
Concurrency by Modularity: Design Patterns, a Case in Point

Hridesh Rajan Steven M. Kautz Wayne Rowcliffe
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall, Ames, IA, 50010, USA
{hridesh,smkautz,wrowclif}@iastate.edu

Abstract
General purpose object-oriented programs typically aren’t
embarrassingly parallel. For these applications, finding
enough concurrency remains a challenge in program de-
sign. To address this challenge, in the Pān̄ini project we
are looking at reconciling concurrent program design goals
with modular program design goals. The main idea is that
if programmers improve the modularity of their programs
they should get concurrency for free. In this work we de-
scribe one of our directions to reconcile these two goals by
enhancing Gang-of-Four (GOF) object-oriented design pat-
terns. GOF patterns are commonly used to improve the mod-
ularity of object-oriented software. These patterns describe
strategies to decouple components in design space and spec-
ify how these components should interact. Our hypothesis is
that if these patterns are enhanced to also decouple compo-
nents in execution space applying them will concomitantly
improve the design and potentially available concurrency in
software systems. To evaluate our hypothesis we have stud-
ied all 23 GOF patterns. For 18 patterns out of 23, our hy-
pothesis has held true. Another interesting preliminary result
reported here is that for 17 out of these 18 studied patterns,
concurrency and synchronization concerns were completely
encapsulated in our concurrent design pattern framework.

Categories and Subject Descriptors D.2.10 [Software
Engineering]: Design; D.1.5 [Programming Techniques]:
Object-Oriented Programming; D.2.2 [Design Tools and
Techniques]: Modules and interfaces, Object-oriented design
methods; D.2.3 [Coding Tools and Techniques]: Object-
Oriented Programming; D.3.3 [Programming Languages]:
Language Constructs and Features
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1. Introduction
A direct result of recent trends in hardware design towards
multicore CPUs with hundreds of cores is that the need
for scalability of today’s general-purpose programs can no
longer be simply fulfilled by faster CPUs. Rather, these pro-
grams must now be designed to take advantage of the inher-
ent concurrency in the underlying computational model.

1.1 The Problems and their Importance
Scalability of general-purpose programs faces two major
hurdles. A first and well-known hurdle is that writing cor-
rect and efficient concurrent programs has remained a chal-
lenge [2, 22, 24, 32]. A second and less explored hurdle is
that unlike in scientific applications, in general-purpose pro-
grams potential concurrency isn’t always obvious.

We believe that both these hurdles are in part due to a
significant shortcoming of the current concurrent language
features or perhaps the design discipline that they promote.
These features treat modular program design and concurrent
program design as two separate and orthogonal goals. As a
result, concurrent program design as a goal is often tackled
at a level of abstraction lower than modular program design.
Synchronization defects arise when developers work at low
abstraction levels and are not aware of the behavior at a
higher level of abstraction [23]. This unawareness also limits
potentially available concurrency in resulting programs.

To illustrate consider a picture viewer. The overall re-
quirement for this program is to display the input picture
raw, hereafter referred to as the display concern. To enhance
the appearance of pictures this program is also required to
apply such transformations as red-eye reduction, sharpening,
etc, to raw pictures, henceforth referred to as the processing
concern. The listing in Figure 1 shows snippets from a sim-
ple implementation of this picture viewer.

This listing shows a GUI-related class Display that
is responsible for drawing borders, captions and displaying
pictures. The key method of the picture viewer is show,
which given a raw picture processes it, draws a border and



1 class Display {
2 Picture pic = null;
3 void show(Picture raw) {
4 Picture tmp = crop(raw);
5 tmp = sharpen(raw, tmp);
6 pic = redeye(raw, tmp);
7 displayBorders();
8 displayCaption();
9 displayPicture(pic);

10 }
11 Picture redeye(Picture raw, Picture pic){
12 //Identify eyes in raw, make a copy of pic,
13 //replace eye areas in copy with a gradient of blue.
14 return copy; }
15 Picture sharpen(Picture raw, Picture pic){
16 //Identify areas to sharpen in raw, make a copy
17 //of pic, increases contrast of selected areas in copy.
18 return copy; }
19 Picture crop(Picture raw){
20 // Find focus area, make a copy of raw, crop copy.
21 return copy; }
22 //Elided code for displaying border, caption, and pic.
23 }

Figure 1: A Picture Viewer and its two Tangled Concerns

caption around it, and draws the framed image on the screen.
In this listing, lines 1-3, 7-10 and 22 implement the display
concern and other lines implement the processing concern.
The class Display thus tangles these two concerns. The al-
gorithms for red eye reduction, sharpening and cropping an
image are not relevant to this discourse and are omitted, al-
though their basic ideas are summarized in Figure 1. In later
figures for this running example, we omit these descriptions.

1.1.1 Improving Modularity of Picture Viewer
To enhance the reusability and separate evolution of these
components, it would be sensible to separate and modularize
the implementation of the display concern and the process-
ing concern. Driven by such modularity goals a programmer
may separate out the implementation of these two concerns.
Such implementation is shown in Figure 2.

1 class Display {
2 Picture pic = null;
3 void show(Picture raw) {
4 Processor p = new BasicProcessor();
5 pic = p.process(raw);
6 displayBorders();
7 displayCaption();
8 displayPicture(pic);
9 }}

10 abstract class Processor { //Provides algorithm skeleton
11 final Picture process(Picture raw) {//Template Method
12 Picture tmp = crop(raw);
13 tmp = sharpen(raw,tmp);
14 return redeye(raw,tmp);
15 }
16 abstract Picture redeye(Picture raw, Picture pic);
17 abstract Picture sharpen(Picture raw, Picture pic);
18 abstract Picture crop(Picture raw);
19 }
20 class BasicProcessor extends Processor {
21 Picture redeye(Picture raw, Picture pic){...}
22 Picture sharpen(Picture raw, Picture pic){...}
23 Picture crop(Picture raw){...}
24 }

Figure 2: Modularizing Viewer using Template Method

The class Processor now implements the processing
concern using the Template Method design pattern [12].
It provides a new template method process for its
client [12]. This allows independent evolution of var-
ious parts of the processing concern’s implementation,
e.g. a new algorithm for red eye reduction could be
added without extensively modifying the clients. Concrete
processing algorithms are implemented in the subclass
BasicProcessor. The class Display creates and uses
an instance of BasicProcessor on lines 4 and 5 respec-
tively but remains independent of its implementation.

1.1.2 Improving Concurrency of Picture Viewer
On another day we may want to enhance the responsiveness
of the picture viewer. An approach to do that could be to
render borders, captions, etc, concurrently with picture pro-
cessing, which may take a long time to finish. This would
prevent such common nuisances as the “frozen user inter-
face”. Starting with the listing in Figure 1, we could make
picture processing concurrent using standard thread creation
and synchronization discipline as shown in Figure 3.

1 class Display {
2 Picture pic = null;
3 void show(final Picture raw) {
4 Thread t = new Thread(
5 new Runnable(){
6 void run() {
7 Picture tmp = crop(raw);
8 tmp = sharpen(raw,tmp);
9 pic = redeye(raw,tmp);

10 }
11 });
12 t.start();
13 displayBorders(); // do other things
14 displayCaption(); // while rendering
15 try { t.join(); }
16 catch(InterruptedException e) { return; }
17 displayPicture(pic);
18 }
19 Picture redeye(Picture raw, Picture pic){...}
20 Picture sharpen(Picture raw, Picture pic){...}
21 Picture crop(Picture raw){...}
22 }

Figure 3: Improving Responsiveness of Picture Viewer

In this listing the code for processing pictures is wrapped
in a Runnable interface (lines 6, 10-11). An instance of
this class is then passed to a newly created thread (lines 4
and 5). This thread is then started on line 12. As a result,
picture processing may proceed concurrently with border
and frame drawing (on lines 13 and 14). Since it is possible
that the thread drawing the border and caption may complete
its task before the thread processing the picture or vice versa,
synchronization code is added on lines 15 and 16 to ensure
that an attempt to draw the picture is made only when both
picture processing and caption drawing tasks are complete.

