
An LLM-Based Agent-Oriented Approach for
Automated Code Design Issue Localization

Fraol Batole
Computer Science Department

Tulane University
New Orleans, LA, USA

fbatole@tulane.edu

David OBrien
Computer Science Department

Iowa State University
Ames, IA, USA

davidob@iastate.edu

Tien N. Nguyen
Computer Science Department

The University of Texas at Dallas
Dallas, TX, USA

tien.n.nguyen@utdallas.edu

Robert Dyer
Computer Science Department
University of Nebraska-Lincoln

Lincoln, NE,USA
rdyer@unl.edu

Hridesh Rajan
Computer Science Department

Tulane University
New Orleans, LA, USA

hrajan@tulane.edu

Abstract—Maintaining software design quality is crucial for
the long-term maintainability and evolution of systems. However,
design issues such as poor modularity and excessive complexity
often emerge as codebases grow. Developers rely on external tools,
such as program analysis techniques, to identify such issues. This
work leverages Large Language Models (LLMs) to develop an
automated approach for analyzing and localizing design issues.

Large language models have demonstrated significant perfor-
mance on coding tasks, but directly leveraging them for design
issue localization is challenging. Large codebases exceed typical
LLM context windows, and program analysis tool outputs in
non-textual modalities (e.g., graphs or interactive visualizations)
are incompatible with LLMs’ natural language inputs.

To address these challenges, we propose LOCALIZEAGENT, a
novel multi-agent framework for effective design issue localiza-
tion. LOCALIZEAGENT integrates the specialized agents that (1)
analyze code to identify potential code design issues, (2) transform
program analysis outputs into abstraction-aware LLM-friendly
natural language summaries, (3) generate context-aware prompts
tailored to specific refactoring types, and (4) leverage LLMs to
locate and rank the localized issues based on their relevance.

Our evaluation using diverse real-world codebases demon-
strates significant improvements over the baseline approaches,
with LOCALIZEAGENT achieving 138%, 166%, and 206% rela-
tive improvements in exact-match accuracy for localizing infor-
mation hiding, complexity, and modularity issues, respectively.

Index Terms—Large Language Models (LLMs), Multi-Agent,
Static Program Analysis, Code Design Issue Localization

I. INTRODUCTION

Software design quality is crucial for the long-term main-
tainability, extensibility, and evolution of systems. As a project
evolves, design issues such as poor modularity, tight coupling,
and excessive complexity often emerge, hindering developer
productivity and system quality. These issues, if left unad-
dressed, lead to the accumulation of technical debt, resulting
in increased development costs and decreased software relia-
bility [1, 2]. Thus, an approach that automatically addresses
these design issues could be widely beneficial and adopted to

reduce development costs and promote developer productivity.
With recent advancements in code intelligence tasks since
these prior works, the next logical step towards automated
refactoring is design issue localization.

Large Language Models (LLMs) have demonstrated signifi-
cant capabilities in code-related tasks [3, 4]. However, their po-
tential for recognizing software design issues remains largely
unexplored. Our rationale of leveraging LLMs is based on the
fact that LLMs have been trained on a vast amount of source
code and demonstrated strong capabilities in several code-
semantics reasoning tasks involving intricate relationships in
a codebase. We hypothesize that they can identify flawed
relationships among components, such as misplaced methods
or other irregular code structures, and suggest refactoring
changes, e.g., moving methods to more appropriate locations
without using thresholds or hard-coded rules.

However, LLM-based approaches face key limitations in
this domain. First, source code is complex, and its inher-
ent structure makes it difficult for LLMs to correctly parse
and leverage effectively [5]. These struggles arise from the
misalignment between the structured nature of programming
languages and the non-structured natural-language (NL) texts
that LLMs are primarily trained on. Second, our preliminary
experiments indicate that LLMs tend to generate incorrect re-
sults when dealing with program semantics across abstractions.
Thus, a more appropriate representation for LLMs should be
both natural language-friendly and abstraction-aware.

This paper presents LOCALIZEAGENT, a novel agent-based
framework that bridges this gap and explore LLMs’ capabil-
ities in improving software design. Inspired by recent works
on LLM-based frameworks for other tasks [6, 7], LOCAL-
IZEAGENT focuses on design issues identifiable within a single
class (e.g., god classes and feature envy). It leverages the
results of program analysis tasks to synthesize NL summaries
of system designs fitting for LLMs. Our key insight is that
by combining multi-agent design, context-aware prompting,

and LLM-friendly code representations, we can overcome
the limitations of current LLM-based approaches and enable
more effective design issue localization. We design LOCAL-
IZEAGENT with the following major ideas:

First, Multi-Agent Collaborative Framework: Recent
works have started to investigate LLM-based agents that
prepare task-specific data for LLMs [8, 9]. Motivated by such
works, we introduce a novel multi-agent system consisting of
LLM-based and program analysis-based agents responsible for
collaborative tasks to predict future refactoring activity. This
framework comprises of (1) a “Design Issue Analysis Agent”
that leverages program analysis tools to identify potential
design anomalies, (2) a “Program Analysis Agent” that ex-
tracts relevant context from the codebase using established and
lightweight program analysis techniques, (3) a “Context-aware
Prompt-building Agent” that dynamically constructs prompts
based on previous analysis results, and (4) an “LLM-based
Ranking Agent” that prioritizes localized design issues based
on their impact and relevance. This ranking agent is inspired
by the work on LLM-based software activity ranking [10].

Second, LLM-Friendly Code Context Representation:
Inspired by NExT [11], on representing execution traces
in a natural language, we propose a novel representation
of program analysis outputs tailored for LLMs. Traditional
program analysis output often comprises of massive amounts
of program dependency graphs (PDGs) or full Abstract Syntax
Trees (ASTs), which are difficult or infeasible representations
for LLMs to effectively process [11, 12]. Our approach ad-
dresses this by (1) summarizing complex source code data
into concise NL descriptions and (2) preserving code structure
through NL contextual summaries. In brief, program analysis
can effectively summarize the heavily involved abstractions
into a natural-language format more suitable for LLMs.

Third, Context-Aware Prompt Generation: LOCAL-
IZEAGENT introduces a prompt generation module that dy-
namically synthesizes prompts based on the specific refactor-
ing context and code analysis summaries. Since our approach
is designed as a framework, it is extensible to accommodate
additional refactoring scenarios and program analysis tasks.

