
Phase-guided Thread-to-core Assignment for Improved Utilization of
Performance-Asymmetric Multi-Core Processors

Tyler Sondag
Dept. of Computer Science

Iowa State University
sondag@cs.iastate.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
hridesh@cs.iastate.edu

Abstract

CPU vendors are starting to explore trade offs between
die size, number of cores on a die, and power consump-
tion leading to performance asymmetry among cores on a
single chip. For efficient utilization of these performance-
asymmetric multi-core processors, application threads must
be assigned to cores such that the resource needs of a thread
closely matches resource availability at the assigned core.
This significantly complicates the task of an average pro-
grammer. The contribution of this work is a technique
for automatically determining the mapping between threads
and performance-asymmetric cores of a processor. Our ap-
proach, which we call phase-guided thread-to-core assign-
ment, builds on a well-known insight that programs exhibit
phase behavior. We first take code sections and group them
into clusters such that each section in a cluster is likely to
exhibit similar runtime characteristics. The key idea is that
with this clustering, characteristics of a small number of
representative sections in a cluster give insight into the be-
havior of the entire cluster. Thus the exhibited characteris-
tics of the representative sections on different types of cores
can be used for automating thread-to-core assignment at a
lower runtime cost. Variations of our technique show up to
an average 150% improvement in throughput over the stock
Linux scheduler for systems with a constant feed of jobs,
while maintaining comparable fairness and efficiency.

1. Introduction

CPUs with multiple cores have become commodity
items [12]. CPU vendors are projecting that in the next
decade the number of cores in a CPU will increase to as
many as hundreds [29]. This makes it important to de-
vise techniques for their effective utilization. Recently
both CPU vendors and researchers have advocated the need
for a class of multi-core processors called performance-

asymmetric or heterogeneous multi-cores [3, 4, 13, 27, 35,
17]. All cores in a performance-asymmetric multi-core pro-
cessor support the same instruction set, however, they differ
in terms of performance characteristics such as clock fre-
quency, cache size, etc [13, 26, 17]. These architectures
have been shown to provide an effective trade-off between
performance, die area, and power consumption compared to
homogeneous multi-core processors [13, 27, 35, 17].

To effectively utilize performance-asymmetric multi-
core processors, application threads must be executed on
cores such that the resource requirements of a thread closely
matches the resources provided by the core. This must be
done while maintaining fairness between threads. For ex-
ample, Kumar et al. [28] have shown that when workload
characteristics are matched well to heterogeneous cores,
performance gains of up to 40% are observed (similar re-
sults have been shown by Li et al. [35]).

To match the resource requirements of a thread to the
resources provided by the core, both must be known. The
programmer can do this manually, however, this introduces
several problems. First, the programmer must know the run-
time characteristics of the program code as well as details
about the underlying architecture. Furthermore, with mul-
tiple target architectures, this problem is exacerbated since
this manual process must be carried out for each architec-
ture. Also, this is a manual process and may be prone to
errors. With all of this in mind, we desire an automatic
technique to remove these burdens from the programmer.

The main contribution of this work is a technique, which
we call phase-guided thread-to-core assignment, for match-
ing the resource requirements of a thread to the resources
provided by the cores of performance asymmetric multi-
core processors. Our technique builds on a well-known in-
sight that programs exhibit phase behavior [14, 15, 20, 22,
30, 34, 36]. By phase behavior we mean that a program
goes through phases of execution that show similar runtime
characteristics compared to other phases [25, 6, 8, 9, 1, 32].
Based on this insight, our approach consists of two parts.
An offline program analysis, which identifies likely phase-

transition points in a program, and a lightweight dynamic
analysis that determines thread-to-core mapping on the fly.
We define a phase-transition point as a point in the program
where runtime characteristics are likely to change. We use
the offline analysis results to generate standalone binaries
in which each phase-transition point is instrumented with
a tiny fragment for dynamic analysis. This technique does
not require any modifications to the operating system. It
also does not make any assumptions about the performance
characteristics of the target architecture. Thus we avoid the
need for multiple versions for each target platform.

