
Candoia: A Platform for Building and Sharing
Mining Software Repositories Tools as Apps

Nitin M Tiwari
Iowa State University
nmtiwari@iastate.edu

Ganesha Upadhyaya
Iowa State University
ganeshau@iastate.edu

Hoan Anh Nguyen
Iowa State University

hoan@iastate.edu

Hridesh Rajan
Iowa State University
hridesh@iastate.edu

Abstract—We propose Candoia, a novel platform and ecosys-
tem for building and sharing Mining Software Repositories
(MSR) tools. Using Candoia, MSR tools are built as apps,
and Candoia ecosystem, acting as an appstore, allows effective
sharing. Candoia platform provides, data extraction tools for
curating custom datasets for user projects, and data abstractions
for enabling uniform access to MSR artifacts from disparate
sources, which makes apps portable and adoptable across diverse
software project settings of MSR researchers and practitioners.
The structured design of a Candoia app and the languages
selected for building various components of a Candoia app
promotes easy customization. To evaluate Candoia we have built
over two dozen MSR apps for analyzing bugs, software evolution,
project management aspects, and source code and programming
practices showing the applicability of the platform for building
a variety of MSR apps. For testing portability of apps across
diverse project settings, we tested the apps using ten popular
project repositories, such as Apache Tomcat, JUnit, Node.js, etc,
and found that apps required no changes to be portable. We
performed a user study to test customizability and we found
that five of eight Candoia users found it very easy to customize
an existing app. Candoia is available for download.

I. INTRODUCTION

Over the last decade, mining software repositories (MSR)
research has helped make significant advances in software
engineering (SE) — defect prediction [4], [12], [30], source
code analysis and pattern discovery [26]–[28], [43], [45],
mining software specifications [2], [11], [46], [48], social
network analysis of software development [7], [10], [29], [32],
[36], [47] to name a few. Researchers have shown that further
advances can be made if the process of building and widely
distributing MSR tools is eased [3], [5], [13], [19], [21],
[23]. Toward this end, we propose Candoia, a platform and
ecosystem for building and sharing MSR tools. Using Candoia,
MSR tools are built as apps, and Candoia ecosystem, acting
as an appstore, allows effective sharing of MSR apps. Candoia
platform provides data extraction tools and data abstractions
for mining MSR artifacts1. Candoia provides suitable abstrac-
tions for building MSR tools, popularly known as apps.

Candoia’s main contribution is the process of building and
sharing MSR tools as apps which are portable, adoptable, and

1MSR artifacts include version control system (VCS) data from GIT, SVN,
CVS, etc, source code written using programming language(s) such as Java,
Javascript, etc, bug data from repositories such as Bugzilla, JIRA, GitHub-
Issues, SF-Tickets, etc, project metadata, and users and teams data from forges
such as SF.net, GitHub

customizable for MSR researchers and practitioners. There
have been similar efforts along two directions to help MSR
researchers and practitioners. First set of approaches provide
i) platforms for reusing of tools and allow low cost addition
of new tools [13], ii) frameworks that define database schemas
for storing MSR artifacts (such as revision history, source
code, etc.) and provide access via SQL [3], [5], [19], [21],
[23] and iii) infrastructures for downloading projects from
open-source repositories, analyzing the source code, revision
histories and other MSR artifacts, and building the dataset
for testing the hypothesis [24], [35], [35]. The second set of
approaches provides a repository of datasets from open-source
repositories so that researchers do not have to collect and
curate datasets [14], [22], [37]. When compared to the first set
of approaches that are mainly focused on enabling faster MSR
prototyping, Candoia enables easier building and customizing
of MSR tools, and achieves portability of the tools across
diverse project settings. When compared to the second set of
approaches that are focused on providing standard datasets,
Candoia allows mining user specific datasets.

Candoia makes several contributions to ease the process of
building and sharing MSR tools by promoting adoptability
and customizability. Building MSR tools require building or
using pre-built data extraction tools to gather MSR artifacts.
Candoia platform provides a large set of data extraction
tools for extracting the MSR artifacts from user projects
and curating the user datasets. This eases the process of
building MSR tools. We have created a robust implementation
of the Candoia platform. To evaluate, we have built over
two dozen different MSR apps for analyzing bugs, software
evolution, project management aspects, and source code and
programming practices. A survey of MSR tools found that
generalization of MSR tools beyond their subject dataset could
make them more replicable and adoptable [38]. In this regard,
the Candoia platform provides data abstractions for mining
MSR artifacts and these abstractions provide uniform access to
MSR artifacts from disparate sources. Since apps are built on
top of Candoia’s data abstractions and not on top of raw MSR
artifacts, apps become portable across diverse project settings.
A project setting defines types and sources of various MSR
artifacts, such as GIT or SVN version control systems (VCS),
Bugzilla, GitHub-Issues, JIRA or SF-Tickets bug tracking,
Java or Javascript source files, GitHub or SF.net forges.

For evaluating the portability of apps across diverse project

settings, we tested the apps using ten popular projects reposi-
tories, which include ApacheTomcat, JUnit, Node.js, etc. These
projects provided us a variety of project settings to test
portability of apps and we found that all of our apps required
no change to be able to run on diverse project settings.
Researchers and practitioners while adopting an MSR tool,
wants to perform few customizations to suit their needs. Can-
doia promotes easy customizations because of the structured
design of Candoia apps and the languages selected for building
various components of an Candoia app. We performed a
user study consisting of 8 MSR app developers with varying
expertise for testing the customizability aspect of Candoia.
We found that 5 of 8 developers found it easy to customize
an existing Candoia app.

Candoia platform, as well as all of its current two dozen
apps, are open-source projects and they are available for
download. Sharing a new Candoia app is as simple as creating
a new GitHub project and adding app files to that project, and
even first year undergraduates have built some apps.

II. MOTIVATION

In this section, we motivate the need for a platform and
ecosystem that promotes a process of building MSR tools as
light-weight apps that are easily portable and customizable.

Today MSR tools are built for a specific software project
setting or a specific dataset. A software project setting de-
scribes: 1) the repository (or the forge) where the project
is maintained, 2) the programming language(s) used in the
project source code, 3) the bug repository, and 4) the version
control system (VCS) used for maintaining project revisions.
An example project setting of a user that contains JUnit project
consists of: GitHub as forge, Java source files, GitHub−Issues
for bug tracking, and GIT version control data2.

Consider a researcher who wants to build an MSR tool
Association Mining for predicting bugs by mining file associa-
tions. If the researcher building this tool uses the JUnit project
setting for evaluation, it requires them to build a tool chain
(or use existing tools) consisting of: i) GitHub project reader,
ii) GIT version data reader, iii) Java parser, iv) GitHub−Issues
adapter, for extracting different MSR artifacts to be used in
the Association Mining tool. The association mining logic uses
Eclat association algorithm for which the researcher imports
Weka library. Overall, the Association Mining tool contains the
mining logic (the association mining algorithm) that is tightly
integrated with the supporting tools for reading and processing
the project specific artifacts as shown in Figure 1.

