
Mock Deep Testing: Toward Separate Development
of Data and Models for Deep Learning

Ruchira Manke ∗, Mohammad Wardat †, Foutse Khomh ‡, Hridesh Rajan §
∗ Dept. of Computer Science, Tulane University, Louisiana, USA, rmanke@tulane.edu

† Dept. of Computer Science and Engineering, Oakland University, Michigan, USA, wardat@oakland.edu
‡ SWAT Lab., Polytechnique Montréal, Montréal, Canada, foutse.khomh@polymtl.ca

§ School of Science and Engineering, Tulane University, Louisiana, USA, hrajan@tulane.edu

Abstract—While deep learning (DL) has permeated, and be-
come an integral component of many critical software systems,
today software engineering research hasn’t explored how to sep-
arately test data and models that are integral for DL approaches
to work effectively. The main challenge in independently testing
these components arises from the tight dependency between data
and models. This research explores this gap, introducing our
methodology of mock deep testing for unit testing of DL appli-
cations. To enable unit testing, we introduce a design paradigm
that decomposes the workflow into distinct, manageable compo-
nents, minimizes sequential dependencies, and modularizes key
stages of the DL, including data preparation and model design.
For unit testing these components, we propose modeling their
dependencies using mocks. In the context of DL, mocks refer
to mock data and mock model that mimic the behavior of the
original data and model, respectively. This modular approach
facilitates independent development and testing of the compo-
nents, ensuring comprehensive quality assurance throughout the
development process. We have developed KUnit, a framework
for enabling mock deep testing for the Keras library, a popular
library for developing DL applications. We empirically evaluated
KUnit to determine the effectiveness of mocks in independently
testing data and models. Our assessment of 50 DL programs
obtained from Stack Overflow and GitHub shows that mocks
effectively identified 10 issues in the data preparation stage and 53
issues in the model design stage. We also conducted a user study
with 36 participants using KUnit to perceive the effectiveness
of our approach. Participants using KUnit successfully resolved
25 issues in the data preparation stage and 38 issues in the
model design stage. We also found that mock objects provide
a lightweight emulation of the dependencies for unit testing,
facilitating early bug detection. Lastly, to evaluate the usability of
KUnit, we conducted a post-study survey. The results reveal that
KUnit is helpful to DL application developers, enabling them to
independently test each component (data and model) and resolve
issues effectively in different stages.

Index Terms—deep learning, mocks, testing

I. INTRODUCTION

Deep Learning (DL) is a sub-class of machine learning algo-
rithms that has gained a lot of attention from the industry and
academia due to its successful adoption in many domains [1],
[2], [3]. The popularity of DL applications has drawn the
interest of the software engineering community and the com-
munity has responded by conducting several studies [4], [5],
[6], [7], [8], [9], [10] to understand the development process
of these applications. These studies found that DL application
developers usually focus on building and optimizing models

using the training data, focusing less on modern software
engineering practices such as modular design, unit testing,
etc. [5]. DL application development follows a workflow that
is different from the traditional software development [4],
[11], [12] - where data is prepared first followed by model
design and training, establishing a tight dependency between
data and model. Therefore, incorporating software engineering
practices, such as independent testing of data and models
necessitates decomposing the workflow, i.e., separating the
data and model, and mimicking their dependencies to facilitate
unit testing.

Inspired by the fundamental practice of unit testing in tra-
ditional software development [13], and the notion of creating
mock objects that mimic the minimum expected behavior of
dependencies for unit testing [14], we ask: can we apply
the concept of mock objects, commonly used in unit testing
traditional software, to test DL applications? Unit testing
with mock objects not only allows for early bug detection
in the development cycle but also facilitates the development
of modules and verifying their functionality by deferring the
dependencies. To the best of our knowledge, unit testing using
mocks for DL applications — wherein the data and DL model
are tested independently — has not been explored before.

This paper introduces the idea of mock testing in the
context of Deep Neural Networks (DNNs). In current DL
application development, data is typically prepared by data
scientists, while models are designed by machine learning
engineers [5]. Each group focuses on distinct stages of the
DL pipeline, creating a natural separation of responsibilities.
To align with this practice, we recommend treating the data
preparation and model design stages as independent modules
or units and propose employing mocks for their independent
testing. In the context of DL, mocks refer to mock data and
mock model that mimic the behavior of the original data and
model, respectively. Using mocks for the independent testing
of these modules simplifies debugging, facilitates early bug
detection, and ensures that the resulting code meets certain
quality aspects, i.e., good-quality data, a model that conforms
with the requirements, and high operational reliability.

To introduce our notion of mock testing, we have focused
on two types of DL architectures, Fully-Connected Neural
Networks (FCNNs) and Convolution Neural Networks (CNNs)

1

Task Description: Predict selling price of the trucks based on several features

Data Preparation
1 dataset = pandas.read_csv(‘../truck.csv’)
Convert categorical data to numeric
2 dataset['Fuel_Type'].replace(['Petrol', 'Diesel', 'CNG'], [0, 1, 2], inplace=True)
3 dataset['Transmission'].replace(['Manual', 'Automatic'], [0, 1], inplace=True)
4 dataset['Seller_Type'].replace(['Dealer', 'Individual'], [0, 1], inplace=True)
Separate data and labels
5 y = dataset['Selling_Price']
6 X = dataset.drop(['Selling_Price'], axis = 1)
Standardize the data
7 sc = StandardScaler()
8 X = sc.fit_transform(X)

Modeling
9 model = Sequential([Dense(20, activation='relu', input_shape=(7,)),
10 Dense(20, activation='relu',
11 Dense(1, activation='linear')])
12 opti = Adam(learning_rate= 0.1)
13 model.compile(optimizer=opti, loss='mean_squared_error',

metrics=['mean_absolute_error'])
14 fit = model.fit(X, y, validation_split=0.2, batch_size=32, epochs=50)

task = regression
architecture = fcnn
Mock Model
mock = GenerateMockModel()
mock_model = mock.MockModel(task, architecture, X, y)
mock_model.fit(X, y, epochs=10)

Automatically generated Mock Model
def MockModel():

model = Sequential([Dense(X.shape[1], activation='relu',
 input_shape=(X.shape[1],)),
 Dense(1, activation='linear')])
model.compile(optimizer='Adam', loss='mean_squared_error',
 metrics=['mean_absolute_error'])
return model

task = regression
features = 7 # number of selected features
Mock Data
mock = GenerateMockData()
X, y = mock.MockData(task, features)

Automatically generated Mock Data
def MockData():

X, y = make_regression(n_features = features*10, n_informative =
features)
scaler = StandardScaler()
X = scaler.fit_transform(X)
return X, y

KUnit’s Output:
AssertionError: Basic Model is not Learning
AssertionError: Missing Value --> Use fillna()

KUnit’s Output:
AssertionError: Oscillating Loss --> Change learning rate/optimizer

Unit test
using Mock

Model

Unit test
using Mock

Data

Model behavior during training:
Epoch 1/20
240/240 [======] - 0s 24us/step - loss: nan - mean_absolute_error: nan
Epoch 2/20
240/240 [======] - 0s 26us/step - loss: nan - mean_absolute_error: nan
Epoch 3/20
240/240 [======] - 0s 25us/step - loss: nan - mean_absolute_error: nan

Fig. 1: A buggy DL program and mocks in action.
for regression and classification problems. These architectures
are commonly employed to handle high-dimensional data
due to their ability to capture nonlinear relationships within
datasets [15]. To facilitate unit testing, we introduce a design
paradigm that considers each stage of DL, i.e., data preparation
and model design, as separate modules. The unique challenge
in independently testing these components arises from the tight
dependency between data and models. To handle the inherent
dependencies among these modules, we propose defining clear
interfaces to decouple them. These interfaces specify key
elements of each stage, such as the ‘number of features’ in
data preparation and the ‘DNN architecture type’ in model
design, which influence each other’s configuration. These
interfaces are then leveraged to automatically create mock
data or models that replicate the behavior of real components.
This proposed approach allows for isolated testing of each
module by substituting the original data or model with the
automatically generated mock versions, ensuring independent
quality assurance at each stage. To achieve this, we utilized
Python’s built-in unit testing framework, unittest, and
developed, KUnit specifically for Keras. KUnit comprises
15 distinct methods with assertions aimed at verifying the
expected behavior of specific sections of the code under test,
leveraging the generated mocks. KUnit is open-sourced [16]
and can be extended to incorporate more assertions and
support other frameworks.