Two hurdles mentioned before are apparent in this ex-
ample. First, in this explicitly concurrent implementation,
synchronization problems can arise if the developer inadver-
tently omits the join code on lines 15-16 and/or incorrectly
accesses the field pic creating data races. Second, from this



solution it is not obvious whether there is any potential con-
currency between various algorithms for processing pictures
because the concurrent solution is essentially a boiler-plate
adaptation of the sequential solution.

1.1.3 Similarities between Modularity and
Concurrency Improvement Goals

To address the modularity goal as described in Section 1.1.1,
we managed the explicit and implicit dependence between
the Display and Processor modules that decreases
modularity. For example, instead of accessing the picture
field of the class Display directly for sharpening and red
eye reduction as in Figure 1, in Figure 2 this dependence is
made explicit as part of the interface of method process.

Similarly to address the concurrency goal as described in
Section 1.1.2, we managed the explicit and implicit depen-
dence between the display-task and the picture-processing
task that decreases parallelism. For example, we added the
synchronization code on lines 15 and 16 in Figure 3 and ex-
plicitly avoided data races between the processing thread and
the display thread.

It is surprising that even though the tasks necessary to
explicitly address these goals appear to be strikingly similar,
we did not take advantage of this similarity in practice. The
net effect was that the modularity and concurrency goals
were tackled mutually exclusively. Making progress towards
one goal did not naturally contribute towards the other.

1.2 Contributions to the State-of-the-Art
The goal of the Pān̄ini project [25] is to explore whether
modularity and concurrency goals can be reconciled. This
work, in particular, focuses on cases where programmers ap-
ply GOF design patterns [12] to improve modularity of their
programs. GOF design patterns are design structures com-
monly occurring in and extracted from real object-oriented
software systems. Thus the benefits observed in the context
of these models could be —to some extent— extrapolated to
concurrency benefits that might be perceived in real systems
that employ these patterns.

To that end, we are developing a concurrent design pat-
tern framework that provides enhanced versions of GOF pat-
terns for Java programs. These enhanced patterns decouple
components in both design and execution space, simultane-
ously. Figure 4 shows an example of its use.

1 class Display {
2 Picture pic = null;
3 void show(Picture raw) {
4 Processor p1 = new BasicProcessor();
5 Processor p = AsyncTemplate.create(Processor.class,p1);
6 pic = p.process(raw);
7 displayBorders();
8 displayCaption();
9 displayPicture(pic);

10 }}

Figure 4: Increasing Responsiveness of Picture Viewer
by Modularization. The classes Processor and
BasicProcessor are the same as in Figure 2.

The listing in this figure is adapted from that in Figure 2.
The only change is the additional code on line 5, where the
asynchronous template method generator from our frame-
work is used to create an asynchronous version of the basic
picture processor. We also added a Java import statement
to add our library to the program that is not shown here. The
rest of the picture viewer remains unchanged.

1.2.1 Hiding behind a Line of Code
Briefly, the asynchronous template method generator takes
a template method interface (here Processor) and an
instance of its concrete implementation (here p1, which
is an instance of BasicProcessor), produces an asyn-
chronous concrete implementation of the template method
automatically, and returns a new instance of this asyn-
chronous implementation.

Creation of this asynchronous implementation involves
several checks that we will not discuss in detail here, how-
ever, the basic idea is that this generator utilizes the well-
known protocol of the template design pattern to identify
potentially concurrent tasks during the execution of the tem-
plate method, dependencies between these tasks, and gen-
erates an implementation that exposes this concurrency and
implements the synchronization discipline to respect depen-
dencies between the sub-tasks of the algorithm implemented
using the template design pattern.

As a result, the asynchronous template method instance
returned on line 5 by our framework implements the inter-
face Processor and encapsulates p1. For each method in
the interface Processor it provides a method that creates
a task to run the corresponding sequential method concur-
rently with p1 as the receiver object. If the method in the
interface has a non-void return type, then a proxy for return
value is returned immediately. For example, for the method
crop the return type is Picture so the asynchronous ver-
sion or crop returns a proxy object of type Picture. This
proxy object encapsulates a Future for the concurrent task
and imposes the synchronization discipline behind the scene.

1.2.2 Software Engineering Benefits
The benefits in ease of implementation are quite visible by
comparing two implementations in Figure 3 and Figure 4.
Instead of explicitly creating and starting threads and writing
out potentially complex code for synchronization between
threads, our framework is used to replace the sequential
template method instance with an asynchronous template
method instance on line 5 in Figure 4. Thus, much of the
thread class code, spawning of threads, and synchronization
code is eliminated, which reduces the potential of errors.

Additional software engineering advantages are in code
evolution and maintenance. Imagine a case where the pro-
gram in Figure 3 evolves to a form where, inadvertently,
additional code is inserted to change the argument raw be-
tween lines 12–14. Such an inadvertent error, potentially cre-
ating race conditions, would not be detected by a typical



Java compiler. On the other hand, our framework automati-
cally checks and enforces isolation by suitable initialization
and cloning of objects to minimize (but not eliminate) object
sharing between the Processor and the Display code.

This relieves the programmer from the burden of explic-
itly creating and maintaining threads and managing locks
and shared memory. Thus it avoids the burden of reasoning
about the usage of locks. Incorrect use of locks may create
safety problems and may degrade performance because ac-
quiring and releasing a lock has some overhead.

Our concurrent design pattern framework also takes ad-
vantage of the task execution facilities in the Java concur-
rency utilities (java.util.concurrent package), which mini-
mizes the overhead of thread creation and excessive context
switching. These benefits make our work an interesting point
in the space of modular and concurrent program design.

2. Related Work
There is an important body of prior work on patterns for par-
allel programming and distributed systems. The books by
Mattson et al. on parallel patterns [20], by Lea on concur-
rent programming in Java [15], and by Schmidt et al. on pat-
terns for distributed systems [29] are some well-known rep-
resentative examples. Mattson et al.’s work (as well as recent
work of McCool [21]) describes methodologies for discover-
ing and analyzing parallelism in an application and provides
guidelines on how to structure a parallel application. Pro-
grammers are responsible for deciding where concurrency
can be introduced and for creating threads and using appro-
priate locking mechanisms. Lea [15] used a pattern-oriented
approach to develop a set of concurrency utilities for the Java
language that were subsequently incorporated into the stan-
dard libraries. These utilities provide a substantial improve-
ment over the primitive features originally included with the
Java platform, but the programmer must still identify poten-
tial concurrency and choose how to create and manage tasks
and their synchronization mechanisms.

Schmidt et al. [29] describe a set of patterns for struc-
turing distributed (and thus potentially concurrent) appli-
cations and provides a reusable library of components, the
ACE framework. There is an intriguing analogy between dis-
tributed systems and systems that exploit concurrency on a
single host, for example, concepts such as messages, futures,
completion tokens, and event handlers can inspire designs
for concurrent applications. However, it is worth emphasiz-
ing that the fundamental challenges are quite different, and a
framework such as ACE is not generally useful for structur-
ing a concurrent application on a single host. In a distributed
system, the cost of a remote call is several orders of magni-
tude greater than the cost of a context switch on any given
platform, so it is almost always beneficial to perform remote
calls asynchronously, it is usually easy to identify where re-
mote calls occur, and there is no shared memory between
the local and remote host that must be protected with syn-

chronization locks. In contrast, for a concurrent system on
a single host, it is not generally obvious where to introduce
concurrency and whether the performance benefit of doing
so will outweigh the overhead associated with task or thread
creation and context switching, and the programmer is usu-
ally faced with the difficult task of using locks to manage
access to data shared between threads.

The most significant difference between the approaches
to parallel patterns discussed above and the current work
is that the former introduce and document idioms for
constructing explicitly parallel applications, while we are
proposing to exploit the existing use of well-known design
idioms to automatically discover and expose potential im-
plicit concurrency. We believe that the training efforts to use
our framework will be minimal because OO programmers
are typically already familiar with GOF patterns.