Now consider a practitioner who wants to adopt the Asso-
ciation Mining MSR tool and perform few customizations to
suite their needs. If the practitioner’s project setting is similar
to that of the researcher, then the Association Mining MSR tool
is readily adoptable, otherwise, the practitioner cannot adopt
the Association Mining MSR tool as is. For instance, if the
practitioner’s project setting consists of JEdit project with SF
.net as forge, Java source files, SF−Tickets as bug repository,

2A project setting of an MSR user may include multiple projects, we
consider one project for simplifying the illustration.

Fig. 1. A scenario of a practitioner adopting a MSR tool built by a researcher.

and SVN version control data. In this scenario, the practitioner
has two choices: 1) throw away the Association Mining MSR
tool, or 2) try to adopt the tool by disintegrating it and making
several modifications to it based on their project setting. The
practitioner might face one or more of the following challenges
when adopting this MSR tool:

1) Reproducibility: The practitioner needs to have access
to the tool, its supporting tools and libraries, and the details
about how the dataset was curated (often these details are
missing [38]). Upon having access to the tool, dataset, and
the supporting tools, the practitioner can deintegrate the tool
and try to adopt it based on his project settings.

2) Adoptability: The practitioner may not be able to use
the tool chain of the researcher because the project settings
have changed and they need to build a tool chain (or use
existing tools) consisting of: i) SF.net project reader, ii) SVN
version data reader, iii) Java parser, iv) SF−Tickets adapter.
The practitioner creates their own dataset using this tool chain
and handles the integration with the MSR logic of the tool
as shown in Figure 1. Between researcher’s and practitioner’s
project settings, most of the modules required changes. As we
show in our adoptability evaluation experiments, for adopting
Association Mining tool from JUnit project setting to JEdit
project setting required changing four modules to remove 180
lines of code (LOC) out of 422 and add 191 LOC.

3) Customizability: Finally, if the practitioner needs to per-
form few customizations to the adopted tool, such as “chang-
ing the mining logic to perform package-level association
instead of file-level association”, it requires changing multiple
components in the tightly integrated Association Mining MSR
tool. As we show in our customizability evaluation experi-
ments, this customization required changing four modules to
remove 8 LOC, and add 34 LOC.

In the next section, we provide an overview of the Candoia
platform and show how these challenges are addressed.

III. CANDOIA PLATFORM & ECOSYSTEM

We now describe the Candoia’s process of building, sharing,
and adopting MSR apps using our motivation scenario exam-
ple and Figure 2. As shown in Figure 2, 1 the researcher
will first use Candoia platform to prepare a dataset for his
project (JUnit). The Candoia platform uses the in-house data
extraction tools (parsers, and adapters) to read the user project
and create a custom dataset. This dataset can be mined using
the data abstractions of the platform. 2 The researcher then

2

Fig. 2. Candoia platform’s architecture and operational overview

builds the Association Mining MSR tool as an Candoia app by
defining various parts of the app, such as app structure, app
layout, mining logic, and glue code for binding the various
components. 3 The researcher will install the app in the
platform and 4 runs it using the Candoia evaluation engine.
5 The researcher can visualize the app’s output and 6 share

the app via Candoia appstore.
The practitioner who wants to adopt the Association Mining

Candoia app, 7 downloads the app from the appstore and
installs it in the platform. 8 The practitioner will use the
platform to prepare a dataset for his project (JEdit). 9 The
downloaded Association Mining app can be readily run and
10 output can be visualized without requiring any additional

efforts. For customizing the app to perform package-level
association instead of file-level association, the practitioner
will modify the mining logic component, which does not
require any changes to other components of the app. As we
show in our customizability evaluation, this customization in
Candoia required changing just 1 line of code to the MSR
logic component. After customizing the app, the practitioner
needs to simply install and run to visualize the changes.

There were several technical challenges that had to be
overcome to realize the overarching goals of Candoia.

1) Applicability: Candoia should enable building robust
MSR tools by supporting the common MSR technolo-

gies and providing extension points to add new tech-
nologies. Also, it should be easier to describe various
components of a Candoia app.

2) Commonality: Identifying the common components
across MSR apps and providing them as part of the
platform to make Candoia apps light-weight.

3) Adoptability: Adopting an app is simply by “Install &
Run”. An app built for one project setting can run across
diverse project settings without requiring any change.

4) Customizability: Facilitate easy customization of apps
by clearly defining various components of a Candoia
app and choosing efficient script-based domain-specific
languages (DSLs) to build the components, the idea here
is that scripts are easier to customize than programs.

5) Security: Secure Candoia user’s system against third-
party Candoia apps, and secure one app from another.

6) Scalability: Process-level parallelism in isolation; each
app runs as a process.

A. Candoia For Building Robust MSR Apps

By applicability we mean the ability of the Candoia platform
to enable building of a variety of MSR tools. We explored
different MSR artifacts used by MSR tools in the past, such
as software project source code, version control data, bug
data, users and teams data, mailing lists, etc, and gathered

3

different sources of these MSR artifacts, such as source code
written in different programming languages, bug data coming
from Bugzilla, JIRA repositories, GIT, SVN, or CVS version
control data etc. Upon determining the variety of MSR artifacts
and their sources, we built a set of data extraction tools
(mainly includes language parsers, adapters to read version
control data, bug data, etc) and provided them as part of
Candoia platform, such that Candoia when configured using
user projects can automatically extract different MSR artifacts
and prepare user datasets. At present Candoia supports SVN,
Git as VCS, Bugzilla, GitHub-Issues, JIRA, SF-Tickets as bug
databases, SF.net, GitHub as forges and Java, Javascript as
programming language. Candoia also allows users to add their
own data extraction tools as long as the read data complies
with Candoia’s data schemas.

Now that Candoia supports common MSR technologies to
build a variety of MSR tools, it is important to enable building
of robust tools. We achieve this by using powerful domain-
specific languages for expressing various functionalities of the
app. These DSLs are reasonably well-known such that it is
accessible to most developers and involve smaller learning
curve. For instance, for visualization and layout of Candoia
apps we selected the well-known combination of HTML and
CSS, for describing the structure of Candoia apps we selected
JSON, for describing the MSR logic we selected Boa [14] [15],
and for writing glue code to manage interaction, updates, and
data exchange in an app we selected Javascript.

B. Candoia App Structure

Building a Candoia app consists of defining four parts: the
MSR logic, the structure description of the app, the layout
description for the visualization and glue code. The listing
below describes different components of a Candoia app.

• package.json: metadata about the app,
• main.html: describes visual layout,
• app.css: app’s stylesheet,
• main.js: contains glue code for interaction,
• <app-name>.boa: MSR logic(extension of Boa DSL),
• lib: libraries used by this app.

The structure description of a Candoia app is described by
its package.json configuration file. The layout and visual
appearance of an app is described using HTML and CSS.
Within an app’s HTML code, the app developer is able to
add any Javascript code or link to any Javascript or CSS
files they want (including 3rd party libraries). For instance,
Weka or R Javascript bindings can be used in the app for
model building. Candoia’s language for writing an app’s MSR
logic is an extension of the Boa language [14]. Boa is a
domain-specific language specifically introduced for MSR.
The interaction between the components is done only via the
Candoia front-end APIs. For instance, a typical Candoia app
first fires a mining query described in the file <app−name
>.boa using api.boa.run(<app−name>.boa) API. The details
about the secured interaction between various components of
the client code (described in the app), the dataset, and the file
system via chromium platform is described in §III-F.

