In

line 3, a XYPlot object plot1 is instantiated. Then, in line 6, we have the API method of interest
CombinedDomainXYPlot.add().

1 private byte[] createMonthlyLoginChart (int width, int height) {
2 ... // code for initializing dataset1, renderer1, axis1, domainAxis
3 XYPlot plot1 = new XYPlot(dataset1, null, axis1, renderer1);
4 ... // implicit belief: plot1 != null
5 CombinedDomainXYPlot cplot = new CombinedDomainXYPlot(domainAxis);
6 cplot.add(plot1, 3); // implicit belief: ARG2 == 3 ==> ARG2 >= 1
7 ... }

Expected Precondition(s) = { plot1 , null , ARG2 ≥ 1 }
Explicit Conditions(s) = { ∅ }
Implicit Belief(s) = { plot1 , null , ARG2 == 3 =⇒ ARG2 ≥ 1 }
Combined Precondition(s) = { plot1 , null , ARG2 ≥ 1 }

Fig. 2. Data-related code elements to derive implicit beliefs, API of interest is highlighted in bold font.

In this source code, there are no explicit guard conditions present before the API call. Traditional
mining approach will not be able to extract any condition at program point cplot.add(plot1, 3) in

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:4 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

line 6. As mentioned before, in line 3, plot1 is instantiated and then the object is used as a parameter
to the API method of interest. It is implicitly known if an object is instantiated, it can no longer be
null. Using this implicit belief we can infer one precondition that the first argument of the API add()
method is non-null. In case of the second argument, a constant value 3 is passed. We can infer that
the value of this argument is equal to 3. If a constant is passed to the API, we refer to any implicit
beliefs derived from its value as constant propagation implicit belief. To attain a precondition from
this implicit belief we will need support from other call sites. Now assume that previously mined
call sites provided a condition that the second argument is greater than or equal to 1 for the same
API, then we verify this call site for implicit belief ARG2 == 3 =⇒ ARG2 ≥ 1. As the statement
is true for the call site shown in Figure 2, we would be able to strengthen the condition that the
second argument is greater than or equal to 1 from this call site. We depend on mined conditions
from other call sites for the same API in order to refrain from introducing too many false positives
in case of constant propagation related implicit beliefs.

The expected preconditions, explicit conditions, implicit beliefs and the combined set of precon-
ditions for this API is shown below the listing in Figure 2. The final row of the table in Figure 2
shows the combined set of preconditions that can be extracted for the API add() at line 13, that is
same as the expected set of preconditions shown in the first row of the same table.

This paper makes the following contributions:

• the notion of implicit beliefs and its usage for precondition mining,
• lightweight source code analyses to infer and propagate implicit beliefs, and
• an evaluation of our techniques on real-world programs consisting of 14,000+ projects (over
350 millions lines of code) and 7 libraries. The result shows that we achieve overall 60% in
precision and 69% in recall and such accuracy is relatively improved by 32% in precision and
78% in recall compared to base usage-based mining approach for these libraries.

The rest of this article is organized as follows. Next, we present our approach. Then, Section 3
presents the empirical evaluation, Section 4 describes related work and Section 5 concludes.

2 APPROACH TO EXPLOIT IMPLICIT BELIEFS TO IMPROVE USAGE-BASED MINING
This section describes our approach to detect implicit beliefs from programs and use such implicit
beliefs to infer preconditions of APIs from API usages in a large corpus of source code. We first
present an overview of our approach to derive the implicit beliefs from certain code elements, prop-
agate them to the API call sites subsequently maintaining the context and infer API preconditions
using these implicit beliefs. The implicit belief-related components in this section can be used for
any code corpus to automatically mine preconditions to leverage the existing usage-based mining
approach. We then present our systematic classification of 35 code elements containing the implicit
beliefs. Finally, we provide detailed descriptions of algorithms for analyzing six representative code
elements. We also present our technique using 1-CFA (1-level control flow analysis) to infer a richer
set of preconditions from both implicit beliefs and explicitly checked conditions.

2.1 Approach Overview
Existing usage-based mining approaches extract only the explicit guard conditions present before
an API call and considers the most frequent conditions of such kind as preconditions of those APIs.
If an API is from a library that is not commonly used and does not have enough usages, then it
becomes difficult to find explicit conditions for an API. Absence of such conditions will result in
mining few or no specifications for an API. However, the language constructs and semantics can
potentially serve as a means to detect conditions that are implicitly present in the code corpus

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:5

Fig. 3. Approach overview: From the input code corpus, we build a control flow graph for each method. The
implicit beliefs are derived by recognizing the corresponding code elements. Each implicit belief is propagated
in subsequent paths. Preconditions are then inferred from explicit conditions and implicit beliefs guarding
API calls.

before an API call. Facts that can be directly derived from the code are known as beliefs [Engler
et al. 2001]. Some of these beliefs are explicitly checked in the code, while some are implicit.

Definition 1. An Implicit Belief is the knowledge about the program that can be implicitly
derived from the language constructs or semantics through specific code elements.

An example of such implicit belief is the fact that an object must not be null after it is created
with a class instance creation operation. The implicit belief does not depend on the frequency of
occurrences in the code corpus. Recognizing a code element with a corresponding implicit belief
confirms that it will hold in subsequent nodes given a control flow graph (CFG) unless the belief
is invalidated. Each implicit belief can be invalidated and in result disallowing propagation to
following CFG nodes. The notion regarding invalidation and propagation of implicit belief is further
discussed in Section 2.3. An implicit belief can be used to mine preconditions given a usage corpus
in addition to explicit guard conditions.
Figure 3 shows the overview of our approach to infer implicit beliefs and use them to mine

preconditions in client code corpus of the APIs. Our approach makes use of both explicitly-checked
conditions and implicit beliefs from control flow graphs (CFGs). For each method in the client
code, the corresponding CFG is built. The CFG may contain one or more API method calls for each
method. Therefore, the final result consists of explicit guard conditions and implicit beliefs for
each API call inside a method enriching the precondition set. If an API is control-dependent on an
explicit guard conditions, then that condition will belong to the set of explicit guard conditions for
the API. To infer a precondition from an implicit belief we need the following steps:

Recognition of Code Elements: Execution of certain code elements implies corresponding im-
plicit belief directly at a program point of interest. To detect an implicit belief, the approach needs
to identify these code elements and relate to the corresponding implicit belief. We refer to this
as recognition of code elements to generate belief. In general, the approach looks for specific
set of code elements in a node, ni of the CFG that contains a belief according to the language
constructs. For instance in the partial CFG shown in Figure 3, we observe the class/object instance
creation node A a = new A() after the start node and it is recognized (highlighted in red) as an
indicator of such a code element containing definition of a. In our implementation, we build CFGs

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:6 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

at both statement and expression levels so that each CFG node corresponds to a distinct syntax
construct. For the above code fragment A a = new A(), the CFG will contain one node for class
instance creation and one node for assignment and a CFG node cannot be both instance creation
and definition at the same time.

Derivation of Implicit Belief: Different code elements correspond to different implicit beliefs.
Recognition of code elements of certain type helps us to pinpoint the associated implicit belief. In
the previous step, our approach recognizes the object instance creation as a code element that can
help in deriving an implicit belief. From the Java language semantics, we know that if an object is
instantiated then it cannot be null. This implies the implicit belief that the object a in Figure 3 is
non-null. Once we derive an implicit belief from a recognized code element, we annotate the node
(highlighted in green) with the derived implicit belief, i.e., it is added as GEN of the corresponding
node, ni . Each node ni also maintains a KILL set that contains the implicit beliefs invalidated at ni .
Therefore, in the example shown in Figure 3, GEN of the class instance creation node A a=new A()
contains the implicit belief a!=null and KILL is empty.

Propagation of Implicit Belief: The next step after deriving an implicit belief from a code element
is to propagate the implicit belief in appropriate subsequent path. The purpose of this step is to
define a set of rules using GEN and KILL to propagate the implicit belief along the control flow path
maintaining the validity of the implicit belief. Let the node A a=new A() from the Figure 3 be
our current node with GEN being a!=null and KILL is empty. To propagate the implicit belief we
need to know incoming implicit belief IBin for the current node. For any node ni , IBin contains
set of implicit beliefs that any previous node in CFG may have. To propagate the implicit belief
in any successor node of the CFG we make use of corresponding GEN, KILL and IBin and refrain
from propagating any invalidated belief. The subsequent nodes of the CFG shown in the Figure 3
are the decision node b>=0 and action nodes API(a, b) and foo(). All of these nodes contain the
same reaching implicit belief a!=null since none contains a re-assignment of a and resulting in
changing the KILL set of the node where redefinition may occur. Therefore it is safe to propagate
the implicit belief a!=null in all three nodes in Figure 3. However if any of these nodes contained
a re-assignment of the variable a then computing the reaching implicit belief through GEN and
KILL would help us invalidate the propagation of the implicit belief down that path. Note that
along with the implicit belief a!=null, the guard condition b>=0 is also present as API method
invocation API(a, b) is control-dependent on this node. The mined preconditions will consist of
both conditions.

2.2 Classification of Code Elements to Derive Implicit Beliefs
Implicit beliefs are present in the source code and can be recognized by the language syntax and
semantics of certain code elements. The key challenge to use implicit belief in usage-based mining
is to identify the precise beliefs to look for. In this section we describe our systematic classification
of code elements containing the implicit beliefs. The classification is shown in Figure 4. At the top
level, we classify code elements into 3 classes involving data, computation or control elements
in a program. We then further classify each class into sub-classes until we reach code elements
containing implicit beliefs.