We evaluated our approach using workloads constructed
from the SPEC CPU200 benchmark suite. Both overheads
and improvement in throughput are measured. For these
workloads, we observe significant improvement in overall
throughput when compared to the assignment strategy of
the stock Linux scheduler with only minor overheads.

2 Phase-guided Thread-to-core Assignment

A program exhibits phase behavior [25, 6, 8, 9, 1, 32] in
that it goes through several phases of execution that show
similar runtime characteristics compared to other phases of
execution. If we can classify a program’s execution into
code sections; group these sections into clusters such that
all sections in the same cluster are likely to exhibit similar
runtime characteristics; the actual runtime characteristics of
a small number of representative sections in the cluster are
likely to manifest the behavior of the entire cluster.

If the process of classifying a program’s execution into
sections and sections into clusters is independent of the
program’s input, a phase-guided thread-to-core assignment
technique will have several benefits. No development ef-
forts for representative inputs will be needed; and thread-
to-core assignments for unanticipated use cases and varying
architectures could be automatically tackled.

Based on these intuitions, phase-guided thread-to-core
assignment works as follows. First, an offline analysis is
performed to identify phase-transition points. This analy-
sis proceeds as follows. First, we divide a program’s code
into sections. Second, we classify these sections into one
or more phase types thereby clustering them into one or
more groups such that each section in the cluster is likely
to exhibit similar runtime characteristics. Third, we iden-
tify points in the program where the control flows [2] from
a section of one phase type to a different phase type. These
points are identified as phase-transition points.

Each phase-transition point is statically instrumented to
insert a small code fragment, phase mark. The idea of phase
marking is similar to the work by Lau et al. [19], however,
we do not use a program trace to determine our phase marks
and make our selections based on a different criteria. A
phase mark contains information about the phase type for

the current section, performs dynamic performance analy-
sis, and makes core switching decisions. At runtime the
phase marks analyze the performance of a small number of
representative sections of each phase type. These analysis
results are used to determine a suitable core mapping for
the phase type such that the resources provided by the core
matches the expected resources for sections of that phase
type. On determining a satisfactory mapping for a phase
type, all future phase marks for that phase type reduce to
simply making appropriate core switching decisions. Thus,
the actual characteristics of few representative sections of
a given type are used as an approximation of the expected
characteristics of all sections of that phase type. The rest of
this section describes components of our approach in detail.

2.1. Offline Phase Transition Analysis

The aim of our offline phase transition analysis is to de-
termine points in the control flow where its phase behavior
is likely to change (phase-transition points). The preci-
sion and the granularity of identifying such points is likely
to determine the performance gains observed at runtime. To
that end, the first step in our analysis is to detect similar-
ity among basic blocks in the entire program and to classify
them into one or more types that are likely to exhibit similar
runtime behavior. We then do an intra-procedural analysis
that uses the results of the basic block analysis to summa-
rize intervals [2] into a single type. The result of the basic
block analysis and summarization is used to construct an
inter-procedural control flow graph, which is used to detect
and mark phase transitions with phase marks.

Attributed Control Flow Graph Construction Our of-
fline analysis first divides a program into procedures (P)
and each procedure p ∈ P into basic blocks to construct the
set of basic blocks (B) [2]. We use the classic definition of
a basic block that it is a section of code that has one entry
point and one exit point with no jumps in between [2]. We
then classify each basic block into exactly one type (π ∈ Π)
to construct the set of attributed basic blocks (B̄ ⊆ B ×Π).
The notion of type here is different from types in a program
and does not necessarily reflect the concrete runtime behav-
ior of the basic block. Rather it suggests similarity between
expected behaviors of basic blocks that are given the same
type. A strategy for classification of basic block based on
execution traces is given in Section 3, however, other meth-
ods for basic block classification can easily be used.

From these, attributed intra-procedural control-flow
graphs for procedures in the program are created. An
attributed intra-procedural control-flow graph CFG is
〈N , E , η0〉. Here, N , the set of control flow graph nodes
is B̄ ∪ S, where S ranges over special nodes representing
system calls and procedure invocations. The set of directed
edges in the control flow is defined as E ⊆ N ×N ×{b, f},

2

where b, f represent backward and forward control flow
edges. η0 ≡ (β, π) is a special block representing the entry
point of the procedure, where β ∈ B and π ∈ Π.

