
How to Trust a Web Service Monitor Deployed in an Untrusted Environment?

Mahantesh Hosamani Harish Narayanappa Hridesh Rajan
Dept. of Computer Science, Iowa State University

{mahantesh, harish, hridesh}@cs.iastate.edu

Abstract

In a service oriented architecture, certain requirements
can be tested by observing the interface of the service
whereas other requirements such as data privacy, confiden-
tiality and integrity cannot be tested in this way. After de-
ployment, a requirements monitor is used to analyze the
conformance of a web service to such requirements. The
integrity of the reported conformance results is as good
as of the integrity of the monitor especially when the re-
quirements monitor is executing in an untrustworthy envi-
ronment. In this paper, we propose a hardware-based dy-
namic attestation mechanism to validate the integrity of the
requirements monitor. To evaluate our approach, we have
conducted a case study using a commercial requirements
monitor and a collection of web service implementations
available with Apache Axis. Our case study demonstrates
the feasibility of verifying the conformance of a web service
executing in an untrustworthy environment.

1 Introduction
With the growing popularity of web services, a lot of at-

tention is being directed towards the specification and ver-
ification of functional and non-functional requirements of
web services in a service oriented architecture paradigm.
To monitor a service (or its composition) for functional re-
quirements, such as “R1: the response given by the credit
card verification service shall be true if the card number is
valid and false otherwise”, it is sufficient to observe or test
the interface of the service. On the other hand, to validate
a non-functional requirement such as “R2: the service shall
not persist the credit card number supplied by the client”, it
may not be sufficient to validate just the external interface.
There are a number of approaches such as by Barbon et
al. [3] and Mahbub and Spanoudakis [11] to validate func-
tional and non-functional requirements of a web service us-
ing dynamic monitoring.

Web services are often executed on servers that are not
owned or operated by the clients. The validation for most
non-functional requirements may only come from a monitor
that is executing in the same domain as the service imple-

mentation and that can validate — by observing the running
service implementation —that the requirements such as R2
are indeed satisfied. The design and development of these
monitors is a widely studied problem in requirements mon-
itoring literature (e.g. see [10, 12]). Nevertheless, the key
question remains; in a (possibly) untrustworthy domain who
guarantees the integrity of the monitor? In other words,
who monitors the monitor?

The goal of our approach is as follows: given a set of
service specification (S), a set of service implementation
(I), a monitor that is capable of detecting deviations in
the execution of the service implementation from its spec-
ification (M : S × I → {true, false}) running in a
trusted environment, and a monitor that is similarly capa-
ble, but may be running in an untrustworthy environment
(M ′ : S × I → {true, false}), how can we validate that
M ≡ M ′ is always true.

To give the reader an idea of the problem with verifying
a monitor in an untrustworthy environment without a root
of trust, let us for a moment assume that a validation mech-
anism V ′ : M ×M ′ → {true, false} exists. Now in order
to answer this validation question, there must be a part of
V ′ running in the same untrustworthy environment that can
observe M ′ to compare it with M . If not, V ′ will depend on
the untrustworthy environment to observe M ′, which in turn
may mask the true responses of M ′ with expected responses
for M thereby invalidating the premise that V ′ exists. On
the other hand, if some part of V ′, say δV ′ is running in the
same untrustworthy environment to observe M ′, we will
need another monitor to verify that the integrity of δV ′ is
not compromised, which will need to be verified again, ad
infinitum. In summary, V ′ may not exist.

Using standards such as WS-Security [9] and WS-
Trust [1] or proposals such as that by Skogsurd et al. [16],
we can address the issue of security-token interoperabil-
ity and secure messaging within SOA. But, these standards
are not independently sufficient to guarantee indisputable
trust in an untrustworthy environment. We propose to use
a hardware-based mechanism as the root of trust for such
validation mechanisms.