We have evaluated KUnit through empirical and user eval-
uation. Empirical evaluation is performed on 50 programs
obtained from Stack Overflow and GitHub. We separated the
data preparation and model design steps into two distinct
modules, which were then tested in isolation using mocks. We
compared the issues detected using mocks with issues detected
when analyzing the two stages together. We observed that, for

the data preparation stage, the mock model helped identify
10 issues, whereas, for the model design stage, the mock
data assisted in identifying 53 issues during the empirical
evaluation. Our results demonstrate that mocks effectively
detect issues that cause abnormal behavior during training. We
also performed a user study with 36 participants using KUnit
testing 15 programs. Participants using KUnit successfully
resolved 25 issues in the data preparation stage and 38
issues in the model design stage. Our findings indicate that
mock objects provide an effective, lightweight simulation of
dependencies for unit testing. In the post-study survey, we
found that KUnit is helpful to the developers for testing each
component independently and resolving issues early in the
development process.

In summary, our work makes the following contributions:
1) Originality: First, we introduce mock deep testing for

independent testing of data and model. Next, we identify
the elements of each stage that are used to decouple the
data preparation and model design stages. Leveraging
these elements defined in an interface, we propose a
method for automatically generating mock objects for
each stage. These mock objects support unit testing and
help identify issues early in the development process.

2) Usefulness: We develop a framework, KUnit, that is
extensible and generalized to different classes of DL bugs.
We specified 15 different bug types and the conditions
necessary for their detection. These conditions are in-
corporated as assertions in the test methods to identify
various bugs and repair strategies are proposed to provide
actionable fixes in KUnit.

3) Evaluation: The empirical and user evaluation exhibit
mock objects’ potential in unit testing DL applications.
Our results show that mock objects provided a lightweight

2

Data
Acquisition

Data
Preparation

Feature
Selection

label

clean annotate

Labeled
Data

Number of
Selected
Features

Mock
Model

 1. Missing Data 2. Missing Label
 3. Incorrect Label Count 4. Categorical Data
 5. Missing Data Scaling/Normalization 6. Class Imbalance
 7. Model not Learning (Mislabeled data/Outliers/
 Improper Feature Selection)

test

actionable fixData Preparation

generate

Task
Type

Interface Definition

Design
Model

Mock
Data

Selected
Model Type

(FCNN/CNN)

Task
Type

 A. Incorrect Input/Output Shape B. Missing Activation Function
 C. Wrong Output Layer Activation D. Inappropriate Loss Function
 E. Incorrect Metrics F. Slow Convergence
 G. Fixed Accuracy H. Oscillating Loss

actionable fix

test

Mock Creation Unit Test

Model Design

Fig. 2: Workflow of KUnit.

emulation of dependencies, allowing early bug detection.
The user evaluation provides evidence that mocks are
very helpful to developers in testing each component
independently and resolving issues effectively.

II. MOTIVATION

The current practice in DL application development involves
sequentiality, where the data is prepared first followed by
model design and training. The designed model is tested for
crash bugs and silent bugs using the data by monitoring and
identifying abnormal behavior during training [17], [18], [19],
[20], [21], [22], [23]. Bugs can originate from any stage of
the DL pipeline, such as data preparation or model design,
and often exhibit similar symptoms during training. Therefore,
determining the exact root cause of these abnormalities is
particularly challenging, thereby requiring several iterations
to identify the stage of origin of the bug correctly [17], [18],
[19], [20], [23]. For example, exploding gradients, a common
issue that can arise from the data preparation stage due to
improper training data or from the model design stage due to
high learning rate, improper weight or bias initialization, and
large batch size [19]. This overlap in the symptoms makes
it challenging to pinpoint the root cause of the bugs [24],
highlighting the need for a systematic approach for testing
and debugging each stage in isolation.

In traditional software development, unit testing has proven
useful for conducting a lightweight evaluation of each func-
tionality in isolation. It holds the potential to identify areas for
improvement before integrating the two functionalities [25].
Due to the dependency of the model design stage on the data
preparation stage in the DL applications, unit testing cannot
be applied directly. Our insight is that by decoupling these
stages and using the concept of mocks, each module can be
tested independently before integration. In the context of DL,
mock data refers to synthetic data designed to replicate the key
characteristics of real data, while a mock model is a simplified
version of the real model that mimics its behavior without
incorporating the complexities of the full model architecture.

To illustrate, consider a DL program shown in Fig. 1
designed for predicting the selling price of the trucks based on
7 features (year, present price, miles driven, fuel type, seller
type, transmission, owner). The code from Lines 1-8 rep-

resents the preparation of the data, Lines 9-13 represents
the model design, and finally the model is trained (Line
14) using the data obtained from Lines 5 & 8. During
model training, the program behaved erratically, resulting in
NaN values for both the metrics, i.e., mean squared error
and mean absolute error. NaN loss during training can arise
from either of the two stages: the data preparation stage, due
to NaN values in data, or the model design stage, due to too
high learning rate causing model parameters to update too
aggressively, divide by zero error during learning or incorrect
weight initialization [18]. For instance, this behavior occurred
because of the NaN value in the data for the DL program
shown in Fig. 1, as the developer forgot to remove or replace
missing values during data preparation. Even if the issues
in the data preparation stage are addressed, silent bugs in
the model design stage can still occur. Isolating the two
stages and testing them independently using mocks can help
the developer identify and address the issue at the correct
stage, thereby reducing the overall debugging effort required
during the training process. This motivates the development
of KUnit, a novel approach for facilitating unit testing of
DL applications using mock objects. The fundamental idea
of KUnit is based on the observation that the behavior of
the original data on the mock model and the original model
on the mock data remains consistent. To illustrate, for the
example in Fig. 1, the unit testing of the data preparation
stage using a mock model resulted in NaN values for both
the metrics, mean squared error, and mean absolute error
(consistent with original model behavior). KUnit reported that
the issue occurred because of missing values in the data which
can be addressed in the data preparation stage. Similarly, for
the model design stage, the oscillating loss on the mock data
reported by KUnit (consistent with the model behavior on
original data after replacing the missing values in the original
dataset), indicates incorrect hyperparameter selection, which
can be refined before combining two stages. Unit testing of
these stages and addressing the issues in the error-inducing
stage helps identify potential problems early before integrating
them and initiating the training process. The rest of this work
describes our approach, KUnit, for enabling mock testing for
DL applications.

3

Interface of Data Preparation Module
class DataInterface():
 @property
 def features(self):
 return 7
 @property
 def dataType(self):
 return 'structured'
 @property
 def task(self):
 return 'regression'
 def preprocess():
 pass
Model Design Module implements the ModelInterface
DataPreprocess Module depending on the ModelInterface
class DataPreprocess(DataInterface):
 def __init__(self):

 modelI = ModelInterface()
 modelType = modelI.architecture
 taskType = modelI.task

 def preprocess():
 # Code for preprocessing steps

(a) Interface of data preparation stage

Interface of Model Design Module
class ModelInterface():
 @property
 def architecture(self):
 return 'fcnn'
 @property
 def task(self):
 return 'regression'
 def design():
 pass
Data Preprocessing Module implements the DataInterface
Model Design Module depending on the DataInterface
class DNNModel(ModelInterface):
 def __init__(self):

dataI = DataInterface()
featureNumbers = dataI.features
dataType = dataI.dataType
taskType = dataI.task

 def design():
 # Code for designing model

 (b) Interface of model design stage
Fig. 3: Interface definition and class description.

III. APPROACH

In this section, we provide an overview of our approach
for unit testing DL applications using mocks. Inspired by the
decomposition criteria proposed by Parnas [26], we suggest
making each major step in the DL program a module. In a DL
pipeline, these major steps correspond to the different stages,
i.e., data preparation and model design. Due to coupling
between these stages, we decouple them by defining interfaces,
allowing the data preparation and model design stages to
depend on the interface, ensuring their independence. These
interfaces facilitate the automatic generation of mocks, which
are used for unit testing of each stage. The workflow of our
approach, KUnit is shown in Fig. 2. We collected issues for
each stage from various sources outlined in Section IV-A1 and
established the conditions for identifying them. In total, we
obtained 7 issues (1-7) for the data preparation and 8 issues (A-
H) for the model design stage shown in Fig. 2. We leveraged
the Python’s built-in unit testing framework, unittest, to
develop, KUnit; a testing framework for Keras. We defined
each condition as an assertion in the test method aimed at
verifying the expected behavior of the code under test leverag-
ing the generated mocks. Once a failure is detected by KUnit,
the user is notified with an assertion error and a workable
solution. Our approach for unit testing, DL applications have
two main steps: interface definition and mock object creation
and verification. Below, we discuss each step in detail.