To evaluate LOCALIZEAGENT, we conduct an experiment
on a diverse set of real-world codebases from a refactor-
ing dataset [13]. Our results demonstrate that our approach
achieves a 206% relative improvement in accuracy for lo-
calizing design issues, a 166% improvement for complexity
issues, and a 138% improvement for information-hiding issues
compared to the baseline LLM-based techniques. Moreover,
our approach demonstrates significant gains across different
refactoring types, with the best models outperforming the
baselines by an average of 75% to 184% in Exach-Match@1.

In brief, the main contributions of this paper are as follows:
• To our knowledge, LOCALIZEAGENT is the first work

proposing to leverage program analysis tasks to synthe-
size natural language summaries of relationships between
system abstractions to facilitate design issue localization.

• We introduce a multi-agent, LLM-agnostic framework
LOCALIZEAGENT, that is adaptable for future LLMs,

refactoring activities, and program analysis tasks.
• A natural language-based representation of program anal-

ysis output that enhances LLMs’ abilities to handle
software design input more effectively than traditional
static analysis-based representations.

• Experiments on a real-world dataset of refactorings re-
solving design issues demonstrate our tool’s effectiveness
and provide an evaluation benchmark for future research.

II. BACKGROUND

Large Language Models (LLMs) have emerged as powerful
tools for various code intelligence tasks, demonstrating re-
markable capabilities in code understanding and generation
[3, 14, 15]. The application of LLMs has expanded rapidly
across the software engineering domain, encompassing tasks
such as code translation [16], automated program repair [8],
code review [17], and fuzzing [18]. Pomian et al. [19] gener-
ates and ranks extracted method refactorings.

Recent advances in large language models introduce the
concept of “agents”, which are components that enhance the
LLM’s capabilities by providing the additional contexts for
specific tasks. These interconnected agents enable LLMs to in-
teract with external tools, effectively expanding their problem-
solving abilities beyond the confines of their initial training
data. For instance, researchers have developed agents that
allow LLMs to explore codebases [8, 20], execute and validate
patches [8], and formulate plans for complex tasks [8].

III. MOTIVATION

A. Motivating Example

Let us use a real-world example to motivate our solution.
Consider the example in Fig. 1. We have a real-world Java
class that violates the separation of concerns design principle.
The class handles multiple responsibilities, such as error han-
dling and progress monitoring, leading to increased complexity
and reduced maintainability. As a result, a software quality
evaluation tool, named PMD [21], reports a high cyclomatic
complexity score for the code before refactoring (Listing 1).
Note that such a traditional software design evaluation tool,
like PMD [21], is primarily used to detect high-level code
smells using code metrics and rules (e.g., god classes). It
cannot provide actionable suggestions on methods and classes
such as code refactoring including splitting a god class or
moving a method to another class, etc.

One of our primary objectives is to bridge the critical gap
between high-level issue detection and actionable feedback.
In our work, actionable feedback for fixing design issues
and refactoring changes are treated as distinct tasks. Because
refactoring may include changes that do not directly address
design issues, some of them may also remain unresolved
through refactoring (which falls beyond our scope). In brief,
our focus is specifically on design issues that can be effectively
resolved through refactoring.

Localizing and fixing such design issues can be challenging
for developers, as it requires identifying the specific parts
of the code that need to be changed. We hypothesize that

1 ...

2 static void initialiseAndInstallRepository(IConfigurationElement remoteRepositoryElem
, RepositoryPlugin localRepo,

3 MultiStatus status, IProgressMonitor monitor) {
4 SubMonitor progress = SubMonitor.convert(monitor, 3);
5 - String implicitStr = remoteRepositoryElem.getAttribute("implicit");
6 - String repoName = remoteRepositoryElem.getAttribute("name");
7 - if (repoName == null) repoName = "<unknown>";
8 - if ("true".equalsIgnoreCase(implicitStr))
9 try {
10 - RemoteRepository repo = (RemoteRepository)remoteRepositoryElem.createExecutableExtension("class");
11 repo.initialise(progress.newChild(1));
12 installRepository(repo, localRepo, status, progress.newChild(2));
13 } catch (CoreException e) {
14 String message = MessageFormat.format("Failed to initialise remote repository {0}.", repoName);
15 if (status != null)
16 status.add(new Status(IStatus.ERROR, Plugin.PLUGIN_ID, 0, message, e));
17 Plugin.logError(message, e);
18 }
19 - else {
20 - progress.worked(1);
21 - }
22 } ... Listing (1) Code Before Refactoring

1 ...

2 static void initialiseAndInstallRepository(RemoteRepository repo, String repoName, RepositoryPlugin localRepo,

3 MultiStatus status, IProgressMonitor monitor) {
4 // Function body omitted for brevity
5 ... Listing (2) Code After Refactoring

Fig. 1: A Real-World Refactoring Instance Demonstrating Variable Parameterization
Note: In Listing 1, red lines indicate code removed after refactoring. Yellow highlighting in Listing 1 shows the parameters that were removed, and the

green highlighting in Listing 2 shows the parameterized variables.

the Large Language Models (LLMs) are able to identify
flawed relations among software components and program
elements, such as misplaced methods and other irregular code
structures, and suggest refactoring changes to fix those issues.
However, our preliminary experiment with LLMs (e.g., GPT-
4o) using naive prompts reveals their limitations in effectively
identifying and localizing design issues in (Listing 2) [22].

Observation 1 [Limitations of Current LLM-based Ap-
proaches]. LLMs’ ability to recognize and fix design issues is
limited. Naive prompting techniques often fail to capture the
nuances of design principles, leading to ineffective localization
of design issues in existing codebases [22].

Observation 2 [Challenges in Processing Complex Code
Representations]. LLMs require global contextual informa-
tion to understand and analyze design issues in codebases
effectively. However, the use of complex code representations,
such as call graphs and program dependency graphs, can pose
challenges for LLMs due to their limited understanding of
programming languages [12] and the potential for inconsistent
output due to unfamiliar input structure [11]. These limitations
hinder LLMs’ ability to make informed decisions based on the
complex relations and dependencies in source code.

B. Key Ideas

From the observations, we have the following key ideas
when designing LOCALIZEAGENT:

1) Key Idea 1 [Multi-Agent Collaborative Design Issue
Detection and Fixing Suggestions]: Recognizing design issues
and deciding refactoring fixes is a complex task that requires
analyzing various aspects of the codebase. Thus, we introduce

a multi-agent learning framework in which specialized agents
collaborate to achieve the tasks. We break down the problem
into different subtasks, each handled by specialized agents
designed to process information to identify and fix the issues.