C. Candoia Data Abstraction Layer

Candoia’s data abstraction layer is the key to achieving
portability (or adoptability) of Candoia apps across diverse
project settings. Candoia’s data abstractions hide the details
about the data sources. As Candoia supports multiple forges,
programming languages,VCSs, and multiple bug repositories,
the abstractions provide uniform access to different MSR
artifacts originating from different data sources.

Programming using higher level data abstractions was pre-
viously used by several approaches that have tried to provide
uniform access to data from disparate sources. For instance,
Boa [14] [15], provides data abstractions for GIT and SVN

version control data, and project metadata from GitHub
and SF.net forges. Defect4j [25] provides abstractions for

version control data. We extend Boa’s data abstractions to
add new abstractions for bug repositories such as Bugzilla ,
JIRA, etc. We also extended the existing user abstractions

with abstractions to represent team and organization data.
Figure 3 provides a high level overview of our data schema
[40] (highlighted text indicates the additions to Boa’s data
schema). Like Boa we use Protocol Buffers [1] to store MSR

Fig. 3. Candoia’s data schema [40].

artifacts. Boa language provides domain-specific types for
programming using data abstractions. We have extended the
set of domain-specific types provided by Boa to include new
types for representing bug/issue data. We have also extended
the project meta data types to include organization data along
with user/committer data. In Figure 4 we show a snippet from
an app’s mining logic component (boa program) that uses Issue
data abstractions and types to mine bugs that will never be
fixed. The issue kind is used in the mining logic to filter these
bugs.

Fig. 4. A code snippet for mining bugs that will never be fixed.

A Candoia app implementing the mining logic shown in

4

Figure 4 can fetch the bugs of the specified kind from several
bug repositories without requiring any changes to the mining
logic. In summary, Candoia’s data abstraction layer provides
abstractions for source code, version control data, bug data,
and user and organization data, and provides uniform access to
data originating from several sources to achieve compatibility
of apps across diverse project settings.

D. Customizability

Customizations in Candoia are of two types: i) data source
customizations, and ii) app customizations. The first kind of
customizations are concerned with changing the data source.
For instance, using GitHub−Issues as bug repository instead
of Bugzilla. The data source customizations are automatically
handled by the platform and they do not require any changes in
the app. The second kind of customizations are concerned with
changing different parts of an app. For instance, modifying
the MSR logic, changing the output format, customizing to
perform post-processing of the results using weka library, etc.

The app customizations in Candoia are more focused in
terms of findings the right component(s) for performing cus-
tomizations and uses languages designed for that purpose. A
Candoia app is well-structured into different components and
the app structure not only helps to locate the component for
customization, but also enforces disciplined customizations.
This can also be achieved if an MSR tool not using Candoia is
engineered carefully; however it requires extra work to enforce
this design discipline. Every component of a Candoia app is
written using a script-based domain-specific language (DSL)
and often scripts are easier to customize than programs.

To give concrete examples of customizations in a Candoia
app, consider the Association Mining app. This app predicts
bug by mining file associations. The app uses the version
control data, the source files, and bug data. The app’s mined
results are used as input to Weka’s Apriori association mining
algorithm to predict which files are associated with each other.
We now list a number of customizations of this app and show
how it is performed in Candoia.

— The app currently uses Apriori association algorithm
and it can be customized to use Eclat association algorithm
by simply using “api.weka.associationEclat” API instead of
“api.weka.apriori” API in the JavaScript component.

— The Javascript binding used to import the Eclat associ-
ation algorithm is currently Weka, it can be changed to use a
more efficient implementation of Eclat in SPMF, which is an
open-source data mining library. This customization is done
by simply using “api.spmf.associationEclat” API instead of
“api.weka.associationEclat” API in the JavaScript component.

— The app performs file-level association, but package- or
module-level association can be performed by changing the
underlying MSR logic (requires changing 1 line of code).

— The app finds the file associations of buggy files. A
customization that considers all file associations needs to
ignore the bug data while computing file associations (requires
changing the mining logic to ignore the bug data).

Candoia allows easy extension of the core system by provid-
ing well defined extension points for adding different system
components such as new forge, VCS or language parsers etc.
For example, adding a new VCS requires to write a class,
which extends AbstractConnector class and implements few
abstract methods(4 in VCS case). Similar extension points are
available for different components [41].

E. Candoia Evaluation Engine

Candoia evaluation engine is inspired from the query engine
of Boa. Boa query engine runs on a Hadoop cluster for pro-
cessing thousands of open source projects from fixed datasets.
For Candoia, we needed a query engine that (1) could run on
a single node, (2) is able to read and process local and remote
projects, and (3) provides the Candoia platform fine-grained
control over its execution, e.g. to start and stop. To satisfy these
three goals, we have created an interpreter-based realization
of Boa, which runs on a single node and utilizes process and
thread level parallelization for running multiple MSR apps. In
a nutshell, the Candoia evaluation engine works as follows: the
input to Candoia evaluation engine are: i) dataset created using
user projects and ii) Boa script that describes the MSR logic.
The output of the evaluation engine is the expected output of
the app’s MSR logic. The Candoia evaluation engine processes
each project in the user dataset and applies the mining logic
described in the Boa script to produce the desired output.

F. Security Architecture of the Candoia platform

A key concern for Candoia is to allow apps to communicate
with the platform in a safe way, and to allow access to user’s
data on a need-to-know basis. We also need to prevent apps
from corrupting each other. We have solved these technical
challenges by building on top of the Chromium platform [42].
Chromium is an open source, cross platform browser. Candoia
builds on the process architecture of Chromium, where each
window runs in an isolated process. In Candoia each app
runs in its isolated process, and it can communicate with
a special process that we call controller process via inter-
process communication (ipc). The controller process mediates
interactions with the file system, window data, etc. Within the
scope of the application, we have exposed a global variable
(window.api) which allows them to communicate in a safe way
with important tools that the Candoia platform provides via
the controller process. An example of such communication
appears below where an app is asking the controller process to
run a Boa program and show its output in the content window.
This would be a typical ‘getting started’ step for a Candoia
app, because a researcher would first focus on their logic.
1 <h2> My First \FRAMEWORKNAME{} Application </h2>
2 <div id=’content’></div>
3 <script>
4 var data = api.boa.run(’myprog.boa’);
5 document.getElementbyId(’content’).
6 innerHTML(JSON.stringify(data, null, ’ \ t ’)) ;
7 </ script >

Libraries available to a Candoia app. a Candoia app
can access several libraries that are exposed to it through the
window.api variable (in a safe way). These include:

5

• Running MSR queries (api.boa)
• Reading (not writing) files within app (api. fs)
• Saving arbitrary data between instances (api.store)
• Getting its own package info such as version (api.meta)
• Inter-Process-Communication handle (api. ipc)
• Using pre-made views/graphs. (api.view)
The api.store is used to save data between multiple runs of

the same app. An example appears below.
1 var now = new Date;
2 api.store.save(’ last−ran’, now);
3 var data = api.store.get(’ last−ran’);
4 console.log(data); // " Fri Aug 28 2015 21:23:05 GMT−0500 (CDT)"

G. Candoia Exchange

Candoia exchange, a web platform for sharing Candoia
apps, is an important aspect of this work. As mentioned
previously, our current prototype is a web-based categorized
listing of apps that provides information about their Git URL
as well as meta-information about the app itself. A Candoia
platform can connect to this exchange to gather information
about available apps.