A. Interface Definition

Due to dependencies between the data preparation and
model design stages, the primary task for independent testing
of these stages is to design interfaces that decouple them. For
decoupling, it’s crucial to identify the elements of one stage
that impact the design decisions of the other stage. Under-
standing these dependencies enables better modularization and
facilitates smoother integration between stages. We propose in-
terfaces that allow data preparation and model design stages to
depend on the interface, ensuring their independence. Below,
we elaborate on our approach to defining interfaces for each
stage in detail.

a) Interface for Data Preparation Stage: In the data
preparation stage, feature engineering is a common activity
carried out intending to select informative features that the DL

model learns during training. These features play a crucial role
in the design decisions of the model design stage. For example,
in the model design stage, most of the decisions, such as which
neural network architecture to choose and its hyperparameters
depend on the characteristics of data and the features selected
in the data preparation stage. For instance, consider a model
in Fig. 1 designed for predicting the selling price of trucks.
As the dataset is structured (each row representing a different
record), the developer selected a FCNN model, which is
known to perform well for structured data [27]. Since this is
a regression task, choosing the appropriate hyperparameters
is another design decision in the model design stage. For
example, the output layer activation function depends on the
type of task, i.e., regression or classification. For the data
preparation stage, we propose an interface that incorporates the
number of features selected during the feature selection step,
the type of data, and the type of task. For the task in Fig. 1,
Fig. 3(a) shows the interface and class description of the data
preparation stage. The data preparation module implements
this interface, exposing its behavior to other classes that
depend on it for their design decisions.

b) Interface for Model Design Stage: In the model de-
sign stage, selecting an appropriate neural network architecture
corresponding to the task is crucial for achieving optimal
performance. For instance, FCNNs are a good choice for
tasks involving structured data [27], where each feature is
independent and there are no inherent spatial or temporal
relationships to consider, whereas CNNs are well-suited for
image classification tasks due to their ability to capture
spatial hierarchies in images [28]. In the data preparation
stage, feature selection is influenced by the neural network
architecture chosen in the model design stage. Since different
architectures have different learning processes, the informative
features are usually refined based on the model’s performance
during evaluation [11]. For instance, in FCNNs there is no
inherent weight sharing whereas, CNNs have a key feature
of weight sharing through the convolution filters. As a result,
these two architectures may perform differently even with the
same data. Therefore, for the model design stage, we propose
an interface comprising the architecture chosen in this stage
and the type of task. Fig. 3(b) shows the interface and class
description of the model design stage for the task in Fig. 1.

4

TABLE I: KUnit’s mock model generation process.
Rules

Regression Yes Yes No No No No
Binary Classification No No Yes Yes No NoProblem Type
Multiclass Classification No No No No Yes Yes
FCNN Yes No Yes No Yes NoModel Type
CNN No Yes No Yes No Yes
Number of classes = 1 Yes Yes No No No No
Number of classes = 2 No No Yes Yes No NoC

on
di

tio
ns

Classes
Number of classes >2 No No No No Yes Yes
Hidden Layer Neurons # of features
Output Layer Neurons 1 1 2 2 # of classes # of classes
Output Layer Activation ’linear’ ’linear’ ’sigmoid’ ’sigmoid’ ’softmax’ ’softmax’

Loss Function ’mse’ ’mse’
’binary

crossentropy’
’binary

crossentropy’
’categorical
crossentropy’

’categorical
crossentropy’

Hyperparameters

Metrics ’mae’ ’mae’ ’accuracy’ ’accuracy’ ’accuracy’ ’accuracy’
FCNN Model ✓ ✓ ✓

A
ct

io
ns

Mock Model
CNN Model ✓ ✓ ✓

The model design module implements this interface and its
behavior is exposed to other classes that depend on it. The
defined interfaces are utilized for creating useful mocks and
testing each module independently.

B. Mock Object Creation and Verification

To ensure the correctness of each module, it is essential
to verify that each module exhibits the correct functionality
depending on the task. Our insight is that to evaluate the
expected behavior of each module, useful mocks can be
constructed that approximate the behavior of the original
data or model using the information exposed in interfaces.
In the mock implementation, the primary goal is to achieve
simplicity instead of aiming for completeness [14]. To that
end, we propose a systematic approach for creating mocks for
the data preparation and model design stages, detailing how
these mocks are utilized for verification. Below we discuss the
process for each stage in detail.

1) Data Preparation Stage: The data preparation module
intends to produce good-quality data and involves various tasks
such as data cleaning, handling missing values, etc. Typically,
the features are selected and refined based on the model’s
performance during evaluation, establishing a feedback loop
from the model evaluation stage to the feature engineering
stage [11]. Our insight is that by creating a mock model that
approximates the behavior of the original model, data quality
can be assessed and enhanced through early-stage evaluation.
While the mock model doesn’t have to preserve every semantic
detail, it is essential to generate a model with the appropriate
hyperparameters that yield the correct output tailored to a task.
The mock model can be automatically generated using the
interface of the model design stage as illustrated in Fig. 4(a).
Below, we discuss the process of mock model creation.

a) Process for Mock Model Creation: Generating a mock
model involves several key steps to ensure the correctness and
reliability of the generated model.

Adaptive Mock Model Generation: A DL model has a lot
of hyperparameters, which are provided at the time of model
design by the developer. The choice of the hyperparameters
depends on several factors, such as the type of task and com-
plexity of the dataset [29], [30]. Any incorrect hyperparameter
can be misleading, giving rise to bugs due to inaccuracies in
the model. Therefore, for automatic mock model generation,
it is necessary to construct adaptive mocks that change based
on the task at hand and adapt to different testing conditions
without manual intervention. This adaptability ensures that the
mock model aligns with testing requirements. Furthermore,

as the paper introduces a design paradigm that supports
independent development, developers can utilize automatically
generated mock models for testing the data without delving
into the intricacies of designing them.

Our approach for the automatic mock model generation
is described in Decision Table I. For initializing the mock
model’s hyperparameters, we reviewed the AI literature [31],
[32], [33] and Keras documentation [34]. We utilized the
hyperparameters suggested by the literature for a given task.
For example, for the DL program in Fig. 1, the conditions as
outlined in Decision Table I are problem type - ‘regression’,
model type - ‘FCNN’, and classes - 1 (set to 1 for regression).
The corresponding actions generate a mock model with hidden
layer neurons equal to the ‘# of features’, an output layer with
1 neuron and a ‘linear’ activation function, and a compilation
layer with the ‘mse’ loss function and ‘mae’ as the metrics.

Complexity of Mock Model: The DL models are usu-
ally complex with several parameters and their complexity
increases with the type of task at hand. Determining the
complexity of the model requires careful consideration during
mock model generation. Since the mock model aims to aid
feature engineering, creating a complex mock model for the
unit testing could lead to excessive resource usage without
serving the primary goal of unit testing.

To optimize the model’s complexity for unit testing while
managing resource consumption, we propose creating a mock
model consisting of only three layers: the input layer, one
hidden layer, and the output layer. The rationale for opting
for the simplest network is influenced by the principle of
“Start Simple”, as recommended in the machine learning
literature [35], [36]. If a simple network struggles to learn
from the training data, it suggests that the training data requires
further refinement [29]. Next, we explain how this mock model
is utilized for the verification of data.

b) Verification of Data using Mock Model: After gen-
erating a mock model that simulates the behavior of the
original DNN model, verification is performed by inputting the
preprocessed data into the mock model, rather than using the
original model. Certain data preparation issues, like missing
data, can be detected through data property assertions. In
contrast, issues like mislabeled data, outliers, or improper
feature selection require in-depth analysis. These issues often
manifest as subtle errors that impact model performance and
require a thorough examination of data-model interactions for
effective identification. Therefore, we propose an integrated
approach that combines data property assertions with analysis
of the mock model’s behavior on preprocessed data. The data
property assertions are used to identify fundamental issues (1-
6 in the data preparation stage shown in Fig. 2). Moreover,
more complex issues labeled as ‘Model not Learning’ in
Fig. 2 are identified by observing the mock model’s behavior.
Symptoms such as high loss, frequent misclassifications, or
consistently low confidence on specific samples point to these
issues, highlighting areas that require further investigation.
This approach allows for the verification and refinement of
data before it is used to train the original model.