2) Key Idea 2 [LLM-Friendly Code Context Representa-
tion]: To enable LLMs to analyze design issues effectively, we
introduce a novel code context representation that is tailored
to their strengths. Based on observation 2, traditional code
representations, such as program dependence graphs (PDGs),
are complex and can exceed the context window of LLMs,
hindering their ability to process and understand the entire
codebase. Thus, we propose a lightweight analysis technique
that generates the concise natural language summaries of
code metrics and dependencies. These summaries capture key
project’s structure, making it understandable for LLMs.

3) Key Idea 3 [Context-Aware Prompt Generation]: The ef-
fectiveness of LLMs heavily relies on the quality and relevance
of the prompts [23, 24]. Generic or poorly constructed prompts
often lead to suboptimal results, as they fail to capture the
specific nuances and requirements of different scenarios. To
address this limitation, we introduce a context-aware prompt
generation technique that dynamically adapts the prompts
based on the unique characteristics of each refactoring context.
By leveraging the information obtained from our agents, we
generate prompts that are tailored to the specific design issues
and refactoring opportunities present within the codebase. For
instance, as the above example requires a “parameterizing
variable” refactoring, the LLM is prompted to identify both
the variable and functions that need to be changed.

4) Key Idea 4 [LLM-based Ranking Agent]: While local-
izing design issues is crucial, prioritizing and ranking these
suggestions is equally important. Without a proper ranking
mechanism, developers may waste valuable time and resources
addressing irrelevant or low-impact suggestions. We introduce
an LLM-based Ranking Agent that leverages the collective
knowledge and analyzing capabilities of LLMs and static
analysis tools to prioritize the localized design issues.

C. Problem Formulation

We formulate the design issue localization using LLMs as
follows. Given a codebase CB with potential design issues,
we aim to leverage LLMs to identify the specific functions
or methods that should undergo refactoring to resolve these
issues. By localizing the design issues at the function level,
we aim to provide developers with actionable insights into
which parts of the code require attention and improvement.
Formally, let CB be a codebase having a set of functions
F = {f1, f2, . . . , fn}. The goal is to identify a subset of
functions F ′⊆F that exhibit design issues that can be fixed via
refactoring. The LLMs are tasked with analyzing the codebase
CB and generating a set of locations L={l1, l2, . . . , lm}, where
each location li refers to a function fj ∈ F ′ to be refactored.

IV. LOCALIZEAGENT APPROACH

A. Overview

Figure 2 illustrates our approach for localizing design issues
in source code. It uses a cooperative communication paradigm,
where agents work together towards the shared goal of identi-
fying design issues. The communication structure is centered
around the Planning Agent serving as the central authority
that manages the information flow and delegates tasks to the
other agents. As seen in Fig. 2, the Planning Agent begins
by invoking the Design Issue Analysis Agent to run a static
analysis tool on the input code, identifying potential design
issues. Using this information, the Planning Agent then gets
the Program Analysis Agents to extract relevant code context
by using lightweight analysis tools. These tools are used to cre-
ate short summaries in natural language that capture important
details about the code’s structure, dependencies, metrics, and
design attributes. Next, the Context-aware Prompt Building
Agent creates customized prompts based on these summaries
and types of refactoring identified by the Planning Agent.
These prompts are given to an LLM to find specific design
issues in the codebase and suggest refactorings. Finally, LLM-
based Ranking Agent reviews the code, its context, and
suggestions to prioritize the important issues.

B. Design Issues

Design issues in software systems manifest as structural
problems that impede maintainability, extensibility, and code
quality, typically emerging when code violates fundamental
principles such as separation of concerns, information hid-
ing, and modularity [25]. The design issues in our study is
grounded in the seminal work of Hans Van Vliet [25]. For

Design Issue Analysis
Agent

Planning Agent

Run a static analysis tool to identify the
design issues

Source
Code

Program Analysis Agents

Check design issue

Extract relevant context to
localize the design issues

Get the refactoring type needed

Context-aware
Prompt Building Agent

Design Issue Localization

Source Code

Parse the code

Abstract Syntax Tree

Extract Relevant
Information

1. Fan-In / Fan-Out

Run ML-based predictive tool to identify
the refactoring needed to fix the issues

Prompt:{
 Query: Tailored based on
 Code Snippet: Input source code
 Context: Based on select relevant
 information from ’s analysis output
}

Design Issue
Localization Prompt

3. Variable Usage Analysis

4. Class Coupling Metrics

2. Method Call Dependency

Natural language outputs:

Design Issues Identification

Localization
Report

Ranking
Agent

Ranked Suggestion

1

2

3

4

5

76

A

B

C

LLM

LLM

B

C
B

Input Source Code

Input Source Code

C

Fig. 2: LOCALIZEAGENT: Architecture Overview

these issues, we employ PMD [21], a widely recognized static
analysis tool to detect potential design issues in source code.

A comprehensive review of PMD rules [21] was conducted
to ensure alignment with the design categories listed in [25].
Multiple authors engaged in rigorous discussions to catego-
rize the PMD’s rules based on their descriptions. A specific
evaluation scheme was implemented to ensure objectivity and
reliability in the categorization process. Our criteria are the
rule’s primary focus, its impact on reuse and maintenance, and
its relation to the design principles. This process yielded eleven
PMD rules corresponding to the design categories. However,
the abstraction and system structure issues were not addressed
via refactoring. Thus, our analysis does not focus on three
categories, resulting in a final set of eight PMD rules.

These eight rules address three crucial aspects of software
design: modularity, information hiding, and complexity.
Modularity, which promotes the separation of concerns, is
assessed through rules detecting God Class, Coupling Between
Objects, and Data Class [21]. Information hiding, essential for
encapsulation and reducing dependencies, is evaluated using
rules for Law of Demeter and Excessive Parameter List [21].
Complexity, which significantly impacts understandability and
maintainability, is measured using rules for Too Many Meth-
ods, Excessive Public Count, and Cyclomatic Complexity [21].

C. Refactoring Types

Developers address the design issues through various mech-
anisms, e.g., architectural restructuring, design pattern solu-
tions, or code refactoring. In our study, we focus on the
historical refactoring changes that specifically address design
issues. We combine refactoring with static analysis to ensure
we study the cases where refactoring demonstrably resolved
design issues, rather than considering all refactoring instances.