IV. EVALUATION

This section presents our empirical evaluation on different
aspects of Candoia in developing MSR apps: applicability,
adoptability and customizability. Apps were run on a set of
10 widely-known open source projects, hereon called test
projects, as shown in Figure 5. They are chosen from diverse
domains and have been actively using the two most popular
version control systems (VCS), Git and SVN, and 4 widely-
used issue tracking systems, Bugzilla, JIRA, SourceForge
and GitHub. They are written mainly in Java or JavaScript
which are the two programming languages Candoia currently
supports. Their sizes range from some thousands lines of code
to almost a million lines of code.

Projects VCS PL Bugs #LOC #Revs #Bugs #Devs
Tomcat 8.0.24 (TC) SVN Java Bugzilla 381350 17433 3023 32
Hadoop 2.7.1 (HD) Git Java JIRA 2217636 14301 10333 146
JUnit 4 (JU) Git Java GitHub 30535 2115 148 127
SLF4j 1.7.12 (SLF) Git Java JIRA 20866 1436 332 59
Bootstrap 3.3.5 (BT) Git JS GitHub 65885 11840 213 718
Node.js 0.12.7 (ND) Git JS GitHub 3405739 14695 955 105
Grunt 0.4.6 (GT) Git JS GitHub 3596 1399 155 29
JQuery 2.1.4 (JQ) Git JS GitHub 45212 6153 165 87
PMD 5.3.3 (PMD) Git Java SF 175866 8736 1394 102
JEdit 5.2.0 (JE) SVN Java SF 224127 24509 3926 7

Fig. 5. Test projects.

A. Applicability

Our claim is that MSR tasks and hypotheses can be ex-
pressed and evaluated using Candoia platform’s capabilities.
To evaluate the applicability of Candoia, we created apps for
a set of MSR tasks and hypotheses that have been studied in
the literature of MSR research.

Figure 6 describes our list of Candoia apps categorized into
four categories: I) Bugs, II) Software Evolution, III) Project
Management, and IV) Source code analysis and Programming
practices.

The mining tasks in these apps analyze different kinds
of MSR artifacts such as identifier names and abstract syn-
tax trees of the source code, log messages and authors of
commits in the change histories, and issues in the issue
tracking systems. They analyze both general changes and bug
fixing changes. Some apps were written to detect problems
in programming practices (naming convention, serialization-
related properties, proper declaration of constants), concur-
rency (double checked locking, wait-notify features), logic
(deeply nested if statements), optimization (dead code), bad
assumptions (improper use of null), etc.

The apps were executed on the test projects listed in
Figure 5 on a machine which consists of an 8-core system
(1.6GHz Intel Core i5 Processor) with 8GB 1600MHz DDR3
RAM, 1536MB Intel HD 6000 Graphics card running on
OS X Yosemite 10.10.2 and Java 1.8.0_45 with default max
heap size. Figure 6 shows the execution times of running
various Candoia apps on test projects. We haven’t spent any
time on optimizing these apps for performance yet, so further
efficiency gains can be expected in future. More detailed
descriptions of these apps along with their source code is made
available via Candoia website [9].

Results Analysis. Our applicability claim is that interesting
mining research tasks can be expressed and evaluated using
the Candoia platform. We evaluate this claim by running the
Candoia apps listed in Figure 6 on test projects and discuss
couple of the interesting results that our apps produced as a
result. Note that, analyzing the results to draw conclusions is
not our objective. Results for the apps that are not discussed
here can be found in the Candoia website [9].
App #5. Identifies fixing revisions that add null checks.
We found a large number of such revisions in test projects.
Figure 7 shows the relative number of null checking revisions.
For some projects, the frequency of these fixes is quite
significant, and for others e.g. Grunt, its quite surprising to
see very low number of such fixes.
App #14. Maps modules to developers. Nagappan et
al. [32] proposed a set of organizational metrics to analyze
the influence of organizational structure on software quality.
We have created a Candoia app that computes a subset of
these metrics: NOA: Number of developers who contributed
to the componen, EF: Component edit frequency, and DMO:
Group of developers with 70% or more edits to component.
Nagappan et al. have shown that software quality can be
analyzed using the values of these metrics. For instance,
the metric NOE that counts the number of developers who
contributed to the component is used to reason about the
software quality as follows. The more people who touch the
code the lower is the quality. In other words, higher the NOE
the lower is the quality (more bugs). Similarly other metrics
have influences on the software quality. Our Candoia app,
which implements this technique outputs the values of the
organizational metrics for the project which, can be related
to the bugs in the project. Figure 8 shows the values for NOE,
EF and DMO metrics along with the number of bugs in the

6

Candoia App Number of lines of code Execution time (s)
Boa JS HTML CSS JSON TC HD JU SLF BT ND GT JQ PMD JE

I. Bugs
1 Detects unreproducible or wont-fix bugs 44 48 38 33 16 30.6 110.0 5.9 2.6 40.5 149.0 2.1 10.1 20.6 47.5
2 Detects improper usage of null 45 11 25 0 16 33.0 152.0 5.8 3.5 4.8 26.3 1.1 3.3 35.8 89.4
3 Detects improper use of double checked locking idiom 100 6 25 32 16 17.0 74.0 3.3 1.6 4.2 24.4 3.0 1.1 15.0 55.4
4 Detects improper usage of wait-notify idiom 39 52 47 32 16 8.1 28.4 2.3 1.2 2.5 12.2 1.8 0.9 8.9 23.1
5 Identifies fixing revisions that add null checks 98 13 43 32 16 3.5 8.1 1.4 2.1 4.7 23.4 5.0 1.4 3.8 5.2

II. Software Evolution
6 Lists most frequently changed files 08 16 43 0 16 28.7 114.0 5.9 26.2 35.7 125.0 2.2 10.9 19.1 57.2
7 Lists commits that involved a large number of files 10 52 47 32 16 36.1 124.0 7.8 4.0 43.9 108.0 2.9 12.5 23.2 48.9
8 Commit blame assignment based on increase in repository size 27 52 47 32 16 60.9 163.0 9.8 4.7 62.0 189.0 3.2 19.7 32.5 89.6
9 Provides details of latest revision, e.g. total changed files etc. 10 52 47 32 16 33.0 95.1 7.0 3.1 36.9 100.0 2.6 12.2 20.2 48.12
10 Provides details of developers’ last commits 55 42 41 0 16 42.7 139.0 11.8 9.1 48.1 119.0 8.25 17.7 28.4 92.7
11 Mining co-changed files via association mining 20 12 34 0 16 11.2 7.9 7.3 7.8 10.2 46.8 0.1 9.2 9.4 86.4
12 Compute churn rate for fixing bugs 13 33 47 0 16 1.5 3.7 1.4 1.0 2.6 8.6 0.5 1.1 2.8 2.2

