
Statistical Learning for Inference between
Implementations and Documentation

Hung Phan∗, Hoan Anh Nguyen∗, Tien N. Nguyen†, and Hridesh Rajan∗
∗Computer Science Department, Iowa State University, Email: {hungphd,hoan,hridesh}@iastate.edu
†Computer Science Department, University of Texas at Dallas, Email: tien.n.nguyen@utdallas.edu

Abstract—API documentation is useful for developers to better
understand how to correctly use the libraries. However, not all
libraries provide good documentation on API usages. To provide
better documentation, existing techniques have been proposed
including program analysis-based and data mining-based appro-
aches. In this work, instead of mining, we aim to generate beha-
vioral exception documentation for any given code. We treat the
problem of automatically generating documentation from a novel
perspective: statistical machine translation (SMT). We consider
the documentation and source code for an API method as the two
abstraction levels of the same intention. We use SMT to translate
documentation from source code and vice versa. Our preliminary
results show that the direction of statistical learning for inference
between implementations and documentation is very promising.

Keywords-API documentation generation, machine translation

I. INTRODUCTION

Software libraries play an important role in software deve-

lopment. Developers use the application programming interface

(API) elements including API classes and methods to access

the provided functionality. API specifications are the conditions

on the usages of those API elements that a program needs to

follow for the libraries to work properly. API preconditions
are the interface specifications on the behaviors of an API

method that a client program must honor before calling it. A

type of preconditions, called behavioral exception specification,

which specifies the conditions for the cases of exceptions being

thrown when a client program does not honor them. In software

engineering, documentation on behavioral exceptions has been

shown to be practically useful because they not only allow

developers of a client program to understand better how to use

the APIs [9], but also enable the automated tools to verify or

to test different properties of a program [11].

Unfortunately, the lack of API documentation in general has

been hindering the users in understanding and using the libraries

in the correct manner. The reason is that manually writing and

maintaining documentation over time is challenging [4]. The

libraries’ developers must spend additional time and effort for

documenting and updating API usages.

Several approaches have been proposed to support auto-

mated API usage documentation. The methods in the mining
software repositories area have applied data mining to derive

or check documentation/specifications on API usages from

existing repositories [7], [11]. For example, GrouMiner [7]

considers the usages of the APIs at the call sites in the client

programs of the APIs to derive the conditions regarding the

public String substring(int begin, int end) {
if (begin < 0) throw new StringIndexOutOfBoundsException(begin);
if (end > count) throw new StringIndexOutOfBoundsException(endIndex);
if (begin > end) throw new StringIndexOutOfBoundsException(end−begin);

}

Fig. 1: Implementation of java.lang.String.

usage orders or temporal orders among the API calls. A few

approaches [8] combine both static analysis and source code

mining. Tan et al. [11] analyze the implementation code and

Javadoc documentation to detect inconsistencies.

Other approaches, e.g., Buse and Weimer [2], use program
analysis on code changes to produce documentation. Sridhara

et al. [10] use syntactic rules in a Java program to summarize

the overall actions in a method. Zhai et al. [12] construct

models for API functions by analyzing the documentation. Lei

et al. [6] translate English specifications to C++ input parser.

Despite their successes, none of the above approaches could

perform the inference in both directions between source code

implementations and API documentation.

II. API DOCUMENTATION GENERATION

WITH STATISTICAL MACHINE TRANSLATION

Formulation. In this work, to ease the documenting of API usa-

ges, we aim to generate the behavioral exception documentation

of any given code. We investigate the problem of automatically

generating documentation from a novel perspective. We con-

sider the documentation and source code for an API method

as the two abstraction levels of the same intention, which is

the function of the API method itself. While the source code

describes the behavior of the API method in a programming

language that provides the instructions to perform the task, the

API documentation outlines the behavioral conditions before

or after the method is called (i.e., before and after the task

is performed). Therefore, we treat the API documentation
generation as a machine translation problem.

The input of the process is the source code of a given

API method without its documentation. The output is the

behavioral exception documentation of the given API method.