In the example described earlier, if we could be sure that

1



there exists a δV ′ such that we do not need another monitor
to verify its integrity, δV ′ would make V ′ realizable. For-
tunately, recent research results have shown that realization
of such hardware-based root of trust is possible in the form
of a Trusted Platform Module (TPM) [14, 13]. In this work,
we describe an architecture based on TPM to validate the
integrity of a runtime requirements monitor, which will in
turn facilitate trusted services.

In [7], we studied the problem in detail and suggested
a preliminary solution. It consisted of the TPM directly
monitoring the web service implementation. This made the
architecture inflexible with regards to bug-fixing and code
evolution in the web service implementation. In the current
proposal, we used a requirements monitor to monitor the in-
tegrity of the web service. The TPM monitors the integrity
of this requirements monitor. Thus, the shortcomings of this
architecture have been addressed.

Section 2 describes trusted platform modules, which
form the basis of our proposed architecture. Section 3 dis-
cusses the approach for our new architecture. The experi-
mental evaluation of a prototype implementation conform-
ing to this architecture is discussed in Section 4. Section 5
compares and contrasts our work with related approaches.
Section 6 discusses future work and concludes.

2 Background: Trusted Platform Module
A Trusted Platform Module (TPM) is a trusted agent co-

processor within a remote computing platform which de-
rives its root of trust from its manufacturer or a delegated
trusted third party [17]. A TPM can be trusted to perform
certain actions truthfully despite being an integral part of
a potentially malicious or compromised system. In other
words, it is our trusted ambassador in a friendly or hostile
foreign territory. A TPM provides roots of trust for storage,
measurement, and reporting of measurement.

On every TPM, there is a facility for on-chip public and
private key pair generation using the inbuilt hardware ran-
dom number generator. This makes it possible for the TPM
to encrypt and decrypt data. The TPM also has a set of reg-
isters called Platform Configuration Registers(PCR) which
can be used to store the 160-bit hash values obtained using
the SHA1 hashing algorithm of the TPM. The hardware en-
sures that the hash value of any PCR can be changed only
by encrypting the new data over the previous hash value of
the PCR. In this way, PCRs can be used to indelibly record
the history of the machine since the last reboot. The PCRs
are cleared off at the time of every reboot.

Over the past few years, the computer industry has come
up with many initiatives to guarantee security, integrity and
confidentiality of data through innovative hardware-based
architectures. A consortium of key industry players, Trusted
Computing Group (TCG) [17], came up with the specifica-
tions for a TPM with such a goal. The TCG vision was that

this rudimentary TPM supported trust can be bootstrapped
into a higher level trust through some software trust archi-
tecture or design principle. Hardware vendors are moving
towards installing TPM on every computer that ships.

3 Approach
The main goal of this research is to preserve trust among

the entities in a service oriented architecture. The current
specification for web services in a service oriented archi-
tecture gives a lot of flexibility and freedom to the service
providers and does not prevent them from implementing the
services as they like. Currently, there is no fool-proof mech-
anism to verify the service provider’s claim. Therefore, an
approach is needed to guarantee the integrity of the web ser-
vice. We employ the Clark-Wilson model to monitor the in-
tegrity of the requirements monitor which in turn monitors
the web service.

Clark-Wilson’s integrity model formalizes the concept
of information integrity[4]. Clark-Wilson’s model partic-
ularly emphasizes that the implementer of the transaction
and the certifier of the transaction are essentially different
entities. According to the model, any well-formed transac-
tion should transition a system from one consistent state to
another consistent state. To monitor this, there has to be a
mechanism that transparently reports the state of the service
provider’s system from time to time. Such a mechanism
should not be vulnerable to any kind of tampering.

Figure 1. Our Proposed Architecture

Following the Clark-Wilson model, we proposed certain
key additions to the standard SOA in the form of a new in-
terface called trust negotiation and verification interface as
shown in Figure 1 in [7]. The purpose of this interface was
to provide an abstraction for the clients to negotiate desired
integrity levels and for brokers to verify that the service im-

2



plementation was indeed conforming to the desired service
specification. The trust negotiation and verification inter-
face between the service broker and the service provider
also allows broker to communicate with its trusted agent,
the trusted platform module, and with service specific trust
monitor in the service providers domain. The role of the
trusted platform module is to periodically validate the in-
tegrity of the trust analyzer that in turn validates the confor-
mance of the service implementation with the service spec-
ification.