2.2.1 Implicit Belief Derived from Data Code Elements in Programs. A data element could be
a constant or a variable of primitive, array or reference type. We have the following implicit beliefs.
B1. Constant propagation: This code element looks for any constant data passed directly to
an API. Recognizing this code element tells us about a concrete value for that API argument. To
derive an implicit belief from this code element we also make use of other call sites that provides

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:7

Program

Data

Computation

Control

Constant

Primitive Type

Array Type

Reference Type

Type ConversionNull/Non-null

Resource State

Container

Null Derefence

Container Type

Container Operation Accessing an Element

Comparing Elements

Removing an Element

Associative Container

Sequential Container

Sorted Container

Closing Resource

Reading Resource

Memory Delocation

Writing Resource

Unboxing to Numerical Type

Class Instance Creation

Unboxing to Boolean Type

Aliasing

Size of Array

Type Comparison

Sorted Array

Bounded Values

Constant Propagation

Non-null Array

Method Invocation

Field Access

Infinite Loop

Collection/Array-controlled Loop

Condition-controlled Loop

Termination

Switch Case

Short Circuit Evaluation

Count-controlled Loop

Remainder

Absolute

Negation

Division

Infinite Loop

Client-specific Exception

Unary Operation

Binary Operation

Normal Flow

Exception Flow

Structured Control Flow

Non-local Control Flow

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

B16

B17

B18

B19

B20

B21

B22

B23

B24

B25

B26

B27

B28

B29

B30

B31

B32

B33

B34

B35

Fig. 4. Classification of code elements to derive implicit beliefs. Code elements that are realized in this paper
are highlighted.

candidate preconditions for this API. If we find a similar precondition then we use the current call
site to strengthen the precondition. By similar condition we mean a condition related to same API
component and the condition holds if current constant value is substituted with the API component
found at other call sites.
B2. Bounded values: If an API uses a numeric type, e.g., int, variable then the initialization
of the variable serves as the point to recognize the precise code element. The implicit belief we
derive is that the variable being used by the API must a hold a value that is in the range between
Integer.MINVALUE and Integer.MAXVALUE.
B3. Non-null array: The code element array access can be recognized to derive the implicit belief
that the array being used is non-null. The code element of initialization of an array can be used to
derive same implicit belief. B4. Sorted array: If the code element indicates that the array is sorted,
then derived implicit belief is the value of each element in the array is less or equal compared to
the next element stored in the array. B5. Size of array: The code element array access can be used

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:8 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

to recognize and imply the belief that the size of array being accessed is greater than zero and the
index is less than that size.
B6. Aliasing: When an alias of an object is present, recognizing non-null property for an object
can imply that the aliased object is non-null as well.
B7. Type Comparison: If a reference type object is compared to check whether it is an instance
of some class, then the code element can be recognized to derive the implicit belief that the object
is non-null.
B8. Class Instance Creation: With this code element, the resulting object is guaranteed to be
non-null.
Unboxing conversion: This type of conversion changes expressions of reference type to corre-
sponding expressions of primitive type by invoking necessary method. Recognition of reference
type in a conversion can help to derive that the object is not null as an implicit belief. The unboxing
operation can happen to convert to the primitive types: B9. Unboxing to numerical type and
B10. Unboxing to boolean type.
Null Dereference: A successful execution of dereferencing an object implies that the object is not
null. B11. Method Invocation and B12. Field Access are two concrete code elements of null
dereferences where the implicit belief is that the receiver object of the method invocation or the
qualifier object of the field access is not null.

Resource State: Resources (e.g., memory, file, I/O etc.) have state-related code elements that can be
recognized by knowing the implied preconditions. B13. Memory deallocation: To avoid resource
leak once a memory allocation occurs, memory must be freed/delocated after use. Therefore,
detection of memory deallocation code element can help derive the implicit belief that it has the
memory allocation preceding to it. B14. Reading resource, B15. Writing resource and B16.
Closing resource: If we can detect a resource is being read, written/appended or closed, we can
derive that the resource must exist or has been opened.

Container: Depending upon the container used in a program we can detect certain code elements
to derive implicit beliefs. A container has various properties depending on its type. B17. Sequen-
tial container: Identifying a container as sequential indicates that values of the container can
only be accessed sequentially, for example, through an iterator. Depending on different type of
sequential container, e.g., Set, we can further derive that the values contained has no duplicate.
B18. Associative container: Finding an associative container, e.g., ArrayList, implies that values
can be accessed randomly through some index/key depending on the type of associative container.
B19. Sorted container: Detection of a sorted container in a program implies that the values in
the container are sorted. The code elements that perform different types of operation on a con-
tainer could associate with certain implicit beliefs. B20. Comparing elements: This code element
indicates the implicit belief that the container being processed is non-null. B21. Accessing an
element: Identification of element access in a container, e.g., next(), implies that the container
has more elements to be accessed because the program will throw NoSuchElementException
otherwise. B22. Removing an element: The code element to modify an iterating container,
e.g., Iterator.remove(), indicates that this call must be preceded by Iterator.next() to avoid
ConcurrentModificationException.

2.2.2 Implicit Belief Derived from Computation Code Elements in Programs. Next, let us look
at the code elements involving computation on data and how we can derive implicit belief by
recognizing such code elements.
B23. Negation operation: Recognition of negation operation as a code element implies that if
the result of the operation is not a number, then the operand can not be a number. B24. Absolute

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:9

operation: Identifying absolute operation as a code element implies that if the result of the
operation is not a number, then the operand can not be a number.
B25. Division operation: The code element division by a number implies that the denominator
can not be zero. B26. Remainder operation: The computation of remainder implies that the
denominator can not be zero.

2.2.3 Implicit Belief Derived fromControl CodeElements in Programs. Aprogrammay contain
different type of control flow and depending on the type of control flow found inside the program,
it is possible to find code elements that lead to an implicit belief. A control flow in a program could
be a normal or an exceptional control flow. A normal control flow leads to a normal exit point in
the program while an exceptional control flow leads to an exception exit point. A normal control
flow can be further classified as non-local or structured depending on if it contains statements,
such as break, continue and return, that cause the flow of the execution to jump out of the given
context or not.

In the structured control flow, we identify different kinds of code elements that could lead to
implicit beliefs. One is the short circuit evaluation of the condition and one is the initializer and
updater of the count-controlled loop among others.
B27. Short Circuit Evaluation: The branching node consisting of at least two operands joined by
boolean operator can be detected as a potential code element based on the evaluation strategy used.
If language considers short circuit evaluation technique, then we can derive the implicit belief that
second argument will only be evaluated if evaluating the first argument is not enough to determine
value of the whole expression. For example, evaluating the second operand of a logical conjunction
implies that the first operand is evaluated to true. B28. Switch Case: Detection of switch case
branches derives the implicit belief that the conditions in each case are exclusive. Switch case can
also be realized in terms of if-else if branches. Hence we can detect same implicit belief in case of
detection of this code element.
B29. Count-controlled Loop: In case of count-controlled loop, we observe the loop initializer
and updater expressions of the counter. From these elements, we could derive the implicit belief
that the counter is greater than or equal to the initialized value or the counter is less than or equal
to the initialized value.
B30. Condition-controlled Loop: If a loop is condition controlled and we detect the code element
to collect data before entering the loop, and loop body also collects subsequent data to continue
the loop, then we can derive the implicit belief that any condition related to collecting data before
entering the loop is also relevant inside the loop.
B31. Collection/Array-controlled Loop: If we detect a loop is collection/array controlled, then
it can be derived that the collection/array is not null for any statement inside the loop.

Non-local Control Flow: In non-local control flow, the program behavior allows separation
of cross-cutting concerns. In most languages, mainly transfer statements (e.g., break, continue,
return, try-catch-finally) are used to achieve this purpose. B32. Termination: This code element
recognizes sequential unreachable code after termination (e.g., return). In this case derived implicit
belief is to ignore any expressions present in the unreachable code. B33. Infinite Loop in non-local
control flow: If we detect infinite loop then simple implicit belief to derive is obvious true condition
of the loop should not be considered. Identifying infinite loop with a transfer statement implies
the belief that the guard condition of the transfer of flow should be considered if the condition is
relevant to some API.
The last two code elements for deriving implicit beliefs are from exception control flow. Implicit
beliefs derived from B34. Client-specific Exceptions helps remove the guard conditions that

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:10 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

Algorithm 1: Object Instance Creation
Input: CFG, API
Output: Implicit beliefs, I BAPI

1 foreach node n in topological order in CFG do
2 I Bin [n]←

⋂
p∈n .Pred I Bout [p]

3 if n is an object instance creation then
4 GEN ← deriveIB(n)
5 KILL ← ∅
6 else if n.isDef() then
7 GEN ← ∅
8 var ← extractVariable(n)
9 KILL ← Defs[var]

10 else
11 GEN ← ∅
12 KILL ← ∅

13 I Bout [n]← GEN
⋃
(I Bin [n] \ KILL)

14 if n.isAPI() then
15 I BAPI ← I Bin [API]

Algorithm 2: Null Dereference
Input: CFG, API
Output: Implicit beliefs, I BAPI

1 foreach node n in topological order in CFG do
2 I Bin [n]←

⋂
p∈n .Pred I Bout [p]

3 if n is dereferencing a variable then
4 GEN ← deriveIB(n)
5 KILL ← ∅
6 else if n.isDef() then
7 GEN ← ∅
8 var ← extractVariable(n)
9 KILL ← Defs[var]

10 else
11 GEN ← ∅
12 KILL ← ∅

13 I Bout [n]← GEN
⋃
(I Bin [n] \ KILL)

14 if n.isAPI() then
15 I BAPI ← I Bin [API]

are client-specific. Existing usage-based approaches consider conditions guarding the exceptional
control flows as the preconditions of any API calls in the normal control flow counterpart. However,
if the exception is specific to the project and cannot be thrown by the API, the guard condition
should not be considered as an API precondition. We derive the implicit belief that any condition
leading to throwing a project-specific exception is irrelevant to the API call. This implicit belief
will not help to infer more preconditions, but it could help reduce the false positives.
B35. Infinite Loop in exception control flow: An interesting exceptional case that we observe in a
program is running a process (e.g., server) infinitely in a loop until an exception occurs. Detecting
this code element and presence of an API in the loop derives the implicit belief that the negation of
the guard condition of the exception is the precondition to the API, if the condition is relevant.

2.3 Algorithms for Inferring and Propagating Implicit Beliefs
We have chosen six implicit beliefs that are most promising in terms of the type of preconditions
the oracle holds to maximize the coverage. For each belief, we implemented the corresponding
component to realize the implicit belief recognition and propagation.