5

Generate Mock Model using ModelInterface and test
DataPreprocess Class
class DataPreprocessTest(tensorflow.test.TestCase):

@classmethod
def setUpClass(self):

super(DataPreprocessTest,self).setUpClass()
modelI = ModelInterface()

 modelType = modelI.architecture
 taskType = modelI.task

gm = GenerateMockModel()
model = gm.mockModel(modelType,taskType)

 def test1():
 # Code for testing

(a) Mock model creation for data preparation stage

Generate Mock Data using DataInterface and test
DNNModel Class
class DNNModelTest(tensorflow.test.TestCase):
 @classmethod

def setUpClass(self):
super(DNNModelTest,self).setUpClass()
dataI = DataInterface()

 features = dataI.features
dataType = dataI.dataType

 taskType = dataI.task
gd = GenerateMockData()
X,y = gd.mockData(features,dataType,taskType)

 def test1():
 # Code for testing

(b) Mock data creation for model design stage
Fig. 4: Mock object creation for different stages.

2) Model Design Stage: The goal of the model design
stage is to generate a model with suitable hyperparameters
and correct API usage, appropriate for the given task. This
facilitates the model in learning features from the training
data. Since DNNs are data-driven, training data produced by
the data preparation stage is typically used to evaluate the
model’s performance and tune its hyperparameters. Although
the mock data might not help detect all the training time
issues, our insight is that leveraging mock data enables the
early detection of numerous bugs, including tensor shape
mismatches, inappropriate hyperparameter selection, etc. It
allows for improving the model’s quality before assessing
its performance on original training data. Fig. 4(b) illustrates
the mock data creation process using the interface of the
data preparation stage. While the mock data doesn’t have to
preserve every semantic detail, it is crucial to ensure that it
does not contain missing values or outliers. Below, we discuss
the process of mock data generation.

a) Process for Mock Data Creation: Generating mock
data requires careful adherence to key steps to ensure the
correctness of the resulting data.

Preprocessed Mock Data Generation: During the data
preparation stage, several preprocessing steps such as data
cleaning, outlier removal, class balancing, etc., are performed
to ensure the quality of the data. While creating mock data au-
tomatically, it is necessary to ensure that similar preprocessing
steps are added. The absence of data preprocessing steps can
be misleading and result in errors stemming from inaccuracies
present in the mock data.

To ensure that the mock data accurately reflects the real-
world scenarios, we utilized the make classification() and
make regression() functions provided by scikit-learn [37] for
synthetic data generation. The advantage of utilizing these
functions is that these functions provide a level of control over
the characteristics of the generated dataset. For example, we
can generate mock data that is normally distributed, without
outliers, is labeled and classes are balanced. These functions
are also customizable, allowing users to specify the number of
samples, features, etc., offering flexibility for specific testing
scenarios. Although the data generated by these functions is
normally distributed, however, it is not scaled or normalized.
Scaling or normalization is a common preprocessing step that
aids in faster convergence of DL models during training [38].
In our approach to mock data generation, we scaled the data
generated by make classification() and make regression()

functions. The scaled mock data is then utilized to verify the
behavior of the model. The rationale for validating the model’s
behavior with mock data is that if the model struggles to
learn from the mock data, the model’s hyperparameters can be
refined before proceeding to train it with the original dataset,
which is usually more complex than the mock data.

Quantification of Mock Data: Determining the amount
of data necessary for training a DL model is often a subject
of debate. It is typically gauged by several factors, such as
the complexity of the dataset and the model’s performance
during evaluation. In this paper, mock data is employed for unit
testing to ensure the precise functioning of the mathematical
functions within each layer of the designed model. It also
verifies the transformation of input data into meaningful rep-
resentations tailored to the specific task for which the model is
designed. Therefore, determining the amount of data required
for the intended purpose (i.e., unit testing) poses a challenge.
A small number of samples can lead to misleading results,
while a large volume of samples can be resource-intensive.

To address this challenge, we consulted established machine
learning literature [39], [40] to estimate the approximate
dataset size. We also conducted a sensitivity analysis of the
dataset sizes suggested in the literature [39], [40]. We varied
the dataset size in increments ±5%, ±10% and ±20% and
observed the impact on the model’s performance. Based on
this analysis, the samples generated by KUnit are as follows:
for the regression task, the number of samples generated is 10
times the number of features and for the classification task, 100
samples are generated for each class. In our experiments, we
found that these samples were adequate for identifying various
types of issues in the designed models. We now discuss how
the mock data is utilized for the verification of the model.

b) Verification of Model using Mock Data: After generat-
ing mock data that mimics key characteristics of the original
dataset, verification is done by feeding the mock data into
the designed model. This ensures the model’s correctness
without depending on the original data. To facilitate this,
we propose an integrated approach that combines the model
property assertions with an analysis of the model’s behavior
on mock data. For verifying the model’s structure, assertions
are defined using the data properties defined in the interface
of the data preparation stage and conditions obtained from
the literature (Section IV-A1), which helps to identify issues
A-E illustrated in Fig. 2 for the model design stage. Next,
the model’s response to the mock data is analyzed to ensure

6

it appropriately handles normalized/scaled data. This analysis
facilitates the early detection and resolution of potential issues
F-G, shown in Fig. 2. By detecting these issues early, the
approach allows verification and refinement of the model
structure before using the original data for training.

IV. EVALUATION

A. Experimental Setup

In this section, we discuss the process for collecting asser-
tions for issue identification, datasets used for the empirical
evaluation and user study, task description, and details of
participants involved in the user study.

1) Procedure for Collecting Assertions for Issue Identifica-
tion: In this section, we detail our process for identifying the
types of bugs supported by KUnit and explain how the corre-
sponding assertions are developed to detect them. To identify
these bugs, we conducted a thorough literature review. Islam et
al. [6] investigated the type of DL bugs and categorized them
into different categories, with data and model bugs being two
key categories. Humbatova et al. [7] refined the investigation
and further divided data bugs into two subcategories: training
data quality and preprocessing of training data. And, the
model bugs were categorized into subcategories such as wrong
input, wrong tensor shape, etc. These classifications provided a
structured foundation for understanding common pitfalls in DL
workflow. While some bugs reported in these studies require
comprehensive end-to-end analysis, others can be effectively
detected through targeted testing of specific components, such
as data and model. For instance, focused component-level
testing can detect crash bugs caused by wrong preprocessing
and silent bugs resulting from incorrect activation functions.
In contrast, issues like overfitting and underfitting depend on
evaluating the model’s performance on the original dataset.
Thus, we focus on bugs that can be detected at the com-
ponent level while excluding those that require end-to-end
analysis. Similar to the procedure outlined in [20], [23] we
filtered out these bugs from the empirical studies [6], [7] and
obtained 7 data-related issues (1-7 in Fig. 2) and 8 model-
design-related issues (A-H in Fig. 2) currently supported
by KUnit. We then adopted an approach similar to that of
TheDeepChecker [20] and reviewed existing works on fault
localization and repair techniques for DL programs [19], [22],
[18], [21], [41], [24], contracts for DL programs [42], [43],
and the Keras official documentation [44], [45]. This review
enhanced our understanding of the root cause of the bugs and
how these issues manifest in DL workflow, allowing us to
establish the conditions necessary to identify and address them.
These conditions are implemented as assertions in KUnit’s
test methods to identify the bugs and repair strategies that
are utilized to provide actionable fixes in KUnit.

2) Implementation: We implemented KUnit in Python on
top of Keras 2.3.0 and TensorFlow 2.1.0. The conditions
obtained in Section IV-A1 are implemented as test cases using
Python’s built-in unit testing framework, unittest.

TABLE II: Datasets used for user study.

Datasets

Portfolio
Data = NU

Labels = NU
Regression

Grain
Data = NU

Labels = CA
Multiclass

Classification

Truck
Data = MI

Labels = NU
Regression

Loan
Data = MI

Labels = NU
Binary

Classification

Train
Data = MI

Labels = NU
Binary

Classification
Data Checks Bugs

Data Quality
MV N N Y Y Y
ML N N N N Y
CI N Y N Y N

Preprocessing
of Data

ME N Y Y Y Y
MS Y Y Y Y Y

MV = Missing/Infinite Value, ML = Missing Label, CI = Class Imbalance,
ME = Missing encoding of categorical data, MS = Missing Scaling/Normalization

NU = Numeric, CA = Categorical, MI = Mixed

TABLE III: Models used for user study.
Model # Architecture

Type # of layers # of neurons # of parameters

M1 FCNN 5 21 120
M2 FCNN 6 131 5703
M3 FCNN 3 41 601
M4 FCNN 6 57 1153
M5 CNN 5 71 5201

3) Empirical Evaluation: To evaluate our approach, we
collected DL programs developed using Keras. We examined
the recently published DL fault localization benchmarks [18],
[21], [23]. The DeepLocalize’s [18] benchmark comprises
of 41 executable Keras codes containing both buggy and
correct versions of DL programs from Stack Overflow (30)
and GitHub (11). The DeepFD’s [21] benchmark has 58 DL
programs with patches for buggy and correct versions obtained
from Stack Overflow (47) and GitHub (11). deepmufl’s [23]
benchmark comprises 109 DL programs obtained from Stack
Overflow. Currently, our approach KUnit, supports two types
of DL architectures, FCNNs and CNNs designed for regression
and classification problems for structural data. We used these
criteria for filtering the programs from these benchmarks. We
found that there is some overlap among the programs in these
benchmarks. Therefore, we acquired 50 programs, 42 from
Stack Overflow and 8 from GitHub. We considered the 50
programs in our benchmark as “unseen” because we have not
seen these buggy and correct programs during the process of
acquiring conditions described in Section IV-A1.