Our work is philosophically close to the Galois system
by Kulkarni et al. [14], in which high-level abstractions are
used to help the framework to discover potential implicit
concurrency in certain classes of algorithms that operate on
data structures such as sets and graphs. Our concurrent iter-
ators can be viewed as a simple case of their approach; note
that we also handle many additional cases besides iterators.
Also related is our own work on the design of the Pān̄ini
language, which has the same goals of reconciling modu-
larity and concurrency in program design [18]. Pān̄ini’s de-
sign provides developers with asynchronous, typed events,
a new language feature that is useful for modularizing be-
havioral design patterns. The advantage of Pān̄ini’s design
over the present work is that its type system ensures that
programs are data race free, deadlock free and have a guar-
anteed sequential semantics. Furthermore, since Pān̄ini has
a dedicated compiler infrastructure it can provide a more ef-
ficient implementation of many idioms, whereas our current
work will have to rely on runtime or compile-time code gen-
eration to implement some of these idioms. The advantage
of the current work over Pān̄ini’s language design is that it
doesn’t require programmers to change their compilers, in-
tegrated development environments, and to learn new lan-
guage features. An additional advantage is that we have also
considered structural and creational pattern in this work.

This work is also closely related to and makes use of
Doug Lea’s Fork-join framework [16] implementation in
Java and several concurrency utilities in Java 1.5 and 1.6
that share similar goals. It is similar to the work on the
Task Parallel Library (TPL) [17], TaskJava [9], Tame [13]
and Tasks [7] in that it also proposes means for improv-
ing concurrency in program design. However, the underlying
philosophy of our work is significantly different. While our
work provides means to expose concurrency in programs via
good modular design, the Task Parallel Library and related
projects promote exposing concurrency via explicit features.
Many of the implementation ideas behind these projects can
be used for more efficient implementation of our concurrent



Design Pattern Potentially Concurrent Tasks Usage Notes
Creational Patterns

Abstract factory Product creation Use when creating expensive products, and when there are clear creation and use phases.
Builder Product component creation Use when creating expensive parts of a multi-part product.

Factory method Product creation Use when creating expensive products, and when there are clear creation and use phases.
Prototype Prototype creation and usage Use when prototype is either readonly or temporarily immutable.
Singleton × No concurrency is generally available.

Structural Patterns
Adapter Multiple client requests to adaptee Use only when Adapter properly encapsulates Adaptee’s internal states.
Bridge × Potential concurrency depends on the abstraction and the implementation.

Composite Operations on parts of composite. Use when the order of applying operations on composites and leafs is irrelevant.
Decorator Multiple decorations of a component Use when decorators implement independent functionality

Facade Multiple client requests to facade Use only when facade’s internal states are properly encapsulated from clients.
Flyweight × No concurrency is generally available.

Proxy Client processing and proxy request Use when proxy is indeed enabling logical separation.

Behavioral Patterns
Chain of responsibility Checking handler applicability Use when any handler may apply with equal probability.

Command Command creation and execution Use when only the command object encapsulates the receiver object’s state.
Interpreter Interpretation of subexpressions Use when expression evaluations are mostly independent.

Iterator Operation on iterated components Use when operations are mostly independent (like parallel for and map operations).
Mediator Mediator integration logic Use when mediators do not have recursive call backs
Memento × May be useful, when creating memento is expensive (See creational).
Observer Observation by multiple observers Use with orthogonal observers that do not share state with subjects/other observers.

State × No concurrency is generally available.
Strategy When strategy has independent steps Also see template method description.
Visitor Visiting subtrees of an abstract syntax tree node Use when visits are not context-sensitive.

Template method Steps of the algorithm implemented as template Use when majority of these steps have little dependence.

Figure 5: An Overview of GOF design patterns, shows possibly concurrent interactions between participants.

design pattern framework, so in that sense they are comple-
mentary to this work.

Our work is also related to work on implicitly paral-
lel languages such as Jade [26], POOL [1], ABCL [33],
Concurrent Smalltalk [34] BETA [30], Cilk [4, 10], and
Cω [2], though not related to explicitly concurrent ap-
proaches such as Grace [3], X10 [6], and deterministic par-
allel Java (DPJ) [5]. Unlike implicitly concurrent language-
based approaches we do not require programmers to learn
new features and to change tools; however, our approach
provides less stringent guarantees compared to language-
based approaches.

Lopes’s D Language [19] has goals similar to ours. D
aims to separate the concurrency concerns from the appli-
cation’s concerns, whereas we aim to eliminate concurrency
concerns altogether. Unlike D, we do not provide a general-
purpose mechanism for writing distributed programs; rather,
we provide few specialized idioms based on GOF patterns.
Moreover, as discussed previously, the fundamental chal-
lenges for distributed programming (which D targets) and
concurrent programming on a single host (which we target)
are significantly different.

Dig et al. [8] have proposed a tool that allows pro-
grammers to refactor sequential code into concurrent code
that uses Java utilities for concurrency. The advantage of
their tool is that it does not require the use of annotations
and can be used by programmers to convert existing code
to use classes AtomicInteger, ConcurrentHashMap
and FJTask in the Java concurrency library. Compared to
their work, our pattern-based concurrency library operates at

a higher-level of abstraction. We also encapsulate the usage
of concurrency utilities in our library code.

Some of our pattern library is modeled after the Future
construct in Multilisp [27], and uses Java’s current adoption
of Futures along with the Fork-join framework [16].

Outline. The rest of this paper is organized as follows. In
the next section, we describe the design and implementation
of our concurrent design pattern framework using several ex-
amples. Section 3.6 analyzes key software engineering prop-
erties of our framework. Section 4 presents a preliminary
performance evaluation. Section 5 concludes the paper and
outlines future directions for investigation.

3. Reconciling Modularity and Concurrency
by Exploiting Protocols of GOF Patterns

In Section 1, we have illustrated that with suitable disci-
pline and tools, improving modularity of a software system
through the use of the template method design pattern [12]
can immediately introduce concurrency benefits.

To further study the extent to which modularity and con-
currency goals can be treated as synergistic, we conducted
an investigation into the remaining GOF patterns. For the
cases in which the use of the pattern provides opportunities
to introduce potential concurrency, we provide utilities for
a transformation of the pattern into a concurrency-friendly
form along with guidelines for recognizing when the trans-
formation is applicable.

In all, we have suggested transformations for the ma-
jority of the GOF patterns as summarized in Figure 5. A
selection of these is discussed in detail below. Complete



code for all the examples, as well as for the remaining pat-
terns we have adapted, can be found at the URL http:
//paninij.org. In the rest of this section, we discuss
the design and implementation of our concurrency-enhanced
framework starting with the key decisions in its design.

3.1 Overarching Design Decisions
As noted in Section 1, one of our objectives is to find ways to
introduce concurrency in general-purpose applications with-
out burdening the developer with the low-level details of
synchronization. Another objective in adapting the GOF pat-
terns is to minimize the impact on client code of using the
implicitly concurrent versions of the patterns.

3.1.1 Lightweight Backend
In the concurrent adaptations of design patterns we strenu-
ously avoid the explicit creation of threads and the use of
synchronization locks. In order to do so we take advantage
of some library classes in the package util.concurrent that
allow us to think in terms of tasks rather than threads. An
Executor provides an abstraction of a task execution envi-
ronment, and a Future is an abstraction of a handle for the
result of executing a task [27]. Executors and Futures, along
with related concrete classes, were introduced in Java ver-
sion 5. The fork-join framework [16] is scheduled for release
in Java version 7.

The fork-join framework is an extremely lightweight con-
current task execution framework designed to efficiently
handle large numbers of small tasks with very few threads
(typically the number of threads is the same as the num-
ber of cores) [16]. It is ideal, in particular, for recursive or
divide-and-conquer style algorithms, such as tree traversals.

A task associated with a ForkJoinPool can be sched-
uled for concurrent execution with a call to the fork()
method, and the result is returned by a corresponding call
to join(), which does not return until the task is complete.
The similarity in nomenclature to the fork() and join()
system calls in Unix is only superficial, however.