2.3.1 Object Instance Creation (OIC). The algorithm for this component is in Algorithm 1. The
code element to recognize implicit belief is object instance creation and implicit belief to propagate
is that the instance can not be null. Line 3 of the algorithm recognizes the code element, e.g., in
line 3 of Figure 2, and line 4 of the algorithm derives the implicit belief plot1!=null through the
code element. The set GEN of code instance creation node contains this belief and KILL is empty
(Algorithm 1, lines 4–5) as there is no other redefinition present. To propagate this implicit belief
to any subsequent node in CFG, the algorithm uses GEN, KILL and incoming implicit beliefs IBin .
Incoming implicit beliefs are the set of implicit belief propagated from the predecessor nodes (line
2). If a node contains a definition (lines 6–9) then the variable is extracted to kill any implicit belief
related to the variable before calculating IBin for that node. GEN remains empty in this case as no
implicit belief is generated. In Figure 2 line 5, we detect another object instance creation node,
where GEN contains the new implicit belief cplot!=null and KILL is empty. In this case, we have

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:11

Algorithm 3: Type Comparison
Input: CFG, API
Output: Implicit beliefs, I BAPI

1 foreach node n in topological order in CFG do
2 I Bin [n]←

⋂
p∈n .Pred I Bout [p]

3 if n is an instanceof check then
4 GEN ← deriveIB(n)
5 KILL ← ∅
6 foreach node m in True branch of n do
7 m.setTrueBranch()

8 else if n.isTrueBranch() then
9 if n.isDef() then

10 GEN ← ∅
11 var ← extractVariable(n)
12 KILL ← Defs[var]
13 else
14 GEN ← ∅
15 KILL ← ∅

16 else
17 I Bout [n]← ∅ continue

18 I Bout [n]← GEN
⋃
(I Bin [n] \ KILL)

19 if n.isAPI() then
20 I BAPI ← I Bin [API]

Algorithm 4: Count Controlled Loop
Input: CFG, API
Output: Implicit beliefs, I BAPI

1 foreach node n in topological order in CFG do
2 I Bin [n]←

⋂
p∈n .Pred I Bout [p]

3 if n is a count-control loop then
4 init ← n.Initializer
5 incr ← n.Increment
6 GEN ← deriveIB(init , incr)
7 KILL ← ∅
8 foreach node m in body of loop do
9 m.setTrueBranch()

10 else if n.isTrueBranch() then
11 if n.isDef() then
12 GEN ← ∅
13 var ← extractVariable(n)
14 KILL ← Defs[var]
15 else
16 GEN ← ∅
17 KILL ← ∅

18 else
19 I Bout [n]← ∅ continue

20 I Bout [n]← GEN
⋃
(I Bin [n] \ KILL)

21 if n.isAPI() then
22 I BAPI ← I Bin [API]

IBin containing plot1!=null and using the computation in line 13 of Algorithm 1, we get the
outgoing implicit belief set IBout to be plot1!=null and cplot!=null. Since the next node in CFG
(Figure 2 line 6) is an API, we extract the relevant condition plot1!=null (lines 14–15).

2.3.2 Null Dereference (ND). Once a variable is dereferenced to invoke a method or access a
field, that code element is recognized by this component. Algorithm 2 derives the implicit belief
that the variable can not be null. In Figure 5 line 3, the variable rangeAxis is dereferenced to
invoke a method. Then this node is used to derive the implicit belief that rangeAxis is non-null
following the rules from Algorithm 2 lines 3–5. To invalidate the propagation of this implicit belief
a re-assignment of the same variable needs to occur (lines 6–9) in a successor node of the CFG.
In the given example (Figure 5), this does not occur. Therefore, it is safe to propagate the implicit
belief until we reach the API node plot.getRangeAxisIndex(rangeAxis) in line 9 of Figure 5. In
lines 14–15, Algorithm 2 stores the implicit belief rangeAxis!=null because it is a guard condition
for this API.

2.3.3 Type Comparison (TC). The algorithm for this component is shown in Algorithm 3. If an
object is checked whether it is an instance of some class, it indicates the code element needed for
this component. In Figure 6 line 4, we observe such a check. In our current solution, we only look
for instanceof checks as part of condition expressions of if statements. More sophisticated static
analysis could be used to track the flow from any instanceof expressions into the conditions
guarding API calls. According to Algorithm 3 line 3, this node will return true for the CFG built from
the method getChartViewer() in Figure 6. The node is used to derive the implicit belief that axis

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:12 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

1 protected void drawSecondaryPass(...) {
2 ...
3 double tY1 = rangeAxis.valueToJava2D(...);
4 if (getItemShapeVisible(series, item)) {
5 Shape shape = getItemShape(series, item);
6 ... }
7 double xx = tX1;
8 ...
9 int index = plot.getRangeAxisIndex(rangeAxis);
10 ... }

Fig. 5. Example for Null Dereference code element.

is not null. In Algorithm 3 line 4, we see the derivation of this implicit belief in ib that sets GEN for
the node. KILL is empty as this does not invalidate any implicit belief. To invalidate this implicit
belief, we need a redefinition of the variable that is present in true branch (Algorithm 3 lines 8–12).
The implicit belief does not hold outside the true branch (Algorithm 3 lines 16–17). If the node is in
true branch and it does not involve a re-assignment of the same variable, e.g., line 5 of Figure 6, then
the implicit belief is safe to propagate as shown in Algorithm 3 line 18. In this example (Figure 6
line 5), the next node in CFG being an API method call node plot.getRangeAxisIndex(axis),
receives the implicit belief that axis is non-null, hence it is extracted as a condition of the API
(lines 19–20).

1 public String getChartViewer(...) {
2 ...
3 ValueAxis axis = plot.getRangeAxis();
4 if (axis instanceof NumberAxis) {
5 int i = plot.getRangeAxisIndex(axis);
6 ... }
7 ... }

Fig. 6. Example for Type Comparison.

2.3.4 Count Controlled Loop (CCL). The count
control loop initializes the counter with an initial
value and increases/decreases it after each iteration,
while the guard condition is still satisfied. The ini-
tialization and updater of the loop counter together
are the code elements necessary for this component.
Depending on the fact whether the loop counter is
increased/decreased, the algorithm derives the im-
plicit belief that loop counter is greater/less than or
equal to the initial value (line 6 of Algorithm 4). In
method getOLSRegression() in Figure 1, the code
element for this component is recognized in line 7. The initializer sets counter i to 0 and the updater
increments it by 1. Therefore, our algorithm derives the implicit belief that i ≥ 0 (Algorithm 4 lines
4–6). In this case, the belief should not be propagated to any path that is outside the scope of the
loop (Algorithm 4 lines 18–19). Another factor to invalidate the implicit belief is the re-assignment
of the loop variant. It is checked in lines 10–14 of Algorithm 4, and implicit belief is not propagated
if the decision holds. In the example shown in Figure 1, the next node of the CFG is within the
scope of the count controlled loop and no re-assignment is present, therefore the implicit belief
i ≥ 0 is propagated to the method call node at line 8 of the figure. Since the node is an API call,
Algorithm 4 stores the belief as an extracted condition for the API (lines 21–22).

2.3.5 Short Circuit Evaluation (SCE). This component focuses on a decision node consisting of at
least two operands joined by a boolean operator. The semantics of these boolean operators indicates
that the second argument is evaluated only if the first argument does not suffice to determine the
value of the expression and so on. That is, in ‘e1 && e2’ or ‘e1 | | e2’, where e2 calls an API and
there is no short-circuit, e1 or !e1 will be the guard condition of the API call, respectively. Line 2

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:13

Algorithm 5: Short Circuit Evaluation
Input: CFG, API
Output: Implicit beliefs, I BAPI

1 foreach node n in topological order in CFG do
2 if n is conjunction or disjunction then
3 op ← n.Operator
4 l ← n.LeftOperand
5 r ← n.RightOperand
6 GEN ← deriveIB(op , l)
7 I Bin [r]←

⋂
p∈r .Pred I Bout [p]

⋃
GEN

8 if r .isAPI() then
9 I BAPI ← I Bin [API]

Algorithm 6: Local Exception
Input: CFG, API
Output: Implicit beliefs, I BAPI

1 foreach node n in topological order in CFG do
2 if n throws an exception then
3 e ← n.Exception
4 if e is a local exception then
5 дc ← getGuardCondition(n)
6 if API call is in same branch as n then
7 I BAPI ← {r emove (дc) }

8 else
9 I BAPI ← {r emove (!дc) }

of Algorithm 5 detects such code element, e.g., in lines 3–4 of Figure 7. It extracts the operator
and operands from the boolean expression. As these code elements are recognized, the derived
implicit belief refers to the fact that the left operand being true/false depending on the boolean
operator, is the precondition of the expressions in the right operand. In the example in Figure
7, the boolean operator is conditional AND, which means in line 6 of Algorithm 5, the derived
implicit belief is that reader.getEventType() must be equal to PROCESSING_INSTRUCTION in
order to evaluate the right operand. Since the derived implicit belief is only effective in the right
operand of the boolean expression, it is not propagated to IBout . In our current implementation,
we assume that the expressions in the boolean expression of the node are side-effect free. Thus, it
is not necessary to maintain KILL. If the right operand contains an API method invocation, the
implicit beliefs are extracted as preconditions (Algorithm 5 lines 8–9). In Figure 5 line 4, the right
operand reader.getPItarget()!=null contains an API call, therefore the implicit belief that we
derived is that the left operand is true, i.e., reader.getEventType()==PROCESSING_INSTRUCTION
is a guard condition of the API call.

1 private void preProcess(...) throws IOException {
2 ...
3 if(reader.getEventType() == PROCESSING_INSTRUCTION
4 && reader.getPITarget() != null) { ...
5 ... }
6 ... }

Fig. 7. Example for learning Implicit Belief in Conjunctions
and Disjunctions.

2.3.6 Local Exception (LE). In this
component, the code element to look for
is an explicit guard condition check fol-
lowed by throwing local exception. Lo-
cal exception can be identified automat-
ically if the exception is not a runtime
exception thrown by the language, nor
an API-specific exception. From a throw
statement we extract the exception (Al-
gorithm 6 lines 2–3) and then perform a
check to confirm if it is a local exception.
The check is performed automatically in
two steps. First, we check if the exception is a runtime exception thrown by the underlying language.
If not, we further check the API signature to confirm the exception is not an API-specific one.
Recognition of both these elements enables us to derive the implicit belief that gc is project-specific,
therefore should not be used to extract a guard condition as shown in Algorithm 6 lines 4–6. In Fig-
ure 1, line 3 contains a condition n<2 that guards a non-runtime exception, RegressionException,
thrown in line 4. In line 8, the API call getXValue() of our interest does not throw the exception

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:14 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

RegressionException according to its signature. Therefore, we derive our implicit belief that the
exception is local regarding the call getXValue() and the guard condition is irrelevant to the API.
An API call can be present in the true branch (e.g., printing the location of the exception) or the
false branch of the guard condition (e.g., subsequent nodes in CFG if the exception is not thrown).
Depending on this fact, we consider the guard-condition itself (lines 6–7), or the negation of the
condition (lines 8–9) respectively as irrelevant, if our algorithm identifies a local exception.