Summarizing Intervals The attributed control-flow
graph of a procedure is then partitioned into a unique set
of intervals (I) using standard algorithms [2]. “An interval
(i(η) ∈ I) corresponding to a node η ∈ N is the max-
imal, single entry subgraph for which η is the entry node
and in which all closed paths contain η [2, pp.6].” For each
i, we then compute its dominant type by doing a depth-first
traversal of the interval starting with the entry node, while
ignoring backward control flow edges (marked with b) un-
less traversal gets stuck at a non-leaf node. The exit nodes
of the interval represent the leaf nodes. A sample run of this
summarization algorithm is illustrated in Figure 1.

1

2 3

4

5

Types
A
B

Current Node: 1 = 1
M(A) = { (1)}
M(B) = {0}

Current Node: 2 = 2,1
M(A) = { (1)}
M(B) = { (2)}

Current Node: 4 = 4,2,1
M(A) = { (1)}
M(B) = { (4)+ (2)}

Current Node: 5 = 5,4,2,1
M(A) = { (5)+ (1)}
M(B) = { (4)+ (2)}

Current Node: 1 = 5,4,2,1
M(A) = { (1)+ ((5)+ (1))}
M(B) = { (4)+ (2)}

Figure 1. Interval Summarization Illustration

During a depth-first traversal we maintain a stack of con-
trol flow nodes encountered thus far (ρ = η + ρ′) with the
entry node of the interval at the bottom of this stack and the
currently visited node at the top of the stack. A type map for
the interval (M : Π 7→ R) is maintained. On visiting a con-
trol flow node η in the interval, the type map M is changed
to M ′ where M ′ is M ⊕ {π 7→ M(π) + wf ∗ ϕ(η)}. Here,
π is the type of the control flow node, wf is the forward
edge weight, ϕ maps nodes to node weights, and ⊕ is the
overriding operator for finite functions.

On reaching a control flow node with an outgoing back-
ward edge, if the backward edge has not previously been
traversed, compute the target control flow node (η′) of the
backward edge. For each control flow node η′′ from η′ to η
on the stack ρ, change the type map M to M ′ where M ′ is
M⊕{π 7→ M(π)+wb∗ϕ(η)} and wb is the backward edge
weight. The values for wf and wb are heuristically decided,
but intuitively it makes sense to have wb greater than wf (to
give more weight to nodes in loops). The node weight func-
tion, ϕ : N 7→ R, maps nodes to values based on a heuristic
measure of the expected execution time of the block (we
currently use number of instructions).

On completion of the depth-first traversal, the dominant
type of the interval is π, where @π′.M(π′) > M(π). In
case of a tie, a simple heuristic is used as a tiebreaker (for
example number of control flow nodes).

As a result of this process, we obtain another control
flow graph of the procedure where nodes are tuples of in-
tervals and their types. To distinguish these from control
flow graphs of basic blocks, we refer to them as attributed
interval graphs. It would be interesting to explore whether
summarizing interval graphs again is useful [2], however, in
this paper we only consider first-order intervals. Our initial
intuition is that the value of applying nth order interval sum-
marization will depend on the average size of procedures.

To tackle procedures in the program, a bottom-up ap-
proach is applied (lowest layer procedures first). In case of
mutually recursive procedures, the cycle in the analysis is
broken by randomly assigning a type for one procedure and
analyzing the rest until a fixed-point is reached.

2.2. Phase Transition Marking

Once the phase transition analysis is complete, we stat-
ically insert phase marks in the binary to produce a stan-
dalone binary with phase information and dynamic analy-
sis code fragments. We have considered several variations
of phase transition marking that can be broadly classified
into two kinds based on whether it operates on the attributed
control flow graphs or the attributed interval graphs. In both
cases, phase marks are placed at the beginning of a section.

Adding Phase Marks to Attributed CFG Our first
class of methods all consider a section to be a basic block
(β̄) in the attributed CFG (CFG). The advantage of using
basic blocks is that execution of a single instruction in a
block implies that all instructions in the block will execute.
This means that the phase type for the section is likely to
be accurate and the same as the corresponding basic block
type π ∈ Π, where β̄ is (β,π). Our naïve phase marking
technique marks all edges in the attribute CFG where the
source and the target sections have different phase types.
As is evident, this technique has a problem. The average
basic block size in a program is small (tens of instructions).
Phase marking at this granularity resulted in frequent core
switches overshadowing any performance benefit. To avoid
this, we use two techniques.