A key feature is the efficient use of the underlying thread
pool; the invocation of join() on a task, though it does not
return until the task is complete, does not actually block the
calling thread—the thread remains free to find other tasks
to execute using a strategy called work-stealing. Likewise,
invoking fork() on a new task does not necessarily trigger
a context switch; if no thread in the pool is available to
execute the new task before the caller invokes join(),
the call to join() will simply cause the caller to directly
execute the task.

A question to be addressed in determining the applicabil-
ity of the transformations we describe is whether the over-
head of thread creation, context switching, and loss of local-
ity will overwhelm the potential performance gains due to
concurrency. The use of a lightweight execution framework
mitigates some of this overhead, and is a step toward a more
ideal situation in which the programmer describes the design

using appropriate language constructs and lets the compiler
and runtime environment decide how to most efficiently ex-
ecute the necessary tasks.

3.1.2 Code Generation to Avoid Client Modification
A recurring question arising in concurrent programming is
the following: suppose a method m() returns an object of
type T, and we wish m() to run asynchronously, that is,
to return immediately and allow the actual result to be pro-
duced in a separate thread. How does the caller eventually
obtain the result? One answer is to return a Future that serves
as a placeholder for the result and provides an implicit syn-
chronization point; the caller can perform other work until
the result is actually needed, and then claim the Future, i.e.,
obtain the actual result by invoking a special method on the
Future (such as the get() method of the Java implemen-
tations), blocking if necessary until the result is produced.
Note that this approach requires a change in the return type
of m() and requires the caller to explicitly claim the future
in order to synchronize before using the result.

In order to minimize the impact on client code, we take a
different approach. Assuming that the type T is an interface,
we can autogenerate a class that serves as a proxy for the
result and that also implements the interface T so that it
can be used by the client just like the any other concrete
type that would normally be returned by m(). The proxy
encapsulates a Future for the result that the client never
needs to explicitly claim; synchronization occurs implicitly
when the client invokes one of the methods of T on the
proxy object. An example of such a proxy is the Picture
object returned on line 6 of Figure 4, and Figure 17 shows in
pseudocode how such a proxy can be implemented.

The current implementation of the framework supports
both static and dynamic mechanisms for the autogeneration
of code. If the participants of a GOF pattern are appropri-
ately annotated using a set of annotations that we define,
our annotation processor generates the required classes at
compile time. If the annotations are not present, the required
classes are dynamically generated, compiled, and loaded at
runtime. Note that in addition to the proxy objects discussed
above, many other classes used by clients of the framework
are generated automatically, for example, the asynchronous
implementation of the template method class Processor
created on line 5 of Figure 4 is also an autogenerated class.

3.2 Chain of Responsibility Pattern
The intent of the chain of responsibility (COR) pattern is to
decouple a set of components that raise requests and another
set of components that may handle such requests (handlers).
These handlers are typically organized in a chain. In some
variations of this pattern other structures such as trees can
also be used for organizing handlers, which can be treated in
exactly the same manner, so we omit these variations here.



3.2.1 Search in an Address Book Application
To illustrate our work on the chain of responsibility design
pattern, we show snippets from an address book application.

This application implements functionality for a unified
search from one or more types of address books for a user.
A user may choose to add several address books of specified
types, e.g. an address book stored as an XML file, CSV file,
Excel spreadsheet, relational database, or even third party
services such as Google contacts.

Furthermore, a user can order these address books from
most preferred to least preferred.

New address books can be added and preferences can be
changed at runtime. Such change has an effect from the next
search onwards.

Once the address book is set up, it can be used to search
for addresses by providing the first name and the last name
of the person. This search proceeds by first looking at the
most preferred address book. If the requested person is not
found, the next preferred address book is searched, and so
on. If the requested person’s address is not found in the least
preferred address book, a dialog box is displayed informing
the user that the search has failed.

3.2.2 Modularizing Address Book Search
A modular design of this application can be created by
applying the chain of responsibility pattern. Such a design
would, for example, allow the application to support new
type of address books without having to change other parts
of the application. Furthermore, the ability to change the
preference of address books dynamically would be naturally
supported in this design of the application.

1 interface Request { }
2 class AddressRequest implements Request {
3 AddressRequest(String first, String last){
4 this.first = first; this.last = last;
5 }
6 String getLast() { return last; }
7 String getFirst() { return first; }
8 private String first, last;
9 }

Figure 6: The Address Request

To that end, the request class is shown in Figure 6. It en-
capsulates the first and the last name of the person being
searched. The abstract class Handler for all request han-
dlers is shown in Figure 7. Since the overriding by subclasses
is significant here, we show modifiers in the figure.

This class implements the standard chain of responsi-
bility protocol on lines 7–14. Basically it checks whether
the current handler can handle the request and if not tries
to forward the request to its successor. If forwarding
fails because the successor is null, it throws an excep-
tion on line 11. Clients interact with handlers by invoking
the handle method and concrete address books implement
methods canHandle and doHandle.

1 public abstract class Handler <T extends Request,R> {
2 protected abstract boolean canHandle(T request);
3 protected abstract R doHandle(T request);
4 public Handler(Handler<T,R> successor){
5 this.successor = successor;
6 }
7 public final R handle(T request){
8 if(this.canHandle(request)){
9 return this.doHandle(request);

10 } else if (successor==null){
11 throw new CORException();
12 }
13 return successor.handle(request);
14 }
15 private Handler<T,R> successor;
16 public final Handler<T,R> getSuccessor(){
17 return successor;
18 }
19 private Handler(){}
20 }

Figure 7: The Abstract Request Handler

1 class XMLHandler
2 extends Handler <AddressRequest,Address>{
3 boolean canHandle(AddressRequest r) {
4 return contains(r.getFirstname(),r.getLastname());
5 }
6 Address doHandle(AddressRequest r) {
7 return search(r.getFirstname(),r.getLastname());
8 }
9 XMLHandler(Handler<AddressRequest,Address> successor){

10 super(successor);
11 initDB("AddressBook.xml"); // Elided below.
12 } /* ... */ }

Figure 8: A Concrete Handler: XML Address Book

A concrete handler is shown in Figure 8. On initialization
this handler reads its entries from an XML database. It also
provides an implementation of the methods canHandle
and doHandle that search the requested name in the
database. If the name is found, the address is also obtained
from the corresponding database tables

Given a search request and several address books, search-
ing involves sequentially invoking the canHandle method
in the chain of address books until the address is found. Each
address book search is, however, independent of the others.
Thus, to decrease the search time, it would be sensible to try
to make the searches concurrent.

3.2.3 Reaping Concurrency Benefits
Given a modular implementation of the address book,
reaping the concurrency benefits is very easy using our
adaptation of the chain of responsibility design pattern.
The changed code for the concrete handler is shown be-
low, which is now changed to inherit from the class
CORHandler in our framework’s library.

1 class XMLHandler
2 extends CORHandler <AddressRequest,Address>{
3 // Rest of the code same as before.
4 }

Figure 9: A Concrete Handler: XML Address Book



The library class CORHandler is similar to the abstract
request handler discussed above but it also takes advantage
of the chain of responsibility protocol to expose potential
concurrency. The method handle in this class traverses
the chain of successors and creates a task for each handler
in the chain. This task runs the canHandle method for
that handler. This causes search tasks to run concurrently in
our example. After these concurrent tasks are finished, the
method doHandle is run with the first handler to return
true as the receiver object. If canHandle method for no
handler returns true an exception is thrown as specified by
the chain of responsibility protocol.

The library class CORHandler does use locks behind
the scene, however, the application code remains free of
any explicit concurrency constructs. Furthermore, no mod-
ification is necessary for clients and minimal modification is
necessary for the handler classes. Thus, for the chain of re-
sponsibility pattern, applying our adapted version to improve
modularity of an application results in concomitant concur-
rency in that application. For this pattern, modularity and
concurrency goals appear to be synergistic.

3.3 Observer Design Pattern
The observer pattern improves modularity of such concerns
(observers) that are coupled to another set of concerns (sub-
jects) due to the fact that the functionality specified by ob-
servers happens in response to state changes in subjects. The
intention of this pattern is to decouple subjects from ob-
servers so that they can evolve independently.