Our filtering on design issues in Section VIII-A2 resulted in
the identification of four refactoring types that resolved those
issues. That also ensures the ground truth for our experiments:

• Parameterize Variable (PV-Ref): This refactoring extracts
a variable as a parameter, reducing coupling and increas-
ing flexibility in design.

• Inline Method (IM-Ref): Inline Method replaces a method
call with the method’s contents, eliminating the need for
a separate method and potentially reducing complexity.

• Inline Variable (IV-Ref): This refactoring replaces vari-
able references with the variable’s initializer expression,
simplifying the code structure.

• Move Method (MM-Ref): Move Method moves a method
to another class where it is more closely related, improv-
ing cohesion and reducing coupling between classes.

V. PLANNING AND ANALYSIS AGENTS

The Planning agent consists of two main components: the
Design Issues Analysis agent and the Program Analysis agent,
which work in tandem to identify design issues and extract
relevant context for issue localization.

A. Design Issues Analysis Agent
The Design Issues Analysis agent is a specialized entity

within our approach tasked with identifying design issues and
the refactoring needed for a given codebase.

First, the agent leverages static analysis tools, such as
PMD [21], to scan codebases and detect potential design
anomalies. We use a set of rules from PMD for the tasks.
For instance, PMD can detect coupling between objects and
god classes, as shown in the example output below:

CouplingBetweenObjects: High amount of different
objects as members denotes a high coupling

GodClass: Possible God Class (WMC=78, ATFD=36,
TCC=8.000%)

Second, we integrate Aniche et al. [13], which trained a
random forest algorithm on a dataset to predict the refactoring
needs for a codebase. It takes the source code and predicts the
refactoring types (e.g., inline method). For instance, for the
example in Fig. 1, the tool would return that a parameterizing
variable is needed to fix the issue.

The information gathered from this analysis is then used in
the context-aware prompt-building phase (Fig. 2).

B. Context Extraction via Program Analysis Agents
The Program Analysis agents utilize static analysis tools to

extract the relevant context from the codebase to aid LLMs
in design issue localization. We propose a novel approach
using lightweight analysis techniques as tools to generate
concise, natural language summaries of key code metrics,
dependencies, and design attributes.

1) Lightweight Code Analysis Tools: We utilize the fol-
lowing analysis techniques to demonstrate the effectiveness of
using LLM-friendly program analysis outputs. The selection
of these specific tools is based on their relevance to assist in
identifying design issues that affect reuse and maintenance:

a) Fan-in and Fan-out Analysis (AFI/FO): Fan-in de-
notes the number of times a method is called, and fan-out
denotes the number of methods that are being called within a
method [26]. Motivated by Schwanke et al. [26] and Layman
et al. [27], we hypothesize that including a summary of this
analysis task can indicate the coupling and complexity issues.

b) Call Relationships Analysis (ACR): By identifying
direct call dependencies between methods, this analysis helps
detect potential coupling and cohesion issues.

c) Variable Usage Analysis (AV U): This tracks variable
usage patterns, which can indicate opportunities for refactoring
that involve variables, such as parameter introduction.

d) Class Coupling Analysis (ACC): By assessing class
dependencies, this analysis provides insights into system mod-
ularity and potential areas for improving design quality.

2) Integration with LOCALIZEAGENT: The Program Anal-
ysis agents form an integral part of the LOCALIZEAGENT
framework, bridging the gap between raw code and LLM-
based analysis. The process works as follows:

1) Code Parsing: The agents parse the input codebase to
construct an AST.

2) Analysis Application: Each lightweight analysis tech-
nique (Ai) is applied to the AST.

3) Summary Generation: The analyses produce natural lan-
guage summaries (S) of relevant code properties.

4) LLM Integration: The Context-aware Prompt Building
agent uses S to generate targeted prompts for the LLM.

These tools generate concise, natural language summaries,
capturing key code structure and relationship aspects. Despite
our current implementation, our approach is flexible, allowing
the integration of additional analysis techniques for various
design issues in the future. We use AST-based analysis to
ensure accuracy and maintain code structural integrity.

VI. CONTEXT-AWARE PROMPTING AGENT

The Context-aware Prompting agent bridges the gap be-
tween code analysis and LLM capabilities. It leverages the
outputs from the Design Issue Analysis and Program Analysis
agents to generate tailored prompts that guide the LLM in
ranking design issues effectively. By incorporating relevant
context into the prompts, we aim to enhance the LLM’s ability
to identify and suggest appropriate refactorings.

The Planning agent orchestrates the interaction between
different components of our system. It triggers the Context-
aware Prompting agent after receiving inputs from the Design
Issues Analysis agent (identifying design issues and required
refactoring types) and the Program Analysis agent (extracting
relevant code context). This sequential process ensures that the
prompts are informed by comprehensive code analysis.

a) Prompt Generation: Formally, let R={r1, r2, . . . , rn}
be the set of identified refactoring types, and A = {a1, a2, . . .,
am} be the set of analysis tools, each providing a summary si
of code metrics and attributes. For a refactoring type rj ∈ R,
we define a prompt generation function f :

prj = f(rj , Srj) (1)

Srj = {si | ai is relevant to rj} represents the relevant analysis
summaries. The function f is implemented as a template-based
system, augmented with heuristics that determine which code
attributes are most relevant for each refactoring type. This
approach allows for flexibility in prompt construction while
maintaining consistency across different refactoring scenarios.

TABLE I: Program Analysis Tools Used for Each Refactoring Type
Refactoring Type Tools Rationale

Parameterize
Variable

ACR Methods with high dependency on specific variables can be extracted as parameters to reduce coupling.
AV U Usage patterns of variables across functions indicate candidates for parametrization.

Inline
Method

AFI/FO Methods with low fan-in/out can be inlined to reduce unnecessary abstraction and simplify the code.
ACR Direct call dependencies can help to identify methods that can be inlined to eliminate redundant calls.
ACC Interdependencies between classes can indicate popular methods whose inlining can effectively reduce coupling.

Inline
Variable AV U Code can be simplified by inlining variables which are found to be frequently initialized.

Move
Method

AFI/FO Methods with a high fan-out could reduce coupling by relocating them to a more relevant class.
ACR Methods that are closely related to a different class should be moved to reduce cross-class dependencies.
ACC Methods that contribute to high coupling should be relocated to more appropriate classes.

