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Abstract
The need for concurrency in modern software is increas-
ingly fulfilled by utilizing the message passing paradigm be-
cause of its modularity and scalability. In the message pass-
ing paradigm, concurrently running processes communicate
by sending and receiving messages. Asynchronous messag-
ing introduces the possibility of message ordering problems:
two messages with a specific order in the program text could
take effect in the opposite order in the program execution and
lead to bugs that are hard to find and debug. We believe that
the engineering of message passing software could be easier
if more is known about the characteristics of message order-
ing problems in practice. In this work, we present an analysis
to study and quantify the relation between ordering problems
and semantics variations of their underlying message pass-
ing paradigm in over 30 applications. Some of our findings
are as follows: (1) semantic variations of the message passing
paradigm can cause ordering problems exhibited by applica-
tions in different programming patterns to vary greatly; (2)
some semantic features such as in-order messaging are criti-
cal for reducing ordering problems; (3) modular enforcement
of aliasing in terms of data isolation allows small test con-
figurations to trigger the majority of ordering problems.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming — Distributed pro-
gramming;D.3.3[Programming Languages]:Language Con-
structs and Features—Concurrent programming structures

Keywords Message passing, quantification of message or-
dering problems, asynchronous messages

1. Introduction
The concurrency revolution [45] has renewed interest in
the message passing paradigm [2] because of its modular
[3, 6, 18, 26, 27] and scalable [48] concurrent programming
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model. Use of Erlang [5] in the development of Amazon
Web Services and Akka [4] in the Guardian’s web site are
just a few examples of such interest.

The message passing paradigm allows for modular devel-
opment [3, 26] and reasoning [6, 18, 27] of its programs. In
the message passing paradigm, a module (process) commu-
nicates with other concurrently running processes by send-
ing and receiving messages. For enhanced throughput, these
messages are usually sent asynchronously [3, 4]. However,
asynchronous sending of messages introduces the possibil-
ity of ordering problems that we call the message ordering
problem and makes development of message passing soft-
ware difficult and error-prone. In an ordering problem, two
messages with a specific sequential order in the program text
could take effect in the opposite order in the program exe-
cution. Previous work [12, 24, 30, 47] shows that ordering
problems are prevalent and could lead to bugs that are hard
to find and debug. A bug usually happens when a program-
mer, based on the program text, assumes a message order
which may not actually exist during the program execution.

1 class Client extends Actor {
2 ActorName server; ..
3 @message void start() {
4 send(server, "set", 1); // async message send
5 int v = send(server, "get"); // async message send
6 assert(v == 1); // assertion Φ
7 } ..
8 }

Figure 1: A message ordering problem happens when using
the program text, on lines 4–5, a programmer mistakenly
assumes that the asynchronous message set is sent and
processed before get, causing a real world bug [24].

To illustrate, Figure 1 – written in the message passing
programming language ActorFoundry [1] – shows a simpli-
fied version of a real world bug [24] caused by a message or-
dering problem. A Client process (actor), sends an asyn-
chronous message set to a server process, on line 4, to
set the value of a variable in the server to 1. Later, the client
sends another asynchronous message get, on line 5, to read
the value of the variable in the server. Because sending of the
set message appears before sending of the get message
in the program text, it is very likely [12, 24, 30, 47] that a
sequentially-trained programmer assumes that the set mes-
sage is sent and processed in the server before the get mes-
sage and therefore get reads the value 1 set by set and the



assertion Φ holds; and this is exactly what the programmer
assumes in this example [24, 47]. However, the execution of
the program could surprise the programmer by causing a bug
and violation of Φ. This is because, depending on the mes-
saging semantics of ActorFoundry, set and get messages
could during program execution be received and processed
by the server in an order which is the opposite of their ap-
pearance order in the program text in the client. This in turn
causes the get message to return a value that may not be
equal to 1 and therefore cause a bug and violate Φ. This bug
happens because, based on the program text, the programmer
mistakenly assumes an ordering (in-order delivery and pro-
cessing) between set and get messages that may not exist
during the program execution, depending on the semantics
of the message send operation.

1.1 Root Causes of Message Ordering Problems
We believe that the semantic variations of the following 3
criteria in the message passing paradigm are the root causes
of message ordering problems:

• C1: Message synchronization semantics, categorized into
asynchronous and synchronous messaging [22].

• C2: Message processing semantics, categorized into non-
deterministic and in-order delivery and processing.

• C3: Sharing semantics, categorized into data sharing and
data isolation of memory effects between processes.

In addition to semantic variations of C1–C3, two other fac-
tors could make it harder for a programmer to understand
and avoid message ordering problems: (1) semantic tuning
of the underlying message passing paradigm of a single pro-
gram and (2) diversity of semantic variations that are avail-
able for the message passing paradigm.

1.1.1 Semantic Tuning in a Single Paradigm
There are message passing languages and frameworks, such
as Akka [4], that allow the programmer to configure vari-
ous semantics for C1–C3 in the underlying message passing
paradigm of a single program. Such semantic tuning could
make message ordering problems harder to understand and
avoid: a program that is free from message ordering prob-
lems in one configuration may suffer from ordering prob-
lems in another configuration.

For example, suppose the code in Figure 1 was written
in Akka instead of ActorFoundry. Akka allows the program-
mer to configure the message synchronization semantics of
send and to change it from the default asynchronous messag-
ing to synchronous. Such configuration of message synchro-
nization semantics takes original program with a message
ordering problem and changes it to a program without any
ordering problems. A similar scenario in the opposite direc-
tion can happen as well: a configuration change from syn-
chronous to asynchronous messaging could change a pro-
gram without message ordering problems into one with mes-
sage ordering problems.