For example, in Java Development Kit (JDK) library, the API

substring(begin,end) is used to extract a sub-string from the begin
index to the end index. According to JDK documentation, the

API “Throws StringIndexOutOfBoundException if the begin
index less than zero or the end index is greater than the

2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Technologies Results Track

978-1-5386-2675-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-NIER.2017.9

11

2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Results Track

978-1-5386-2675-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-NIER.2017.9

11

2017 IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Results Track

978-1-5386-2675-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-NIER.2017.9

27

Translation model Language model

Pre-

processing
Decoding

Post-

processing

P(s|t) P(t)

tbest = argmaxt P(t|s)

Code in

source

language

��� in

target

language

Fig. 2: Statistical Machine Translation [5]

length of the string or the begin index is greater than the
end index”(*). The implementation for substring is shown in

Fig. 1. Documentation generation in this case is as follows:

given the implementation of an API method as in Fig. 1, a

tool will generate the exception condition documentation for

the API as listed above at (*).

Approach. To be able to generate the documentation, we use

a statistical machine translation (SMT) model as illustrated

in Fig. 2. SMT [5] is a method for automated translation of

natural languages. It uses statistical models whose parameters

are trained from a corpus of source and translation texts [5]. In

SMT, translation is the process to produce a sequence t in the

target language T from a sequence s in the source language S,

where t is the most likely sequence according to the translation

and language models. The language model specifies how likely

sequence t occurs in the target language while the translation

model specifies how likely two sentences s and t co-occur in the

corresponding texts of the two languages in the training corpus.

Those two models in SMT maintain the probabilities P(t)
(probability of the sentence t occurring in the target language)

and P(s|t) for all possible sequences s and t (probability

of the mapping between t and s). Those probabilities are

estimated from the existing source and translated texts via

a training process. Once trained, the SMT model can be used

for translation. Details on SMT can be found in [5].

To apply SMT to documentation generation problem, for the

language model on the target side, depending on the chosen

documentation or specification language, one could use a proper

language model. For example, in the case of Javadoc for JDK

APIs, one could use a language model for a natural language

such as n-gram, deep learning language model, etc. In the case

of more formal specifications, a logic-based language model

could be used. In our experiment, we used the n-gram language

model for the behavioral exceptions in Javadoc documentation

of the APIs in JDK.

For the mapping model, one could use a sequence-to-tree

mapping model in which a sequence represents a phrase in the

Javadoc documentation and an abstract syntax tree (AST) repre-

sents the respective source code. Currently, in our experiment,

we use phrase-based mapping with IBM Model [1] and the

Expectation-Maximization (EM) algorithm. Let us summarize

how it works.

The goal of the mapping model is to derive the mappings

between the sequences in documentation and the corresponding

Fig. 3: Mapping Model

sequences in source code with the associated likelihoods. Let

us use LS and LT to denote two sets of sequences in the

documentation and in the source code, respectively. They

are often called a parallel corpus. Assume that s and t are

two corresponding sequences, and s = s1s2...sm in LS and

t = t1t2...tl in LT . The model takes those two sets LS and LT
to compute the likelihoods of mappings between a sequence

in the documentation and a sequence in the source code.

The model proceeds in two phases. The goal of the first phase,

called single element alignment, is to derive the mappings

between pairs of words and code tokens. The second one,

sequence alignment, is to derive the mappings between pairs

of sequences of words in the documentation and code tokens.

Single element alignment. In the first phase, we use the EM

algorithm to iteratively find the optimum alignment between

the words and the code tokens. At first, the model attempts

all possible alignments. For each pair (s, t), the model initially

assigns a small weight for each pair of word in s and code token

in t. For example, the pairs of (“Throw”, throw), (“StringOutOf-
BoundException”, StringOutOfBoundException), (“less than”, <),

etc. are assigned with some initial weights. The same treatment

is applied to all pairs of (s, t) in LS and LT .