Note: These tools serve as a proof-of-concept for LOCALIZEAGENT’s capabilities. Our approach can be extended to incorporate additional analysis tools.

b) Example of Prompt Generation: To illustrate this pro-
cess, consider the prompt generated for Parameterize Variable
shown in Listing 3. To aid the localization procedure, the
prompt incorporates the contexts from the variable usage and
call relationship summaries to guide the LLM.

Listing 3: Example of a prompt for issue localization
Query: Analyze the code snippet to identify

variables that should be parameterized to
reduce coupling.

Output Formatting: Don’t use ‘ or * on the
response. Return the output using the
following format only: Function:
<func_name>, Variable: <var_name>.

Few-shot E.g: Function: get_user, Variable:
user

Code Base: {Source Code}

Context: {
Variable Usage Analysis (A_{VU})
Class Coupling Analysis (A_{CC})

}

The context-aware prompt builder is performed for each
refactoring type rj ∈ R, generating a set of prompts P={pr1 ,
pr2 , . . ., prn} that cover the various design issues identified
in the codebase. Table I presents the analysis tools used for
each refactoring type. The mapping of these tools is based on
the characteristics of each refactoring type and the specific
contextual information each analysis tool extracts (Table I).

VII. DESIGN ISSUE LOCALIZATION AND RANKING

This section details how we leverage LLMs to identify the
specific locations of design issues and prioritize them.

A. Design Issue Localization

The localization process utilizes the context-aware prompts
generated in the previous stage to guide an LLM in identifying
specific functions or methods that exhibit design issues. This
approach combines the strengths of static analysis tools with
the contextual understanding capabilities of LLMs. Let CB be
the original codebase, and A = {a1, a2, . . . , an} be the set
of code analysis tools, where each technique ai generates a
summary Si. Given a refactoring type rj ∈ R, we generate
the prompt pr, which contains the instruction, codebase CB,

and relevant summaries Sr. The LLM, denoted as M, takes
the prompt as an input. It then generates a set of locations
Lr = {l1, l2, . . . , lk} that correspond to the design issues:

Lr = M(pr) (2)

Each location li ∈ Lr represents a function name in the
codebase where a design issue related to the refactoring type
r has been identified. The LLM achieves this by analyzing the
code structure, dependencies, and metrics given in the context.

B. Prompting to Rank the Localized Design Issues

Listing 4: Prompt template for ranking suggestions
Given the following context and source code,

rank the suggested functions in order of
relevance. Don’t remove any functions from
the list except for duplicates.

Context: {context}

Source Code: {Codebase}

Suggested Functions: {localized functions}

Return the ranked function as a list
Ranked functions:

While our localization process identifies potential areas for
improvement, not all issues are equally significant or urgent.
Thus, the prioritization of the identified design issues is crucial
for efficient refactoring. This enables developers to optimize
their limited time and resources by focusing on the most
impactful refactorings. To address this need, we introduce an
LLM-based ranking approach that leverages contextual code
understanding to prioritize the identified design issues.

The motivation behind using an LLM for ranking stems
from its ability to understand code relationships and recent
success in ranking code fix suggestions [10]. Unlike rule-based
systems, an LLM can potentially capture subtle interactions
that influence the importance of a refactoring suggestion.

The ranking process begins by extracting the code context
from the source code using the tools described in Section V-B.
This context, along with the original code and the localized
functions suggested for refactoring, is then used to create the
prompt. The prompt instructs the LLM to rank the suggested
functions based on their relevance for refactoring. The ranking
process is guided by the prompt in Listing 4.

VIII. EVALUATION

To evaluate LOCALIZEAGENT, we seek to answer the
following research questions:

a) RQ1 (§ VIII-B) How effective is LOCALIZEAGENT
on localizing design issues?: We assess the ability of LO-
CALIZEAGENT to localize design issues in two scenarios:
(A) Localizing a single design issue: We evaluate LOCAL-

IZEAGENT’s effectiveness in identifying the specific lo-
cation of a single design issue within a codebase.

(B) Localizing multiple design issues: We investigate its
performance in localizing multiple design issues.
b) RQ2 (§ VIII-C) How sensitive is LOCALIZEAGENT

under different API settings when suggesting design issues
refactoring?: We perform a sensitivity analysis to evaluate
how its performance varies under different settings.

c) RQ3 (§ VIII-D) (Ablation Study) How does each
component in LOCALIZEAGENT contribute to the perfor-
mance of localizing issues?: We investigate the contribution
of each key component in LOCALIZEAGENT, namely the
multi-agent learning framework, the natural language-based
code analysis representation, and context-aware prompting.

d) RQ4 (§ VIII-D) What is the time and budget
to localize design issues?: We evaluate LOCALIZEAGENT’s
efficiency by measuring the time and financial cost to localize
issues in the codebases of varying sizes.

A. Experimental Methodology

1) Dataset: We used the refactoring dataset released by
Aniche et al. [13]. The dataset contains 11K diverse projects
from Fdroid, Apache, and GitHub repositories. Following a
similar methodology as NatGen [14], we randomly sampled
only 6K projects due to the cost. These projects can contain
multiple commits. Each commit contains the source code
before and after refactoring, the refactoring types applied, and
the function that changed, including its line number.

The authors used a static analysis tool, RefactoringMiner
[28], to extract ground truth information on the refactoring
types applied and the names of the refactored methods.

Note that RefactoringMiner does not identify the design
issues. Instead, it serves as a mining tool that, when provided
with the code before and after modifications, detects the
types of refactorings applied with +90% precision on most
refactoring types. Moreover, those refactoring changes might
contain fixes that are unrelated to design issues. Thus, we used
RefactoringMiner along with the PMD tool to collect a dataset
of PMD-reported code smells connected to RefactoringMiner-
identified refactoring types which resolved them as follows.

2) Rule-Based Design Issues Filtering: Specifically, we
used the PMD tool to filter our dataset and ensure that the
refactoring addresses the design issues. Formally, let C be
a commit representing a refactoring, and let Cbefore and
Cafter be the code snapshots before and after the refactor-
ing, respectively. The set of design issues identified by the
PMD tool [21] in a codebase Cb is denoted as I(Cb). Each
issue i ∈ I(Cb) belongs to one of the design categories

D = {modularity, information hiding, complexity}. We
then apply the following criteria:

1) Remove duplicate code and code with longer lines than
the LLMs context window to maintain dataset quality.

2) For each commit C, run PMD on Cbefore and Cafter to
obtain the sets of design issues I(Cbefore) and I(Cafter).