To further illustrate semantic tuning, Akka configurations
allow a programmer to configure and run a program with
either asynchronous or synchronous messaging for C1. For
C2, ActorFoundry and HAL constraints [19] allow config-
urations of both nondeterministic and in-order message de-
livery and processing. For C3, Kilim annotations [43] allow
configurations for both data sharing and isolation.
1.1.2 Semantic Diversity in Multiple Paradigms
There are several message passing programming languages
and frameworks available with different semantics for C1–
C3. Such semantic diversity could make it difficult to un-
derstand and avoid message ordering problems, especially
when a program with no ordering problems in one paradigm
may suffer from ordering problems in another paradigm [39]
and vice versa. For example, deprecation of Scala Actor [17]
message passing paradigm and its evolution into Akka may
require a programmer to migrate their program from Scala
Actor to Akka with cautionary warnings like:

“Due to differences between the two actor implementations it is
possible that errors appear. It is recommended to thoroughly test
the code after each step of the migration process.” — The Scala

Actors Migration Guide [39]
There is no guarantee that a program in Scala Actor with
no ordering problems will have no ordering problems when
migrated to Akka.

To illustrate the semantic diversity, Scala [16] and Panini
[37, 38] support both asynchronous and synchronous mes-
saging for C1 whereas Erlang [5] and standard actor
model only support asynchronous messaging. For C2, Ac-
torFoundry messages are delivered and could be processed
nondeterministically whereas Akka and JCoBox [40] sup-
port in-order delivery and processing. For C3, the standard
actor model supports data isolation between processes, Scala
allows sharing and ActorFoundry supports both.
1.2 Understanding Message Ordering Problems
On the one hand, the concurrency revolution requires
sequentially-trained programmers that mostly think sequen-
tially [30] to write concurrent programs in the message
passing paradigm, which is a modular concurrent program-
ming model with increasing popularity. On the other hand,
the message ordering problems make programming in this
paradigm difficult and error-prone [24, 47] for these pro-
grammers [30, 45]. We believe that the engineering of mes-
sage passing software could be easier if we know more about
the characteristics of message ordering problems in practice.
This makes it critical to study and understand the relation be-
tween the semantics of a message passing paradigm and the
ordering problems of its programs.

1.3 Contributions
This paper makes the following contributions:

• Illustration of the relation between message ordering
problems and synchronization semantics, message deliv-
ery and processing semantics, and sharing semantics; and



• Quantify the relation between the semantics of five mes-
sage passing models and their ordering problems for var-
ious concurrent programming patterns in about 130,000
lines of code adapted from previous work; and

• Study the minimum number of processes and messages
that are required to trigger these ordering problems; and

• Quantify the overlapping of message passing models in
preventing the same ordering problems; and

• Discuss implications of our findings for application de-
velopers, framework designer and application verifiers in
the engineering of concurrent message passing software.

Outline §2 illustrates the relation of ordering problems and
various semantics of the message passing models. §3 defines
causal happens-before relations [23] for our five message
passing models, defines unsafe interleavings of operations
that lead to ordering problems and discusses our static analy-
sis for detection of ordering problems. §4 presents our study
setup. §5 discusses our observations and their implications.
§6 discusses related work. §7 concludes the paper.

2. Problems
This section illustrates the relation between ordering prob-
lems and semantic variations of C1–C3 for message synchro-
nization, message delivery and processing, and data sharing
semantics of the underlying message passing model.

1 class Client extends Actor{
2 ActorName server;
3 Client(ActorName s){ server = s; }
4 @message void start(){
5 send(server, "set", 1);
6 int v = send(server, "get");
7 assert(v == 1); // assertion Φ
8 }
9 }

10 class Server extends Actor{
11 int val = 0;
12 @message void set(int v){ val = v; }
13 @message int get(){ return val; }
14 }
15 class Driver{
16 static void main(String[] args){
17 ActorName server = createActor(Server.class);
18 ActorName client = createActor(Client.class);
19 send(client, "start", server);
20 }
21 }

Figure 2: (1) With synchronous messaging for C1 or in-order
message delivery and processing for C2, Client has no
ordering problems. (2) With alternative semantics for C1 or
C2, Client suffers from message ordering problems.

To illustrate, Figure 2 shows the Client from Figure 1
with its Server. The code is implemented in ActorFoundry
[1] where a process is declared by a class that extends the
Actor class and is instantiated using the createActor
constructor; a message handler is a method marked with
the @message annotation. For example, lines 1–9 declare
the process Client, line 18 instantiates a process instance
client and line 12 declares a message handler set. The

Server keeps track of a variable val and provides access
to it using its message handlers set and get. The Client
sets the value of val to 1 by sending a set message to the
server, on line 5, reads its value by sending a get message,
on line 6 and finally checks if val is actually set to 1 using
the assertion Φ, on line 7. Driver, the entry point to the
program, creates client and server process instances,
on lines 17–18, and initiates the execution of client by
sending it a start message, on line 19. The name of the
receiving process, a message name and message parameters
are required when sending a message using the send oper-
ation. In the message send on line 5, server is the name of
the receiving process, set is the name of the message and 1
is the parameter of the message in the server. The assertion
Φ is the representative for message ordering problems. That
is, the assertion holds when there is no ordering problem and
is otherwise violated.

Semantics of ActorFoundry ActorFoundry supports: (1)
asynchronous send and synchronous blocking call mes-
saging for C1; (2) nondeterministic delivery and processing
and programmer-specified processing of messages [22] for
C2; and (3) data isolation for C3 by its call by value mes-
saging (or by relying on the programmer to guarantee data
isolation for call by reference messaging).

In the following, we illustrate the relation of message
ordering problems and C1–C3.

2.1 C1: Message Synchronization Semantics
To illustrate the relation of ordering problems and message
synchronization, we consider two alternative semantics for
send: asynchronous and synchronous messaging1.

2.1.1 Synchronous
With synchronous semantics for message sends, Client
has no ordering problems and the assertion Φ holds. This
is because the blocking semantics of message sends ensures
that the set message that appears before the get message
in the program text is in fact sent and processed before get.