4) User Study: We also performed a user study to evaluate
our approach. We followed the methodology of Biswas et
al. [11] to collect real-world datasets and tasks from Kaggle
competitions [46] and collected 5 real-world datasets that
require preprocessing to meet data quality requirements. The
details of these datasets are shown in Table II. We selected
5 sequential DL models from Kaggle competitions [46] and
provided them as a reference model to the participants. The
details of these models are shown in Table III.

5) Tasks: To avoid versioning issues during experimental
setup and save participants time, we hosted tasks on GitHub
Codespaces [47]. It has a web-based VS Code IDE and
virtual machines that allow developers to edit, run, test, and
debug code within a web browser. We used Zoom to monitor
each participant’s screen and ensured they used the program
as intended. We shared with participants a document with
instructions explaining the goal of the task and how to run it on
GitHub Codespaces IDE. In our task design, each participant
performed two tasks: one in the traditional way and one in
the modular way. Since participants working on a task are
likely to remember its details and the issues encountered, we
adopted a between-subjects design [48] to mitigate the learning

7

TABLE IV: Summary of issues detected by KUnit.

Stage Categories
of issues
in different
categories

of issues
detected by

KUnit
Missing Scaling/Normalization 11 9Data

Preparation Labels not matching problem definition 1 1
Incorrect Input shape 1 1
Incorrect Output shape 2 2
Missing Activations 2 2
Wrong Output Layer Activation 30 27
Learning Rate out of Common Range 3 3
Wrong Loss Function 8 8
Incorrect Evaluation Metrics 7 7

Model
Design

Oscillating Loss/Slow Convergence 9 3
Total 74 63

effect. Specifically, we assigned each participant two distinct
problems. For the data preparation task, we provided partici-
pants with datasets and asked them to explore the data and add
necessary preprocessing steps based on their experience. In the
traditional setting, they did not test the code, whereas in the
modular setting, participants tested the added preprocessing
steps in isolation using an automatically generated mock
model. For the model designing task, we provided participants
with a reference DL model and asked them to make necessary
structural changes according to the task requirements and their
experience. In the traditional setting, participants were given
preprocessed data from the data preparation task completed by
another participant in the traditional setting and asked them
to test the designed model using the original data. Whereas,
in a modular setting, participants tested the designed model
in isolation using automatically generated mock data. During
the study, the participants were allowed to access the internet
to confirm the syntax of different operations in Python and
Keras. After completing the task, we requested participants
to complete a survey to share their experience of KUnit on
a 5-point Likert scale and provide open-ended feedback. We
conducted a pilot study with 7 participants, which allowed us
to refine the tasks and instructions. This study was reviewed
by our Institutional Review Board.

6) Participants: We recruited participants via LinkedIn us-
ing direct messages and university mailing lists that described
our study and a link to the screener survey. We screened
participants (i) who were over 18, (ii) who had at least one
year of programming experience, and (iii) who had experience
with DL programming. To evaluate the applicability of our
approach in everyday scenarios and industry settings, we
recruited both graduate students and industry professionals. In
total, we recruited 36 participants (21 male and 15 female), 24
graduate students from different universities, and 12 industry
professionals working in Google, IBM, Neural Lab, etc. Par-
ticipants were asked to self-classify their level of expertise
from 1 - beginner to 5 - expert. The obtained expertise
levels are: using existing DL programs (µ = 4.1, σ = 0.7),
developing new DL programs (µ = 4.0, σ = 0.8), debugging
DL programs (µ = 3.9, σ = 0.8), and familiarity with
preprocessing steps (µ = 4.0, σ = 0.8).

In the study design, we aimed to have each task performed
by participants with varying levels of expertise. This allowed
us to investigate the mistakes made by developers across dif-
ferent skill levels and evaluate the utility of unit testing in DL
applications. Participants were assigned tasks based on their

self-reported expertise level. During self-assessment, we found
that the participants rated themselves as either 3 (competent),
4 (proficient), or 5 (expert). When a participant scheduled a
session, we assigned a task that no other participant with the
same experience level had already been assigned. If a new
participant with the same expertise level scheduled a time slot
and all tasks had been completed by others with the same
expertise level, we randomly assigned tasks to ensure that at
least three different participants performed each task.

B. Results

In this section, we report on the efficiency of our technique
for unit testing DL applications using mocks and answer our
research questions.

1) Do mock objects aid in testing each functionality in
isolation without reliance on external dependencies?: In this
research question, we validate whether different functionalities
of the DL programs can be tested without committing to a
labeled dataset or model using mock objects, isolating the
code being tested from external dependencies (dataset or
model). To answer this research question, we first evaluated the
performance of KUnit on 50 DL programs in our benchmark.
The first author manually inspected each DL program and
divided it into two parts: Data Preparation: contains all the
steps related to data preparation and Model Design: contains
all the steps related to designing the model including the
compilation step. Each part is tested independently using the
mocks automatically generated by KUnit. To address the chal-
lenges posed by the indeterministic nature of DL applications,
we execute each test 3 times and consider issues reported in
more than one run. The buggy version of the original program
was examined, and the number of issues in each of the 50
programs was counted. Table IV reports the total number
of issues found in 50 programs across different categories.
The results shown in Table IV depict that the mock model
facilitated testing of the data preparation steps, with KUnit
identifying 10 out of 12 issues in this stage. Similarly, for
the model design stage, mock data facilitated testing of the
designed model, with KUnit identifying 53 out of 62 issues
in this stage. Further investigation was done to determine
the reason behind the issues missed by KUnit. In the data
preparation stage, we found that the 2 missed issues were
related to scaling the labels to the appropriate range to match
the output layer activation. KUnit only verifies the scaling of
the data, not the labels. Therefore, KUnit missed these issues.
For the model design stage, the assertions used in KUnit are
obtained from various sources (discussed in Section IV-A1)
which cover various frequently occurring scenarios that might
not account for some edge cases, such as models designed for
datasets with specific label ranges; KUnit missed 9 issues. As
KUnit is open-source, developers have the flexibility to refine
these assertions or define new ones according to their needs.

Secondly, during the user study, participants used KUnit
to independently test the data preparation steps and designed
model using mocks. Tables V and VI present the results
of testing the three solutions (S1, S2, and S3) provided by

8

TABLE V: Summary of issues detected by KUnit using mock model in data preparation stage.
Task 1 (Portfolio) Task 2 (Grain) Task 3 (Truck) Task 4 (Loan) Task 5 (Train)

Stage Tests S1
(Com)

S2
(Com)

S3
(Prof)

S1
(Prof)

S2
(Prof)

S3
(Exp)

S1
(Com)

S2
(Prof)

S3
(Exp)

S1
(Com)

S2
(Prof)

S3
(Exp)

S1
(Com)

S2
(Prof)

S3
(Exp)

Preprocessing steps are
applied correctly

Check scaling/normalization
is done correctly ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Missing values are removed/replaced – – – – – – ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓
Missing label are removed/replaced – – – – – – – – – – – – ✗ ✗ ✓
Classes are balanced – – – ✗ ✗ ✗ – – – ✗ ✗ ✓ ✗ ✗ ✓

Quality assurance

Labels are matching problem definition – – – – – – – – – – – – ✗ ✗ ✓

Correct format of data
Categorical data is converted to
numeric data – – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data Preparation
(Testing using
Mock Model)

Performance of the
mock model

Check mock model is able to learn
from selected features ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

Number of issues detected in data preprocessing 1 1 1 1 1 1 2 2 3 2 1 0 4 4 1
Number of issues resolved by participants 1 1 1 1 1 1 2 2 3 2 1 0 4 4 1

Number of issues dismissed as false alarms by participants 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Expertise level of participants: Exp - Expert, Prof - Proficient, Com - Competent

✓: Steps are applied correctly and test case passed. ✗: Steps are either missed or applied incorrectly and test case failed. –: Steps not required for the dataset.