We have implemented a system based on this hypothe-
sized architecture to show the feasibility of our approach.
Our system is shown in Figure 2. To recapitulate briefly, in
a SOA there are three main entities: the service provider,
the service broker and the client. The client contacts the
service broker with a request and the broker directs the re-
quester to the service provider. In our example system,
the service broker also acts as the trusted third party. The
monitor in this case can be any requirements monitor that
verifies whether the service implementation on the service
provider’s side conforms to its quality requirements.

Figure 2. An Implementation of the Proposed
Architecture

The trusted third party hosts an authentication server to
authenticate whether the service implementation on the ser-
vice provider’s side is genuine. It does so by verifying exe-
cution trace of the service implementation using a require-
ments monitor. Since the scope for monitoring is very di-
verse, for demonstrating the feasibility of this system, we
are assuming that if the service provider had malicious in-
tentions, the service implementation would be modified to
either store or process the confidential customer data. So,
the goal of this architecture is to help the client to success-
fully complete the transaction with an assurance from the
trusted third party that the service provider has not stored

or processed the confidential data that were provided by the
customer. In this architecture, we assume that the operating
system on the service provider’s environment is secure, im-
plying that the service provider will not be able to change to
monitoring software without knowledge of the TPM in the
system. For example, the approach proposed by Sailer et al.
to secure the operating system kernel can be used [13].

Initialization phase on service provider’s side:

STEP 1. Accept the requirements to be monitored.

For every transaction, the following actions are carried
out by the trust analyzer:

STEP 1. Accept nonce from the authentication server on the
trusted third party.

STEP 2. Generate a trace for the specific web service imple-
mentation program using the requirements moni-
tor and send it to trusted third party.

STEP 3. Using the local TPM, compute the SHA1 hash of
the software stack up to the requirements monitor
including the nonce.

STEP 4. Encrypt the hash using the public part of AIK of
the TPM of the trusted third party and send the
encrypted data to it.

Figure 3. Procedure for establishing trust in
the service provider’s environment

The algorithm for verifying the integrity is described in
Figure 3, Figure 4 and Figure 5. The initialization phase
is carried out under the supervision of a trusted authority.
During this phase, the authentication server identifies the re-
quirements to be monitored. We emulated the requirements
identification process which consists of determining vari-
ables and methods dealing with data labeled as sensitive, by
using Kaveri [8], a tool for program slicing. In future, we
plan to have the requirement specifications as a part of the
web service interface itself, thereby decoupling the process
of requirements identification, which is currently tied to the
implementation of the web service.

For every transaction, the authentication server generates
a nonce to guard against replay attacks. A nonce is a ran-
dom number that is generated only once and is included in
all interactions to prove the freshness of data. It is to be
noted that we are not checking the trace for an exact equiv-
alence. This will lead to false positives because a program
can be modified for purposes such as bug-fixing, without vi-
olating the specifications. Therefore, we programmatically
check for violation of specific properties listed before. If
any of the system, configuration or library files up to the
requirements monitor are even slightly tampered, there will
be significant variations in the final SHA1 hash value. It
takes about 269 units of time to find SHA1 collisions ac-

3



Initialization phase on the trusted third party:
STEP 1. Identify the requirements to be monitored.
STEP 2. Install the requirements monitor and on the pro-

gram and generate a trace for the requirements de-
termined above.

STEP 3. Using TPM, measure the software stack up to the
requirements monitor and store this measurement
for future reference.

For every transaction, the following are done by the au-
thentication server:
STEP 1. Send a nonce to the service provider.
STEP 2. Receive the trace from the requirements monitor

for the specific execution of the web service.
STEP 3. Receive the encrypted data from the service

provider.
STEP 4. Decrypt the data in the TPM using the private part

of it’s non-migratable AIK to get the TPM mea-
surement of the service provider’s requirements
monitor and verify the value for conformance.