2.4 1-Level Control Flow Analysis (1-CFA)

1 public void computeRegression(XYDataset data) {
2 int series = data.getSeriesCount();
3 ...
4 for (int i = 0; i < series; i++) {
5 regression = getOLSRegression(data, i);
6 ... }
7 ... }

Fig. 8. Example of Caller computeRegression() con-
taining context sensitive Callee getOLSRegression().

To scale to mine preconditions from a large
code corpus, usage-based mining techniques,
such as [Nguyen et al. 2014], extract the condi-
tions within the same procedure calling the API.
If the conditions appear in the calling context
of the procedure, i.e., its callers, they are not
available for those intra-procedural techniques
to mine. This can be another challenge while
handling sparse data usage. To consider multi-
level context in case of usage-based approaches
could be very expensive, if large source code
corpus is involved. However, addition of single
level context sensitivity can allow usage-based approach to consider calling context while pro-
cessing the target procedure to mine preconditions and still maintain feasibility to process big
code.
To find out the calling context in an object-oriented language, the target of the function call

object.method() depends on the value that flows to the expression object. The value problem “To
which values may the expression m() evaluates?” is an undecidable problem. In this circumstance,
we use the class of algorithms known as k-Level Control Flow Analysis (k-CFA) to solve this
value problem in a conservative way [Shivers 1991]. The CFA algorithms compute conservative
over-approximations, i.e., if a CFA says that the procedure m() is invoked at some call site, then
it may be invoked at that call site. If m() can’t actually be invoked, then it is a false positive. We
use similar concept to build a dictionary consisting of callee–caller mapping, where map stores
callers corresponding to a callee. We consider only single level context sensitivity, which is similar
to 1-CFAs. However, our 1-CFA algorithm by being conservative in static analysis, may lead to
overestimation of preconditions due to infeasible paths, path-sensitivity, etc. In Algorithm 7, lines
1–2 build this dictionary for each project p given a dataset P . Next, in lines 3–4 of the algorithm, a
control flow graph is built for each methodm.
In Figure 1, for the API of interest getXValue(int, int) in line 8, we observe that the first

parameter of the API can be found in caller procedure. Therefore usage-based mining technique can
not mine any precondition related to this API component from the procedure getOLSRegression
(XYDataset, int) defined in lines 1–11 of the figure. In this component we consider only direct
callers of the callee reflecting the notion of single level context sensitivity. We consider both implicit
beliefs and explicit conditions available in the calling context to mine preconditions for the callee
that contains the API call.
In Algorithm 7, while traversing each CFG д of a method (lines 5–12) to mine preconditions

using implicit beliefs and explicit conditions, it first extracts explicit conditions and implicit beliefs
from the callee method itself (lines 7–8). Then our algorithm further does an optimization to
confirm if context information is necessary. In example shown in Figure 1, we see that we need
the context information for the API method call getXValue(), as the first parameter series

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:15

of the API corresponds to the second formal parameter by the same name of callee method
getOLSRegression(). In such cases, Algorithm 7 uses the dictionary to get the set of callers for
this callee in line 9. Say we have a caller computeRegression(XYDataset) shown in Figure 8 that
contains the callee method getOLSRegression() in line 5. We are interested in the context of the
parameter i from the caller as it is passed to the formal parameter series of the callee method. For
this caller, our algorithm first extracts the explicit guard condition, i < data.дetSeriesCount (), and
adds it to the set of explicit conditions mined for the API (Algorithm 7 line 7). Next we observe that
the callee getOLSRegression() is called inside a count controlled loop (Figure 8 lines 4–6), where
the loop variant i is initialized to zero and increases until the guard condition is true. Therefore, in
line 11 the algorithm derives the implicit belief i ≥ 0. Finally, both these conditions coming from
explicit conditions and implicit beliefs (ECAPI

⋃
IBAPI) are retained, as they are relevant to the API

of interest (line 12). Any conditions that are not related to API call’s receiver or parameters are
considered irrelevant and, thus, are removed.

3 EMPIRICAL EVALUATION

Algorithm 7: 1-Level Control Flow Analysis
Input: Collection of projects P
Output: Extracted conditions C

1 foreach project p ∈ P do
2 D ← buildDictionaryOfCallerCallee(p)
3 foreach method m in p do
4 G[m]← buildCFG(m)

5 foreach method m in p, m calls API do
6 д = G[m]
7 ECAPI ← extractEC(д, API)
8 I BAPI ← deriveIB(д, API)
9 foreach c ∈ D .getCallers(m) do

10 ECAPI ← ECAPI
⋃

extractEC(G[c],m)
11 I BAPI ← I BAPI

⋃
deriveIB(G[c],m)

12 C ← removeIrrelevant(ECAPI
⋃
I BAPI)

This section presents our experiments and re-
sults on evaluating the precision and recall of
the mined preconditions using our approach
(Section 3.2) and the characteristics of the
mined preconditions (Section 3.3). This section
also shows the contributions of each compo-
nent in our approach in improving the mining
results (Section 3.4).

3.1 Data Collection
3.1.1 Code Corpus. Like any data driven ap-

proach, the experimental result of mined pre-
conditions is dependent upon the quality of
source code corpus that is used. We have used a
large code corpus [Allamanis and Sutton 2013]
consisting of 14,785 projects. The large code
corpus is curated using Github’s social fork sys-
tem in a way to isolate the low quality projects
that are rarely forked. The authors [Allamanis
and Sutton 2013] have also mentioned that among the collected projects they have manually
excluded projects that share common commit SHAs. This ensures excluding projects that are likely
to be forked from other original projects. The corpus contains over 350 million lines of source code
where only files written in Java language are considered. Figure 9a shows the complete statistics
of the used datasets. The dataset includes in total 1,212,124 API methods calls (Figure 9b) from 7
different libraries of interest.

3.1.2 Libraries of Interest. There are some JDK libraries (e.g., javax.xml) that are used less
frequently than some other common JDK (e.g., java.io) libraries. Besides such libraries, non-JDK
libraries are also less frequently used and less studied compared to popular JDK libraries. These
non-JDK libraries can directly depend on JDK libraries and other non-JDK libraries. Let us use the
term leaf library to denote a library that depends only on JDK libraries and itself. To determine
the specifications for leaf libraries, it is sufficient to look at the classes of the library and JDK
classes it may use. The non-leaf libraries can depend on any JDK or non-JDK, leaf/non-leaf libraries

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:16 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

Projects 14785
Total Source Files 1938865
Total Classes 2442288
Total Methods 17378637
Total SLOCs 352312696
Total Method calls 69374374

(a) Dataset statistics.

Library Calls Preconditions
org.jfree.chart (CHART) 35033 169
org.jfree.data (DATA) 16671 125
org.apache.commons.math (MATH) 34010 20
javax.swing (SWING) 479373 20
org.eclipse.swt.widget (SWT) 328174 56
weka.core (WEKA) 44047 28
javax.xml (XML) 274816 48

(b) Library API usages and ground truth.

Fig. 9. Dataset, library API usages and ground truth.

making those more complex in nature and in terms of building specifications. Therefore we
concentrated on building the oracle for only leaf libraries in comparison to other non-JDK, non-leaf
libraries. Another criterion of choosing the libraries from this list is that the chosen libraries
achieve different purposes in general such as chart management, mathematical computation,
graphical interface, machine learning computation, etc. All the chosen libraries are open-source,
which is another necessity for us to build the ground truth consisting of preconditions for these
libraries. In this experiment, we have chosen 2 JDK and 5 non-JDK leaf libraries. These libraries are:
org.jfree.chart (CHART), org.jfree.data (DATA), org.apache.commons.math (MATH), javax.swing
(SWING), eclipse.swt.widget (SWT), weka.core (WEKA), and javax.xml (XML). We use the short
form of the library names throughout rest of the paper.

3.1.3 The Ground-truth. To determine the accuracy of the mined preconditions from our ap-
proach, we built the ground-truth of preconditions for the most frequently-used API methods from
the 7 chosen libraries. The top APIs for each library is determined by the number of times they are
called within the dataset. We examined the documentation and implementations of the APIs of inter-
est and any related APIs in the same class or project if needed to come upwith their preconditions. In
case of interface or abstract class, we use the idea of supertype abstraction [Leavens andWeihl 1995]
to deduce the preconditions of APIs. We examined the available classes implementing those inter-
faces or abstract classes instead to determine the required preconditions. The implementing classes
provide the means to statically determine all possible preconditions for each API method call. The
idea is that if a precondition for an API is true for all implementing classes, then that precondition
can be considered as the precondition of the API in the interface or abstract class. The ground-truth
and supplemental materials are available here: https://samanthasyeda.github.io/oopsla2017/.

3.2 Accuracy
We ran our approach on the dataset described in Section 3.1. Mined preconditions are compared with
the ground-truth to determine the accuracy of the result in terms of precision and recall. Precision
is the ratio between the number of true positive preconditions and the number of total mined
preconditions. Recall is the ratio between the number of true positive preconditions and the number
of total expected ones. The usage-based mining approach without using implicit beliefs [Nguyen
et al. 2014] is used as the base case to show the absolute and relative improvement we achieve. The
components for inferring implicit beliefs added to traditional usage based mining are the following:
object instance creation, type comparison, null dereference, count-controlled loop, short circuit
evaluation and local exception, and 1-level control flow analysis.
Figure 10 shows the absolute values and relative improvements in precision and recall for 7

libraries. Our approach achieved precision from 21%–88% and recall from 39%–100%. Overall, the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

https://samanthasyeda.github.io/oopsla2017/

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:17

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

120.00%	

140.00%	

CHART	 DATA	 MATH	 SWING	 SWT	 WEKA	 XML	 Overall	
Precision	

ABSOLUTE	

RELATIVE	

(a) Precision and improvement.

0.00%	

20.00%	

40.00%	

60.00%	

80.00%	

100.00%	

120.00%	

140.00%	

CHART	 DATA	 MATH	 SWING	 SWT	 WEKA	 XML	 Overall	Recall	

ABSOLUTE	

RELATIVE	

(b) Recall and improvement.