2.1.2 Asynchronous
On the other hand, with asynchronous semantics for message
sends, Client has message ordering problems. This is be-
cause, the setmessage may be processed by the server after
the get message, which is the opposite of their order in the
program text, especially if the messages are processed in a
nondeterministic order. Since the message handlers for mes-
sages set and get write and read the same variable val
in the server, their execution in the opposite order causes
a message ordering problem. Despite the programmer’s as-
sumption the get message may read a value of val which
is not equal to 1 and the assertion Φ is violated.

1 This is for illustration purposes only, otherwise we treat call messages
as synchronous and send as asynchronous as specified in the semantics.



2.2 C2: Message Delivery and Processing Semantics
To illustrate the relation of ordering problems and message
delivery and processing, we consider two alternative seman-
tics for message delivery and processing: nondeterministic
and in-order. In nondeterministic messaging semantics, there
is no order for either the delivery or processing of messages.
However, in in-order delivery, two messages sent directly
(with no intermediate processes) from one process to an-
other are guaranteed to be delivered in the same order that
they are sent. Similarly, in in-order processing, messages are
processed in the order by which they are delivered.

2.2.1 In-order
With in-order delivery and processing, Client has no or-
dering problems, because the set and get messages are
delivered and processed in the order in which they appear in
the program text. That is, the set message is delivered and
processed before the get message in the server. This is true
even for asynchronous message synchronization semantics.

2.2.2 Nondeterministic
Unlike in-order delivery and processing, with nondetermin-
istic delivery and processing, Client has ordering prob-
lems. This is because set and get messages could be de-
livered to the server and processed in any arbitrary order.
Such arbitrary order could include an order in which get is
processed before set.

2.3 C3: Sharing Semantics
To illustrate the relation of message ordering problems and
sharing, we consider two alternative semantics for sharing
among processes: data sharing and data isolation.

In ActorFoundry, a process cannot directly access the in-
ternal state of another process because call by value mes-
saging guarantees data isolation. Therefore, data sharing can
only happen through call by reference messaging [32].

To illustrate, Figure 3 shows a variation of Figure 2 in
which the server keeps track of the value of an object val,
line 12, instead of its primitive integer counterpart in Fig-
ure 2. The omitted code remains the same.

1 class Client extends Actor { ..
2 @message void start() {
3 Value val = new Value();
4 send(server, "init", val);
5 send(server, "set", 1);
6 val.num = 2;
7 assert(val.num == 2); // assertion Φ
8 }
9 }

10 class Value{ int num; }
11 class Server extends Actor{
12 Value val;
13 @message void set(int v){ val.num = v; }
14 @message void init(Value v){ val = v; }
15 }

Figure 3: (1) With isolation C3 Client has no ordering
problems. (2) With data sharing Client suffers from mes-
sage ordering problems.

2.3.1 Data Sharing
With data sharing among processes, Client has message
ordering problems especially if message sends are asyn-
chronous and message delivery and processing is nondeter-
ministic. This is because the call by reference semantics of
the init message, on line 4, shares the object val be-
tween the client and the server and the asynchronous seman-
tics of message sends allows the assignment in the client, on
line 6, to execute before the processing of the set message
in the server, sent on line 5. This could result in values for
val.num that may not be equal to 2 and violate Φ.

2.3.2 Data Isolation
On the other hand, with data isolation, the Client has no
message ordering problems. This is because the call by value
semantics for sending of the init message transfers a deep
copy of val to the server instead sharing it. Therefore, the
client and the server work on two separate unrelated copies
of the object.

2.4 Summary
As illustrated, the presence of message ordering problems
can vary greatly as the semantics of message synchroniza-
tion, message delivery and processing, and sharing vary in
the underlying message passing paradigm. Figure 4 sum-
marizes the relation between message ordering problems in
Client and the semantic variations for C1–C3.

C1 C2 C3
Message Synchronization Message delivery & processing Data sharing

synchronous asynchronous nondeterministic inorder isolation sharing

No Yes Yes No No Yes

Figure 4: Relation of message ordering problems in
Client with semantics variations of C1–C3. Yes and No
mark the presence and absence of ordering problems.

3. Detection Analysis for Ordering Problems
This section defines 5 message passing models based on
semantic variations of C1–C3, defines happens-before [23]
relations of their operations and describes our static analysis
to detect ordering problems in these models.

3.1 Five Message Passing Models
Based on the semantic variations of C1–C3 for message syn-
chronization, message delivery and processing, and sharing
we define five message passing models: (1) base is a model
with asynchronous and no built-in synchronous messaging
for C1, non-deterministic message delivery and processing
for C2 and data sharing among processes for C3; (2) +sync
adds built-in synchronous messaging to base; (3) +inorder
adds in-order delivery and processing of messages to base;
(4)+trans adds transitive in-order delivery and processing to
base; and finally (5) +isol adds data isolation to base. In tran-
sitive in-order delivery and processing, two messages sent



from one process to another are delivered and processed in
the same order they are sent, if the first message is sent
directly (with no intermediate processes) while the second
message could be sent directly or indirectly.

3.2 Happens-Before Relations
A happens-before relation defines a causal order between
executions of operations. Definition 1 defines the happens-
before relation ≺ for our models. To accommodate the en-
coding of both synchronous and asynchronous messages, we
divide sending and processing of a message into MsgSend
and MsgReturn operations and divide the processing of the
message into MsgStart and MsgEnd .