III. Project Management
13 Ranks developers by the number of commits 11 52 47 32 16 31.7 111.0 5.4 2.6 42.2 137.0 2.5 11.4 22.0 46.4
14 Maps modules to developers 36 48 38 33 16 37.3 127.0 7.2 4.0 46.5 171.0 2.5 12.0 24.8 53.0
15 Computes number of attributes (NOA) 17 106 36 0 16 5.0 19.4 1.8 1.1 2.3 9.3 0.7 1.4 5.5 10.3
16 Computes number of public methods (NPM) 19 106 36 0 16 1.1 23.9 2.1 6.5 2.2 9.2 0.7 1.6 6.1 6.2
17 Identifies developers writing empty or one word commit logs 27 52 47 32 16 31.3 110.0 6.4 2.6 35.8 128.0 2.4 11.0 35.0 46.8
18 Associate bugs and source files 37 30 47 32 16 67.4 321.8 10.9 5.1 5.5 8.7 1.0 1.9 47.3 84.8

IV. Program analysis
19 Detects violation of naming conventions 48 48 38 33 16 10.7 37.9 0.7 1.8 2.5 18.4 1.2 0.4 15.3 22.8
20 Checks serialization-related properties 51 51 47 32 16 7.6 23.3 3.5 1.5 2.6 9.6 0.8 1.7 33 17
21 Detects static fields which are public but not final 44 48 38 33 16 7.4 28.7 2.9 1.3 2.6 10.0 0.7 1.5 9.4 15.7
22 Identifies locations of dead code 47 52 47 32 16 18.2 110.0 4.8 2.2 4.3 31.6 1.1 4.4 21.6 77
23 Identifies deeply nested if statements 25 52 47 32 16 11.9 43.6 2.9 1.4 2.6 13.9 0.9 2.0 11.5 33.9
24 Computes various popularity metrics e.g. CK, OO etc. 150 32 54 32 16 30.4 68.5 3.8 2.0 2.4 14.9 0.9 1.9 31.3 44.4

Fig. 6. Several Candoia apps with their lines of code in different languages and execution times (in seconds).

Fig. 7. Number of fixing revisions that add null checks.

projects. For quite a few projects there is a strong correlation
between bugs and the EF metrics.

Fig. 8. Influence of organizational metrics NOE, EF and DMO on software
quality.

B. Adoptability

In this section we show that Candoia apps are portable
across diverse project settings and require no changes. For
comparison purposes, we have implemented all of our MSR
tasks using Java. We compare LOC changes required in both
the Java version and the Candoia version for adopting apps
from one project setting to another. Our collection of test
projects provides us 6 different project settings as shown in
Figure 10. Among 16 possible combinations of 2 VCS, 2 PLs,
and 4 BTs, our test projects cover the 6 most popular ones. In
the 6 project settings shown in Figure 10, setting #1 is used
as our base setting (this selection is based on the popularity).
Building apps in Java requires reading the project forge data,
version control data, bug data, etc. We have designed these
Java apps for change. Apps contain 5 modules: MVCS for
reading version control data, MForge for downloading project
and its meta data, MBug for reading bug or issue data, MMining
contains the actual mining code, and MVisualize module contains
visualization related code. This strategy is adopted so that the
design decisions that are likely to change are hidden within
each modules [34]. For instance, if we have to change an app
to read SVN data, instead of GIT data, we plug-in a different
VCS module and rest of the code requires no change. There is
a threat that, by modularizing the code, we may add few extra
LOC, however we tried to keep this effect minimal. Candoia
apps code is distributed among four components: Boa mining
code, JS glue code, HTML and CSS code.

Results. Figure 9 compares LOC changes required for
adopting apps from one project setting to another in Java
and Candoia versions. The table shows comparison results
for four apps, comparison result for other apps can be found
in our website [9]. For each app, there are 6 rows, where

7

Java Candoia
MVCS MBug MForge MMining MVisualize Total Boa JS HTML CSS Total

N
ul

lc
he

ck

1 125 157 20 143 53 498 59 12 34 0 105
2 148 (-89,+112) 117 (-119,+79) 27 (-15,+22) 156 (-43,+60) 53 (-1,+1) 501 (-267,+274) 59 12 34 0 105
3 125 (-2,+2) 129 (-110,+82) 20 (-1,+1) 155 (-21,+33) 53 (-1,+1) 482 (-135,+118) 59 12 34 0 105
4 125 (-2,+2) 115 (-111,+69) 20 (-1,+1) 167 (-18,+42) 53 (-1,+1) 480 (-133,+115) 59 12 34 0 105
5 148 (-89,+112) 116 (-110,+69) 27 (-15,+22) 154 (-48,+59) 53 (-1,+1) 498 (-263,+263) 59 12 34 0 105
6 120 (-15,+10) 157 (-1,+1) 20 (-1,+1) 147 (-13,+17) 53 (-1,+1) 497 (-31,+30) 59 12 34 0 105

Fi
le

A
ss

oc
ia

tio
n 1 72 139 20 138 53 422 20 12 34 0 66

2 125 (-38,+91) 60 (-113,+34) 27 (-15,+22) 140 (-45,+47) 53 (-1,+1) 405 (-212,+195) 20 12 34 0 66
3 72 (-1,+1) 146 (-120,+127) 20 (-1,+1) 146 (-7,+15) 53 (-1,+1) 437 (-130,+145) 20 12 34 0 66
4 72 (-1,+1) 115 (-106,+72) 20 (-1,+1) 137 (-4,+3) 53 (-1,+1) 397 (-113,+78) 20 12 34 0 66
5 125 (-38,+91) 95 (-96,+52) 27 (-15,+22) 133 (-30,+25) 53 (-1,+1) 433 (-180,+191) 20 12 34 0 66
6 72 (-1,+1) 139 (-1,+1) 20 (-1,+1) 138 (-1,+1) 53 (-1,+1) 421 (-5,+5) 20 12 34 0 66

C
hu

rn
R

at
e

1 52 0 20 69 53 194 13 33 47 0 93
2 104 (-38,+90) 0 27 (-15,+22) 74 (-26,+31) 53 (-1,+1) 258 (-80,+144) 13 33 47 0 93
3 52 0 20 (-1,+1) 69 53 (-1,+1) 194 (-2,+2) 13 33 47 0 93
4 52 0 20 (-1,+1) 69 53 (-1,+1) 194 (-2,+2) 13 33 47 0 93
5 104 (-38,+90) 0 27 (-15,+22) 74 (-26,+31) 53 (-1,+1) 258 (-80,+144) 13 33 47 0 93
6 52 0 20 (-1,+1) 69 53 (-1,+1) 194 (-2,+2) 13 33 47 0 93

B
ug

Sr
c

M
ap

pe
r 1 78 152 20 73 53 376 37 30 47 32 146

2 105 (-49,+76) 79 (-118,+45) 27 (-15,+22) 74 (-41,+42) 53 (-1,+1) 338 (-224,+186) 37 30 47 32 146
3 78 (-2,+2) 104 (-111,+63) 20 (-1,+1) 78 (-28,+33) 53 (-1,+1) 333 (-143,+100) 37 30 47 32 146
4 78 (-2,+2) 85 (-106,+39) 20 (-1,+1) 77 (-24,+28) 53 (-1,+1) 313 (-134,+71) 37 30 47 32 146
5 108 (-44,+74) 85 (-106,+39) 27 (-15,+22) 69 (-45,+41) 53 (-1,+1) 342 (-211,+177) 37 30 47 32 146
6 78 (-2,+2) 152 (-1,+1) 20 (-1,+1) 78 (-28,+33) 53 (-1,+1) 381 (-33,+38) 37 30 47 32 146

Fig. 9. Compares LOC changes required for adopting apps from one project setting to another in Java and Candoia.