STEP 5. With the reference measurement as the basis, pro-
grammatically check the trace for violation of spe-
cific properties. Check for replay attacks.

STEP 6. If these checks fail, notify the user of a possibility
of violation.

Figure 4. Procedure for monitoring trust from
the trusted third party’s environment

On the client’s side:
STEP 1. Notify the trusted third party before the transac-

tion.
STEP 2. Send request to the web service.
STEP 3. Wait for an assurance/notification from the trusted

third party.

Figure 5. Procedure to be followed by the
client for conducting a transaction

cording [19], implying that collisions are very rare. Hence,
these variations can be detected easily.

In step 4 of Figure 3, AIK (Attestation Identity Key) is
used to encrypt data to make the interactions secure. AIK
is a special purpose asymmetric signature key created by
the TPM manufacturer, the private portion of which is non-
migratable and protected by the TPM. Since the private part
of the TPM’s AIK cannot be retrieved by any user, the de-
cryption of the data has to be done only on the trusted third
party’s local machine using the private part of it’s AIK.

4 Case Study
The subjects for our case study were selected from the

sample web service implementations available from the
Apache Axis distribution. Table 6 briefly describes the web
services used for this case study and the sections of the
service implementation that was traced by the requirement
monitor for each web service. Some of these sections were

chosen randomly while others were chosen to monitor cer-
tain methods handling specific data, labeled as sensitive.

Service
name

Short description Traced Sections of the Service
Implementation

Stock Gets quote for the
stock "symbol"

1. Instructions invoking setters.

2. Methods with private access.
Echo Echoes a string 1. Method entries and exits.

2. Methods with public access.
Encoding Serialization of a mes-

sage
1. Methods with private access.

2. Instructions which invoke get-
ters.

Message Simple XML messag-
ing service

1. Methods with private access.

2. Instructions invoking getters.
Bidbuy Request for a quote,

purchase a given
quantity of a specified
product and process
purchase order.

1. Method entries and exits.

2. Instructions that invoke getters
and setters.

Figure 6. Subjects for our Case Study

4.1 Experimental Setup

The experimental setup was implemented using two Dell
Precision 390 stations each having Intel Core2 Duo Proces-
sor @ 1.86 GHz and 2 GB of RAM. The processors on these
stations have a TPM (Version 1.2) manufactured by Atmel
Corporation, embedded in them with 24 PCRs each. One of
the stations is assigned the role of a service provider while
the other plays the role of a trusted third party. We used
tpm4java for developing our trust analyzer to take integrity
measurements of the requirements monitor on the service
provider’s side. The Java library tpm4java, developed by
Tews et al. [18], is used for accessing the TPM functional-
ity from Java applications. The test environment consists of
Apache Web server Version 2.2, Tomcat Servlet Container
Version 5.5.23 and Axis SOAP server Version 1.2 running
on Windows XP Professional operating system. For evalu-
ating the requirements of the web service implementation,
we use a commercial software called CodeMonitorTM

(monitor) from Tangentum Technologies [5] as our subject
monitor. The monitor instruments the Java bytecode to log
certain actions and this makes it possible to monitor web
services that have already been deployed. For doing these,
it must be installed in the same environment as that of the
web service. For the purpose of this experiment, we defined
the requirement as, " The execution trace of the program in-
volving the variables and methods dealing with client data
labeled as sensitive, should not include APIs dealing with
persistence or serialization."

4



4.2 Violations
This class of compromise can be detected by current ap-

proaches for requirements monitoring (e.g. [10, 12]). Us-
ing similar techniques, our subject monitor was also able
to give the execution trace for methods that caused either
persistence or serialization of data. When such a violation
occurs, the trusted third party can signal the end user of a
breach of trust by the web service.