At each iteration, the model adjusts the weights of the

mappings/alignments based on the occurrence frequencies of

those mappings appearing in the parallel corpus. It continues to

optimize the alignments in all of the corpus, until all alignments

are exhaustively found or no more improvement between

iterations. The final alignments between the words and the

code tokens are denoted by the lines in Fig. 3. The thicker the

line, the higher score of the alignment. Details are in [1].

Sequence alignment. In the second phase, the model expands

the surrounding words of the aligned words/tokens to get larger

aligned sequences. The steps for computing the sequence-to-

sequence alignments are as follows. The model adds the pairs

of symbols that were aligned by the single element alignment

model into a sequence mapping table with their mapping

probabilities. Second, the model collects all sequence pairs

that are consistent with the single alignment, i.e., the sequence

alignment has to contain all alignments for all covered symbols.

A sequence pair is required to include at least one alignment

point. Then, the model iterates over all target sequences to find

the ones closest to source sequences, and adds those sequence

pairs and mapping probabilities to the sequence mapping table.

Finally, the pairs of mappings in the mapping table are

ranked. The model uses the table for the translation.

121228

|Gen| |Ref| Pre. Rec. BLEU Matched Same Close Incorrect

10 9 76% 80% 56% 31% 23% 22% 24%

Fig. 4: Code-to-Documentation Inference Result.

III. PRELIMINARY RESULTS

We conducted experiments to preliminarily evaluate our

approach. We focus on the following research questions:

RQ1. How accurately does SMT generate behavioral exception

documentation for given source code?

RQ2. How accurately does SMT generate source code from

given behavioral exception documentation?

A. Data Collection and Settings

To train the SMT model, we need to have a parallel corpus

of pairs of source code and the respective documentation.

We built that corpus from the implementations and Javadoc

documentation of the methods from Java Development Kit

(JDK) library. We parsed 1,869 JDK classes with 6,802 methods.

For the Javadoc documentation of each method, we performed

NLP processing on the @throws and @exception description.

For the code of each method, we extracted the exceptional

flow graph (EFG), which is a slice of the Program Dependence

Graph (PDG) of the method leading to all exception exit points.

We consider all throw statements as exception exit points. Then,

we collected all code tokens along the slice, forming the EFG.

The pairs of such documentation sentence and their sequence

of the code tokens along the slice for a method were collected

into a parallel corpus of documentation and source code. The

methods that do not have exceptional behavior were discarded.

In total, we have 1,524 pairs in the parallel corpus. We used

1,424 pairs for training the n-gram language model and the

mapping model, and 100 pairs for testing. We use Phrasal [3],

a phrase-based SMT tool (n=7) in our experiment. The data

and results of our experiments are available at https://drive.

google.com/open?id=0B9-QRtybJfCITC1BVEFpWTZQQlE.

B. Experiment 1. Inferring documentation from code

After training the model with the parallel corpus of 1,424

pairs, we ran the trained model on the source code sequences of

100 testing pairs and compared the resulting sequences against

the corresponding Javadoc sequences, called references.

To measure accuracy, we computed precision and recall

of our generated documentation sequences. We computed the

longest common subsequence (LCS) of a generated sequence

and its reference sequence. Precision and recall values are

computed as: Precision = |LCS|
|Result| , Recall = |LCS|

|Re f erence| .
The higher Recall, the higher the coverage of the generated

sequences. Recall=1 means that the generated sequences cover

all the words in the reference sequences in the right order. The

higher Precision, the more correct the generated sequences.

Precision=1 means that all words in the generated sequences

are correct in the right order. We also measured BLEU scores.