TABLE VI: Summary of issues detected by KUnit using mock data in model design stage.
Task 1 (Portfolio) Task 2 (Grain) Task 3 (Truck) Task 4 (Loan) Task 5 (Train)

Stage Tests S1
(Com)

S2
(Prof)

S3
(Exp)

S1
(Com)

S2
(Prof)

S3
(Exp)

S1
(Prof)

S2
(Prof)

S3
(Exp)

S1
(Prof)

S2
(Exp)

S3
(Exp)

S1
(Prof)

S2
(Exp)

S3
(Exp)

Check input shape in input layer is correct ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓Data and model input-output
layer alignment Check output shape in input layer is correct ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Activation functions are applied correctly
in all hidden layers ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Output layer format is correct
depending on the task ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Correct loss function is selected ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Correct operations

Correct metrics is selected ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓
Model is learning and accuracy is changing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
No oscillating loss ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Model Design
(Testing using
Mock Data)

Performance of model
on mock data Model is not converging slowly ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗

Number of issues detected in model structure 3 2 1 4 3 2 4 2 1 2 6 5 3 2 2
Number of issues resolved by participants 3 2 1 4 3 2 4 2 1 2 6 2 3 2 1

Number of issues dismissed as false alarms by participants 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1
Expertise level of participants: Exp - Expert, Prof - Proficient, Com - Competent

✓: Steps are applied correctly and test case passed. ✗: Steps are either missed or applied incorrectly and test case failed.

different participants for each task, with columns indicating the
issues detected in each solution. For the data preparation stage,
Table V demonstrate that a total of 25 issues were identified
by KUnit using mock models for all the tasks. All these issues
were acknowledged as valid findings by participants with
varying levels of expertise and were subsequently resolved
by them. For the model design stage, the participants tested
the designed model using the mock data. In Table VI, for
each task, we highlighted the issues identified and reported by
KUnit. Across all tasks, KUnit detected a total of 42 issues
using mock data, of which 38 were accepted and resolved by
participants with varying levels of expertise. However, for 4
issues reported by KUnit, 2 participants mentioned that, based
on their experience, these might be false alarms. For example,
in Task 4, a binary classification task, KUnit verifies that the
output layer yields a value between 0 and 1 depicting the
positive class probability (property of the sigmoid function).
However, for Task 4 (S3), the participant expressed a prefer-
ence for using a probability distribution (softmax function) to
represent the output layer results instead of class probabilities
(sigmoid function), leaving room for extending the problem to
multiclass classification in the future. Similarly, for detecting
the oscillating loss issue, KUnit monitors the loss after every
5 epochs. However, for Task 5 (S3), the participant stated that
they prefer to evaluate the model’s stability every 10 epochs.
Therefore, due to differing criteria and preferences used by
different developers for evaluating model stability, 4 out of 42
issues were dismissed as a false alarm by 2 participants for
Task 4 (S3) and Task 5 (S3). Given that KUnit is open-source,
developers can customize these assertions to fit their problem

requirements. In summary, our results demonstrate that mock
objects facilitated independent testing of each functionality
and assisted in the early detection of issues.

2) How efficient are mock objects in identifying issues
compared to traditional deep learning testing approaches?:
In this research question, we evaluate the efficiency of mock
objects in uncovering issues in DL programs at an early
stage, that in current practice, are detected after combining
different stages, specifically during training. To compare the
efficiency of KUnit with traditional DL testing approaches, we
conducted an evaluation of 50 programs in our benchmark.
The original program (with data and model stages combined)
is tested using a state-of-the-art approach [19] and the results
are compared with the issues identified by KUnit in each
stage. DeepDiagnosis [19] is a fault localization tool that
detects silent bugs in DL programs by monitoring for abnormal
behavior during training. This tool is selected because it covers
most of the silent bugs (8) encountered during model training
compared to other existing fault localization tools [17], [18],
[22], [21]. By comparing KUnit with DeepDiagnosis, we
evaluate whether KUnit can effectively identify issues at an
earlier stage using mocks before data-model integration that
DeepDiagnosis identifies after integration during training. Our
analysis shows that, for 22 programs with issues in only one
stage, i.e., data preparation or model design, KUnit identified
the same problems with mocks that DeepDiagnosis identified
using the original dataset during training. For the 25 programs
with issues in both the data preparation and model design
stages, DeepDiagnosis detected issues in the data preparation
stage for 7 of these programs. However, uncovering bugs in

9

the model design stage with DeepDiagnosis requires fixing the
data preparation issues first, necessitating multiple iterations to
identify problems in the model design stage. Similarly, for 5
of these programs, DeepDiagnosis reported a numerical error
in computation but could not determine the error-inducing
stage. For the remaining 13 programs, DeepDiagnosis did
not detect any issues. The main challenge for DeepDiagnosis
stems from the programs with multiple bugs, as it detects
one issue at a time. This requires retraining the model on
an original training dataset after every modification, leading
to inefficient use of computational resources [22]. In contrast,
testing each stage separately with KUnit using mocks provides
a lightweight emulation of dependencies, facilitating testing
each stage before and after modifications, thereby saving
resources and accurately identifying errors in the correct stage
in all 25 programs. Some numerical computations in DNNs
are highly data-dependent. For example, using activation func-
tions that are not suitable for certain input ranges can lead
to out-of-range problems, which cannot be detected during
unit testing with mocks. Therefore, for 3 programs, KUnit
missed these issues, whereas, testing using the original dataset
helped DeepDiagnosis identify issues in 2 out of 3 programs.
During the user study, participants utilized both KUnit and
DeepDiagnosis for debugging. The results show that testing
individual stages in isolation with mocks helped KUnit to
efficiently pinpoint the root causes of bugs, streamlining the
debugging process. In contrast, DeepDiagnosis, which detects
issues after data-model integration, cannot identify the root
cause of the bug in programs with multiple bugs. This is
particularly evident in programs with bugs originating from
both the data preparation and model design stages, as these
bugs often exhibit overlapping symptoms during training,
thereby complicating the debugging process. Due to this, in
10 programs with multiple bugs, DeepDiagnosis reported a
numerical error but failed to pinpoint the root cause. Detailed
results are reported in the supplementary material [49], [50].
We also analyzed the debugging time for each task in Tables V
and VI, comparing results with and without KUnit. In the
traditional setting, when data and model are integrated and
tested using DeepDiagnosis, we observed that the quality of
the preprocessed data significantly impacted the debugging
time. Participants had to resolve data-related issues before
addressing model-specific problems. In contrast, when using
KUnit, the data and model are tested in isolation using mocks,
allowing participants to focus on stage-specific issues. As
DeepDiagnosis identifies issues after integration, for a fair
comparison, we computed the total time, i.e., summation of
time taken by participants to resolve bugs in data and model
stages using KUnit separately and compared it with Deep-
Dignosis. Our analysis reveals that, on average, participants
took 15 and 12 minutes to debug the DL programs using
DeepDiagnosis, and KUnit, respectively. By isolating data and
model, KUnit facilitates a more focused and efficient debug-
ging process that can save time and resources during training.
Detailed analysis is provided in our GitHub repository [51].
In summary, our analysis shows that mock objects effectively

(a) Rate how helpful are the mocks in
testing each component independently

without utilizing original dataset or original
model.

(b) Rate how helpful mocks are in detecting
bugs early specifically post-implementation

and before training.

(c) Rate how helpful are the mocks in
improving the code structure.

(d) How likely would you integrate unit
testing using mocks as a part of your DL

application development?

Fig. 5: Survey results with participants ratings.
mimic essential system behaviors, simplifying complexity for
unit testing and assisting in identifying issues that lead to
abnormal behavior during training. Mock testing is efficient
and resource-friendly, especially for programs with issues in
multiple stages.