3) Select commit C if and only if both:
• ∃i ∈ I(Cbefore) ∩D: There exists at least one issue i in
Cbefore that belongs to any of the design categories D.

• ∃i ∈ I(Cbefore) \ I(Cafter): There exists at least one
issue i in I(Cbefore) that is not in I(Cafter). Thus, the set
of issues in Cafter is a proper subset of those in Cbefore,
meaning the refactoring has resolved at least one issue.

Note that the combination of RefactoringMiner and PMD
cannot predict design issues in source code (because no change
is provided in our design issue detection problem). They can
only recover the past activities to build our oracle. PMD cannot
be used on its own to solve our problem either as it detects only
high-level code smells without fixing suggestions (Section III).

TABLE II: Statistics of the Evaluation Dataset

Refactoring
Types

Design Issues

Modularity Information
Hiding Complexity Total

Single Multi Single Multi Single Multi Single Multi
Parameterize

Variable 18 1 9 12 11 5 38 18

Inline
Method 237 43 48 83 409 102 694 228

Inline
Variable 66 11 21 31 100 24 187 66

Move
Method 459 424 119 338 519 580 1,097 1,342

Total 780 479 197 464 1,039 711 2,016 1,654

3) Dataset Statistics: Table II presents the statistics of our
dataset that satisfies our filtering criteria in Section VIII-A2.
We categorize the dataset based on the number of refactoring
operations performed to address design issues in each code
instance. If only a single refactoring operation (e.g., one
“Move Method”) is applied to fix the design issues in a
codebase, we consider it a single issue. Conversely, if multiple
refactoring operations of the same type (e.g., more than one
“Move Method”) are applied to a single codebase to resolve
design issues, we classify it as having multiple issues.

4) Models: We leverage three widely used LLMs: GPT-
4o, Claude 3, and Gemini 1.0. We chose them based on
their accessibility through public APIs, cost-effectiveness, and
demonstrated proficiency in coding tasks [29, 30]. GPT-4o,
developed by OpenAI, offers enhanced reasoning capabilities
with a 128K input token limit. Google’s Gemini 1.0 pro pro-
vides improved reasoning within a 32K token limit. Claude 3.0
(Haiku) from Anthropic offers an extended 200K token limit,
allowing for the processing of larger code segments. We utilize
Python and the JavaLang parsers to implement lightweight
static analysis techniques, generating concise natural language
summaries from ASTs. We employ the PMD tool [21] to
identify design issues and verify refactoring effectiveness.

TABLE III: Results for Design Issue Localization per Design Issue Category (RQ1)
Claude 3 ChatGPT 4o Gemini 1.0 Baseline-LLMDesign Issues EM@1 EM@5 EM@10 EM@1 EM@5 EM@10 EM@1 EM@5 EM@10 EM@1 EM@5 EM@10

Single 24.6 56.0 66.0 28.5 59.3 66.2 22.9 44.7 50.9 10.7 42.5 54.3Complexity Multi 48.6 55.4 60.3 69.8 45.7 56.0 37.9 47.4
Single 30.3 52.8 58.4 40.3 61.0 62.8 32.9 47.6 48.9 16.9 48.5 53.7Information

Hiding Multi 58.9 66.1 56.5 62.3 50.0 54.5 50.8 60.2
Single 16.0 50.2 59.0 24.5 54.0 62.9 19.8 51.0 61.6 8.0 34.8 49.2Modularity Multi 40.3 48.2 43.2 50.9 34.8 41.9 32.7 45.8

TABLE IV: Results for Design Issue Localization per Refactoring Type (RQ1)
Claude 3 ChatGPT 4o Gemini 1.0 Baseline-LLMRefactoring

Types EM@1 EM@5 EM@10 EM@1 EM@5 EM@10 EM@1 EM@5 EM@10 EM@1 EM@5 EM@10
Single 16.2 51.4 54.1 24.3 51.4 56.8 13.5 37.8 51.4 10.8 35.1 48.7Parameterize

Variable Multi 35.7 50.0 35.7 35.7 35.7 57.1 28.6 57.1
Single 21.2 54.9 65.4 23.6 56.5 63.6 18.1 40.7 48.1 8.4 39.6 51.9Inline

Method Multi 55.9 62.9 59.2 67.1 46.0 50.7 39.9 50.2
Single 47.7 74.4 84.6 43.6 70.8 73.8 44.6 78.5 88.7 27.2 64.6 69.7Inline

Variable Multi 44.4 54.0 49.2 60.3 49.2 66.7 57.1 66.7
Single 19.3 54.0 62.6 25.0 60.0 64.9 22.6 51.7 60.5 8.8 36.7 49.7Move

Method Multi 47.6 54.9 44.0 51.2 36.2 42.3 32.1 43.5

5) Metrics: We use the Exact-Match@K metric (EM@K)
to measure the accuracy of the first K results in detection.

Let L = {l1, l2, . . . , lK} be the ranked set of the first K
suggestions generated by a model for a given design issue,
and let gt be the ground truth localization of the design issue.
We define the Exact-Match@K metric as follows:

EM@K = 1(∃l ∈ L : l = gt) (3)

where 1(·) is the indicator function that returns 1 if the
condition inside the parentheses is true and 0 otherwise. That
is, EM@K=1 if at least one of the first K suggestions exactly
matches with a design issue in the ground truth.

The total Exact-Match@K (EM@K) across all design
issues or refactoring types in the dataset is computed as:

1

N

N∑
i=1

EM@Ki (4)

where N is the total number of design issues or specific
refactoring types. We compute EM@K for different K values.

Note that the LLM outputs the function name and additional
refactoring-specific information, such as variable names or
rationale. While other information provides context for devel-
opers, our evaluation focuses solely on correctly identifying
the specific function name due to ground truth limitations.