The first technique only considers sections for marking
that are longer than a fixed number of instruction. More
generally, if the section has more than a threshold weight
as defined by our node weight function, ϕ : N 7→ R. This
eliminates core switching for very small blocks of code.

The second technique further addresses this problem by
only considers a section if at least a fixed percentage of its
successors up to a fixed depth have the same type (illus-
trated in Figure 2). The intuition behind this is the follow-

3

ing. If the successors of a section have the same type, it is
more likely that a core switch will be worth its cost.

Figure 2. look-ahead for fewer phase marks

Adding Phase Marks to Attributed Interval Graphs
Our second class of methods consider a section to be an in-
terval in the attributed interval graph. Using intervals for
phase marking enables us to easily look at the program at
a more coarse granularity than basic blocks. For exam-
ple, even with 1st order intervals, the intervals frequently
capture small loops. Since we do not want to insert a core
switch within a small loop, this is a clear advantage. The
disadvantage is that interval summarization to obtain domi-
nant types introduces imprecision in the phase type infor-
mation. As a result, statically computed dominant type
may not to be actual exhibited type for the interval based
on which instructions in the interval are executed and how
many times they are executed.

2.3. Performance Analysis and Scheduling

After phase transition marking is complete, we have a
modified binary with phase marks at appropriate points in
the control flow. These phase marks contains an executable
part and the phase type for the current section. The exe-
cutable part contains code for dynamic performance analy-
sis and thread-to-core assignment. During offline analysis,
this dynamic analysis code is customized according to the
phase type of the section to reduce runtime overhead.

The code for a phase mark serves two purposes: First,
during a transition between different phase types, a core
switch is initiated. The target for this switch is the core that
is previously determined to be an optimal fit for this phase
type. Second, if an optimal fit for a given phase type has
not been determined previously the current section is mon-
itored to analyze its performance characteristics. The deci-
sion about the optimal core for that phase type is made by
monitoring representative sections from the cluster of sec-
tions that have the same phase type. If our intuition that “all
sections that have the same phase type are likely to exhibit
similar runtime behavior” holds, the decision about optimal

core made by just monitoring few representative sections
will be valid for all sections of the same phase type. Thus,
monitoring all sections will not be necessary.

For analyzing the performance characteristics of a sec-
tion, we use instructions per cycle (IPC) as a metric (simi-
lar to [7, 5, 33]). IPC directly correlates to throughput and
improved utilization of performance-asymmetric multicore
processors. The optimal core assignment is determined by
comparing the observed IPC for each core type.

Our algorithm for computing optimal core assignment
does not require knowledge of the underlying architecture.
The intuition behind this algorithm is that cores which exe-
cute code most efficiently will waste fewer clock cycles re-
sulting in higher observed IPC. Therefore, these cores will
be in highest contention. So, if the difference in observed
IPC between two cores is above the threshold, we assume
that we will save a large enough number of cycles to make
it worth executing on the more efficient core.

3. Experimental Setup

Our experimental setup consisted of a performance-
asymmetric multi-core processor setup containing 4 cores.
We obtain this setup by using an Intel Core 2 Quad proces-
sor with a base clock frequency of 2.4GHz and two cores
under-clocked to 1.6GHz. This setup is limited in hard-
ware configurations to test. However, this platform shows
the utility of our approach. Also, porting our implemen-
tation to another system is trivial since we do not require
any modifications to the standard Linux kernel. To perform
core switches, we used the standard process affinity API
available for Linux kernels (ver. ≥ 2.5).

We developed a static analysis and instrumentation
framework for phase detection and marking. This frame-
work is based on the GNU Binutils. To dynamically mon-
itor the performance of code sections, we used the Per-
formance Application Programming Interface (PAPI) [18].
PAPI provides an interface to control and access informa-
tion gathered by the processor hardware performance coun-
ters. We used the perfmon2 monitoring interface [11] to
measure the throughput of entire workloads using pfmon.