This evaluation criterion measures translation accuracy for all
possible phrases. The higher it is from 0–1, the more likely all

Component Complexity

Global Receiver Para-type Para-value Para-method Simple Complex

62% 72% 94% 54% 42% 58% 54%

Fig. 5: Code-to-Documentation Inference Result Analysis.

phrases are correctly translated. We also manually compared the

semantics of the generated documentation with the references

and classified the results into four categories: (1) the ones that

are textually matched with the references; (2) the ones that

are not exactly matched but have the same semantics; (3) the

ones that are very close with the reference and might need

slight modification to make it correct; and (4) the ones that

have totally different semantics or are just incorrect.
The average precision, recall and BLEU score of this experi-

ment is shown in Fig. 4. We achieve the high precision of 76%,

high recall of 80% and high BLEU score of 56%. The lengths of

the generated documentation sequences are almost the same as

those of the references. In terms of semantic accuracy, 54 out

of 100 generated documentations are correct, 31 of which are

exactly matched with the expected. In 23 cases, the generated

documentation contains phrases having the same semantics as

in references even though they are not lexically matched. For

example, we generated the phrase less than 0 while the one

in the reference is negative as shown below.

Generated: if horizon be less than 0 throw IllegalArgumentException
Reference: if horizon be negative throw IllegalArgumentException

There are 22 generated sentences that are semantically close

to the references. For those cases, deleting or adding a few

words (as shown below), or renaming an identifier to match

with an argument name of the API would make them correct.

Generated: if key or value be null throw NullPointerException
Reference: if value be null throw NullPointerException

Analysis. We first study how certain aspects of API docu-

mentation affect the inference accuracy. We looked at two

aspects: components of APIs involved in the conditions and

the complexity of the conditions. The components of APIs

include global states, receiver state and parameter states. They

are conditions related to global variables, receiver object, and

parameters, respectively. For parameters, we further divided into

three sub-categories: para-type for conditions checking on the

types of parameters, para-value for conditions checking on

parameters against literal values, and para-method for conditions

of calling predicate methods on parameters. For complexity,

we considered a documentation simple if its conditions do not

contain any conjunction or disjunction, and complex otherwise.

Fig. 5 shows the BLEU scores for different categories. As

seen, the inferring conditions on object types achieves highest

accuracy and that on predicate methods of parameters has

the lowest. The inference accuracy for simple documentation

sentences is slightly better than that for complex ones.

To study further the knowledge that an SMT model learns,

we investigated the mapping table produced as the by-product

after the SMT model was trained. We focused on the mappings

131329

|Gen| |Ref| Pre. Rec. BLEU Matched Same Close Incorrect

19 15 74% 86% 66% 23% 4% 38% 35%

Fig. 6: Documentation-to-Code Inference Result.

of operators and methods’ argument names that are used in

the conditions of exceptional behaviors. First, we examined

9 operators, which include conditional, unary, equality, and

relational operators in Java language. We manually checked

the corresponding mapping phrases for those operators in the

phrase table produced by the tool. If a phrase is a correct

English description of a given operator, we mark the rank of

that correct one in the resulting ranked list. The SMT model

can produce the correct descriptions of 8 out of 9 operators

at the first result, which gives the top-1 accuracy of 89%. All

correct results of these operators are found in top-4 mappings.
Second, we also randomly examined 100 identifiers that

were used as the argument names of API method calls and

were used in the conditions leading to exceptions. The SMT

model achieves 76% top-1 accuracy, meaning that in 3 out of 4

cases, the model maps the identifiers in the code to the correct

names in Javadoc at the top rank. It maps almost all the names

correctly at top-3 and maps them all correctly at top-7.

C. Experiment 2. inferring implementation from documentation
In this experiment, we evaluated the generation capability in

the other direction, i.e., from documentation to implementation.

This is also a useful application of our approach because the

resulting implementations will provide developers the idea on

possible implementations that satisfy the given text.
We trained a SMT model in the direction from documentation

to code. Then, we used the Javadoc sequences of the 100 test

pairs as the inputs of the trained model to generate implemen-

tation sequences. The corresponding code sequences of the

100 pairs are used as references. We used the same metrics as

in the previous experiment (precision, recall, and BLEU score).

We also manually checked the semantics of the generated code.
The result of this experiment is shown in Fig. 6. Our result

showed that the model can achieve a high quality of 74%

precision, 86% precision and 66% BLEU score. In terms of

semantic accuracy, 27 out of 100 generated code fragments are

correct, 23 of which are exactly matched with the references

and 4 others have the same semantics as expected. Such an

example is shown below where the SMT generated the sequence

!(size > 0) while the one in the reference is size <= 0.