A typical use of the observer pattern relies on creating
an abstraction “event” to represent state changes in subjects.
Subjects explicitly announce events. Observers register with
subjects to receive event notifications. Upon a state change,
a subject implicitly invokes registered observers without de-
pending on their names.

3.3.1 Value Computation in a Chess Application
Our example for this section (snippets shown in Figures 10
and 11) is an application that assists human players in a
game of chess. It provides a model for the board (Board
concern), a view for displaying the current board position
and for allowing users to make and undo a chess move
(BoardUI concern). A requirement for this application is to
compute and show the value of each move (Value concern).
This value is computed using a min-max algorithm. This
algorithm computes value of a move by searching the game
tree up to a given depth.

The value concern is not central to the Board concern or
BoardUI concerns. Thus, it would be sensible to decouple
the implementation of the value concern from the Board
and BoardUI concerns. This would, for example, allow other
methods of computing the value of a move to be added to the
application or for the implementation of the value concern to
be reused in other games. This decoupling is achieved using
the observer design pattern.

3.3.2 Modularizing Value Computation
The BoardUI concern in this example is implemented by the
class Chess in this implementation. To decouple the Value
concern and other similar observers, this class declares and
explicitly announces an abstract event “PieceMoved”.

1 class Chess extends BoardUI implements MouseListener{
2 void announcePieceMoved(Board b, Move m){
3 for(PieceMovedListener l : pmlisteners){
4 l.notify(b, m);
5 }
6 }
7 //other irrelevant code elided.
8 }
9 public interface PieceMovedListener {

10 void notify(Board b, Move m);
11 }

Figure 10: Listener Interface and Subject Chess Board.

As shown in Figure 10 the subject class Chess main-
tains a list of observers (pmlisteners). All of these ob-
servers implement the interface PieceMovedListener
shown on lines 9-11. This interface provides a single method
notify with the changing board model (b) and move (m)
as parameters. An event is announced by calling the method
announcePieceMoved (lines 2-6), which iterates over
the list of registered observers and notifies them of the event
occurence by calling the method notify (line 4).

1 public class MinMax extends PieceMovedListener {
2 public MinMax(int d) { this.depth = d; }
3 private int depth = 0;
4 void notify(Board bOrig, Move m) {
5 Board bNew = bOrig.getBoardWithMove(m);
6 Piece p = bOrig.getPieceAt(m.getSource());
7 boolean wMoved = p.isWhite();
8 int val = minmax(bNew, wMoved, depth);
9 }

11 private int minmax(Board bOrig, boolean wMoved, int d){
12 if(d==0) return computeValue(bOrig,wMoved);
13 List<Board> nextLevel = nextBoards(bOrig,wMoved);
14 int val = 0;
15 for(Board bNext: nextLevel)
16 val += (-1 * minmax(bNext, !wMoved, d-1));
17 return val;
18 }
19 // Other methods elided.
20 }

Figure 11: Sequential Min-max Computation.

As shown in Figure 11 the min-max algorithm is imple-
mented as an observer. The method notify of this class
creates a new board with this move on line 5, computes
whether the white player moved on lines 6 and 7, and calls
the recursive method minmax to compute this move’s value.

The modularity advantages of the observer design pattern
are clear in this example. The BoardUI concern modeled by
the class Chess is not coupled with the Value concern mod-
eled by the class MinMax, which improves its reusability.
Furthermore, class MinMax is also independent of the UI
class Chess, which allows other potential implementations
of the BoardUI concern to be used in the application without
affecting the implementation of the Value concern.



A problem with this implementation strategy is that com-
putation of the min-max value is computationally intensive.
Thus, in the implementation above the depth of the min-max
game tree affects the responsiveness of the chess UI.

3.3.3 Reaping Concurrency Benefits
Fortunately this problem can be easily addressed with our
concurrent adaptation of the observer pattern as we show
below. In the concurrent version of the observer pattern, the
listener interface is implemented as shown in Figure 12.

1 public abstract class PieceMovedListener
2 extends ConcurrentObserver<PieceMovedListener.Context> {
3 public class Context {
4 public Context(final Board b, final Move m) {
5 this.b = b.clone();
6 this.m = m.clone();
7 }
8 protected Board b;
9 protected Move m;

10 }
11 void notify(Board b, Move m){ notify(new Context(b,m)); }
12 }

Figure 12: Concurrent PieceMoved Listener Interface.

Unlike its sequential counterpart, this interface inher-
its from a library class ConcurrentObserver that we
have provided to encapsulate the concurrency concern. The
class ConcurrentObserver takes a generic argument.
This argument defines the context available at the event
and it defines the type of argument for an abstract method
notify that class ConcurrentObserver provides.
The PieceMovedListener declares an inner class on
lines 22-29, which encapsulates the changing board and the
move. This class is used as the generic parameter for the li-
brary class ConcurrentObserver.

The method notify on line 11 in Figure 12 calls a
method of the same name defined in the library class. This
library method enqueues this observer as a task and returns.

1 public class MinMax extends PieceMovedListener {
2 public MinMax(int d) { this.depth = d; }
3 private int depth = 0;
4 void subNotify(Context c) {
5 Board b = c.ps.getBoardWithMove(c.m);
6 Piece p = c.ps.getPieceAt(c.m.getSource());
7 boolean wMoved = p.isWhite();
8 int val = minmax(b, wMoved, depth);
9 }

10 /* minmax method same as before. */

Figure 13: Concurrent Min-max Computation.

The implementation of observers only changes slightly.
This change is in the signature of the method notify,
which must be renamed to subNotify as shown on line
4 in Figure 13. The only argument to this method is a
Context as declared in Figure 12. So in the body of this
method, arguments must be explicitly accessed from the
fields of the argument c (on lines 5 and 6).

The implementation of subjects remain unaffected. For
example, the concurrent version of the class Chess is the
same as in Figure 10.

To summarize, the class ConcurrentObserver in
our framework allows developers that are modularizing their
object-oriented software using the observer pattern to make
execution of all observers concurrent. The use of our frame-
work does not require any changes in subjects and only mi-
nor modifications in observers. Furthermore, developers do
not have to write any code dealing with thread creation and
synchronization. Rather they should simply ensure that sub-
jects and observers remain decoupled.

3.3.4 Applicability
In descriptions of the observer pattern, two implementations
are common, the push model and the pull model. In the
former, the subject state is passed to the observer with the
notify method. In the latter, the observer must query the
subject regarding the change in state. The concurrent version
we describe is only applicable to the push model. It should
not be used in cases where the observers call back into the
subject. Moreover, developers must ensure that the context
(subject state) passed to the observers is not modified, or else
that (as in the preceding example) the data in the context
object are properly cloned before notification. The use of
this adaptation of the pattern also assumes that observers are
independent of one another.

3.4 Abstract Factory Design Pattern
The Abstract Factory pattern uses an interface for creating
a family of related objects, called products, that are them-
selves described as interfaces. At runtime, a system binds
a concrete implementation of a factory to create concrete
instances of the products. The primary benefit is to decou-
ple the system from the details of specifying which products
are created and how they are created; new behavior can be
introduced by instantiating a different concrete factory that
produces a possibly different family of concrete products.

3.4.1 Image Carousel Using a Sequential Factory
The example for this section is an application that displays
a carousel (a scrollable sequence) of images obtained by
applying a fixed set of possible convolution transformations
to a given source image. Thus, the transformed images are
the products produced by the factory. Figure 14 shows the
interfaces for the abstract factory ImageToolkit and the
product TransformedImage.

On starting the application, a concrete implementation
of ImageToolkit is created and bound to the instance
variable factory. The handler for a “Load” button then
executes a sequence as shown in Figure 15.

3.4.2 Image Carousel Using a Concurrent Factory
If the creation is computationally expensive, it makes sense
to create products asynchronously. One reasonably clean
way to do this is to explicitly create a task for submission
to an executor, which is an abstraction of a thread pool, and
then use the returned Future as a handle for the product to be



1 // Abstract factory for transformed images
2 public interface ImageToolkit {
3 TransformedImage createEmbossedImage(BufferedImage src);
4 TransformedImage createBrightImage(BufferedImage src);
5 TransformedImage createBlurredImage(BufferedImage src);
6 // other examples omitted
7 }
8 // Products produced by the factory
9 public interface TransformedImage {

10 BufferedImage getImage();
11 BufferedImage getThumbnail();
12 }

Figure 14: Abstract Factory and Product Interfaces.