3) How do developers perceive the effectiveness of unit
testing using mocks compared to traditional deep learning
testing approaches?: To answer this research question, we
collected survey responses from 36 participants during the user
study. In particular, on a 5-point Likert scale question, partici-
pants rated their experience about the usefulness of mocks for
unit testing. Likewise, 35 participants (Fig. 5(b)) responded
(rating > 3) that mocks facilitate the early identification and
resolution of issues during the development process. Regarding
the usefulness of the mocks in improving code structure,
31 participants (Fig. 5(c)) responded positively (rating > 3),
while 5 participants (rating ≤ 3) expressed the concern that
mocks might produce false alarms and mislead efforts to
improve the code structure. Regarding the integration of the
mocks into their DL development process, 34 participants
(Fig. 5(d)) rated positively (rating > 3) and expressed their
interest in incorporating unit testing with mocks to enhance
software reliability. We also asked participants to share open-
ended feedback on the advantages and disadvantages of KU-
nit. The first two authors conducted an open coding phase
over the qualitative responses [52] and grouped codes into
different themes. For advantages, our inductive thematic anal-
ysis identified 6 repeated themes in participants’ qualitative
responses. The themes are: bugs can be detected early on,
makes testing easy/easier to manage, time efficient/saves a lot
of time, automation reduces human efforts, saving resources,
great experience/helpful/useful. For disadvantages, we found
2 repeated themes: implementation in the industry could be
challenging/overhead to set up and incorrect reports/false
alarms. Detailed qualitative responses are provided in the
supplementary material [53]. Fig. 5 shows the survey results
with participants ratings. As illustrated in Fig. 5(a), 34 partic-
ipants rated positively (rating > 3) and found that mocks help
test each component independently. The learning curve for
KUnit depends on the user’s familiarity with DL concepts and

10

experience with Keras. To help KUnit users easily understand
the workflow, we provided detailed documentation and a
running example in our GitHub repository [16]. Participants
in the post-study feedback illustrated that the well-structured
documentation helped them easily understand KUnit’s func-
tionality and workflow. After familiarizing themselves with
the workflow, which on average takes 10-15 minutes, they only
need to adjust the interfaces to align with their task. In the data
preparation stage, the user loads the original dataset, applies
preprocessing steps, and executes the test file.KUnit generates
a mock model and feeds preprocessed data into it to verify data
quality. In the model design stage, users build the DNN model
and run the test. KUnit generates mock data and feeds it into
the designed model to verify its correctness and compatibility
with expected data properties. In the post-study feedback,
participants mentioned that they found KUnit easy to use with
minimal manual effort required for setup and customization.
They were able to adjust the interfaces to align with their task
and used the framework for developing and unit testing their
DL application. By making KUnit open-source, we provide
flexibility to adapt the tool to developer needs and improve its
accuracy and ease of use through community contributions.
In summary, we found that the developers view unit testing
using mocks as a valuable addition to traditional DL testing
techniques. It enables independent testing of each component,
facilitates early problem detection during development, and
contributes to improving the overall code structure.

V. THREATS TO VALIDITY

A potential threat to the internal validity of our study
is the possibility of bugs in KUnit’s implementation, which
could lead to inaccurate results. To mitigate this risk, we con-
ducted a user study involving developers with diverse expertise
levels and backgrounds. This approach provided multiple
perspectives on KUnit’s functionality. Additionally, we have
made KUnit’s source code publicly available, allowing other
researchers to review and validate our work. In the user study,
participants used DeepDiagnosis, which detects one bug at a
time. Participants manually addressed each bug identified by
DeepDiagnosis and repeated the process until no further issues
were reported. To mitigate the risk due to incorrect tool usage,
we had our protocol reviewed by the authors of DeepDiagnosis
to ensure it aligned with its intended functionality [54]. Our
proposed approach may be affected by external threats, such as
imprecise conditions used as assertions and the effectiveness
of the actionable fixes provided as solutions. To address this
issue, we have adopted guidelines from previous works [24],
[19], [22], [42], [43], [21], [23] and Keras documentation [44],
[45]. In our empirical evaluation, we assessed 50 DL programs
in our benchmark. This process involved manually separating
each DL program into two parts: data preparation and model
design, which could introduce human error. To mitigate this
threat, one of the co-authors thoroughly examined each part
to ensure its correctness.

VI. RELATED WORK

A. Unit Testing using Mocks

Unit testing stands as a fundamental practice in software
development, aimed at evaluating each functionality of the
software independently and uncovering bugs early in the
development cycle. Due to dependencies, testing the code
in isolation becomes challenging. To tackle this challenge, a
technique known as mock objects have been proposed in the
past by Mackinnon et al. [14] for unit testing, involving the
replacement of dependencies with dummy implementations.
Their findings suggest that creating unit tests using mock
objects leads to better tests and improves the structure of both
domain and test code. Prior studies have illustrated the benefits
of employing mock objects for unit testing different appli-
cations, ranging from servlet [55], multi-agent systems [56],
mobile apps [57] to database applications [58]. However, the
use of mock objects for testing DL applications has not been
investigated before.

B. Fault Localization and Bug Repair in DL Programs

The rise in DL application usage has led researchers to
adapt fault localization techniques to this field, aiming to
validate various components of DL-based systems and pin-
point faulty behaviors. In the past, various static and dynamic
analysis approaches have been proposed for DL programs.
NeuraLint [41] is a static analysis approach for automatic fault
detection in DL programs that uses predefined rules to identify
bugs. UMLAUT [17] combines static and dynamic analysis
by examining program structure before training and model
behavior during training. DeepLocalize [18] is a dynamic
fault localization approach for DL programs that identifies
numerical errors during training. AutoTrainer [22] is a system
designed to identify and repair 5 common training issues in
DL models. DeepDiagnosis [19] is a dynamic technique that
identifies various symptoms during training and suggests ac-
tionable fixes. DeepFD [21] is a learning-based fault localiza-
tion framework for diagnosing faults in DL programs. [20] is
a property-based debugging approach that detects bugs in DL
programs before, during, and after training. deepmufl [23] is
a mutation-based fault localization approach for DL programs
that generates mutants of pre-trained models to detect bugs in
these programs. Prior works treat data preprocessing steps and
the model as a comprehensive DL program, and identify and
localize bugs by monitoring the training process. In contrast,
KUnit treats data and the model as independent entities and
aims to detect bugs before integrating them.

VII. CONCLUSION

This paper introduces the concept of mock testing in the
context of DNNs and presents a novel technique, KUnit. The
technique is based on the idea of decoupling to reduce the
dependencies between different stages of DL applications,
specifically data preparation and model design. Decoupling
is achieved by defining interfaces that facilitate the creation
of mock objects for unit testing of each stage. The empirical
evaluation using 50 DL programs shows that in the data

11

preparation stage, the mock model helped identify 10 issues,
and mock data assisted in identifying 53 issues in the model
design stage. In a user evaluation with 36 participants testing
15 programs, KUnit helped resolve 25 issues in the data
preparation stage and 38 issues in the model design stage.
Our results show that mock objects provided a lightweight
emulation of the dependencies for unit testing and identified
issues during unit testing that, in current practice, are typically
identified after data and model integration, specifically during
DL model training. Participants using KUnit found it helpful
for identifying and resolving issues early in the development
process.

VIII. DATA AVAILABILITY

Our evaluation results and the code for our framework,
KUnit, are available in our replication package [16].

REFERENCES

[1] C. Richard, “Deep learning based chatbot models,” in arXiv preprint
arXiv:1908.08835, 2019.

[2] I. Giancarlo, L. L. Bello, A. Nucita, and G. M. Grasso, “A vision and
speech enabled, customizable, virtual assistant for smart environments,”
in In 2018 11th International Conference on Human System Interaction
(HSI), 2018, pp. 50–56.

[3] R. Abhimanyu, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling,
“Deep learning detecting fraud in credit card transactions,” in In 2018
systems and information engineering design symposium, 2018, pp. 129–
134.

[4] T. Zhang, C. Gao, L. Ma, M. Lyu, and M. Kim, “An empirical study of
common challenges in developing deep learning applications,” in 2019
IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE), 2019, pp. 104–115.

[5] X. Zhang, Y. Yang, Y. Feng, and Z. Chen, “Software engineering practice
in the development of deep learning applications,” in ICSE’20: The 42nd
International Conference on Software Engineering, 2020.

[6] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive
study on deep learning bug characteristics,” in ESEC/FSE’19: The ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), ser. ESEC/FSE
2019, August 2019.

[7] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in
ICSE’20: The ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 1110–1121.

[8] Y. Zhang, C. Yifan, C. Shing-Chi, X. Yingfei, and Z. Lu, “An empirical
study on tensorflow program bugs,” in 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 129–140.

[9] J. Cao, B. Chen, C. Sun, L. Hu, S. Wu, and X. Peng, “Understanding
performance problems in deep learning systems,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 357–
369.

[10] M. S. Rahman, F. Khomh, A. Hamidi, J. Cheng, G. Antoniol, and
H. Washizaki, “Machine learning application development: practitioners’
insights,” Software Quality Journal, vol. 31, no. 4, pp. 1065–1119, 2023.