Since the monitor has to be installed in the service
provider’s environment, the monitor itself can be compro-
mised in many ways. For this paper, we instrumented the
monitor to report a normal trace even when there was a
violation of trust. Thus, the integrity of the web service
is a function of the integrity of the requirements monitor-
ing software. One such case is presented in Figure 7, in
which one of the library files of the monitor is altered. Since
the monitor itself is being monitored by the hardware-based
TPM, it is possible to detect such a violation.

Figure 7. TPM Measurements for a Genuine
and a Compromised Requirements Monitor

Files Monitored by
TPM

160-bit SHA1
Hash of Genuine
Monitor

160-bit SHA1
of the Compro-
mised Monitor

../codemonitor.license 6476...DB8F 6476...DB8F
...

../codemonitor.config 8D9E...5FA8 8D9E...5FA8

../codemonitor.jar 23F9...5BA2 D843...1531

../jbcs-client.jar 86AA...BE56 0F66...00F7
...

From Figure 7, it can be observed that the hash values
in the third column starting from the entry corresponding to
the file codemonitor.jar differ significantly from their cor-
responding entries in the second column. This is because
the SHA1 hashing algorithm in the TPM not only hashes
the listed files but also preserves the order of hashing. It
implies that at least one of the library files including code-
monitor.jar has been altered without the knowledge of the
trusted third party.

4.3 Overhead of Monitoring

Table 1 compares the average time taken to execute a
web service in a standalone manner, when CodeMonitor is
used and when custom Aspects are applied for monitoring
the web service implementation. These values are the aver-
ages of the time taken to execute the service over ten client
requests. The overhead due to CodeMonitor is greater be-
cause, it instruments all the instructions used in the web
service implementation including those of the libraries, at
run time. Since the source code for CodeMonitor was not
available, we could not circumvent this overhead. So, we
wrote custom aspects to monitor the same sections of the

service implementation and achieved a better performance.
This demonstrates that web services can be monitored for
integrity without a tangible time lag in responding to the
client’s request.

Table 1. Overhead of Monitoring
Service Execution

Time
without
any mon-
itor (in
seconds)

Execution
time with
CodeMon-
itor (in
seconds)

Execution
time with
Aspect
Monitor

Stock 0.944 10.688 1.283
11.476 1.005

Echo 1.299 42.375 1.609
12.812 1.640

Encoding 0.738 11.828 0.922
9.621 1.026

Message 0.945 7.200 1.209
20.641 1.208

Bidbuy 0.993 83.110 1.349
10.900 1.341

5 Related Work
Ever since the 1970s, efforts have been made to produce

secure operating systems [15] as a basis for secure comput-
ing. In 1997, Arabaugh et al. proposed an architecture for
secure and reliable bootstrapping called AEGIS [2].

In 2003, Grafinkel et al. proposed Terra [6], a virtual-
machine based platform for trusted computing. In Terra,
a virtual machine monitor was used to simultaneously par-
tition the hardware into independent, isolated virtual ma-
chines of varying levels of security. Unlike AEGIS, Terra
does not start from a secure boot process.

In 2004, Sailer et al. proposed a TCG based Integrity
Measurement Architecture for Linux [14]. This architec-
ture made use of a TPM hardware to store the integrity
measurements of the system. The purpose of this archi-
tecture is to present an ordered list of measurements to a
remote party. The remote system determines the integrity
of the attested system by reconstructing the image of the
attested system’s software stack on the local system using
these measurements and then by applying the security pol-
icy on the local software stack. To establish mutual trust,
this process has to be carried out on both sides involved in
the transaction [13]. This was implemented by instrument-
ing the Linux kernel to create measurements and to store
them in the TPM hardware to protect against compromise.

However, the process of recreating the image of the other
party on the local system based on the measurements ob-
tained is complex. The task of taking measurements is im-
plemented hacking the Linux kernel code. In case of online
transactions, common users may not have the Linux oper-
ating system. In a majority of the cases, the two commu-
nicating parties may not have the same operating system in

5



their environments. Our architecture is designed to address
these issues by delegating the task of certifying the service
provider to a trusted third party.