We are not presenting a static phase approximation tech-
nique at this time. Therefore, our experiments use previ-
ously determined knowledge of program performance on
all core types in the system. This is determined by running
each of the programs entirely on each core type and mea-
suring the average IPC of each section of code. We then use
look at the difference in IPC between the core types and use
an IPC threshold value to determine the clustering for code
sections. For example, suppose we are grouping code sec-
tions into two clusters. For a section, if the IPC difference is
above the threshold, the section is placed in the first cluster.
Otherwise, it is placed in the other cluster.

4

Workloads range in size from 36 to 84 benchmarks in
the SPEC CPU2000 benchmark suite. For example, for a
workload of size 84 , we run 84 benchmarks simultaneously
on the system. Upon completion of a benchmark, another is
immediately started to maintain a constant workload size.

4. Experimental Results

Many systems receive a nearly constant feed of jobs to
run. Improving the overall throughput of such a system will
increase the amount of jobs the machine can complete in
an interval of time. This increase will in turn will enable
the system to handle larger workload sizes. Our approach
is targeting these systems, with maximizing throughput as
its key objective. Our hypothesis is that our technique will
improve the throughput of such a system while incurring a
small time and space overhead. The results in this section
validate this hypothesis. First, we briefly analyze the time
and space overhead of our approach. We then investigate
the throughput observed for workloads with phase-guided
thread-to-core assignment and compare it with the through-
put observed while running the stock Linux scheduler.

4.1. Space and Time Overhead

To measure the overhead of our approach, we consider
both the binary size of instrumented applications and the
extra run time our inserted code introduces.

During our offline analysis, we insert phase marks in the
original binary to prepare it for phase-guided assignment.
A phase mark consists of data as well as code. Since in-
sertion of large chunks of code may destroy locality in the
instruction cache, a low space overhead is desired. This sec-
tion first describes the overhead in terms of the increase in
binary size that is caused by insertion of phase marks. Fur-
thermore, a phase mark’s execution time is added to the exe-
cution of the original program. If such execution time is un-
desirable high, it is likely to overshadow the gains achieved
by our technique. Thus, a low time overhead is also de-
sired. Therefore, the time overhead is described in terms of
increase in execution time over the uninstrumented version.

To measure the space overhead, a comparison between
the size of the original binary and modified binary was per-
formed for several variations of our technique. Table 1
shows some of these measurements for a subset of bench-
marks in the SPEC2000 benchmark suite. All benchmarks
are not shown due to space constraints. These results are
expected in that they confirm our intuition that less phase
marks will be inserted for larger basic block sizes and look-
ahead depths. The results for interval graph-based phase
marking are interesting in that they show significantly large
increase in binary size. This is primarily because inter-
val summarization results in the grouping of smaller basic

Technique Space overhead of phase marks (in %)
ammp art crafty gzip mcf vpr

BB[10, 0] 0.09 25.60 0.01 2.59 31.02 5.07
BB[10, 1] 0.09 21.68 0.01 1.94 26.79 3.41
BB[10, 2] 0.09 21.68 0.01 1.94 23.77 2.25
BB[20, 0] 0.09 14.93 0.01 0.50 4.71 0.38
BB[20, 1] 0.09 12.50 0.01 0.42 3.83 0.27
BB[20, 2] 0.09 12.50 0.01 0.42 4.71 0.17

Int[10] 93.47 120.20 17.22 21.58 81.75 77.80
Int[25] 40.41 42.21 7.61 6.56 29.74 34.21
Int[55] 16.48 19.64 3.07 1.55 4.64 12.44

Table 1. Space overhead of phase marks:
BB[n, m]: basic block technique with min
block size: n, look-ahead: m. Int[n]: interval-
based technique with min instruction size: n.

Figure 3. Time overhead: workload size 84

blocks into intervals creating more sections above the in-
struction size threshold.