DEFINITION 1. (Happens-before relation ≺)
Let Op(o, i ,A) be the operation o at the position i in
the program text of a process A. Let MsgSend(m,A,A′)
be sending of a message m from process A to
A′, MsgStart(m,A,A′) and MsgEnd(m,A,A′) be the
start and end of the processing of m in A′ and
MsgReturn(m,A,A′) be the returning to A after the end
of the processing of m in A′; let Handler(m,A′) be the
message handler of m sent in A′. Let ≺ denote the happens
before relation. Then the following happens-before relations
holds in our models.
(i) For base:

1. if i < j, then Op(o, i ,A) ≺ Op(o′, j ,A)

2. MsgSend(m,A,A′) ≺MsgStart(m,A,A′)

3. MsgSend(m,A,A′) ≺MsgReturn(m,A,A′)

4. MsgStart(m,A,A′) ≺MsgEnd(m,A,A′)

5. ifOp(o,i,A′)∈Handler(m,A′) then MsgStart(m,A,A′) ≺
Op(o, i ,A′) and Op(o, i ,A′) ≺MsgEnd(m,A,A′)

(ii) For +sync and its synchronous messaging:

6. MsgEnd(m,A,A′) ≺MsgReturn(m,A,A′)

(iii) For +inorder and its in-order delivery and processing:

7. if MsgSend(m,A,A′) ≺ MsgSend(m ′,A,A′) then
MsgEnd(m,A,A′) ≺MsgStart(m ′,A,A′)

(iv) And finally for +trans and its transitive in-order:

8. if MsgSend(m,A,A′) ≺ MsgSend(m1 ,A,B1 ) and
MsgSend(m1 ,A,B1 ) ≺ MsgSend(m2 ,B1 ,B2 ) ≺
. . .≺MsgSend(mn ,Bn−1 ,Bn)≺MsgSend(m ′,Bn ,A

′)
then MsgEnd(m,A,A′)≺MsgStart(m ′,Bn ,A

′).

Data isolation in +isol does not add any extra happens-
before relations between operations of the model. The
happens-before relation is transitively closed [13].

Definition 1 says that in:
base model (1) An operation happens-before another oper-
ation if the former appears before the latter in the program
text; (2) Sending of a message in the sender happens before
the start of its processing in the receiver; (3) Sending of the
message happens before its returning; (4) Start of the pro-

cessing of a message happens before the end of its process-
ing, and (5) Start of the processing of the message happens
before any operation in its message handler.

+sync (6) For a synchronous message the end of the
processing of a message happens before the returning of
the message. This is not true for asynchronous messages
where the message returns right after it is sent, independent
of the start and end of its processing. All happens-before
relations of base are included in the happens-before relations
for +sync, as +sync is built on top of base. The same applies
to any of our models built on top of another.

+inorder (7) For two messages sent to another process
directly (with no intermediate process) the first message is
delivered and processed first and therefore the end of its
processing happens before the start of the second message.

+trans (8) For two messages sent to another process
in which the first message is sent directly and the second
message is sent directly or indirectly (through one or more
intermediate processes), the first message is delivered and
processed before the second one.

Figure 5 illustrates the happens-before relations for oper-
ations of the Client process in Figure 2 for two models
base and +sync.

3.3 Unsafe Interleavings
Definition 2 defines an unsafe interleaving of operations of
a process that leads to a message ordering problem.

DEFINITION 2. (Unsafe interleavings of operations)
Let op1 and op2 be operations of a process A such that op1

appears before op2 in the program text; let op1 and op2 send
messages to other processes, directly or indirectly, and cause
the execution of two other operations op′1 and op′2. Then op1

and op2 from an unsafe interleaving if and only if:

• There is no happens-before relation ≺ between op′1 and
op′2, as defined in Definition 1; and

• Operations op′1 and op′2 have conflicting memory effects.

Definition 2 is based on an observation from previous work
that most sequentially-trained programmers think sequen-
tially and they often wrongly assume that during the ex-
ecution of a program messages are sent and processed
in the same order that they appear in the program text
[12, 24, 30, 47]. Two memory effects conflict if they access
the same memory location and at least one of them is a write.

3.4 Detection Analysis
Our static analysis to detect ordering problems has two
phases: (1) convert a program to its corresponding system
graph and (2) analyze the system graph for the unsafe inter-
leaving of operations that lead to ordering problems.

System graph The system graph of a program is an alter-
native representation of the program that encodes its pro-
cesses, their message exchanges, happens-before relations
and memory effects. One benefit of the system graph is that it



MsgSend(set,client,server)
MsgStart(set,client,server)

MsgReturn(set,client,server)

val = v

MsgEnd(set,client,server)

MsgSend(get,client,server)
MsgStart(get,client,server)

MsgReturn(get,client,server)

return val

MsgEnd(get,client,server)

Figure 5: Happens-before relations for client and
server processes in Figure 2 for the base model (solid ar-
rows) and +sync model (solid and dashed arrows both). No
happens-before relation in base between server operations
for reading and writing val (in grey) causes a message or-
dering problem and violation of Φ.

Client

set(1)

get()

Driver

start()

MsgSend(set,client,server)

MsgReturn(set,client,server) void set(int v): write(val)

MsgSend(get,client,server)

MsgReturn(get,client,server)

int get(): read(val)

client

server

MsgReturn(get,client,server)

Figure 6: System graph for the program in Figure 2 for the
base model (solid happens-before arrows) and +sync model
(solid and dashed arrows both).

allows our analysis to be independent of the implementation
language of the program. Figure 6 shows the system graph
for the program in Figure 2 for base and +sync models.

Finding ordering problems To find ordering problems
of a program in a message passing model, our analysis: (1)
first uses the happens-before relations of the model, defined
in §3.2, to statically infer happens-before relations among
as many operations of processes as possible. Output of this
phase is a set of process operations with no happens-before
relations between them. (2) For each pair of these operations
the analysis uses the sharing semantics of the model to
decide if their memory effects conflict. Finally (3) pairs
of operations that do not have any happens-before relation
and their memory effects conflict are flagged, as defined in
Definition 2, as unsafe interleavings.