6 Conclusion and Future Work
Existing security frameworks do not offer any guaran-

tee to the client whether the data will remain private and
tamper-proof in the domain of the service provider. In a
truly decoupled environment, which is the main motto of
SOAs, including constructs to negotiate, enforce, and verify
trust and security guarantees within the provider’s domain
through the service discovery interfaces thus seems to be
a crucial pre-condition for mission-critical deployment of
SOAs. Our proposed architecture for ensuring the integrity
of requirement monitors is a step in this direction. Our ex-
perimental results demonstrate the viability of monitoring
web services for integrity without incurring a tangible over-
head in terms of time. In future, the architecture will un-
dergo major enhancements to include a framework for the
client to specify certain properties that can be enforced on
the web service implementation by the requirements moni-
tor.

Acknowledgments
This material is based upon work supported in part by

the National Science Foundation under Grants 0540362 and
0627354.

References

[1] S. Anderson and et al. Web services trust language
(wstrust).
http://msdn.microsoft.com/ws/2004/04/ws-trust/.

[2] W. A. Arbaugh, D. J. farber, and J. M. Smith. A secure
and reliable bootstrap architecture. In IEEE Symp. Se-
curity and Privacy, pages 65–71, 1997.

[3] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti.
Run-time monitoring of instances and classes of web
service compositions. In ICWS ’06, pages 63–71.

[4] D. D. Clark and D. R. Wilson. A comparison of com-
mercial and military computer security policies. In
1987 IEEE Symposium on Security and Privacy, pages
184–194, 1987.

[5] codemonitorTM .
http://www.tangentum.biz/.

[6] T. GARFINKEL, B. PFAFF, J. CHOW, M. ROSEN-
BLUM, and D. BONEH. Terra: A virtual machine-
based platform for trusted computing, 2003.

[7] M. Hosamani, H. Narayanappa, and H. Rajan. Moni-
toring the monitor: An approach towards trustworthi-
ness in service oriented architecture. In 2nd Interna-
tional Workshop on Service Oriented Software Engi-
neering, September 2007.

[8] G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri:
Delivering indus java program slicer. In Fundamen-
tal Approaches to Software Engineering, FASE 2005,
Springer-Verlag, April 2005.

[9] C. Kaler and et al. Web services security (ws-
security).
http://msdn.microsoft.com/library/enus/dnglobspec/html/ws-
security.asp.

[10] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Mon-
itoring and control in scenario-based requirements
analysis. In ICSE ’05, pages 382–391.

[11] K. Mahbub and G. Spanoudakis. Run-time monitor-
ing of requirements for systems composed of web-
services: Initial implementation and evaluation expe-
rience. In ICWS ’05, pages 257–265.

[12] W. Robinson. Monitoring software requirements us-
ing instrumented code. In HICSS ’02, page 276.2.

[13] R. Sailer, L. van Doorn, and J. P. Ward. The role of
TPM in enterprise security. Technical report, IBM Re-
search, October 2004.

[14] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and implementation of a TCG-based integrity
measurement architecture. In Thirteenth Usenix Secu-
rity Symposium, pages 223–238, August 2004.

[15] M. Schroeder. Engineering a security kernel for mul-
tics. In Fifth Symposium on Operating Systems Prin-
ciples, pages 125–132, November 1975.

[16] H. Skogsrud, B. Benatallah, F. Casati, and F. Toumani.
Managing impacts of security protocol changes in
service-oriented applications. In 2007 IEEE Interna-
tional Conference on Software Engineering, 2007.

[17] Trusted computing group.
https://www.trustedcomputinggroup.org.

[18] E. Tews and M. Hermanowski. Projektvorstellung
tpm4java trusted computing fur java.
http://tpm4java.datenzone.de.

[19] X. Wang, Y. L. Yin, and H. Yu. Collision search at-
tacks on sha1.
http://www.cryptome.org/sha-attacks.htm.

6