To measure the time overhead (inserted phase marks and
core switches), instead of switching to a specific core, we
switch to “all cores” allowing the stock Linux scheduler to
handle scheduling. Thus, the difference in runtime between
the unmodified binary and this instrumented binary shows
the cost of running our phase marks and core switching at
the predetermined points in the program. Figure 3 shows
results for workloads of size 84. The trends shown are ex-
pected and are similar to those for space overhead. More op-
timized instrumentation and core switching techniques are
likely to decrease this overhead even further.

4.2 Throughput

To test our hypothesis that “phase-guided thread-to-
core assignment will significantly increase throughput”, we
compared our technique and the stock Linux scheduler
(for the same workloads run under the same conditions).
Throughput was measured in terms of instructions commit-
ted over time intervals of execution. Again, we want to
improve performance for systems that have a nearly con-
stant feed of processes/requests (e.g. a server). Thus, we
maintained a constant number of jobs in the workload in
the system for both cases. To achieve this, when a job is
completed, another job is immediately given to the system.

Figure 4 shows the observed improvement in throughput

5

Figure 4. Throughput improvement: Basic block strategy, min. block size: 10, variable look-ahead

Figure 5. Throughput improvement: Interval strategy, first order intervals, min. interval size: 30

for our technique when using the basic block level phase
marking with varying levels of look-ahead. The IPC thresh-
old is described in Section 3. This figure shows us several
things.First, as look-ahead increases, throughput decreases.
This is because with less look-ahead we are assigning many
more blocks to cores that they are well matched for, how-
ever, there is a trade-off with overhead since a strategy that
switches more often will incur the extra cost of these core
switches. These overheads were presented in Figure 3. Sec-
ond, we can clearly see a optimal threshold level and on ei-
ther side of it performance decreases as we reach extreme
cases for the threshold. At the highest and lowest thresh-
olds, we even see a throughput decrease. This performance
decrease is largely due to the fact that extreme thresholds
create load imbalance across the cores.

Figure 5 shows the observed improvement in throughput
our technique gives when using the interval strategy for first
order intervals. As we observed with basic blocks using
look-aheads, for most thresholds, we see less improvement
than the techniques which map at a more fine grained level.
We also see significantly less improvement than all look-
ahead depths which is largely because of the inaccuracy in
determining interval types. However, in some cases, we still
notice exceptionally high improvement. Again, there is a
trade-off with overhead that we previously discussed.

Since a static technique for determining similarity is
likely to be innacurate, Figure 6 shows how our technique

performs with approximate phase information. We tested
the same variables as Figure 4 with a look-ahead of 0 but
with error levels of 20% and 30%. To introduce this error,
after determining the clustering of blocks, a percentage of
blocks were randomly selected and placed into the opposite
cluster. These results show that our technique is still quite
effective even when presented with approximate block clus-
tering. In some cases, the throughput actually increases over
the technique with no error. Since our technique ignores
parts of each programs code, this imprecision can improve
upon our mapping by better assigning these ignored sec-
tions. With extreme thresholds, the error moves processes
away from overloaded cores and improves throughput.

Next, to gain insight about the fairness of our scheduling
technique, we observe the completion times of benchmarks
in the workload. We present a small portion of this data in
Figure 7 which was taken from a test using the basic block
strategy with a minimum block size of 10 and a look-ahead
depth of 2. Results are shown for thresholds of 0.10 and
0.20 (which gave the highest throughput). We can observe
that within this time interval roughly the same number of
benchmarks are completed. Also, for the 0.20 threshold, we
have benchmarks completing in roughly the same fashion.

Summary In closing, our results show that phase-
guided assignment can significantly outperform the stock
Linux scheduler in terms of the throughput obtained on a
performance-asymmetric multi-core processor, while main-

6

Figure 6. Improvement: Basic block, min. size: 10, look-ahead: 0, variable phase behavior accuracy

Figure 7. Process completion times: Basic block, min. size: 10, look-ahead: 2, thresholds: 0.1, 0.2

taining fairness and with a negligible overhead in most
cases. With recent thrust towards research and development
of these processors, the advances in thread-to-core assign-
ment that we propose are timely and important.

5. Related Work

Our previous work [33], focuses on a static analysis tech-
nique to predict phase behavior and identify phase transition
points in the program. We now focus on dynamic assign-
ment instead of static analysis. Furthermore, in the previous
work, no evaluation was presented. In this paper we show
the benefits of our approach via a rigorous evaluation.