VCS PL Bugs
1 GIT Java Issues
2 SVN Java Bugzilla
3 GIT Java JIRA

VCS PL Bugs
4 GIT Java Tickets
5 SVN Java Tickets
6 GIT JS Issues

Fig. 10. Six project settings

the first row shows the LOC for our base project setting,
and the other 5 rows shows the LOC changes required for
adopting the app from base setting to another. For instance,
for Nullcheck app, #1 is our base setting and the Java MVCS
module requires 125 LOC. For the same app, #2 is another
project setting and the Java module MVCS requires 148 LOC,
where adopting this module from base setting required us
to remove 89 LOC and add 112 LOC. For some modules
we see 0 LOC, indicating that the app does not use that
module. All the modules in the Candoia platform required
no changes in terms of LOC, this is mainly because Candoia
apps are implemented on data abstractions and not on raw
data. Being able to run all Candoia apps on 6 different project
settings without requiring any changes shows that apps built
on Candoia platform are portable across project settings. It
can also be seen that, MSR apps built on other platforms such
as Java, requires considerable amount of changes (in terms of
LOC) for making them portable across project settings. For
instance, in Java platform for adopting Nullcheck app that is
originally implemented for project setting #1 to project setting
#2, required a total of 267 lines to be deleted and 274 lines
to be added.

C. Customizability

We evaluate our claim that performing customizations in
Candoia requires less efforts in terms of LOC. Like our
adoptability evaluation, we have implemented all of our
customizations in Java and Candoia and we compare the
customization efforts. We compare LOC changes required in
both Java and Candoia as a proxy measure of customization
efforts. We report data on same four apps as in our adoptability
evaluation for this evaluation, and we have listed a number of
app-specific customizations for each of these four apps (we
ignore the data source specific customizations, because they
are already covered in our adoptability evaluation). Figure 11
lists our results for four apps and the results for other apps
can be found in Candoia website [9].

From the variety of customization tasks spanning across
four apps, it can be seen that for most customizations, Candoia
required less number of LOC changes, except for UI related
customizations. The less LOC requirement of the customiza-
tions in Candoia is mainly due to script-based DSLs that
were used to write the components. In case of UI related
customizations, for instance, consider the row for c41, where
Java required (-8,+8) LOC changes, whereas Candoia required
(-28,+35). This was mainly due to the difference in the
visualization library that is used in Java and Candoia. In the
Java implementation, we used google charting library which
is designed to be adaptable, whereas in Candoia we used
the standard JavaScript chart.js. From the results we can also
observe that customizations in Java requires changing every
module, whereas customizations in Candoia requires changing
fewer number of modules (more focused customization). One

8

c10 Shows number of nullcheck bug revisions in pie chart c23 Module association instead of file association
c11 Change the output display to column chart c24 File association without bug data
c12 Display nullcheck issue life time c30 Churn rate based on revisions
c13 Plot nullcheck date v/s number of modified files c31 Associate bugs to churn rates
c14 Maps nullcheck to developers c40 Bugs to source files mapping displayed in column chart
c20 File associations using weka apriori c41 Change the output display to pie chart
c21 File associations using weka fpgrowth c42 Top five files with maximum bug fix time
c22 File associations using spmf eclat c43 Asssociate developers to bugs

Java Candoia
MVCS MBug MForge MMining MVisualize Total Boa JS HTML CSS Total

N
ul

lc
he

ck

c10 125 157 20 143 53 498 59 41 45 26 171
c11 125 (-1,+1) 157 (-1,+1) 20 (-1,+1) 143 (-2,+2) 53 (-3,+3) 498 (-8,+8) 59 12 34 0 105
c12 125 (-1,+1) 137 (-29,+9) 20 (-1,+1) 144 (-14,+11) 53 (-2,+2) 479 (-47,+24) 74 (-4,+19) 41 (-2,+2) 45 (-4,+4) 26 (-1,+1) 186 (-11,+26)
c13 125 (-1,+1) 157 (-1,+1) 20 (-1,+1) 147 (-6,+11) 53 (-1,+1) 501 (-10,+15) 64 (-3,+8) 41 (-4,+4) 45 (-4,+4) 26 (-1,+1) 176 (-12,+17)
c14 125 (-1,+1) 157 (-1,+1) 20 (-1,+1) 147 (-13,+18) 53 (-1,+1) 502 (-17,+22) 61 (-4,+1) 41 (-4,+4) 45 (-4,+4) 26 (-1,+1) 173 (-13,+10)

Fi
le

A
ss

oc
. c20 141 157 20 178 23 481 37 12 34 0 83

c21 141 (-1,+1) 157 (-1,+1) 20 (-1,+1) 178 (-3,+3) 23 (-1,+1) 481 (-7,+7) 37 12 (-1,+1) 34 0 83 (-1,+1)
c22 141 (-1,+1) 157 (-1,+1) 20 (-1,+1) 183 (-23,+28) 23 (-1,+1) 486 (-27,+32) 37 12 (-1,+1) 34 0 83 (-1,+1)
c23 141 (-1,+1) 157 (-1,+1) 20 (-1,+1) 178 (-3,+3) 23 (-1,+1) 461 (-8,+34) 37 12 (-1,+1) 34 0 83 (-1,+1)
c24 141 (-1,+1) 0 20 (-1,+1) 175 (-5,+2) 23 (-1,+1) 359 (-165,+5) 24 (-20,+7) 12 (-1,+1) 34 0 70 (-21,+8)

C
hu

rn c30 52 0 20 69 53 194 13 33 47 0 93
c31 72 (-1,+21) 0 20 (-1,+1) 73 (-4,+8) 53 (-1,+1) 218 (-7,+31) 42 (-4,33) 33 47 0 122 (-4,+33)

B
ug

Sr
c c40 78 152 20 73 53 376 37 30 47 32 146

c41 78 (-2,+2) 152 (-2,+2) 20 (-1,+1) 73 (-1,+1) 53 (-2,+2) 376 (-8,+8) 37 38 (-28,+35) 47 32 154 (-28,+35)
c42 78 (-2,+2) 152 (-2,+2) 20 (-1,+1) 137 (-18,+82) 53 (-1,+1) 440 (-24,+88) 41 (-15,+19) 30 47 32 155 (-15,+19)
c43 78 (-2,+2) 157 (-17,+23) 20 (-1,+1) 99 (-19,+47) 53 (-1,+1) 407 (-40,+74) 46 (-2,+11) 38 (-4,+12) 47 32 163 (-6,+23)

Fig. 11. Compares LOC changes required for a number of customizations in Java and Candoia.

could argue that the modularization strategy for Java apps
is the reason behind this, however we did not change the
modularization strategy for individual evaluations and we used
standard strategy for modularizing the Java apps [34].

We also claim that customizations in Candoia are more
focused in terms of finding the right component to change and
perform the change fairly quickly. For evaluating this claim we
performed a user study as described below.