[11] S. Biswas, M. Wardat, and H. Rajan, “The art and practice of data
science pipelines: A comprehensive study of data science pipelines in
theory, in-the-small, and in-the-large,” in ICSE’22: The 44th Interna-
tional Conference on Software Engineering, May 21-May 29 2022.

[12] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 291–300.

[13] R. Binder, Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[14] T. Mackinnon, S. Freeman, and P. Craig, “Endo-testing: unit testing with
mock objects,” in Extreme programming examined, 2000, pp. 287–301.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[16] https://github.com/anon3173/KUnit, 2024.
[17] E. Schoop, F. Huang, and B. Hartmann, “Umlaut: Debugging deep

learning programs using program structure and model behavior,” in
Proceedings of the 2021 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, 2021.

[18] M. Wardat, W. Le, and H. Rajan, “Deeplocalize: fault localization for
deep neural networks,” in ICSE’21: The 43nd International Conference
on Software Engineering, 2021.

[19] M. Wardat, B. D. Cruz, W. Le, and H. Rajan, “Deepdiagnosis: Auto-
matically diagnosing faults and recommending actionable fixes in deep
learning programs,” in ICSE’22: The 44th International Conference on
Software Engineering, 2022.

[20] H. Ben Braiek and F. Khomh, “Testing feedforward neural networks
training programs,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4,
may 2023. [Online]. Available: https://doi.org/10.1145/3529318

[21] J. Cao, M. Li, X. Chen, M. Wen, Y. Tian, B. Wu, and S.-C. Cheung,
“Deepfd: Automated fault diagnosis and localization for deep learning
programs,” in Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 573–585.

[22] X. Zhang, J. Zhai, S. Ma, and C. Shen, “Autotrainer: An automatic dnn
training problem detection and repair system,” in ICSE’21: The 43rd
International Conference on Software Engineering, 2021, pp. 359–371.

[23] A. Ghanbari, D.-G. Thomas, M. A. Arshad, and H. Rajan, “Mutation-
based fault localization of deep neural networks,” in ASE’2023: 38th
IEEE/ACM International Conference on Automated Software Engineer-
ing, September 11–15 2023.

[24] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep
neural networks: Fix patterns and challenges,” in ICSE’20: The 42nd
International Conference on Software Engineering, May 23-May 29,
2020 2020.

[25] P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22–29, 2006.

[26] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[27] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and
G. Kasneci, “Deep neural networks and tabular data: A survey,” IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[29] T. Yu and H. Zhu, “Hyper-parameter optimization: A review of algo-
rithms and applications,” arXiv preprint arXiv:2003.05689, 2020.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of IEEE, vol. 11, 1998,
pp. 2278–2324.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional networks,” in NIPS’12: The 25th International
Conference on Neural Information Processing Systems, vol. 1, 2012, p.
1097–1105.

[32] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural networks: Tricks of the trade. Springer, 2002, pp. 9–50.

[33] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural Networks: Tricks of the Trade: Second
Edition. Springer, 2012, pp. 437–478.

[34] Francois Chollet, “Keras: the Python deep learning library,” 2015, https:
//keras.io/api/losses/.

[35] A. Ng, “Machine learning course,” https://www.coursera.org/learn/
neural-networks-deep-learning.

[36] “Occam’s razor,” https://en.wikipedia.org/wiki/Occam%27s razor.
[37] scikit-learn, “sklearn.datasets: Samples generator,” 2007, https://

scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets.
[38] Y. A. L. Léon, B. B.Orr, and K.-R. Müller, “Efficient backprop.” Berlin,

Heidelberg: Springer, 2012.
[39] “Rule of 10,” https://machinelearningmastery.com/

much-training-data-required-machine-learning/, 2023.
[40] V. Lakshmanan, S. Robinson, and M. Munn, Machine learning design

patterns. O’Reilly Media, 2020.
[41] A. Nikanjam, B. B. Houssem, M. M. Mohammad, and K. Foutse,

“Automatic fault detection for deep learning programs using graph
transformations,” in ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 1, 2021, pp. 1–27.

12

https://github.com/anon3173/KUnit
https://doi.org/10.1145/3529318
https://keras.io/api/losses/
https://keras.io/api/losses/
https://www.coursera.org/learn/neural-networks-deep-learning
https://www.coursera.org/learn/neural-networks-deep-learning
https://en.wikipedia.org/wiki/Occam%27s_razor
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/

[42] S. Ahmed, S. M. Imtiaz, S. S. Khairunnesa, B. D. Cruz, and H. Ra-
jan, “Design by contract for deep learning apis,” in ESEC/FSE’2023:
The 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, December 03-
December 09 2023.

[43] S. S. Khairunnesa, S. Ahmed, S. M. Imtiaz, H. Rajan, and G. T.
Leavens, “What kinds of contracts do ml apis need?” Empirical Software
Engineering, vol. 1, no. 1, March 2023.

[44] Francois Chollet, “Keras: the Python deep learning library,” 2015, https:
//keras.io/.

[45] ——, “Keras: the Python deep learning library,” 2015, https://keras.io/
examples/.

[46] “Kaggle ,” https://www.kaggle.com/competitions, 2024.
[47] G. Codespaces, “Github,” https://github.com/features/codespaces.
[48] M. C. Davis, S. Choi, S. Estep, B. A. Myers, and J. Sunshine, “Nanofuzz:

A usable tool for automatic test generation,” in Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp. 1114–1126.

[49] https://github.com/anon3173/KUnit/blob/main/RQ2 Results.xlsx, 2024.
[50] https://github.com/anon3173/KUnit/blob/main/RQ2 UserStudy

Results.xlsx, 2024.
[51] https://github.com/anon3173/KUnit/blob/main/Analysis of

Debugging Time.pdf, 2024.
[52] R. S. Weiss, Learning from strangers: The art and method of qualitative

interview studies. Simon and Schuster, 1995.
[53] https://github.com/anon3173/KUnit/blob/main/Participants Response.

pdf, 2024.
[54] Authors, “Personal Communication with Authors regarding DeepDiag-

nosis: Automatically Diagnosing Faults and Recommending Actionable
Fixes in Deep Learning Programs ,” Email, March, 2024.

[55] D. Thomas and A. Hunt, “Mock objects,” IEEE Software, vol. 19, no. 3,
pp. 22–24, 2002.

[56] R. Coelho, U. Kulesza, A. von Staa, and C. Lucena, “Unit testing in
multi-agent systems using mock agents and aspects,” in Proceedings of
the 2006 international workshop on Software engineering for large-scale
multi-agent systems, 2006, pp. 83–90.

[57] M. Fazzini, A. Gorla, and A. Orso, “A framework for automated
test mocking of mobile apps,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp.
1204–1208.

[58] K. Taneja, Y. Zhang, and T. Xie, “Moda: Automated test generation
for database applications via mock objects,” in Proceedings of the 25th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2010, pp. 289–292.

13

https://keras.io/
https://keras.io/
https://keras.io/examples/
https://keras.io/examples/
https://www.kaggle.com/competitions
https://github.com/features/codespaces
https://github.com/anon3173/KUnit/blob/main/RQ2_Results.xlsx
https://github.com/anon3173/KUnit/blob/main/RQ2_UserStudy_Results.xlsx
https://github.com/anon3173/KUnit/blob/main/RQ2_UserStudy_Results.xlsx
https://github.com/anon3173/KUnit/blob/main/Analysis_of_Debugging_Time.pdf
https://github.com/anon3173/KUnit/blob/main/Analysis_of_Debugging_Time.pdf
https://github.com/anon3173/KUnit/blob/main/Participants_Response.pdf
https://github.com/anon3173/KUnit/blob/main/Participants_Response.pdf

	Introduction
	Motivation
	Approach
	Interface Definition
	Mock Object Creation and Verification
	Data Preparation Stage
	Model Design Stage

	Evaluation
	Experimental Setup
	Procedure for Collecting Assertions for Issue Identification
	Implementation
	Empirical Evaluation
	User Study
	Tasks
	Participants

	Results
	Do mock objects aid in testing each functionality in isolation without reliance on external dependencies?
	How efficient are mock objects in identifying issues compared to traditional deep learning testing approaches?
	How do developers perceive the effectiveness of unit testing using mocks compared to traditional deep learning testing approaches?

	Threats to Validity
	Related
	Unit Testing using Mocks
	Fault Localization and Bug Repair in DL Programs

	Conclusion
	Data Availability
	References