Huang et al. [16] show that basing processor adaptation
on code sections (positional) rather than intervals in time
(temporal) results in up to 50-80% improvement in energy
reduction. This is similar to our work in that we take a posi-
tional approach, however, we do not use subroutines for our
code sections. They use knowledge of previous executions
of a subroutine to guide future decisions. We also use our
idea of similarity to further reduce the dynamic overhead.

Becchi et al. [5] proposed a dynamic mapping technique
that uses the IPC of a program segments. However, this
work focuses largely on ensuring load balance across cores
whereas our technique aims to maximize throughput. Also
similar is the work by Tam et al. [7] which determines
thread-to-core mapping based on increasing cache sharing.
They use cycles per instruction (CPI) as a metric to im-
prove sharing for symmetric multi-core processors. Ku-
mar et al. propose a temporal dynamic approach [26]. After
certain time intervals, a sampling phase is triggered. After
the sampling phase, the system makes a decision regard-
ing the mapping of all currently executing processes. This

procedure is carried out throughout the entire programs ex-
ecution. To reduce the dynamic overhead, we do not require
monitoring once mapping decisions have been made.

Lau et al. [19] define the idea of phase markers and pro-
pose a technique to determine these markers around proce-
dures and loop boundaries. Our technique is similar, but
uses different points for our phase markers. We also deter-
mine our phase markers without ever running the program.

There is a large body of work on determining phase be-
havior [32, 10, 34], using phase behavior to reduce sim-
ulation time [25, 8, 31, 1, 34, 30, 20], guide optimiza-
tions [15, 14, 22, 21, 23, 24, 36], etc. Most of these tech-
niques determine phase information with a previously gen-
erated dynamic profile. As mentioned previously, collecting
a this profile requires end-users to develop representative
sets of test cases for the program. Techniques that deter-
mine the phase information dynamically do not require this
input, however, they are likely to incur dynamic overheads.
We conduct much of our analysis statically followed by lim-
ited analysis dynamically.

6. Conclusion

Performance-asymmetric multi-core architectures are an
important class of processors that have been shown to pro-
vide nice tradeoff between the die size, number of cores
on a die, performance, and power [3, 4, 13, 27, 17]. De-
vising techniques for their effective utilization is an im-
portant problem that influences the eventual uptake of this
class of processors [35, 17]. Besides phase-guided thread-
to-core assignment, we know of two other approaches for
improving the utilization of performance-asymmetric multi-
core processors: modifying the OS scheduler to account for

7

asymmetry [35, 26] and load balancing to account for per-
formance asymmetry [5]. These techniques require exten-
sions to the operating system whereas phase-guided thread-
to-core assignment transparently improves the throughput
for performance-asymmetric multi-core processors. A pre-
dicted phase behavior and the exhibited execution charac-
teristics of a small set of representative phases is exploited
at runtime to determine likely profitable thread-to-core as-
signments for later phases of the program. By monitoring
the execution of only this small representative set instead
of monitoring the entire application, our approach reduces
the monitoring overhead. Our evaluation shows up to 150%
improvement in average throughput compared to the stock
Linux scheduler while incurring negligible overheads.

References

[1] A. Georges et al. Method-level phase behavior in java work-
loads. In OOPSLA, 2004.

[2] F. E. Allen. Control flow analysis. In Symposium on Com-
piler optimization, pages 1–19, 1970.

[3] M. Annavaram, E. Grochowski, and J. Shen. Mitigating am-
dahl’s law through epi throttling. In ISCA, June 2005.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The im-
pact of performance asymmetry in emerging multicore ar-
chitectures pp 506. In ISCA, June 2005.

[5] M. Becchi and P. Crowley. Dynamic thread assignment on
heterogeneous multiprocessor architectures. In Conference
on Computing frontiers (CF), pages 29–40, 2006.

[6] J. Cook, R. L. Oliver, and E. E. Johnson. Toward reducing
processor simulation time via dynamic reduction of microar-
chitecture complexity. Perform. Eval. Rev., 30(1), 2002.

[7] D. Tam et al. Thread clustering: sharing-aware scheduling
on smp-cmp-smt multiprocessors. In EuroSys, 2007.