B. Effectiveness on Localizing Design Issues (RQ1)

1) Localizing Single Design Issues (RQ1-A):
a) Baseline: We used GPT-4o API (named as Baseline-

LLM in Tables III and IV) with a naive prompt, i.e., prompt
the model to suggest refactoring changes without additional
context. The reason is that GPT-4o has consistently shown
better performance in our evaluation than other models. Thus,
the naive prompt can be fairly compared with others.

b) Procedure: To evaluate the models’ effectiveness in
localizing design issues, we conduct experiments on the
dataset in Section VIII-A3. All APIs are run with temperature
0 and nucleus sampling (top p) as 1 to get a deterministic

output for the reproducibility purpose. We present our results
from two perspectives: 1) design issue categories (Table III) to
assess LOCALIZEAGENT’s performance on broader software
quality aspects, and 2) refactoring types (Table IV) to evaluate
its effectiveness on specific code transformation tasks.

c) Empirical Results: As seen in Tables III and IV,
LOCALIZEAGENT achieves high-performance gains over the
baseline across all design issue categories and refactoring
types. For complexity, information hiding, and modularity is-
sues, LOCALIZEAGENT with GPT-4o outperforms the baseline
on EM@1 by 166%, 138%, and 206%, respectively. This
improvement highlights the better effectiveness of our multi-
agent learning framework and context-aware prompting.

Table IV shows LOCALIZEAGENT’s effectiveness for dif-
ferent refactoring types. Notably, it shows good performance
on the IV-Ref refactoring type, with EM@1 scores surpassing
the baseline by 60% to 75% across all LLMs. This suggests
that the proposed approach is particularly adept at handling
inline variable refactorings, possibly due to the specific code
context and patterns associated with this refactoring type.

The results also highlight some areas for improvement.
The Parameterize Variable refactoring type exhibits lower
performance compared to others, with EM@1 scores ranging
from 13.5% to 24.3%. Despite this, LOCALIZEAGENT still
outperforms the baseline from 25% to 125% for Parameterize
Variable refactoring, indicating the potential for further im-
provement with additional context or refined prompts.

Comparing the results in Tables III and IV, we can observe
the trends in the relative performance among the LLMs. GPT-
4o consistently outperforms the other models across both de-
sign issue categories and refactoring types. In contrast, Gemini
1.0 shows the lowest performance among the LLMs used with
LOCALIZEAGENT. However, even the least performing LLM
with LOCALIZEAGENT surpasses the baseline in all types of
refactoring, demonstrating its robustness across all the fixing
changes. The Baseline-LLM only exhibits better results than
Gemini 1.0 in the Parameterize Variable refactoring type, while

LOCALIZEAGENT with Gemini 1.0 outperforms the baseline
in all the remaining refactoring types.

Furthermore, our experiments reveal significant gains when
K increases from 1 to 10, with EM scores improving by up to
43% (i.e., for Modularity, from 16% to 59%), demonstrating
that LOCALIZEAGENT captures correct issues within its top
recommendations. While this validates the framework’s detec-
tion capabilities, enhancing the ranking mechanism remains
important for prioritizing the most critical suggestions.

d) A Case Study: We evaluate our approach using the
motivating example in Section III that needs Parameterize
Variable refactoring. Our result shows an improved perfor-
mance by incorporating the relevant context, i.e., ACR and
AV U . LOCALIZEAGENT successfully identified the function
initialiseAndInstallRepository within the top five sug-
gestions, indicating that the function requires parameterizing
variables. In contrast, the naive prompt approach failed to
localize the issue within the top 10 suggestions [22].

2) Localizing multiple design issues (RQ1-B):
a) Baseline: We used the same baseline as RQ1-A.
b) Procedure: To measure correctness, we check if all

the ground truth issues are within the top K results. Since
evaluating multiple suggestions with EM@1 would be infea-
sible, we used only EM@5 and EM@10 for evaluation.

c) Empirical Results: The results in Tables III and IV
show that localizing multiple design issues is more challenging
than single issues, with the consistently lower EM@5 scores.
However, the Inline Method refactoring is an exception. The
model exhibits a comparative or even better accuracy for
multi-issue localization. Interestingly, the baseline approach
demonstrates a smaller performance gap between the single-
issue and multiple-issue localization scenarios compared to
LOCALIZEAGENT. While GPT-4o dominated for single-issue
localization, Claude-3 showed better performance for multiple-
issue localization, with 2.4 and 3.8 percentage points increas-
ing in the information hiding category. Despite the challenges,
LOCALIZEAGENT still outperforms the baseline in most de-
sign issue categories and refactoring types.

C. Sensitivity Analysis (RQ2)

a) Procedure: To assess the sensitivity of LOCAL-
IZEAGENT to different API settings, we sampled 37 codebases
from each refactoring category in our dataset. We varied the
temperature parameter, which controls the randomness in the
LLM’s output. While our main experiments used temperature
0 to ensure reproducible results, we also evaluated the tem-
peratures of 0.5 (T-0.5) and 0.9 (T-0.9) to analyze how output
diversity affects performance. These values were chosen as
they represent common settings: T-0.5 balances creativity with
consistency, while T-0.9 maximizes exploration of solutions.

b) Empirical Results: Fig. 3 shows the heatmap of the
differences in EM scores between the temperature settings of
T-0.5 and T-0.9 for three LLMs and four refactoring types. The
heatmap visually represents these differences; red indicates
a performance decrease, and blue signifies a performance
increase when changing from T-0.5 to T-0.9.

Fig. 3: Model Temperatures and Exact-Match Accuracy (RQ2)

Notably, an increase in temperature from T-0.5 to T-0.9
typically decreases the EM scores across most settings, sug-
gesting that higher randomness might dilute the precision of
the suggestions. For instance, the Gemini model for the Inline-
Method refactoring experienced a sharp decrease in EM@1,
highlighting its particular sensitivity to increased temperature.
Conversely, some refactoring types, such as the Inline-Variable
refactoring with the Openai model, show a slight improvement
with a higher temperature. This indicates that some refactoring
types might benefit from the increased exploration, enabling
the model to capture broader solution patterns. These findings
illustrate the nuanced impact of temperature on model perfor-
mance and underscore the necessity of tuning this parameter.

D. Ablation Study (RQ3)

a) Procedure: To assess the contribution of each com-
ponent in LOCALIZEAGENT, we conduct an ablation study by
evaluating the performance under different settings, focusing
on (1) the Program Analysis Agent and (2) the Ranking agent.
First, we evaluate the effectiveness of LOCALIZEAGENT with-
out including any context (i.e., without AFI/FO, ACR, AV U ,
ACC). Next, we study the contribution of the Ranking Agent.

b) Empirical Results: Table 5 presents our ablation study
results. In the case of the Parameterize-Variable and Inline-
Variable refactorings, our context-aware prompting signifi-
cantly contributes to performance across all LLMs. For in-
stance, the EM@1 scores drop from 2.9 to 11 percentage
points for Parameterize-Variable refactoring for Claude 3 and
GPT-4o. For the Inline-Variable refactoring, without context,
the results show 1.6–10.2 percent decrease across all mod-
els. Moreover, the ranking component also shows a positive
contribution, with EM@1 improvements ranging from 4.6 to
10.2 percentage points for Inline-Variable. GPT-4o benefits the
most from context and ranking, achieving the highest EM@1
scores of 24.3% and 43.6% for the Parameterize-Variable
refactoring and the Inline Variable refactoring, respectively.