Methodology. We gathered a group of eight Candoia
app developers with varying expertise (excludes authors and
developers of the apps used in the paper). We determine the
developer expertise by asking background questions shown in
Figure 12 (B1-B4). We then asked the developers to select
a customization task and their preferred project setting from
the list of customization tasks and project settings shown in
Figure 12. Each developer performs the following tasks (in
order): 1) answers a questionnaire about their background,
2) selects a Candoia app and a project setting from the list
of project settings, 3) runs the Candoia app on the selected
project setting, 4) customizes the Candoia app based on the
customization requirement provided to selected app, 5) re-runs
the customized app on the previously selected project setting,
6) also runs the customized app on a new project setting, 7)
answers another questionnaire at the end of the task.

Results. We recorded developer responses to background
questionnaire and Candoia experience questionnaire. We also
recorded the time they took to complete the customization
task. Figure 12 shows the recorded responses.

From Table 12, it can be seen that developers with dif-
ferent levels of experiences in terms of industry experience,
GIT/SVN/CVS tools experience and support tool experience,
are considered. Except 1 developer all others found it easy
to run the Candoia app on their selected project (E1) and
run the customized Candoia app on a new project (E3).

However, three of the eight developers found it difficult to
perform the customization task (developers #2, #3 and #8),
which is reflected in the Candoia experience question E2 and
the time they took to complete the task. These developers
mentioned the hurdles they had in the comments section of
their responses. Lack of MSR expertise and lack of debugging
facilities were the two main hurdles for these developers.
Apart from these three developers, others could finish the
customization task in about 15 minutes. In these 15 minutes,
developers were able to run the Candoia app of their selection
on their project, customize the app and re-run the app on a
new project (that has different configuration than the original).
In summary, we believe that this study is a good smoke test
of Candoia’s usability, customizability and adoptability.

D. Threats To Validity

Threats to internal validity concern our selection of test
projects and apps for evaluation. To mitigate test projects
threat, we have selected only open source projects that are
widely used, actively maintained and have been used in the
past for evaluating MSR techniques. To mitigate bias in the
selection of apps, we have selected apps spanning into multiple
categories. We have also included a number of apps that
fully/partially implements the MSR tools/techniques published
in previous years of MSR conferences.

Threats to external validity concern the possibility to gen-
eralize our results, i.e. can Candoia be used in other settings
than tested settings? Candoia currently supports Java and
Javascript programming languages, GIT, SVN and CVS version
controlling, Bugzilla, JIRA, GitHub−Issues and SF−tickets
for bug data, and GitHub and SF.net for project metadata

and user and organization data. Supporting other languages
may be challenging, such as C/C++ which offers language
features that differs significantly from Java/Javascript. We do

9

Task Description
1 App #1: Include duplicate bug reports
2 App #6: Apply year filter 2010
3 App #15: Display the trend over revisions
Project VCS PL Bug
1 Bootstrap Git JS Issues
2 JUnit Git Java Issues
3 Tomcat SVN Java BugZilla

B1 Industry experience?
B2 GIT/SVN/CVS/Perforce experience?
B3 BugZilla/Git Issues experience?
B4 Configure, build and install tools experience
0-1years, 1-2 years, 2-4 years, more than 4 years

E1 How easy or difficult it is to run a Candoia app
on your project?

E2 How easy or difficult it is to customize?

E3 How easy or difficult it is to run your customized
Candoia app on a different project?

0-Very Easy, 1-Easy, 2-Moderate, 3-Difficult, 4-Complex

Dev Background Candoia
Experience

Task
time

B1 B2 B3 B4 E1 E2 E3 (min)
1 4 3 1 1 0 1 1 12
2 0 4 1 4 1 2 1 30
3 2 1 1 1 0 2 0 44
4 2 2 1 1 1 1 0 16
5 1 3 1 2 2 1 1 15
6 1 1 1 1 1 0 1 13
7 1 1 1 1 1 1 1 15
8 1 2 2 4 0 2 0 40

Fig. 12. List of customization tasks and project settings used in the study. Responses recorded from eight developers, where B1-B4 records the developers
background and E1-E3 records developers experience with Candoia .

not see problems supporting other non-commercial forges,
VCS, and bug repositories. Commercial repositories are not
tested, however they can be easily supported, as they don’t
differ much from the popular open-source repositories.

V. RELATED WORK

Our idea of a platform and an ecosystem for building and
distributing MSR tools is novel; however, we draw inspiration
from a rich body of work in this area. In terms of its focus,
the Candoia platform is closer to the Moose platform [13], Re-
poGrams [39], Kenyon [6], Sourcerer [3], Alitheia Core [19],
[20], FLOSSMole [24] and different from PROMISE Repos-
itory [37], Open-access data repositories [17], Black Duck
OpenHub (aka Ohloh) [8], GHTorrent [18], [21], Sourcer-
erDB [33], Boa [14] [15], and the SourceForge Research
Data Archive (SRDA) [16]. The former set of approaches
provide frameworks for building tools, whereas the latter set of
approaches provide a repository of datasets from open source
projects, which eases MSR tasks because researcher’s do not
have to collect and curate datasets [31]. We had presented an
earlier version of this work in a poster paper [44].

Moose is a platforms for reusing of data mining tools and
allow low cost addition of new tools. The main difference is
in terms of focus. Candoia is focused on MSR apps so it in-
tegrates support for VCS, bug tracking, etc, which isn’t easily
available in Moose. RepoGrams [39] is a tool for comparing
and contrasting of source code repositories of software projects
with respect to a set of metrics. Candoia and RepoGrams both
consume source code repositories of software projects, and
both Candoia apps and RepoGrams metrics can be used to
analyze the source code repositories. The key difference is in
the purpose; RepoGrams helps researchers gather evaluation
targets for evaluating a research prototype, while Candoia is
used to build the research prototype that is compatible across
diverse project settings. Both Kenyon and Sourcerer define
database schemas for metadata and source code, and provide
access to this dataset via SQL. Alitheia Core’s goal is to
provide a highly extensible framework for analyzing software
product and process metrics on a large database of open source
projects’ source code, bug records and mailing lists. Similarly,
FLOSSMole gathers metadata (e.g., project topics, activity,
statistics, licenses, developer skills etc) and allows analysis
on them. Groundhog [35] is an infrastructure for downloading
projects from SourceForge, analyzing the source code, and
collect metrics from these projects. When compared to these

approaches, Candoia provides data abstractions for several
MSR artifacts such as project metadata, revisions, source code,
bugs, users and teams, that originates from multiple sources.
This aspect of Candoia make the apps built on top of data
abstractions compatible across diverse project settings.

GHTorrent, PROMISE Repository, SourcererDB, and Boa
provide a repository of datasets from open-source projects so
that researchers do not have to collect and curate datasets.
When compared to these set of approaches that are focused
on providing standard datasets, Candoia allows mining of user
specific datasets. Also, Candoia allows mining of a variety of
MSR artifacts. SourcererDB on top of providing datasets also
provides a framework for users to create custom datasets using
their projects. SourcererDB’s future work presents number of
challenges that are addressed in Candoia. Boa also provides
an infrastructure for mining the fine grained program elements
of the source code and revision history but on a very large and
fixed datset from open source repositories. Candoia provides
facilities to analyze user’s private projects.