[8] A. Dhodapkar and J. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In ISCA, 2002.

[9] A. S. Dhodapkar and J. E. Smith. Comparing program phase
detection techniques. In MICRO, page 217, 2003.

[10] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Character-
izing and predicting program behavior and its variability. In
Parallel Architectures and Compilation Techniques, 2003.

[11] S. Eranian. permon2: a flexible performance monitoring in-
terface for linux. In Ottawa Linux Symposium (OLS), 2006.

[12] D. Geer. Industry trends: Chip makers turn to multicore
processors. Computer, 38(5):11–13, 2005.

[13] M. Gillespie. Preparing for the second stage of multi-core
hardware: Asymmetric (heterogeneous) cores. Technical re-
port, Intel Corporation, July 2008.

[14] M. Hock, K. Jayaraman, B. Pellin, and V. Shrivastava. Phase
capture and prediction with applications. Technical Report -
Com. Sci. Dept. - University of Wisconsin-Madison, 2005.

[15] S. Hu. Efficient Adaptation of Multiple Microprocessor Re-
sources for Energy Reduction Using Dynamic Optimization.
PhD thesis, The University of Texas at Austin, 2005.

[16] M. C. Huang, J. Renau, and J. Torrellas. Positional
adaptation of processors: application to energy reduction.
SIGARCH Comput. Archit. News, 31(2):157–168, 2003.

[17] J. C. Mogul et al. Using asymmetric single-isa cmps to save
energy on operating systems. IEEE Micro, 2008.

[18] J. Dongarra et al. Experiences and lessons learned with
a portable interface to hardware performance counters. In
PADTAD, 2003.

[19] J. Lau, E. Perelman, and B. Calder. Selecting software phase
markers with code structure analysis. In CGO, 2006.

[20] J. Lau, S. Schoenmackers, and B. Calder. Transition phase
classification and prediction. In HPCA, 2005.

[21] M. Merten et al. A hardware-driven profiling scheme for
identifying program hot spots to support runtime optimiza-
tion. In ISCA, 1999.

[22] P. Nagpurkar, C. Krintz, M. Hind, P. F. Sweeney, and V. T.
Rajan. Online phase detection algorithms. In CGO, 2006.

[23] N. Peleg and B. Mendelson. Detecting change in program
behavior for adaptive optimization. In PACT, 2007.

[24] C. Pereira and R. Gupta. Using program phases as meta-data
for runtime energy optimization. Technical report, Dept. of
Computer Sc. & Eng., UC San Diego, 2004.

[25] R. Balasubramonian et al. Memory hierarchy reconfigura-
tion for energy and performance in general-purpose proces-
sor architectures. In MICRO, 2000.

[26] R. Kumar et al. Single-isa heterogeneous multi-core archi-
tectures for multithreaded workload performance. In ISCA,
page 64, 2004.

[27] R. Kumar et al. Heterogeneous chip multiprocessors. Com-
puter, 38(11):32–38, 2005.

[28] R. Kumar et al. Core architecture optimization for hetero-
geneous chip multiprocessors. In PACT, 2006.

[29] S. Y. Borkar et al. Platform 2015: Intel processor and plat-
form evolution for the next decade. Technical Report White
Paper, Intel Corporation, 2005.

[30] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction.
In ASPLOS-XI, 2004.

[31] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In PACT, 2001.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
ASPLOS-X, 2002.

[33] T. Sondag, V. Krishnamurthy, and H. Rajan. Predictive
thread-to-core assignment on a heterogeneous multi-core
processor. In PLOS, Oct. 2007.

[34] R. Srinivasan, J. Cook, and S. Cooper. Fast, accurate mi-
croarchitecture simulation using statistical phase detection
pp 147. In ISPASS, 2005.

[35] T. Li et al. Efficient operating system scheduling for
performance-asymmetric multi-core architectures. In Con-
ference on Supercomputing, 2007.

[36] F. Vandeputte, L. Eeckhout, and K. D. Bosschere. Exploit-
ing program phase behavior for energy reduction on multi-
configuration processors. J. Syst. Archit., 53(8), 2007.

8