To illustrate, consider the Client process in Figure 2
and its system graph in Figure 6. In Client, sending of the
set message appears before the sending of the get mes-
sage in the program text. And sending of set and get mes-
sages in the Client causes the execution of the set and
get message handlers in the Server, respectively. Mem-
ory effects of message handlers set and get are writing
and reading of the value of the same location val. When
analyzing the system graph in the base model (with solid
happens-before relation arrows), there is no happens-before
relation between the execution of set and get message
handlers in the server which means that their memory effects
conflict. Therefore, the pair of set and get messages in the
client form an unsafe interleaving that the analysis flags as
a message ordering problem. However, when analyzing the
system graph in the +sync model (with both solid and dashed
happens-before arrows) the analysis using transitivity of the
happens-before relation infers that there is a happens-before
relation (red arrow) between the execution of set and get
message handlers. Therefore, there does not exist any unsafe
interleavings or message ordering problems in the client.

4. Case Studies
This section discusses our benchmark applications and their
refactoring process.

4.1 Benchmarks
We study 34 small to large sized benchmark applications to-
talling about 130,000 lines of code adapted from the follow-
ing previous work: (1) Basset [24], (2) Habanero [20], (3) Jet-
lang [21], (4) well-known benchmarks, including NAS Paral-
lel Benchmarks [15] and parallel JavaGrande [42] and (5) ex-
amples shipped with the Panini compiler [34]. These bench-
mark applications are implemented in a variety of concurrent
programming patterns [31] including Master Worker (MW),
Loop Parallelism (FL), Pipeline (PL) and Event-based Coor-
dination (EC). Figure 8 shows our benchmarks.

For our analysis, we first refactored the benchmark appli-
cations to their corresponding message passing programs in
the message passing language Panini [6, 37, 38]. Then we
converted these programs into their corresponding system
graphs and later analyzed these system graphs.

4.1.1 Refactoring to Panini
Panini is a message passing concurrent programming lan-
guage that promotes capsule-oriented programming [37, 38].
In Panini, a capsule, similar to a process, encapsulates its
data and thread of control and communicates with other cap-
sules by sending and receiving messages. A procedure of a
capsule is similar to a message handler of a process. To il-
lustrate, Figure 7 shows a refactoring of the ActorFoundry
program in Figure 2 into Panini where lines 1–5 declare the
Client capsule; lines 14–18 define a system declaration in
which lines 16 and 15 declare client and server cap-
sule instances and line 17 connects them together.



To refactor our benchmarks, we follow a very strict and
non-intrusive set of mostly syntactic refactoring steps. Our
refactoring steps for a multi-threaded benchmark application
are: (1) refactor a thread object to a capsule; (2) refactor a
synchronized method or block to a capsule procedure; and
(3) create a capsule field for a top-level class instance. Our
refactoring steps for a message passing benchmark applica-
tion are: (1) refactor a process to a capsule (2) refactor a mes-
sage handler to a capsule procedure and a message send to
an invocation of the capsule procedure; (3) create processes
in its system declaration.

1 capsule Server {
2 int val = 0;
3 void set(int v) { val = v; }
4 int get() { return val; }
5 }
6 capsule Client(Server server) {
7 void start() {
8 server.set(1);
9 int v = server.get();

10 assert(v == 1);
11 }
12 }

13 capsule Driver {
14 design {
15 Server server;
16 Client client;
17 client(server);
18 }
19 void run() {
20 client.work();
21 }
22 }

Figure 7: Refactoring of Figure 2 in Panini [37, 38].

4.1.2 System Graph Construction
Conversion of a Panini program to its corresponding system
graph and computation of its processes and their message
exchanges is rather straightforward. In Panini, capsule in-
stances are statically specified in the system declaration and
cannot be stored or passed among capsules and there is no
subtyping relation among capsule types [6]. To compute the
memory effects of capsules, we use a sound alias analysis
technique from previous work [9, 28]. Note that our anal-
ysis is also applicable in the presence of dynamic process
creation as long as a system graph soundly abstract the pro-
cesses of the program and their communications.

4.2 Soundness and Completeness
Soundness of our analysis guarantees the absence of false
negatives. That is, if there is an ordering problem our anal-
ysis will report it. For completeness, and to avoid false pos-
itives, we manually verify that a reported ordering problem,
is an actual problem.

It is noteworthy that the existence of a message order-
ing problem in a benchmark application does not necessarily
mean that the application is buggy. This is because, similar
to data races, not every message ordering problem leads to
a bug and some may even be intentional for performance
purposes. Also we analyze the application in five different
message passing models while the application is originally
implemented with only one of these models in mind. There-
fore, a message passing problem that exists in one model
may not exist in the original model.

5. Quantification, Observations and
Implications

This section quantifies the relation between message order-
ing problems and our message passing models defined in
§3.1 and studies how these ordering problems can be trig-
gered in various concurrent programming patterns [31]. It
also discusses observations of our study and their implica-
tions as complementary guidelines that could be useful for
application developers, application verifiers and framework
designer when engineering message passing software.

It is noteworthy that, although our findings are the result
of studying a large amount of code in a variety of applica-
tions we do not intend to draw general conclusions about
all message passing applications or paradigms. Also, all our
findings and implications are only associated with the appli-
cations and message passing models studied.

5.1 Models and Patterns
We first discuss our findings for our five message passing
models of base, +sync, +inorder, +trans and +isol per con-
current patterns of our benchmark applications. Figure 8 and
its bar chart representation in Figure 9 show our findings.
Our findings suggest the following trends.

5.1.1 Event-Based Coordination
• Together, in-order message delivery and processing of

+inorder and message synchrony of +sync, written as
(+inorder and +sync), prevent 97% of message order-
ing problems in Event-based Coordination applications.

• Data isolation in +isol does not prevent any ordering
problems in this pattern.