1 private ImageToolkit factory =
2 new ConcreteConvolutedImageFactory();
3 ...
4 ImageCarousel carousel = new ImageCarousel();
5 carousel.addImage(factory.createEmbossedImage(src));
6 carousel.addImage(factory.createBrightImage(src));
7 carousel.addImage(factory.createBlurredImage(src));

Figure 15: Using the Concrete Factory.

created. An example is shown in Figure 16 (in this example,
as in those that follow, we omit the handling of exceptions
that may be thrown by the get() method).

1 ExecutorService executor =
2 Executors.newFixedThreadPool(1);
3 //...
4 Callable<TransformedImage> c =
5 new Callable<TransformedImage>{
6 public TransformedImage call() {
7 return factory.createEmbossedImage(image);
8 }
9 };

10 Future<TransformedImage> future = executor.submit(c);
11 // possibly do other work
12 TransformedImage result = future.get();
13 carousel.addImage(result);

Figure 16: Creating Products Using Explicit Tasks.

The strategy shown in Figure 16 is as elegant as one can
expect using standard libraries, yet still requires significant
modification to the client code. In addition, the potential
concurrency benefit is only realized if the developer for the
client code remembers to place the invocation of get() just
prior to the first use of the product, since it is the call to
get() that potentially blocks.

We instead provide a utility that generates an asyn-
chronous wrapper for the factory itself.

The AsyncFactory uses the class token for the factory
interface, along with the desired concrete factory implemen-
tation, to generate the following:

1. An implementation of a proxy class for each product
interface. The proxy encapsulates a Future representing
an instance of the concrete product to which each method
call is delegated.

2. An implementation of the abstract factory interface, each
method of which returns a proxy for the appropriate prod-

uct and initiates execution of the encapsulated Future to
create the product instance.

The proxy object implements the product interface and can
be used by the client as usual, with one difference in behav-
ior: the first time a method is invoked on it, the method may
block if creation of the underlying concrete product is not yet
complete. The pseudo code for the proxy object is as shown
in Figure 17.

1 class _AsyncProxy_TransformedImage
2 implements TransformedImage {
3 private FutureTask<TransformedImage> task;
4 public _AsyncProxy_TransformedImage(
5 final ImageToolkit factory,
6 Executor executor,
7 final BufferedImage image) {
8 Callable<TransformedImage> c =
9 new Callable<TransformedImage>() {

10 public TransformedImage call() {
11 return factory.createEmbossedImage(image);
12 }
13 };
14 executor.submit(c);
15 }
16 public BufferedImage getThumbnail() {
17 TransformedImage result = task.get();
18 return result.getThumbnail();
19 }
20 public BufferedImage getImage() {
21 TransformedImage result = task.get();
22 return result.getImage();
23 }
24 }

Figure 17: Example of Proxy for Concrete Product.

This autogenerated class essentially facilitates implicit
synchronization without requiring modifications in client
code. In practice, we generate code that encourages
just-in-time (JIT) compiler to inline methods such as
getThumbnail in Figure 17 that significantly reduces the
overhead of this indirection.

The main advantage of this scheme is that no changes to
the client code are required except for the creation of the
factory. In this case, line 1 of Figure 15 would be replaced
by the call shown in Figure 18. A second benefit is that
the proxy for the concrete product is obtained immediately
without blocking. The get() method of the Future is only
invoked upon the first attempt to call a method on the proxy.

1 private ImageToolkit factory =
2 AsyncFactory.createAsyncFactory(ImageToolkit.class,
3 new ConcreteConvolutedImageFactory());

Figure 18: Creating the Asynchronous Factory.

To summarize, the class AsyncFactory in our frame-
work allows developers that are modularizing their object-
oriented software using the factory pattern to make product
creation concurrent. The use of our framework does not re-
quire any changes in the code for abstract or concrete factory
and only minor modifications to the clients that use this fac-
tory. Furthermore, developers do not have to write any code
dealing with thread creating and synchronization. Thus for



this pattern as well our framework enables synergy between
modularity and concurrency goals.

3.4.3 Applicability
Arguments passed in to the factory methods must not be
modified. Creational patterns such as Abstract Factory are
good targets for introducing concurrency, since newly cre-
ated objects are generally not sharing state.

3.5 Composite Pattern
The Composite pattern is used to represent hierarchical
structures in such a way that individual elements of the struc-
ture and compositions of elements can be treated uniformly.
Both individual and composite elements implement a com-
mon interface representing one or more operations on the
structure. A client can invoke one of the operations without
knowledge of whether an object is an individual or compos-
ite element.

Operations on composites typically involve traversing the
subtree rooted at some element to gather information about
the structure. The value at a node often depends on the values
computed from child nodes but generally not on the values
of sibling nodes, a fact which suggests an opportunity for
concurrency.

In this example we discuss an adaptation of the Compos-
ite pattern that supports concurrent traversals using the fork-
join framework.

3.5.1 A File Hierarchy as a Sequential Composite
A simple and familiar composite structure is a file system;
the individual elements are files and the composite elements
are directories. An example of such a structure is shown in
Figure 19.

Performing an operation on the structure involves a re-
cursive traversal such as the getTotalSize() method in
Figure 20.

3.5.2 A File Hierarchy as a Concurrent Composite
To adapt the file hierarchy structure for concurrent opera-
tions we let the element types extend the generic library class
ConcurrentComponent from our framework. This class
implements the general mechanism for adding and remov-
ing children along with the method operation() shown
in Figure 21, where Result and Arg are generic type pa-
rameters representing a result type and argument type for the
operation. The operation() method initiates the concur-
rent traversal by creating the initial task and submitting it to
the ForkJoinPool for execution.

Application-specific behavior is added by implementing
the abstract methods shown in Figure 21. In particular, the
sequentialOperation method represents the actual
operation to be performed on leaf nodes, and the combine
method determines how the results of performing the opera-
tion on child nodes are assembled into a result for the parent
node.

1 // Interface for all elements
2 interface FileSystemComponent{
3 // An operation on the structure
4 int sizeOperation();

6 // Child-related methods
7 void add(FileSystemComponent component);
8 void remove(FileSystemComponent component);
9 FileSystemComponent getChild(int i);

10 int getChildCount();
11 }

13 // Composite element
14 class Directory implements FileSystemComponent{
15 protected List<FileSystemComponent> children = ...

17 // Directories have size 0
18 public int sizeOperation() { return 0; }

20 // Methods for adding and removing
21 // children, etc., not shown
22 }

24 // Leaf element
25 class File implements FileSystemComponent {
26 protected int size;

28 public int sizeOperation() { return size; }
29 // Other methods not shown
30 }

Figure 19: Composite Elements and Individual Elements.

1 int getTotalSize(FileSystemComponent c){
2 int size = c.sizeOperation();
3 for (int i = 0; i < c.getChildCount(); i++){
4 size += getTotalSize(c.getChild(i));
5 }
6 return size;
7 }

Figure 20: Recursive Traversal of Composite Structure.

The ConcurrentComponentTask class is a subtype
of RecursiveTask from the fork-join framework. The
key method is compute(), which is executed in the fork-
join thread pool and returns a result via the join()method.
For leaf nodes, the compute() method simply returns the
value of sequentialOperation. For composite nodes,
a new ConcurrentComponentTask is created for each
child, and the results are assembled using the combine()
method when they become available. The major details of
the compute() method are shown in Figure 22.

3.5.3 Applicability
The operation to be performed on the structure must be
side-effect free, since the actual order in which nodes are
visited is not deterministic. It follows that the argument to
the operation() must not be modified. However, the re-
sult can enforce any desired ordering on the results obtained
from child nodes, since child tasks always complete before
the execution of the combine() method.