Generated: if (! (size > 0)) throw new IllegalArgumentException () ;
Reference: if (size <= 0) throw new IllegalArgumentException () ;

38 generated code fragments have semantics close to the

references. All of them have syntax errors. Deleting or adding

a punctuation or a few tokens, or renaming an identifier to

match with an API’s argument name would make them correct.

In the example below, one needs to rename index to fromIndex
and replace the redundant tokens at the end with a semi-colon.

Gen: if (index < 0) throw new IndexOutOfBoundsException () != null) if (
Ref: if (fromIndex < 0) throw new IndexOutOfBoundsException () ;

Component Complexity

Global Receiver Para-type Para-value Para-method Simple Complex

71% 57% 56% 68% 55% 70% 56%

Fig. 7: Documentation-to-Code Inference Result Analysis.

1) Analysis: Fig. 7 shows the accuracy analysis for inference

in this direction. Different from inferring from code to

documentation, in this case, the highest accuracy is achieved

for global conditions. The accuracy for para-method is still the

lowest but is not significantly different from the accuracy for

receiver and para-type. For complexity, the accuracy for simple

conditions is much better than that for complex ones.

IV. CONCLUSION

In conclusion, our preliminary results show that the direction

of statistical learning for inference between documentation and

implementations is very promising. While our currently used

phrase-based SMT achieves promising results, more customi-

zation on the mapping and language models are needed toward

more formal specifications and source code. Language models

specific to formal specifications are desired. A combination of a

model for formal languages and a statistical language model is a

good direction. Regarding mapping, a structure-based mapping

model that is tailored toward structures in source code such as

tree-to-tree mappings could improve inference accuracy.

V. ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation (NSF) grants CCF-1518897, CNS-1513263, CCF-

1723215, CCF-1723432, and TWC-1723198.

REFERENCES

[1] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, “The
mathematics of statistical machine translation: parameter estimation,”
Comput. Linguist., vol. 19, no. 2, pp. 263–311, Jun. 1993.

[2] R. Buse and W. Weimer. “Automatically documenting program changes”.
In ASE’10, pages 33–42. ACM, 2010.

[3] D. Cer, M. Galley, D. Jurafsky, and C. D. Manning, “Phrasal: A
statistical machine translation toolkit for exploring new model features,”
in Proceedings of the NAACL HLT 2010 Demonstration, pp 9–12.

[4] B. Dagenais and M. P. Robillard. Creating and evolving developer
documentation: Understanding the decisions of open-source contributors.
In FSE’10, pages 127–136. ACM, 2010.

[5] P. Koehn, Statistical Machine Translation, 1st ed. New York, NY, USA:
Cambridge University Press, 2010.

[6] T. Lei, F. Long, R. Barzilay, and M. Rinard. “From Natural Language
Specifications to Program Input Parsers”, In ACL’13, pages 1294–1303.

[7] T.T. Nguyen, H. A. Nguyen, N. Pham, J. Al-Kofahi, and T. N. Nguyen.
“Graph-based mining of multiple object usage patterns”. In ESEC/FSE’09,
pages 383-392. ACM, 2009.

[8] H. A. Nguyen, R. Dyer, T. Nguyen, and H. Rajan, “Mining preconditions
of APIs in large-scale code corpus,”. In FSE’14, pages 166-177. ACM.

[9] S. Subramanian, L. Inozemtseva, and R. Holmes.“Live API documenta-
tion”. In ICSE’14, pages 643–652. ACM, 2014.

[10] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker.
“Towards automatically generating summary comments for Java methods”.
In ASE’10, pages 43-52. ACM, 2010.

[11] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in ICST’12,
pages 260–269. IEEE CS, 2012.

[12] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, and F. Qin.
“Automatic model generation from documentation for Java API functions”.
In ICSE’16, pages 380-391. ACM, 2016.

141430