In-order messaging in +inorder prevents most of the or-
dering problems because Event-based Coordination [31] ap-
plications usually involve multiple iterations where the same
set of messages is exchanged among the same set of pro-
cesses in each iteration; and the processing of messages of
one iteration should be ordered before messages of its sub-
sequent iterations. In-order messaging guarantees such or-
dering for each iteration. Synchronous messaging of +sync
helps with ordering problems of the check-then-act idiom
in Barbershop and Philosopher applications in this pattern,
where it ensures that a check message blocks the execution
of its act message until the check message is processed. Data
isolation of +isol prevents the least number of ordering prob-
lems because programmers manually enforce the data iso-
lation or exchanged messages are mostly primitive values.
Transitivity of +trans is not very important, because system
graphs of these applications, except Barbershop, do not in-
clude any triangle pattern. In a triangle pattern, a process
A sends a message to process A′ directly and sends another
message to A′ indirectly. Triangle patterns are main benefi-
ciaries of transitivity of message delivery and processing.



Applications LOC base +sync +inorder +trans +isol

E
C

Bank 42 6 6 4 6 6
Barbershop 82 15 11 9 14 15

Factorial 28 0 0 0 0 0
Philosophers 60 8 5 3 8 8

Pi 47 0 0 0 0 0
SC 39 2 2 1 2 2

Signature 20 0 0 0 0 0
PingPong 46 0 0 0 0 0

ThreadRing 34 0 0 0 0 0
Server 39 1 1 0 1 1

Total 32 25 17 31 32
(↓22%) (↓47%) (↓3%) (↓0%)

Unresolved 16 (50%)

FL

BT 34,804 55 5 25 55 30
CG 3,434 4 0 2 4 2
FT 4,831 11 2 5 11 4
IS 913 4 0 2 4 2
LU 36,736 101 7 45 101 56
MG 7,818 22 0 18 22 4
SP 28,098 72 6 30 72 42

LUFact 1,737 4 1 2 4 2
MolDyn 2,417 21 5 3 21 18
Series 873 1 1 1 1 0
SOR 771 4 4 4 4 2

Matmult 818 1 1 1 1 0
Crypt 1,567 3 1 1 3 1

RayTracer 2,303 0 0 0 0 0
MonteCarlo 2,252 2 1 2 2 0

Pi 51 1 1 0 1 1

Total 306 35 141 306 164
(↓89%) (↓54%) (↓0%) (↓46%)

Unresolved 0 (0%)

PL

Histogram 44 3 3 0 3 3
Pipeline 70 5 5 0 5 5

Download 68 3 3 0 3 3
Pipesort 50 3 3 0 3 3
Prime 57 7 7 0 7 7

Total 21 21 0 21 21
(↓0%) (↓100%) (↓0%) (↓0%)

Unresolved 0 (0%)

M
W

Fibonacci 55 1 1 1 1 1
PiPrec 143 11 11 9 11 11
Sudoku 349 24 24 19 19 23

Total 36 36 29 31 35
(↓0%) (↓19%) (↓14%) (↓3%)

Unresolved 23 (64%)
Total 130,696 395 117 187 389 252

(↓70%) (↓53%) (↓2%) (↓36%)
Unresolved 39 (10%)

Figure 8: Quantification of ordering problems over message
passing models for various concurrent programming patterns
[31]: Master Worker (MW), Pipeline (PL), Loop Parallelism
(FL) and Event-based Coordination (EC).

5.1.2 Loop Parallelism
• (+sync and +inorder and +isol) together prevent all

ordering problems in Loop Parallelism applications.
• Transitivity of in-order message delivery and processing

in +trans does not prevent any ordering problems.
For this pattern, +sync prevents the most ordering problems
(89%) followed by +inorder (54%) and +isol (46%) and
+trans prevents none (0%). There is overlapping between
models in prevention of ordering problems. That is, there

are ordering problems that can be prevented by more than
one model, as discussed in §5.2.

Loop Parallelism [31] usually involves an implicit bar-
rier point [35] to synchronize all iterations of a loop before
proceeding. +sync enables easy enforcement of such syn-
chronization points. +inorder helps with ordering messages
of different loops according to the appearance order of the
loops in the program text. Extensive use of call by reference
messages, to avoid copying of data, makes +isol important
in the prevention of ordering problems. Absence of triangle
patterns makes +trans the least beneficial model.
5.1.3 Pipeline

+inorder prevents all ordering problems in Pipeline appli-
cations. +sync, +trans and +isol prevent none.

In Pipeline [31] applications, each stage of the pipeline
should process messages in the same order they are deliv-
ered which in turn makes +inorder the most important. The
shared data between the pipeline stages is restricted to be a
sequence (stream) and stage processes do not reuse the data
after processing it. This in turn makes +isol less important
for Pipeline applications, which verifies the findings of pre-
vious work [35]. Since a stage process does not synchronize
with its subsequent stage processes, +sync is not important.
Lack of triangle patterns renders +trans less important.
5.1.4 Master Worker
(+inorder and +trans and +isol) only prevent 36% of or-
dering problems in Master Worker. +sync prevents none.

In Master Worker [31], the master process usually uses
different messages to initialize worker processes, assign
work to them and shut them down. These messages should
be processed by workers in the order in which they are sent
which in turn makes +inorder more important. Unlike other
patterns, the system graphs for these applications usually
contain more triangle patterns which in turn make +trans
important. +isol is less important because master and work-
ers usually do not share data with each other.
5.1.5 Unresolved Ordering Problems

78% of ordering problems in Master Worker can be pre-
vented by commutativity guarantees.

Figure 8 shows that there are ordering problems that can-
not be prevented by any model and therefore remain unre-
solved. However, stronger guarantees such as commutativ-
ity of operations can prevent some of these problems. Two
operations are commutative if they can be executed in any
order without changing the outcome.