Fig. 10. Precision and recall of our approach using implicit beliefs on 7 libraries. The blue bars show the
absolute precision/recall and the red bars show the relative improvement over the base approach.

precision and recall of our approach are high: 60% and 69%, respectively. The accuracy was improved
on all libraries and overall by 32% in precision and 78% in recall.

3.2.1 Performance by Popularity of Library. Next we observed the 7 libraries of interest to analyze
the performance of the APIs of these libraries. Among these 7 libraries, we consider SWING, SWT,
XML as more popular libraries and CHART, DATA, MATH, WEKA as less popular libraries as
per their usages in Figure 9b. The libraries are categorized this way to compare the performance
between the more and less popular libraries (Figure 10). We observe that for the popular libraries
such as SWING, SWT, XML, we achieve a higher relative improvement in precision that ranges from
35%–50%. Comparatively, for less popular libraries (CHART, DATA, MATH, CORE), we also achieve
a good relative improvement that ranges from 6%–47%. In terms of recall, for more popular libraries,
the relative improvement is from 47%–124% and for less popular libraries, relative improvement is
within the range of 30%–85%. We observe that for more popular libraries SWING and SWT, we have
significant relative improvement compared to their less popular library counterparts. For SWING
and SWT, we achieve 35%–41% relative improvement in terms of precision and 120%–124% relative
improvement in terms of recall. Although for the remaining more popular library XML, with a
high relative improvement in precision (50%), we achieve comparatively low relative improvement
(47%) in terms of recall.

3.2.2 Performance by Data Size. As any data-driven approach, our technique might be affected
by the size of the data used in mining. Thus, we performed an experiment to analyze our approach’s
accuracy with respect to the increasing sizes of mining data. We also compared with the usage-based
mining approach. To accomplish this process, we have created several datasets of size S by randomly
dividing the projects from full dataset of 14,785 projects. To enable a fair division of projects, the
dataset are divided into bins having the same number of S projects where S = 2i (i = 9..0). For
each value of i , we ran our approach on all the bins of data and measured the performance via the
average precision and recall for all the bins. Then, by decreasing i , we have increased the dataset
until reaching the full size of the dataset.

Table 1 and Table 2 show the accuracy of our approach running on CHART and SWING, respec-
tively. Due to space limit, we have chosen these two libraries as a representative of sparse and
popular libraries in our dataset. As expected in Table 1, the recall of our approach increases from
4% to 53% as more source code is added, because the approach encountered more API usages and
was able to derive preconditions of the APIs from implicit beliefs. The precision of our approach
decreases from 100% to 73% as data’s size is increased. Importantly, despite that the accuracies of
our approach and the base approach have the same trend, the recall and precision of our approach

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:18 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

Table 1. Accuracy comparison on org.jfree.chart library with progressive dataset.

Data Size
Full/512 Full/256 Full/128 Full/64 Full/32 Full/16 Full/8 Full/4 Full/2 Full

Precision Base 100% 94% 85% 79% 77% 75% 73% 72% 70% 69%
Ours 100% 98% 92% 87% 84% 81% 80% 77% 74% 73%

Recall Base 0% 5% 11% 17% 23% 29% 34% 37% 39% 40%
Ours 4% 12% 22% 28% 34% 41% 46% 49% 51% 53%

Table 2. Accuracy comparison on javax.swing library with progressive dataset.

Data Size
Full/512 Full/256 Full/128 Full/64 Full/32 Full/16 Full/8 Full/4 Full/2 Full

Precision Base 100% 87% 77% 67% 58% 54% 50% 45% 41% 38%
Ours 96% 86% 78% 71% 66% 62% 59% 55% 53% 51%

Recall Base 5% 8% 11% 18% 23% 25% 28% 32% 36% 40%
Ours 15% 25% 34% 44% 54% 59% 67% 76% 83% 89%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Full/512 Full/256 Full/128 Full/64 Full/32 Full/16 Full/8 Full/4 Full/2 Full

F-score base F-score combined

(a) Chart

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Full/512 Full/256 Full/128 Full/64 Full/32 Full/16 Full/8 Full/4 Full/2 Full

F-score base F-score combined

(b) Swing

Fig. 11. Mining performance with progressive data size.

are always better than that of the base one. In case of SWING in Table 2, we observe a trend that
almost resembles to the case of CHART. That is, our approach gains more in terms of precision and
recall compared to the base approach. Interestingly, only for SWING library, the approach with
Full/512 dataset achieves only 96% in precision. We observed that although our approach extracts
more true preconditions initially with a smaller dataset compared to base approach, it also mines
some stronger conditions within the bins. The type of stronger conditions our approach mines
is explained in details in Section 3.3.2. In the base approach, the smaller bins contain less false
positives than what our approach mined.
We have considered F-score to aggregate precision and recall for both usage-based and our

combined approach. F-score is defined as the harmonic mean of precision and recall. It is computed
as F -score = (2 × Precision × Recall)/(Precision + Recall). Figure 11a and 11b shows the result
of F-score of usage-based and our approach respectively for CHART and SWING libraries. The
harmonic mean for base approach increases from 0% to 51% and for our approach 8% to 61% for
CHART library. In case of SWING library harmonic mean for base approach gained from 10% to
39% where as our approach again starts from a higher value 26% and increases up to 65%. As seen
in Figure 11a and 11b, our approach gains significantly in F-score when dataset size is increased.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:19

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

Full/512 Full/256 Full/128 Full/64 Full/32 Full/16 Full/8 Full/4 Full/2 Full

Relative Improvement

(a) Chart

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

Full/512 Full/256 Full/128 Full/64 Full/32 Full/16 Full/8 Full/4 Full/2 Full

Relative Improvement

(b) Swing

Fig. 12. Mining relative improvement with progressive data size.

Relative Improvement.We have also analyzed the relative improvement of accuracy when more
data was added. As seen in Figure 12a and Figure 12b, the relative improvement overall ranges
from 20% to 105% for the CHART library while that for the SWING library ranges from 68% to 168%.
When the dataset is smaller, the relative improvement in accuracy for all the libraries is higher. The
reason is that when the data size starts increasing, much more implicit beliefs are derived, leading
to high relative improvement. However, the relative improvement slowly decreases as the dataset
size progressively increases further. The reason is that after certain data’s size, adding more data,
the additional implicit beliefs did not add much more knowledge than the beliefs gained from the
smaller dataset.

3.3 Analysis on the Characteristics of Mined Preconditions
We studied the characteristics of the preconditions that were correctly-mined, incorrectly-mined
and missing from our approach.

3.3.1 Correctly Mined Preconditions. For the APIs in our dataset, correctly mined preconditions
falls into three categories: null comparison, primitive comparison and method invocation. The first
one contains simple preconditions of comparing arguments with null: ARG!=null. The precondi-
tions in the second category contains arguments of primitive types being compared to constants
or other primitive arguments such as ARG1>=0 and ARG1<=ARG2. The last one containing method
calls, on receivers such as !Receiver.hasNext() or on arguments such as !ARG.isEmpty() or
on both. Table 3 shows the numbers of preconditions for each category correctly mined from the
base approach and the additional ones from our approach using implicit beliefs. The numbers in
parentheses are the percentages over all expected preconditions in the corresponding category.

The result shows that our approach is able to mine additional preconditions that were missed by
the base one in all three categories. However, the improvement was mainly in simpler preconditions
which involve comparing arguments against null or comparing between primitive values. This is
due to the fact that the code elements mostly contain implicit beliefs for inferring those kinds of
preconditions. Three in six of the implemented components, Object Instance Creation (OIC), Type
Comparison (TC) and Null Dereference (ND), look for non-null property of API components. Our
approach mined these preconditions for the chosen libraries (Table 3) when related implicit beliefs
are present. Count-controlled Loop (CCL) component only infers the conditions checking the
index/counter of the loop against its bounds. Local Exception (LE) could only remove incorrectly-
mined preconditions but not add correctly-mined ones. Short Circuit Evaluation (SCE) is the only
component that could infer new complex preconditions involving multiple API components. We
will show the details of improvements from each component in Section 3.4.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:20 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

Table 3. Categories of correctly-mined preconditions.

Library
Preconditions from Base Approach New Preconditions from Implicit Beliefs

Non-null Primitive Method Non-null Primitive Method
Comparison Comparison Invocation Comparison Comparison Invocation

CHART 57 (34%) 9 (5%) 3 (2%) 13 (8%) 6 (4%) 2 (1%)
DATA 19 (15%) 7 (6%) 14 (11%) 7 (6%) 23 (18%) 5 (4%)
MATH 0 (0%) 2 (10%) 9 (45%) 0 (0%) 9 (45%) 0 (0%)
SWING 0 (0%) 0 (0%) 8 (40%) 1 (5%) 9 (45%) 0 (0%)
SWT 5 (9%) 0 (0%) 5 (9%) 7 (13%) 2 (4%) 3 (5%)
WEKA 2 (7%) 0 (0%) 12 (43%) 1 (4%) 4 (14%) 3 (11%)
XML 0 (0%) 0 (0%) 19 (40%) 5 (10%) 0 (0%) 4 (8%)
Overall 83 (18%) 18 (4%) 70 (15%) 34 (7%) 53 (11%) 17 (4%)

3.3.2 Incorrectly Mined Preconditions. We have examined the incorrectly mined preconditions
to find out the reason behind the occurrences of such conditions. Table 4 shows these categories of
incorrectly mined preconditions for different libraries.

The first category contains incorrectly-mined preconditions which are stronger than required.
For example, API parse(InputSource, DefaultHandler) in class javax.xml.parsers.SAXParser
parses the InputSource parameter using the specified DefaultHandler parameter. It makes sense
from usage point of view to not pass an null default handler. Through using implicit belief, the
approach will also mine the precondition that the second parameter cannot be null. However, that
condition is not required by API and, thus, introduces the incorrectly mined precondition. These
cases increases the number of stronger preconditions compared to the base usage-based mining
approach and, therefore, increases the number of preconditions incorrectly mined by our approach.
For the libraries CHART, DATA and SWING, we have results with additional stronger conditions
compared to the usage-based mining approach.

Table 4. Categories of incorrectly-mined pre-
conditions.