Design Pattern Modularized Reusable Impact Impact
Concurrency Concern Pattern on Client Code on Component Code

Creational Patterns
Abstract factory

√ √
Must wrap concrete factory instance. None

Builder
√ √

Must wrap builder instance. None
Factory method

√ √
Must wrap factory instance. None

Prototype
√ √

Must wrap prototype instance. None
Singleton × × N/A N/A

Structural Patterns
Adapter

√ √
Must wrap adapter instance. None.

Bridge × × N/A N/A
Composite

√ √
None Composite must extend library class.

Decorator
√ √

None Decorator must extend library class.
Facade

√ √
Must wrap facade instance None

Flyweight × × N/A N/A
Proxy

√ √
Clients must wrap proxy instance. None

Behavioral Patterns
Chain of responsibility

√ √
None Handlers must extend library class.

Command
√ √

None Command must extend library class.
Interpreter

√
× None Concrete interpreter must extend library class.

Iterator
√ √

Clients must provide iterative code in a closure. None.
Mediator

√
× No impact on colleagues. Mediator abstract class must extend library class.

Memento × × N/A N/A
Observer

√ √
No impact on subjects. Observer abstract class must extend library class.

State × × N/A N/A
Strategy

√ √
Must wrap strategy instance. None

Visitor
√

× None Concrete visitor must extend library class.
Template method

√ √
Must wrap template method instance. None

Figure 23: An Analysis of the Impact of Concurrent Design Pattern Framework on Program Code.

1 public abstract class ConcurrentComponent <Arg,Result>{

3 private static ForkJoinPool pool = new ForkJoinPool();

5 // Returns COMPOSITE or LEAF
6 protected abstract ComponentType getKind();

8 // Performs operation on a leaf
9 protected abstract Result sequentialOperation(Arg args);

11 // Distributes args value for child nodes
12 protected abstract Arg[] split(Arg args);

14 // Assembles the results from child nodes
15 // into a result for the node
16 protected abstract Result combine(List<Result> results);

18 // Performs the operation on this structure
19 public Result operation(Arg args){
20 ConcurrentComponentTask<Arg,Result> task =
21 new ConcurrentComponentTask<Arg,Result>(this, args);
22 return pool.invoke(t);
23 }

25 // other details elided
26 }

Figure 21: Abstract Methods of the library class
ConcurrentComponent.

3.6 Analysis and Summary
So far we have shown that for several design patterns, our
concurrent adaptation provides synergistic modularity and
concurrency benefits. It is important to note, however, in
the absence of programming language-based extensions and
compilers most of the correctness guarantees are dependent
upon developers strictly following our design rules for ap-
plying the concurrent adaptation of a pattern. For example,

1 protected Result compute(){
2 if(component.getKind() == ComponentType.Leaf)
3 return component.sequentialOperation(args);

5 Arg[] a = component.split(args);
6 ConcurrentComponentTask<Arg,Result>[] tasks =
7 new ConcurrentComponentTask[a.length];
8 int i = 0;
9 for(ConcurrentComponent<Arg,Result> c:

10 component.components){
11 tasks[i] =
12 new ConcurrentComponentTask<Arg,Result>(c, a[i]);
13 tasks[i].fork();
14 ++i;
15 }

17 List<Result> results = new ArrayList<Result>();
18 for(ConcurrentComponentTask<Arg,Result> t : tasks){
19 results.add(t.join());
20 }
21 return component.combine(results);
22 }

Figure 22: The compute method for the task.

for observers that are not orthogonal to subjects and that
share state with subjects or with each other, use of the con-
current observer pattern may lead to data races. In comple-
mentary work, we have also explored a language-based so-
lution to this problem [18]. However, developers unable to
adopt new language features and those willing to follow our
design rules carefully can still reap both modularity and con-
currency benefits from our concurrent object-oriented pat-
tern framework.

Figure 23 summarizes the concurrent pattern adaptations
in our framework and their impact on components and
clients. As indicated in Section 3.4, for the abstract fac-



tory pattern the only impact on client code is that at the
point where the factory is instantiated, the factory must be
wrapped by the AsyncFactory proxy class. No changes
to the component itself are required. The concurrency con-
cern is fully modularized in the library class, and the library
class is fully reusable. These observations are summarized
in the first line of Figure 23. For the other creational patterns
—Builder, Factory method, and Prototype—the conclusions
are similar; Template Method and Strategy are also imple-
mented the same way.

In the case of the structural patterns, Adapter, Facade,
and Proxy are similar to the creational patterns in that the
only change required is that the client code use one of our
framework library classes to wrap the instance of the pat-
tern class. No changes are required for the component it-
self. For the Composite pattern, in order to use the frame-
work library the composite implementation classes must ex-
tend ConcurrentComposite as described in Section
3.5. This change, however, is transparent to the client code.
The case for the Decorator pattern is essentially the same.

In section 3.3 we described how the observer implemen-
tation class must extend our library class, but that otherwise
there is no impact on subjects and minimal impact on ob-
servers (changing the name of one method). The same is true
for the Chain of Responsibility, Command, Interpreter, Me-
diator, and Visitor patterns.

Note that for a few of the patterns, there is an “X” in the
“Reusable Pattern” column even though the second column
is checked. For the Interpreter pattern we cannot provide a
reusable library because it is impossible to know a priori in
which cases subtrees can be evaluated concurrently. For in-
stance, in the sample code we have an interpreter for regular
expressions; while alternation subexpressions can be eval-
uated concurrently, sequence subexpressions cannot. Simi-
larly, for the Visitor pattern, the general scenario is that the
methods of the visitor class correspond to the concrete types
in the hierarchy to be visited, and the visitor may handle each
concrete type differently. Therefore, our library class can be
used as a guide and will be adequate for simple cases, but in
most cases it will have to be tailored to the specific hierarchy.

4. Preliminary Evaluation
In this section, we describe our initial evaluation of the
concurrent pattern framework. So far we have applied our
framework to four real world applications: Writer2LaTeX,
a utility for converting OpenOffice documents to LaTeX;
Adaptive Archiver, a utility for selecting and performing
the best compression strategy for an archive; Grader, a
JUnit-based [11] automatic grading framework; and BiNA,
a biomolecular network alignment toolkit [31].

For all of these applications, with fairly small and local
changes we were able to expose implicit concurrency in their
designs. For Writer2LaTeX we saw roughly 2X speedup
using the implicitly concurrent Command pattern, and for

Adaptive Archiver, we observed approximately 4X speedup
using the implicitly concurrent Strategy pattern. In the re-
mainder of this section we describe our efforts for Grader
and BiNA in greater detail.

4.1 Grader: JUnit-based Automated Grading
Grader is built around the JUnit framework [11] with facil-
ities for assigning scores and generating feedback for pro-
gramming assignments based on the number of unit tests the
code base passes. The results are then assembled into a re-
port for students. Grader significantly simplifies the task of
tallying points and indicating areas where the code both suc-
ceeded and failed to perform as expected.

The main pattern that we applied to Grader was the
Builder pattern. This pattern is generally useful for construc-
tion of multi-part objects. It allows construction algorithms
for these parts to vary while providing clients a uniform in-
terface to construct the multi-part object. In the GOF illustra-
tion of this pattern [12] there are three main roles: a director
component that is responsible for managing the correct se-
quence of creation steps along with a builder interface that
abstracts away from the details of concrete builder compo-
nents.

4.1.1 Sequential Grade Book Builder
The multi-part object constructed in this application is the
grade report. It consists of sub-reports for groups of unit
tests. The builder pattern plays a key role in this application
as it allows tests that constitute the report to vary while
providing a consistent way to compose test results into a final
report for students. Relevant parts from this application are
shown in Figure 24. We elide irrelevant details to focus on
the usage of the builder pattern in this application.

2 public interface Grader { //Builder
3 public GradeReport grade();
4 }

6 public class GraderSet { //Director
7 private List<Grader> tests;
8 // Other details elided.
9 public void go() {

10 GradeReport[] reports = new GradeReport[tests.size()];
11 for(int i = 0; i < reports.length; i++) {
12 reports[i] = tests.get(i).grade();
13 }
14 // Other details elided ..
15 }
16 /* Other details elided. */ }

Figure 24: The Sequential Grade Report Builder

The interface Grader in Figure 24 plays the role of
builder in this application and the class GraderSet plays
the role of director. Concrete builder instances are contained
in the list tests on line 7. The director iterates through the
builders asking each to build its part of the grade report.