5.1.6 All Together

For all of the applications across all patterns, +sync pre-
vents most of the message ordering problems (70%), fol-
lowed by +inorder (53%) and +isol (36%) where +trans
only prevents 2% of the problems.

+inorder prevents most of the ordering problems for Event-
based Coordination, Pipeline and Master Worker applica-



tions whereas +sync prevents the most for Loop Parallelism.
+trans prevents no ordering problems in Loop Parallelism
and Pipeline and +isol prevents none in Event-based Coor-
dination and Pipeline.

5.2 Overlapping of Models
There are ordering problems that could be prevented by only
one model while there are others that could be prevented by
multiple models. Figure 10 quantifies the relation between
ordering problems and the overlapping of our models. The
overlapping area of two models shows the number of order-
ing problems prevented by either model. Figure 10 suggests
the following trends in overlapping.

5.2.1 Event-Based Coordination
• (+inorder and +trans) can prevent all ordering prob-

lems that +sync prevents in Event-based Coordination.
• More than half of the ordering problems in this pattern

can only be prevented by +inorder.
This makes +inorder critical in preventing ordering prob-
lems in Event-based Coordination applications. Definition 3
defines a critical model for an application.

DEFINITION 3. (A critical model)
A message passing model is critical to a message passing
application, if there are ordering problems in the application
that can be prevented only by that model.

5.2.2 Loop Parallelism
• (+inorder and +isol) can prevent all ordering problems

that +sync can prevent in Loop Parallelism.
• Both +inorder and +isol are critical in preventing mes-

sage ordering problems in this pattern.
More than 9% of message ordering problems in Loop Par-
allelism can be prevented only by +inorder. Similarly, less
than 2% can be prevented only by +isol.

5.2.3 Pipeline
For Pipeline applications, all ordering problems are pre-
vented by +inorder and there is no overlapping.

5.2.4 Master Worker
+inorder, +trans and +isol are critical to Master Worker.

+inorder is the most critical model because it prevents 54%
of ordering problems that cannot be prevented by other mod-
els. +trans is more critical than +isol because it prevents
39% where +isol prevents 8% of ordering problems that
cannot be prevented by other models.

5.2.5 All Together
• +inorder is critical to applications in all Event-based,

Loop Parallelism, Pipeline and Master Worker patterns.
+isol is critical to Loop Parallelism and Master Worker.
+trans is critical to Master Worker only.

• +sync is not a critical model for any pattern.

5.3 Triggering of Ordering Problems
A message ordering problem that leads to a bug should be re-
producible by a test case for debugging purposes. The com-
plexity of such a test case is exponential in the number of
processes it should control [30] and messages among them
[25, 47]. For efficiency, it is necessary to be able to trigger a
bug with minimum number of processes and messages. Fig-
ure 11 shows the minimum number of processes and mes-
sages, whose interleavings should be controlled to trigger
ordering problems in each model. Figure 11 suggests the fol-
lowing trends.

5.3.1 Minimum Number of Processes
More than half of the ordering problems can be triggered
by controlling the interleavings of only 2 processes.

5.3.2 Minimum Number of Messages
• More than three quarters of problems in +trans, base

and +isol are triggered by only 2 messages.
• There are message ordering problems that can be trig-

gered with only 1 message.
One message can trigger an ordering problem in a process A
when A sends a message and the effects of processing that
message in other processes conflicts with the rest of A.

5.3.3 All Together

Only 2 processes and 2 messages trigger 75% of ordering
problems in +isol and 49% in +trans and base.

However, such a testing configuration only triggers 2% of or-
dering problems in +inorder. Triggering about half of prob-
lems in +inorder requires up to 3 processes and 3 messages
and the other half needs even more.

5.4 Implications
Our observations could provide key insights as complemen-
tary guidelines to previous work [24, 30, 46, 47] for applica-
tion developers, application verifiers and framework design-
ers who engineer message passing software.

5.4.1 Application Developers
An application developer may use our findings in deciding:
(1) how to tune the semantics of a message passing paradigm
or (2) choose the proper paradigm with suitable semantics for
their applications. For example:

(+inorder and +isol and +sync) for all Based on
the observations in §5.1.6 and §5.2.5, the application de-
veloper may decide to implement their applications in a
model whose semantics, by default or through semantic
tuning, supports synchronous messaging, in-order delivery
and processing, and data isolation. This is because such a
model, (+inorder and +isol and +sync), prevents the major-
ity (100%) of ordering problems and +inorder, +isol and
+sync are all critical to one programming pattern or another.
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Figure 9: Ordering problems for various message passing models and concurrent patterns. Vertical axis is in logarithmic scale.
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Figure 10: Overlapping of various message passing models in preventing ordering problems.

PPPPPPMessages
Process base +sync +inorder +trans +isol

2 3 4+ Total 2 3 4+ Total 2 3 4+ Total 2 3 4+ Total 2 3 4+ Total
1 8% 0% 0% 8% 3% 0% 0% 3% 17% 0% 0% 17% 8% 0% 0% 8% 0% 0% 0% 0%
2 49% 27% 0% 76% 43% 2% 0% 44% 2% 19% 0% 20% 49% 28% 0% 77% 75% 0% 0% 75%
3 0% 1% 0% 1% 0% 2% 0% 2% 0% 11% 0% 11% 0% 0% 0% 0% 0% 1% 0% 1%

4+ 2% 6% 7% 15% 7% 21% 23% 51% 5% 37% 9% 51% 2% 6% 7% 15% 3% 10% 11% 24%
Total 59% 34% 7% 52% 25% 23% 24% 67% 9% 60% 33% 7% 78% 11% 11%

Figure 11: Quantification of minimum number of processes and messages required to trigger ordering problems.

Panini [6, 37, 38] and JCoBox [40] by default support such
a model and Akka [4] can be configured to support it.