Library Total Stronger Weaker Specific
CHART 33 16 4 13
DATA 12 6 2 4
MATH 17 2 0 15
SWING 16 2 2 12
SWT 3 2 0 1
WEKA 29 15 2 12
XML 109 19 0 90
Overall 219 62 10 147

We also observed incorrectly-mined preconditions
which are weaker than required. For example, the
mined preconditions is ARG!=-1while the required one
is ARG>=0. However, all of these weaker preconditions
came from the explicit guard conditions present in the
code instead of from implicit beliefs.
Another major type of incorrect conditions in our

result is the project-specific conditions. To some ex-
tent, they are also stronger than needed. However, we
put them in a separate category because these mined
preconditions are only frequent in certain projects. As
some APIs do not have rich use cases across multiple
projects, many project-specific conditions were consid-
ered as preconditions for these APIs. Result on XML library suffers from this the most. We examined
and found that most of the call sites in the dataset calls the APIs for a document, until reaching the
end of the document. Hence conditions such as hasnext() or !isEndDocument() is not part of
specification for most of the APIs of this library, but are frequently present before the calls of the
APIs due to the access pattern.

Despite that, our implicit belief from local exception component successfully removed the
conditions guarding project-specific exceptions, thus lowered the number of incorrect preconditions
from project-specific conditions.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:21

3.3.3 Missing Preconditions. Although our approach was able to detect more preconditions
through implicit belief compared to existing usage-based mining approach, we still miss precon-
ditions. We have analyzed the missing classes of preconditions that our approach was unable to
find given the dataset we have used for 7 libraries of interest. We found that we did not miss any
preconditions that the base approach could mine. We have mainly observed three categories of
missing preconditions shown in Table 5.

Table 5. Categories of missing preconditions.

Library Total No Check Infrequent Private
Exception Sem Guarantee Intentional Unintentional
Handling No Exception Throw Throw

CHART 79 14 40 11 6 8 0
DATA 49 3 31 9 2 4 0
MATH 0 0 0 0 0 0 0
SWING 2 2 0 0 0 0 0
SWT 34 7 22 3 0 2 0
WEKA 6 0 3 0 0 1 2
XML 20 5 12 0 0 3 0
Overall 190 31 108 23 8 18 2

No Check. The first category of missing cases is those preconditions that do not appear explicitly,
or implicitly at all in the code corpus before calling the APIs. The absence of such preconditions
are mainly caused by four factors:

• Exception Handling: Sometimes, programmers might be unsure about the preconditions of the
APIs, thus, they would surround API calls with try statements and catch clauses to handle the
exceptions. This is often the reason why code corpus does not have the necessary preconditions
for APIs before calling.
• Semantics Guarantee No Exception: Sometimes, developers are well aware that the domain seman-
tics of their project guarantees that certain preconditions of an API always hold. For example, if
they know the files are always non-empty then, the list of lines read from the files are always
non-empty too. Therefore, accessing first element of the list is always possible. In such cases,
checking whether precondition is met before calling the API becomes extraneous, resulting in
the absence of such preconditions.
• Intentional Throw Exception: Programmers often use test cases to ensure code correctness. In
such scenario, programmers may intentionally provide cases where the API will surely throw
exception. The exceptional cases will confirm the programmer the code behavior is correct. These
types of cases usually do not contain any preconditions before calling the API.
• Unintentional Throw Exception: The other subcategory that we observed in our code corpus is that
programmers incorrectly used the APIs without checking the required preconditions. Incorrect
usage of any API results in throwing exceptions. This type of buggy code does not contain the
required preconditions.

Infrequent usages. Those preconditions are present in the client code but not frequent enough to
be considered as correct preconditions by the mining technique.
Private members. The final category belongs to the type of preconditions involving private/inter-
nal members of the APIs, which cannot be accessed outside the implementation of the APIs. They
are, therefore, not possible to be observed in the client before calling the API.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:22 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

Table 6. Relative improvement in precision and recall for single components for 7 libraries.

Component Precision Recall
CHART DATA MATH SWING SWT WEKA XML CHART DATA MATH SWING SWT WEKA XML

Type Comparison (TC) 3% 0% 0% -9% 12% 0% 34% 9% 0% 0% 5% 40% 0% 42%
Object Instance Creation (OIC) 2% -1% 0% -9% 10% 5% 34% 17% 10% 0% 5% 30% 7% 42%
Null Dereference (ND) 3% 1% 0% -9% 7% 5% 29% 9% 2% 0% 5% 20% 7% 37%
Short Circuit Evaluation (SCE) 3% 1% 16% 9% 12% 5% 5% 3% 1% 27% 9% 25% 25% 5%
Count-Controlled Loop (CCL) 2% 10% 32% 45% 7% 0% 26% 2% 71% 64% 111% 20% 43% 0%
Local Exception (LE) 2% 2% 7% 0% 23% 2% 11% 0% 0% 0% 0% 0% 0% 0%

3.4 Effectiveness of Single Components
The previous experiments have shown that, our approach with six implemented implicit beliefs and
1-level control flow analysis (1-CFA) overall improves the precondition inference result in terms of
precision and recall. In this section, we analyze the effectiveness of each component individually.
Table 6 shows the improvements of each component in precision and recall, respectively. In general,
every component helps improve the recall of the usage-based approach. The improvement could
be as high as 110% with count-controlled loop on SWING. Most of the times, every component
also helps improve the precision except for the 4 cases of three components on SWING and OIC
component on DATA. Over the six libraries, XML and SWT benefit the most in both precision and
recall. Now, let us present detailed results of two components CCL and OIC which are representative
for two trends: improving in both precision and recall, and improving in recall with some decrease in
precision, respectively. Detailed results for other components and analysis is present in Appendix A.1
for interested readers.

3.4.1 Count Controlled Loop (CCL). This result shows the trend that we observed by some of
the components when our approach gains in both precision and recall. This component observes
the loop variant to infer the loop invariant and propagate this belief as a precondition. The result in
Figure 13 shows that in terms of the precision, our approach achieves 2%–45% relative improvement
and in terms of recall 2%–111% relative increase for CHART, DATA, MATH, SWING, SWT, WEKA
libraries. The count-controlled loop component deduces implicit beliefs related to the upper or
lower bounds of the loop. This helps to infer loop invariant preconditions and increases the recall
as seen in the result. Our approach also achieves the improvement in terms of precision because the
approach only mines true positive conditions and did not introduce new false positives. The result
on XML was not improved compared to the base approach, as the APIs of interest for this library
were not called inside a count-controlled loop in our dataset. We have observed that most APIs
from this library were called inside the condition-controlled loop if the loop is involved, which is
out of context for this component.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(a) Relative improvement in precision.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(b) Relative improvement in recall.

Fig. 13. Accuracy of Count Controlled Loop (CCL).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:23

3.4.2 Object Instance Creation (OIC). Once an object is instantiatedwith a constructor, it becomes
a non-null entity. These type of implicit belief generates non-null related preconditions. The
expectation is to get more preconditions indicating that a component of the API could be non-null.
Figure 14a shows that precision is increased by 2%–34% whereas Figure 14b shows recall increased
by 7%–42% for CHART, SWT, WEKA and XML libraries. The addition of more true positive
preconditions gives better recall and it helps increase the precision as well. In the cases of the
libraries DATA and SWING, we see a decrease in precision by 1% and 9% respectively. The reason
behind this is the mining of false positive conditions related to some APIs. We have examined such
false positives and came to the conclusion that these false positives are stronger conditions than
necessary, e.g., the API Document.insertString(int, String, AttributeSet) from the text
package of SWING library permits insertion of a null string. However, from a programmer’s point
of view, it is logical to pass a non-null string to write into a document. In terms of recall, for both
libraries DATA and SWING, our approach has an increase of 10% and 5%, respectively. In the case
of the MATH library, we do not see any improvement for this component. This is because the APIs
from this library do not have any null-related preconditions.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(a) Relative improvement in precision.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(b) Relative improvement in recall.

Fig. 14. Accuracy of Object Instance Creation (OIC).

3.4.3 1-Level Control Flow Analysis (1-CFA). If a parameter of a procedure is directly passed to
an API, the existing mining approach cannot the mine precondition for that API due to the absence
of the calling context. Performing single level context sensitive analysis to infer preconditions for
such cases can benefit in mining preconditions. This component takes advantage of both implicit-
belief-related conditions and explicit conditions from the caller methods if such conditions are
within context. For all libraries of interest, our approach is able to improve mining accuracy in
terms of both precision and recall. The detailed result is shown in Figure 15.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(a) Relative improvement in precision.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(b) Relative improvement in recall.

Fig. 15. Accuracy of 1-Level Control Flow Analysis (1-CFA).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:24 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

CHART DATA MATH SWING SWT WEKA XML Overall

(Baseline + Beliefs) over Baseline (Baseline + CFA) over Baseline
(Baseline + CFA+ Beliefs) over Baseline

(a) Comparison in precision.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

CHART DATA MATH SWING SWT WEKA XML Overall

(Baseline + Beliefs) over Baseline (Baseline + CFA) over Baseline
(Baseline + CFA+ Beliefs) over Baseline

(b) Comparison in recall.

Fig. 16. Comparison of 1-Level Control Flow Analysis (1-CFA), Beliefs with respect to baseline approach in
terms of precision and recall for 7 different libraries of interest.

We have also studied whether the CFA component can retrofit with the base approach and if yes
to what extent. We built the models under study including (Baseline + Beliefs), (Baseline
+ CFA), (Baseline + CFA + Beliefs), and ran them on all libraries to compare the accuracies
against the base approach. Figure 16 shows the result of this comparison. The base approach
combined with implicit beliefs can increase precision by 4%–30% and recall by 20%–67%. Afterwards,
in place of implicit-belief-related addition, we ran the experiment only with the CFA component
on top of the base model to demonstrate the improvement achieved by only this component. The
retrofitted approach achieves improvement by 2%–14% in precision, and by 7%–30% in recall. It is
evident from these results that CFA helps compared to only using the baseline approach, but the
gain in accuracy is lesser than what we achieve when only implicit belief is used. Finally, we ran
an experiment with the addition of both implicit belief components and CFA to differentiate the
gains that our approach can achieve with both components. In this case, precision is increased by
6%–32% and recall by 30%–78%. This helps us conclude the fact that using both types of components
further increases the accuracy. However, the preconditions mined by these two different types of
components incorporate some overlapping preconditions.