VI. CONCLUSION AND FUTURE WORK

In this work, we present Candoia, a platform and an
ecosystem to ease building and sharing MSR tools, where
MSR tools are built as apps and Candoia platform handles the
portability, and customizability aspects of apps. The Candoia
ecosystem, acting as an appstore, enables sharing of apps. We
have implemented both the Candoia platform and the Candoia
ecosystem and evaluated by building over two dozen apps
in four different categories. Our evaluation demonstrates that
Candoia can be used to build a variety of robust MSR apps
that are portable across diverse project settings. Furthermore,
customizations of Candoia apps to suit user’s need better are
easy. In the future, we plan to integrate additional tools and
technologies with the Candoia platform to further improve its
applicability. We are very excited about new apps that us and
others can develop for the platform.

VII. ACKNOWLEDGEMENT

This work was supported in part by the US National Science
Foundation under grants CCF-15-18897, CNS-15-13263, and
CCF-14-23370. The authors would also like to thank Dalton D.
Mills and Trey Erenberger for helping with Candoia frontend
implementation, Eric Lin for implementing several Candoia
apps, Ramanathan Ramu for help on implementing Candoia
exchange.

10

REFERENCES

[1] Protocol buffers. https://developers.google.com/protocol-buffers/.
[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: from usage scenarios to specifications.
ESEC/FSE ’07, pages 25–34. 2007.

[3] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer: An infrastructure for
large-scale collection and analysis of open-source code. Sci. Comput.
Program., 79:241–259, Jan. 2014.

[4] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Trans. Softw. Eng.,
22(10):751–761, 1996.

[5] J. Bevan, J. E. James Whitehead, S. Kim, and M. Godfrey. Facilitating
software evolution research with kenyon. pages 177–186. 2005.

[6] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating
software evolution research with kenyon. ESEC/FSE-13, pages 177–
186, New York, NY, USA, 2005.

[7] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
distributed development affect software quality? an empirical case study
of windows vista. ICSE ’09, pages 518–528. 2009.

[8] Black Duck Software. Black duck open HUB. https://www.openhub.net/,
2015.

[9] Candoia website. http://candoia.github.io.
[10] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software

dependencies, work dependencies, and their impact on failures. IEEE
Transactions on Software Engineering, 99:864–878, 2009.

[11] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight Defect Localization
for Java. ECOOP 2005. 2005.

[12] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction
approaches: a benchmark and an extensive comparison. Empirical Softw.
Engg., DOI: 10.1007/s10664-011-9173-9, 2011.

[13] S. Ducasse, T. Gîrba, and O. Nierstrasz. Moose: An Agile Reengineering
Environment. ESEC/FSE-13, pages 99–102. 2005.

[14] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories.
ICSE ’13, pages 422–431. 2013.

[15] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: Ultra-large-
scale software repository and source-code mining. ACM Trans. Softw.
Eng. Methodol., 25(1):7:1–7:34, Dec. 2015.

[16] Y. Gao, M. V. Antwerp, S. Christley, and G. Madey. A research
collaboratory for open source software research. FLOSS ’07, pages 4–,
Washington, DC, USA, 2007.

[17] J. M. González-Barahona and G. Robles. On the reproducibility of
empirical software engineering studies based on data retrieved from
development repositories. Empirical Software Engineering, 17(1-2):75–
89, 2012.

[18] G. Gousios. The GHTorrent dataset and tool suite. MSR ’13, pages
233–236. 2013.

[19] G. Gousios and D. Spinellis. Alitheia core: An extensible software
quality monitoring platform. ICSE ’09, pages 579–582. 2009.

[20] G. Gousios and D. Spinellis. A platform for software engineering
research. MSR’09, pages 31–40, 2009.

[21] G. Gousios and D. Spinellis. GHTorrent: GitHub’s data from a firehose.
MSR ’12, pages 12–21. 2012.

[22] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman. Lean
GHTorrent: GitHub Data on Demand. MSR’14, pages 384–387. 2014.

[23] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi. An empirical investigation
into a large-scale java open source code repository. ESEM ’10, page 11.
2010.

[24] J. Howison, M. Conklin, and K. Crowston. Flossmole: A collaborative
repository for floss research data and analyses. IJITWE ’06, 2006.

[25] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing
faults to enable controlled testing studies for Java programs. pages 437–
440. 2014.

[26] Z. Li, S. Lu, and S. Myagmar. Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Trans. Softw. Eng., 32(3):176–
192, 2006.

[27] Z. Li and Y. Zhou. PR-Miner: automatically extracting implicit program-
ming rules and detecting violations in large software code. ESEC/FSE-
13, pages 306–315. 2005.

[28] C. Liu, E. Ye, and D. J. Richardson. Software library usage pattern
extraction using a software model checker. ASE ’06, pages 301–304.
2006.

[29] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting
failures with developer networks and social network analysis. SIGSOFT
’08/FSE-16, pages 13–23. 2008.

[30] T. Menzies, J. Greenwald, and A. Frank. Data mining static code
attributes to learn defect predictors. IEEE Trans. Softw. Eng., 33(1):2–
13, 2007.

[31] A. Mockus. Amassing and indexing a large sample of version control
systems: Towards the census of public source code history. MSR ’09,
pages 11–20, Washington, DC, USA, 2009.

[32] N. Nagappan, B. Murphy, and V. Basili. The influence of organizational
structure on software quality: an empirical case study. ICSE ’08, pages
521–530. 2008.

[33] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and C. Lopes. Sourcer-
erDB: An Aggregated Repository of Statically Analyzed and Cross-
linked Open Source Java Projects. MSR ’09, pages 183–186, Wash-
ington, DC, USA, 2009.

[34] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053–1058, Dec. 1972.

[35] G. Pinto, W. Torres, B. Fernandes, F. Castor, and R. S. Barros. A Large-
Scale Study on the Usage of Java’s Concurrent Programming Constructs.
Journal of Systems and Software, 106:59–81, 2015.

[36] M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module
networks predict failures? SIGSOFT ’08/FSE-16, pages 2–12. 2008.

[37] Promise 2009. http://promisedata.org/2009/datasets.html.
[38] G. Robles. Replicating MSR: A study of the potential replicability

of papers published in the Mining Software Repositories proceedings.
pages 171–180, 2010.

[39] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker,
M. Palyart, and G. C. Murphy. Comparing Repositories Visually with
Repograms. MSR’16.

[40] The Candoia Project. Candoia: Domain Specific Types.
http://candoia.github.io/docs/dsl-types.html.

[41] The Candoia Project. Candoia: Source code.
https://github.com/candoia/candoia.

[42] The Chromium Project. Chromium: Open source web browser.
www.chromium.org, 2008.

[43] S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns
for detecting neglected conditions. ASE’09, pages 283–294. November
2009.

[44] N. M. Tiwari, G. Upadhyaya, and H. Rajan. Candoia: A platform and
ecosystem for mining software repositories tools. ICSE ’16, pages 759–
764, New York, NY, USA, 2016.

[45] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage
anomalies. ESEC-FSE ’07, pages 35–44. 2007.

[46] W. Weimer and G. C. Necula. Mining temporal specifications for error
detection. TACAS ’05, pages 461–476, 2005.

[47] T. Wolf, A. Schroter, D. Damian, and T. Nguyen. Predicting build
failures using social network analysis on developer communication.
ICSE ’09, pages 1–11. 2009.

[48] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring Resource Speci-
fications from Natural Language API Documentation. ASE’09, pages

307–318. November 2009.

11