The main advantage of this design is that it allows instruc-
tors and teaching assistants to write tests that are concrete
builders without having to modify the rest of the application.



4.1.2 Implicitly Concurrent Grade Book Builder
Given a modular implementation of the grading functional-
ity, reaping the concurrency benefits turned out to be very
easy using our adaptation of the builder design pattern. Fig-
ure 25 highlights the only lines that changed for this adapta-
tion in the entire application.

1 @Builder
2 public interface Grader {
3 public GradeReport grade();
4 }

6 public class GraderSet { //Director
7 private List<Grader> tests;
8 // Other details elided.
9 public void go() {

10 GradeReport[] reports = new GradeReport[tests.size()];
11 for(int i = 0; i < reports.length; i++) {
12 reports[i] = AsyncUtil.createAsyncBuilder(
13 Grader.class,tests.get(i)).grade();
14 }
15 // Other details elided ..
16 }
17 /* Other details elided. */}

Figure 25: Implicitly Concurrent Grade Report Builder

We added line 1 to the interface declaration Grader,
which uses Java annotations to declare that this interface
plays the role of a builder in this application. This an-
notation is provided by our framework to mark roles that
classes play in the design pattern implementation. As dis-
cussed in Section 3.1.2, this annotation causes two classes
to be autogenerated at compile time, a proxy class of type
GradeReport that encapsulates a future for the result, and
an asynchronous builder class of type Grader. The proxy
class is similar to the TransformedImage proxy discussed
in Section 3.4 and the asynchronous builder class is simi-
lar to the autogenerated class for the asynchronous factory
of Section 3.4 and to the template method example of Sec-
tion 1.2.1.

We modified line 12 in Figure 24 to wrap the concrete
builder instance returned by tests.get(i) inside an
asynchronous builder instance. This is accomplished by us-
ing the createAsyncBuilder method provided by our
framework. We then call the method grade as before, but
now with the asynchronous builder instance as the receiver
object (instead of the concrete builder instance).

The net effect of these changes is that on lines 12–13 in
Figure 25, creation tasks for all reports are queued for asyn-
chronous execution and can complete concurrently. This is
unlike Figure 24, where creation of reports is sequential.
Furthermore, besides these two lines other parts of this ap-
plication remain the same; thus the impact of applying our
implicitly concurrent builder pattern on client code is fairly
minimal.

4.1.3 Performance Results
To analyze the benefits of these two lines of changes in the
grading application, we compared the performance of the

enhanced version with the original sequential version. All
experiments in this paper were run on a system with a total
of 12 cores (two 6-core AMD Opteron 2431 chips) running
Fedora GNU/Linux.

Figure 26: Observed Improvements for Grading Framework.
For 12 cores implicitly concurrent version ran in ∼15% of
the time taken by the original version (6X speedup).

Both the original and the enhanced version of the grad-
ing framework computed 12 identical grade reports. These
results are presented in Figure 26. The performance benefits
in this case were almost as good as could be expected. In-
creasing the number of threads used consistently improved
the runtime roughly in keeping with the 1/x curve. It should
however be noted that there are plateaus in the runtimes
which can be easily explained. The concurrency in the pro-
gram is achieved by building different reports concurrently.
Since there were 12 identical reports in the benchmark, these
were spread over the different threads. Significant drops can
be seen at 2, 3, 4, 6, 12 threads. These are the even multiples
of 12. Unless the number of threads divides 12 evenly, the
best expected runtime is that achieved by the previous even
multiple (because of unbalanced load on threads).

4.1.4 Summary
To summarize, for the JUnit-based grading application, we
observed that exploiting the builder design pattern to expose
potential concurrency shows significant scalability benefits.
For this application, adaptation efforts were minimal – a to-
tal of two lines were changed. However, in general we do
expect these costs and performance gains to vary substan-
tially based on the application.

4.2 Biomolecular Network Alignment Toolkit (BiNA)
The Biomolecular Network Alignment (BiNA) Toolkit is a
framework for studying biological systems at the molecular-
level such as genes, proteins and metabolites [31, pp.345].
For these systems, of particular interest to molecular biol-
ogists is their interaction patterns. In practice, multiple ver-
sions of interaction patterns can be observed between molec-
ular participants based on observation conditions. BiNA is
used to compare and align these interaction patterns among
large number of molecular participants.



Unlike the examples and applications discussed so far,
the original implementation of BiNA used explicitly created
threads. Thus, our challenge was to match or exceed the
performance of the explicitly tuned concurrent version of
BiNA.

4.2.1 Application of Pattern Framework
We first removed explicit threading from BiNA’s original
implementation to create a sequential version of BiNA. We
then used two design patterns in BiNA: abstract factory and
iterator. BiNA constructs a network of interaction patterns
based on input files before computing alignment of these
networks. Based on our inspection, construction of these
network objects appeared to be an expensive operation and
thus a good candidate for an asynchronous factory. We also
modified two existing applications of the iterator pattern to
use our implicitly concurrent versions.

4.2.2 Performance Results
To analyze the benefits of these changes in BiNA, we com-
pared the performance of the enhanced version with the orig-
inal concurrent version. All experiments in this paper were
run on a system with a total of 12 cores (two 6-core AMD
Opteron 2431 chips) running Fedora GNU/Linux. For this
multicore CPU, the original version of BiNA performed best
when we set the total number of threads to 12.
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Figure 27: Observed Improvements for BiNA over
manually-tuned concurrent version by Towfic et al. [31].

Alignments were computed using data for six different
protein-protein interaction networks (mouse, human, fly, and
yeast) using both the original and the enhanced versions of
BiNA. The comparative results are presented in Figure 27.
Depending on the data, we observed improvements of 8.5%
to 34.5% over the manually-tuned concurrent version of
BiNA.

4.2.3 Summary
For BiNA we observed that exploiting the abstract factory
pattern and the iterator design pattern to expose potential
concurrency showed scalability benefits. The adaptation ef-
fort was also fairly small.

5. Conclusion and Future Work
With increasing emphasis on multiple cores in computer ar-
chitectures, improving scalability of general-purpose pro-
grams requires finding potential concurrency in their de-
sign. Existing proposals to expose potential concurrency rely
on explicit concurrent programming language features. Pro-
grams created with such language features are hard to reason
about and building correct software systems in their presence
is difficult [22, 28].

In this work, we presented a concurrent design pattern
framework as a solution to both of these problems. Our so-
lution attempts to unify program design for modularity with
program design for concurrency. Our framework exploits
design decoupling between components achieved by a pro-
grammer using GOF design patterns to expose potential con-
currency between these components.

We have studied all 23 GOF design patterns and found
that for 18 patterns, synergy between modularity goals and
concurrency goals is achievable. Since these design patterns
are widely used in object-oriented software, we expect our
results to be similarly widely applicable.

Our framework relies on Java’s existing type system and
libraries to enforce concurrency and synchronization disci-
pline behind the scenes. We have had much success with
this approach; however, completely enforcing usage policies
such that resulting programs are free of data races and dead-
locks, and have a guaranteed sequential semantics, doesn’t
appear to be possible with the library-based solution that we
propose in this work. In a synergistic work, we are also ex-
ploring novel language features and type systems [18] that
allows sound determination of these properties. We expect
this work to inform the design of such language features.

Based on our current efforts, we have come to an un-
derstanding that a sophisticated runtime system as a back-
end will be necessary to completely abstract from the con-
currency concern. For example, performance evaluation of
several patterns suggest the need to support load-balancing
in our framework. Similarly all pattern implementations can
benefit from better support for race detection and avoidance
as well as a cost-benefit analysis to determine applicability.
We plan to continue to investigate these issues. Finally, we
would like to apply our concurrent design pattern frame-
work to larger case studies to gain insights into problems
that might arise due to scale.
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