3.5 Threats to Validity
The chosen dataset and libraries could not be representative. We mitigated this by using a large
dataset of 14,785 projects which were carefully selected and widely used by previous work and
selecting seven libraries from different domains. To verify the accuracy of the mined preconditions,
we have manually built the ground-truth, which is prone to human error. We have implemented and
shown the effects of each single component related to an implicit belief can have and how we can
exploit these implicit beliefs to mine preconditions from code corpus. These single components that
we have chosen might not be standard for all implicit beliefs discussed in our detailed classification.
We have identified the missing classes of preconditions and incorrect cases by studying the call
sites of our used source code corpus.

4 RELATEDWORK
Our work is most related to the error inferring approach by Engler et al. [Engler et al. 2001]. The
authors introduce a technique to collect sets of programmers’ beliefs that are used to check for

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:25

contradictions in source code. They define beliefs as the facts implied in the source code. They also
classify beliefs into two types. MUST beliefs are directly implied in the code and MAY beliefs are
where code features can be mined to suggest a belief from programmers but “may instead be a
coincidence”. For example, a call tom followed by a call to n implies a belief that they must be
paired, but it could be a coincidence. Their technique first mines the MAY beliefs in the source code
and considers a behavior that deviates from the MAY beliefs as a potential bug. In comparison,
in our work, our implicit beliefs belong to the type of MUST beliefs. However, they may not be
directly implied from the code. That is, they might not be directly exposed in the guard conditions.
In those cases, the preconditions do not occur frequently enough for effective mining. This is the
key limitation of the approach by Nguyen et al. [Nguyen et al. 2014], where the authors mine the
preconditions of the APIs as the MAY beliefs by examining the guard conditions in the client code
of the libraries of interest. By analyzing the implicit beliefs, we could complement to the techniques
such as Nguyen et al. [Nguyen et al. 2014], which derives the MAY beliefs in those cases.
There has been rich literature on specification mining and inference [Aleen and Clark 2009;

Dallmeier et al. 2010; Fraser and Zeller 2011; Gabel and Su 2012; Nguyen and Khoo 2011; Renieris
et al. 2004; Rinard and Diniz 1997; Ruthruff et al. 2006; Xie and Notkin 2004]. Regarding the context
of the code considered during specification mining, the existing specification mining approaches are
broadly grouped into two kinds of approaches: usage-based approaches and implementation-based
approaches.
Typical examples of usage-based approaches include [Gruska et al. 2010; Livshits and Zimmer-

mann 2005; Michail 2000; Nguyen et al. 2014, 2009; Ramanathan et al. 2007; Wasylkowski et al. 2007;
Williams and Hollingsworth 2005]. Ramanathan et al. [Ramanathan et al. 2007] analyze call sites of
a method and use path-sensitive, inter-procedural program analysis to mine predicates from these
points. They infer preconditions by collecting the sets of predicates along each distinct path to the
call sites. Then, the predicate sets at the points where the paths merge to capture both control- and
data-flow information are intersected. Preconditions are derived from frequent itemset mining on
the data-flow results and sub-sequence mining on the control-flow results. Other approaches rely
on data mining techniques while using more light-weight static analysis. Gruska et al. [Gruska et al.
2010] mines temporal properties regarding pairs of called methods using a notion of consensus from
6k Linux projects. GrouMiner [Nguyen et al. 2009], JADET [Wasylkowski et al. 2007], Dynamine
[Livshits and Zimmermann 2005], Williams and Hollingsworth [Williams and Hollingsworth 2005],
and CodeWeb [Michail 2000] also mine patterns of pairs of method invocations and graphs of API
elements.
The second kind of approaches is implementation-based. They use either static or dynamic

analysis on the implementation of the API of interest. Cousot et al. [Cousot et al. 2013] use
abstract interpretation to automatically infer preconditions. Buse et al. [Buse and Weimer 2008] use
symbolic execution and inter-procedural dataflow analysis to automatically infer conditions leading
to exceptions. There are also dynamic approaches to mining specifications [Ammons et al. 2002;
Cousot et al. 2011; Dallmeier et al. 2005; Ernst et al. 1999; Gabel and Su 2008; Liu et al. 2006; Lo and
Maoz 2009; Pradel and Gross 2009; Wei et al. 2011; Yang et al. 2006]. Most notable is Daikon [Ernst
et al. 1999] that detects program invariants by running test cases. Wei et al. [Wei et al. 2011]
use programmer-specified contracts in code to infer more complex post-conditions. Weimer et
al. [Weimer and Necula 2005] identify temporal safety rules by looking at exceptional control
paths.

5 CONCLUSION
Although usage-basedmining approach shows promising result to automaticallymine specifications,
the fact that it depends heavily on explicit guard conditions creates the sparse usage problem, if

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:26 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

the call sites do not contain rich and frequent API usage. In this paper, we have proposed usage
of implicit beliefs to leverage such existing automated behavioral specification mining technique
to resolve sparse usage problem. We have discussed capturing language construct and semantics
related facts present in code to enable detection of implicit beliefs. We extract the relevant implicit
beliefs as preconditions of an API in this approach. We have experimented using 2 JDK and 5
non-JDK leaf libraries that suffer from sparse usage problem in our dataset containing over 350
million lines of code and over 1 million API method calls from the chosen libraries. Compared to
the results achieved by base usage-based mining approach, our approach has a relative raise in
precision by 32% and in recall by 78% and reached a precision of 60% and recall of 69%.

A APPENDIX
A.1 Detailed Result and Analysis of Single Components
A.1.1 Type Comparison (TC). If an object is checked whether it is instance of some class and

returns true, then that object is non-null. Using this implicit belief to mine more preconditions,
we see a similar trend in terms of accuracy that we observed in object instance creation (OIC)
component. For some libraries the precision is decreased due to mining stronger conditions than
required. Recall improves for all libraries if the libraries themselves are expecting any non-null
related precondition. The accuracy of this component is shown in Table 6 and the bar charts
depicting the accuracy for this component are shown in Figure 17.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(a) Relative improvement in precision.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(b) Relative improvement in recall.

Fig. 17. Accuracy of Type Comparison (TC).

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(a) Relative improvement in precision.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(b) Relative improvement in recall.

Fig. 18. Accuracy of Null Dereference (ND).

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:27

A.1.2 Null Dereference (ND). If an object is dereferenced and then used by an API, that object
must be non-null. The preconditions that stems from this implicit belief increased recall for the
chosen libraries if the library anticipates non-null preconditions. In terms of precision we see
a slight drop for two libraries as the approach mines stronger non-null related preconditions.
Again we see a similar trend as in other non-null implicit belief related component in the result in
terms of accuracy. The accuracy for this component is reported in Table 6 and the bar charts of
this component are present in Figure 18.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(a) Relative improvement in precision.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

(b) Relative improvement in recall.

Fig. 19. Accuracy of Short Circuit Evaluation (SCE).

A.1.3 Short Circuit Evaluation (SCE). In short circuit evaluation, the evaluation of the second
operands implies a specific value of the first operand. Using this to mine preconditions for APIs that
act as an operand in such expressions we achieved increase in precision and recall for all libraries.
The result follows the trend of previous component and shown in the accuracy Table 6.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

CHART

DATA

MATH

SWING

SWT

WEKA

XML

Overall

Fig. 20. Improvement in precision of Local Excep-
tion (LE).

A.1.4 Local Exception (LE). If a client code
throws a client-specific exception before calling
an API, then the explicit guard condition is irrel-
evant to the API. This implicit belief can help in
removing false positive conditions from the exist-
ing mining based approach, thus can increase the
precision. In Figure 20, we see the relative peak
in precision for 6 libraries by 2%–23%. SWING
achieves the same result as the base approach, as
our approach could not detect any client-specific
exceptions from the usages. Inspecting the call
sites, we have seen that although client-specific
conditions were present in the code corpus we
have used, those conditions do not guard any client specific exceptions. As a result, the approach
was not able to detect such noise for SWING library. Table 6 shows that there is no increase in
recall which is expected as this implicit belief aims to remove false positives only. The result also
confirms that we have not removed any true condition, as there is no decrease in recall.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science Foundation under Grant
No. CCF-15-18897, Grant No. CNS-15-13263, Grant No. CCF-17-23215, Grant No. CCF-17-23432, and
Grant No. CNS-17-23198. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

83:28 Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen, and Hridesh Rajan

REFERENCES
Farhana Aleen and Nathan Clark. 2009. Commutativity Analysis for Software Parallelization: Letting Program Transforma-

tions See the Big Picture. In Proceedings of the 14th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (XIV). ACM, New York, NY, USA, 241–252. DOI:http://dx.doi.org/10.1145/1508244.1508273

Miltos Allamanis and Charles Sutton. 2013. Mining Source Code Repositories at Massive Scale using Language Modeling. In
Working Conference on Mining Software Repositories (MSR’13). 207–216.

Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining Specifications. In Proceedings of the 29th ACM SIGPLAN
SIGACT Symposium on Principles of Programming Languages (POPL ’02). ACM, 4–16. DOI:http://dx.doi.org/10.1145/
503272.503275

Raymond P.L. Buse and Westley R. Weimer. 2008. Automatic Documentation Inference for Exceptions. In Proceedings of the
2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM, New York, NY, USA, 273–282. DOI:
http://dx.doi.org/10.1145/1390630.1390664

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL ’77). ACM, New York, NY, USA, 238–252. DOI:http://dx.doi.org/10.1145/512950.512973

Patrick Cousot, Radhia Cousot, Manuel Fahndrich, and Francesco Logozzo. 2013. Automatic Inference of Necessary
Preconditions. In in Proceedings of the 14th Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’13). Springer Verlag. http://research.microsoft.com/apps/pubs/default.aspx?id=174239

Patrick Cousot, Radhia Cousot, and Francesco Logozzo. 2011. Precondition Inference from Intermittent Assertions and
Application to Contracts on Collections. In Proceedings of the 12th International Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’11). Springer-Verlag, 150–168. http://dl.acm.org/citation.cfm?id=1946284.1946296

Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and Andreas Zeller. 2010. Generating Test Cases for
Specification Mining. In Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA ’10).
ACM, New York, NY, USA, 85–96. DOI:http://dx.doi.org/10.1145/1831708.1831719

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight Defect Localization for Java. In Proceedings
of the 19th European Conference on Object-Oriented Programming (ECOOP’05). Springer-Verlag, 528–550. DOI:http:
//dx.doi.org/10.1007/11531142_23

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs As Deviant Behavior: A
General Approach to Inferring Errors in Systems Code. SIGOPS Oper. Syst. Rev. 35, 5 (Oct. 2001), 57–72. DOI:http:
//dx.doi.org/10.1145/502059.502041