+inorder for Pipeline Based on the observation in
§5.1.3, the application developer may decide to tune the se-
mantics of their model to only support in-order delivery and
processing for their Pipeline applications and not the whole
(+inorder and +isol and +sync). This is because +inorder
prevents the majority (100%) of ordering problems while
+isol and +sync prevent none for Pipeline.

5.5 Application Verifiers
An application verifier may use our findings in: (1) designing
test cases with minimal complexity and (2) budgeting and
focusing of test efforts. For example:

Minimal test cases Based on the observation in §5.3.3,
the application verifier can design test cases with minimal
complexity by controlling only 2 processes and 2 messages
between them and test for three quarters of ordering prob-
lems, if the underlying model supports isolation. The com-

plexity of a test case is exponential in the number of pro-
cesses and messages it controls [30].

Budgeted test efforts Based on the observation in §5.1.2,
for Loop Parallelism, the application verifier may decide
to allocate twice the effort to test for ordering problems
related to synchrony compared to isolation and almost no
effort for transitivity. This is because +sync prevents 89%
of ordering problems in this pattern compared to +isol that
prevents 46%. However, based on the observation in §5.2.2,
the verifier may refine his decision and decide to actually
not test for synchrony and focus mostly on in-order delivery
and processing and isolation. This is because (+inorder and
+isol) can prevent all ordering problems that +sync prevents.

5.6 Framework Designers
A framework designer may use our findings in deciding
which semantic features are more important than others in
the design of their framework. For example:



Critical +inorder and +isol Based on the observation in
§5.2.5, the framework designer may decide to include both
in-order message delivery and processing, and data isolation
in their framework. This is because there are message or-
dering problems in Event-based Coordination, Loop Paral-
lelism, Pipeline and Master Worker patterns that can be pre-
vented only by +inorder and there are ordering problems in
Loop Parallelism and Master Worker that can only be pre-
vented by +isol.

+inorder is important for session-based programming
framework The observation in §5.2.5 verifies and supports
the decision of the framework designer in previous work
[18] for supporting in-order message delivery and process-
ing for the prevention of ordering problems in session-based
message passing programming. A session structures a set of
messages between a set of participating processes.

+sync is important in Habanero framework The obser-
vation in §5.1.2, verifies and supports the decision of the
framework designer in the Habanero framework [20] to sup-
port synchronous messaging in their framework to enhance
productivity of programmers for Loop Parallelism programs.
Based on the observation in §5.2.5, the framework designer
could alternatively decide to support the combination of in-
order and isolation instead of message synchrony. This is
because, (+inorder and +isol) can prevent all the ordering
problems +sync can.

5.7 Modular Enforcement of Aliasing
Data isolation among processes is a simple form of modular
enforcement of aliasing [33, 40] in which each process en-
capsulates and owns its data and does not share its data with
other processes. With data isolation, data of a process can
be accessed only through its message handlers. The obser-
vation in §5.3.3 shows that modular enforcement of aliasing
can decrease the complexity of testing and test cases. This
is because in a model with data isolation, three quarters of
message ordering problems can be prevented by minimal test
cases that control only 2 messages and 2 processes.

5.8 Threats to Validity
External validity The external validity of our study is lim-
ited by our choice of benchmark applications that are from
either previous work or well-known concurrent benchmarks.
Due to such a choice, we cannot claim that they form an
exhaustive set of all typical message passing programs. An-
other threat to external validity of our study is that the same
application is not implemented in various concurrent pat-
terns and therefore there is an uneven distribution of ordering
problems among applications of different patterns.

Internal validity The internal validity of our study is lim-
ited by our refactoring process to adapt message passing pro-
grams of previous work and multi-threaded benchmarks to
Panini [37, 38] though our well-defined refactoring is de-
signed to be mostly syntactic and as minimally intrusive as
possible. Another threat to internal validity is that our anal-

ysis cannot detect manual implementations of synchronous
messages using asynchrony [22], in-order delivery and pro-
cessing and transitive in-order delivery.

6. Related Work
Sequential consistency Grace [8] proposes a transactional
memory technique to enforce sequential semantics and avoid
concurrency bugs for multi-threaded programs. Safe futures
[49] and Asynchronous, Typed Events [29] provide a sem-
blance of sequential semantics for multi-threaded programs.
Lamport [23] proposes requirements for shared memory
multiprocessor programs to guarantee sequential consis-
tency. Qadeer [36] and Cain et al. [11] propose model check-
ing techniques for sequential consistency. However, these
works do not study the relation between ordering problem
and semantic variations of message passing models.

Testing and model checking Lauterburg et al. [24] pro-
poses Basset to explore possible interleaving of message
passing programs. Sen and Agha [41] propose jCute to ex-
plore behaviors of message passing programs using concolic
execution for test generation. Fredlund and Svensson pro-
pose McErlang [14] to model check distributed and fault tol-
erant Erlang programs. Tasharofi et al. [46] proposes Setac
for testing Scala programs using user specified constraints
on nondeterministic schedule of message exchanges; and
proposes Bita [47] for testing using higher coverage schedul-
ing. Bordini et al. [10] propose a translation from the mes-
sage passing language AgentSpeak into Java to enable its
model checking by Java PathFinder (JPF). Other previous
work [7, 44] propose model checking techniques for dis-
tributed and networked systems. However, these works are
mostly concerned about testing and model checking of mes-
sage passing programs and not about the relation of ordering
problem and semantic variations of message passing models.

7. Conclusion and Future Work
In this work we studied and quantified the relation between
message ordering problems and semantic variations for the
semantics of three criteria C1–C3 of message synchroniza-
tion, message delivery and processing and sharing. We dis-
cussed implications of our findings for application develop-
ers, application verifiers and framework designers that engi-
neer message passing paradigms. We also verified some of
the findings of previous work. One avenue for future work is
to study other problems of message passing programming in
addition to ordering problems.
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