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999. Dynamically Discovering Likely Program
Invariants to Support Program Evolution. In Proceedings of the 21st International Conference on Software Engineering
(ICSE’99). ACM, 213–224. DOI:http://dx.doi.org/10.1145/302405.302467

Gordon Fraser and Andreas Zeller. 2011. Generating Parameterized Unit Tests. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY, USA, 364–374. DOI:http://dx.doi.org/10.
1145/2001420.2001464

Mark Gabel and Zhendong Su. 2008. Javert: Fully Automatic Mining of General Temporal Properties from Dynamic Traces.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT
’08/FSE-16). ACM, 339–349. DOI:http://dx.doi.org/10.1145/1453101.1453150

Mark Gabel and Zhendong Su. 2012. Testing Mined Specifications. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 4, 11 pages. DOI:
http://dx.doi.org/10.1145/2393596.2393598

Natalie Gruska, Andrzej Wasylkowski, and Andreas Zeller. 2010. Learning from 6,000 Projects: Lightweight Cross-project
Anomaly Detection. In Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA ’10).
ACM, 119–130. DOI:http://dx.doi.org/10.1145/1831708.1831723

Anthony Hall. 1990. Seven Myths of Formal Methods. IEEE Software 7, 5 (Sept. 1990), 11–19.
Gary T. Leavens and Curtis Clifton. 2008. Lessons from the JML Project. In Verified Software: Theories, Tools, Experiments,

Zurich, Switzerland, Bertrand Meyer and Jim Woodcock (Eds.), Vol. 4171. 134–143.
Gary T. Leavens and William E. Weihl. 1995. Specification and verification of object-oriented programs using supertype

abstraction. Acta Informatica 32 (August 1995), 705–778. Issue 8.
Chang Liu, En Ye, and Debra J. Richardson. 2006. Software Library Usage Pattern Extraction Using a Software Model

Checker. In Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering (ASE ’06). IEEE
Computer Society, 301–304. DOI:http://dx.doi.org/10.1109/ASE.2006.63

Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: Finding Common Error Patterns by Mining Software
Revision Histories. In Proceedings of the 10th European Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,
296–305. DOI:http://dx.doi.org/10.1145/1081706.1081754

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

http://dx.doi.org/10.1145/1508244.1508273
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/1390630.1390664
http://dx.doi.org/10.1145/512950.512973
http://research.microsoft.com/apps/pubs/default.aspx?id=174239
http://dl.acm.org/citation.cfm?id=1946284.1946296
http://dx.doi.org/10.1145/1831708.1831719
http://dx.doi.org/10.1007/11531142_23
http://dx.doi.org/10.1007/11531142_23
http://dx.doi.org/10.1145/502059.502041
http://dx.doi.org/10.1145/502059.502041
http://dx.doi.org/10.1145/302405.302467
http://dx.doi.org/10.1145/2001420.2001464
http://dx.doi.org/10.1145/2001420.2001464
http://dx.doi.org/10.1145/1453101.1453150
http://dx.doi.org/10.1145/2393596.2393598
http://dx.doi.org/10.1145/1831708.1831723
http://dx.doi.org/10.1109/ASE.2006.63
http://dx.doi.org/10.1145/1081706.1081754

Exploiting Implicit Beliefs to Resolve Sparse Usage Problem . . . 83:29

David Lo and Shahar Maoz. 2009. Mining Hierarchical Scenario-Based Specifications. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering (ASE ’09). IEEE Computer Society, 359–370. DOI:http:
//dx.doi.org/10.1109/ASE.2009.19

Amir Michail. 2000. Data Mining Library Reuse Patterns Using Generalized Association Rules. In Proceedings of the 22nd
International Conference on Software Engineering (ICSE’00). ACM, 167–176. DOI:http://dx.doi.org/10.1145/337180.337200

Anh Cuong Nguyen and Siau-Cheng Khoo. 2011. Extracting Significant Specifications from Mining Through Mutation
Testing. In Proceedings of the 13th International Conference on Formal Methods and Software Engineering (ICFEM’11).
Springer-Verlag, Berlin, Heidelberg, 472–488. http://dl.acm.org/citation.cfm?id=2075089.2075130

Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2014. Mining Preconditions of APIs in Large-scale
Code Corpus. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, New York, NY, USA, 166–177. DOI:http://dx.doi.org/10.1145/2635868.2635924

Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N. Nguyen. 2009. Graph-based Mining
of Multiple Object Usage Patterns. In Proceedings of the Symposium on Foundations of Software Engineering (ESEC/FSE
’09). ACM, 383–392. DOI:http://dx.doi.org/10.1145/1595696.1595767

Corina S. Păsăreanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet, Michael Lowry, Suzette Person, and Mark
Pape. 2008. Combining Unit-Level Symbolic Execution and System-Level Concrete Execution for Testing Nasa Software.
In Proceedings of the 2008 International Symposium on Software Testing and Analysis (ISSTA ’08). ACM, New York, NY,
USA, 15–26. DOI:http://dx.doi.org/10.1145/1390630.1390635

Corina S. Păsăreanu and Neha Rungta. 2010. Symbolic PathFinder: Symbolic Execution of Java Bytecode. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering (ASE ’10). ACM, New York, NY, USA, 179–180.
DOI:http://dx.doi.org/10.1145/1858996.1859035

Michael Pradel and Thomas R. Gross. 2009. Automatic Generation of Object Usage Specifications from Large Method
Traces. In Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering (ASE ’09). IEEE
Computer Society, 371–382. DOI:http://dx.doi.org/10.1109/ASE.2009.60

Hridesh Rajan, Tien N. Nguyen, Gary T. Leavens, and Robert Dyer. 2015. Inferring Behavioral Specifications from Large-
scale Repositories by Leveraging Collective Intelligence. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 579–582. http://dl.acm.org/citation.cfm?id=2819009.
2819107

Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007. Static Specification Inference Using Predicate
Mining. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’07). ACM, 123–134. DOI:http://dx.doi.org/10.1145/1250734.1250749

Manos Renieris, Sébastien Chan-Tin, and Steven P. Reiss. 2004. Elided Conditionals. In Proceedings of the 5th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE ’04). ACM, New York, NY, USA, 52–57.
DOI:http://dx.doi.org/10.1145/996821.996839

Martin C. Rinard and Pedro C. Diniz. 1997. Commutativity Analysis: A New Analysis Technique for Parallelizing Compilers.
ACM Trans. Program. Lang. Syst. 19, 6 (Nov. 1997), 942–991. DOI:http://dx.doi.org/10.1145/267959.269969

Joseph R. Ruthruff, Sebastian Elbaum, and Gregg Rothermel. 2006. Experimental Program Analysis: A New Program
Analysis Paradigm. In Proceedings of the 2006 International Symposium on Software Testing and Analysis (ISSTA ’06). ACM,
New York, NY, USA, 49–60. DOI:http://dx.doi.org/10.1145/1146238.1146245

Olin G. Shivers. 1991. Control-flow analysis of higher-order languages of taming lambda. (1991).
Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting Object Usage Anomalies. In Proceedings of the

Symposium on Foundations of Software Engineering (ESEC-FSE ’07). ACM, 35–44. DOI:http://dx.doi.org/10.1145/1287624.
1287632

Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring Better Contracts. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE ’11). ACM, 191–200. DOI:http://dx.doi.org/10.1145/1985793.
1985820

Westley Weimer and George C. Necula. 2005. Mining Temporal Specifications for Error Detection. In Proceedings of the 11th
International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’05). Springer-Verlag,
461–476. DOI:http://dx.doi.org/10.1007/978-3-540-31980-1_30

Chadd C. Williams and Jeffrey K. Hollingsworth. 2005. Automatic Mining of Source Code Repositories to Improve Bug
Finding Techniques. IEEE Trans. Softw. Eng. 31, 6 (2005), 466–480.

Tao Xie and David Notkin. 2004. Mutually Enhancing Test Generation and Specification Inference. In Formal Approaches to
Software Testing: Third International Workshop on Formal Approaches to Testing of Software (FATES ’03). Springer Berlin
Heidelberg, Berlin, Heidelberg, 60–69. DOI:http://dx.doi.org/10.1007/978-3-540-24617-6_5

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. 2006. Perracotta: Mining Temporal API
Rules from Imperfect Traces. In Proceedings of the 28th International Conference on Software Engineering (ICSE ’06). ACM,
282–291. DOI:http://dx.doi.org/10.1145/1134285.1134325

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 83. Publication date: October 2017.

http://dx.doi.org/10.1109/ASE.2009.19
http://dx.doi.org/10.1109/ASE.2009.19
http://dx.doi.org/10.1145/337180.337200
http://dl.acm.org/citation.cfm?id=2075089.2075130
http://dx.doi.org/10.1145/2635868.2635924
http://dx.doi.org/10.1145/1595696.1595767
http://dx.doi.org/10.1145/1390630.1390635
http://dx.doi.org/10.1145/1858996.1859035
http://dx.doi.org/10.1109/ASE.2009.60
http://dl.acm.org/citation.cfm?id=2819009.2819107
http://dl.acm.org/citation.cfm?id=2819009.2819107
http://dx.doi.org/10.1145/1250734.1250749
http://dx.doi.org/10.1145/996821.996839
http://dx.doi.org/10.1145/267959.269969
http://dx.doi.org/10.1145/1146238.1146245
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1145/1287624.1287632
http://dx.doi.org/10.1145/1985793.1985820
http://dx.doi.org/10.1145/1985793.1985820
http://dx.doi.org/10.1007/978-3-540-31980-1_30
http://dx.doi.org/10.1007/978-3-540-24617-6_5
http://dx.doi.org/10.1145/1134285.1134325

	Abstract
	1 Introduction
	2 Approach to Exploit Implicit Beliefs to Improve Usage-based Mining
	2.1 Approach Overview
	2.2 Classification of Code Elements to Derive Implicit Beliefs
	2.3 Algorithms for Inferring and Propagating Implicit Beliefs
	2.4 1-Level Control Flow Analysis (1-CFA)

	3 Empirical Evaluation
	3.1 Data Collection
	3.2 Accuracy
	3.3 Analysis on the Characteristics of Mined Preconditions
	3.4 Effectiveness of Single Components
	3.5 Threats to Validity

	4 Related Work
	5 Conclusion
	A Appendix
	A.1 Detailed Result and Analysis of Single Components

	Acknowledgments
	References