TABLE V: Ablation Study for Localizing Design Issues per Refactoring Type (RQ3)

Claude 3 ChatGPT 4o Gemini 1.0Refactoring Type EM@1 EM@5 EM@10 EM@1 EM@5 EM@10 EM@1 EM@5 EM@10
Parameterize Variable 16.2 51.4 54.1 24.3 51.4 56.8 13.5 37.8 51.4
↪→ w/o context 13.3 38.3 40.0 13.3 35.7 43.3 21.7 33.3 41.7
↪→ w/o ranking 18.9 45.9 51.4 27.0 45.9 56.8 13.5 35.1 48.6

Inline Method 21.2 54.9 65.4 23.6 56.5 63.6 18.1 40.7 48.1
↪→ w/o context 23.4 54.6 61.0 21.7 45.6 51.0 21.7 45.7 51.0
↪→ w/o ranking 28.8 54.6 64.2 27.0 51.3 62.9 17.4 36.5 43.3

Inline Variable 47.7 74.4 84.6 43.6 70.8 73.8 44.6 78.5 88.7
↪→ w/o context 38.0 57.4 61.0 42.0 63.6 71.7 34.4 45.6 48.2
↪→ w/o ranking 38.0 61.5 70.8 39.0 63.6 67.7 34.4 60.5 67.7

Move Method 19.3 54.0 62.6 25.0 60.0 64.9 22.6 51.7 60.5
↪→w/o context 28.4 54.6 61.4 29.1 61.5 66.8 28.5 54.6 61.3
↪→ w/o ranking 20.3 51.8 59.9 27.3 60.6 65.3 24.3 52.0 59.6

In contrast, the impact of context-aware prompting is less
substantial for the Inline-Method and Move-Method refactor-
ings. For Inline-Method, Claude 3 and Gemini 1.0 show slight
improvements in EM@1 without context, while GPT-4o’s
performance drops by 3.4 points, suggesting that the provided
context might be excessive in some cases. For the Move-
Method refactoring, which relies the least on context, i.e.,
AFI/FO, ACR, ACC summary, context removal results in the
smallest impact on EM@1, with the drop from 1 to 2.3 points.
Our ranking shows the mixed impact, with the improvements
for Claude 3 and Gemini 1.0 but a slight decrease for GPT-4o.

The model’s effectiveness is tied to the complexity of the
refactoring type and the LLM’s understanding of the associ-
ated design principles. For refactoring tasks that involve meth-
ods like the Inline Method and Move Method refactorings,
the LLMs can rely on inherent patterns and simpler rules,
reducing the necessity for detailed contextual information. In
these cases, excessive context might introduce noise, leading
to a slight decline in performance. This is observed with the
Inline-Method refactoring for Claude 3 and Gemini 1.0, where
removing context even slightly improves performance, indicat-
ing these models’ efficiency in handling common refactoring
tasks without additional context. This limitation indicates
that our approach may not be universally optimal across all
refactoring scenarios. Future work should explore adaptive
context mechanisms that can dynamically adjust the amount
of the context based on the complexity of the refactoring task.

E. Time Complexity and Cost of APIs (RQ4)

a) Procedure: We assessed the time complexity and cost
of LLM APIs for each refactoring type by sampling 37 code-
bases from each category. This approach maintains consistency
for fair comparisons. Time complexity was gauged by the
end-to-end duration—from sending the request to receiving
LLM-generated refactoring suggestions. Costs were calculated
considering the number of API calls, input/output sizes, and
the pricing plans of each provider. The total cost was derived
from these factors according to the respective pricing models.

b) Empirical Results: As seen in Fig. 4, the results
highlight the differences in time complexity and cost among
LLM APIs for design issue localization. Claude 3 (Haiku)
displays the lowest time complexity and API cost, proving the

0

2

4

6

PV-Ref IM-Ref IV-Ref MM-Ref

Claude GPT-4o Gemini 1.0

(a) Time Complexity (in seconds)

$0.00

$0.20

$0.40

$0.60

PV-Ref IM-Ref IV-Ref MM-Ref

Claude GPT-4o Gemini 1.0

(b) Costs of APIs

Fig. 4: Time Complexity and LLM Costs per Refactoring

most efficient for quick feedback and budget-limited scenarios.
GPT-4o offered a balanced performance in speed but was more
expensive and suitable where trade-offs between speed and
expense are acceptable. Gemini 1.0, while slowest, maintained
a moderate cost, fitting for balancing multiple factors.

MM-Ref refactoring consistently shows higher time com-
plexity and costs across all LLMs. This might be expected as it
uses three different contexts (AFI/FO, ACR,ACC), increasing
processing time. Yet, the Inline-Method refactoring, also using
three contexts, has lower time complexity, suggesting other
factors influence processing speeds. The Inline-Variable refac-
toring, despite its smallest input size, has high time complexity.

This indicates that the inherent complexity of refactoring types
and the efficiency of the LLMs in handling certain contexts
significantly impact the overall performance.

IX. LIMITATIONS AND THREATS TO VALIDITY

Data leakage: We could face the risk of data leakage
in the evaluation dataset. If the LLMs were pre-trained on
the same or similar projects as those used in our evaluation,
it could lead to an inflated performance metric. To mitigate
this risk, we carefully selected a diverse set of real-world
codebases from the refactoring dataset in Aniche et al. [13].

Non-determinism of LLMs: LLMs exhibit non-determini-
stic behaviors, which can lead to variability in the gener-
ated refactoring suggestions. This non-determinism affects the
reproducibility and consistency of our results. The lack of
explainability further compounds this issue, as it makes it
difficult to understand why different suggestions are made
across runs. For mitigation, we used a temperature setting of
0 for more stable predictions. We experimented with different
settings in RQ2 (Section VIII-C).

Rule-based filtering criteria: We applied rule-based fil-
tering criteria using PMD [21] to focus on specific refactoring
types that successfully resolved design issues and contained
the necessary ground truth. While these criteria help us eval-
uate the effectiveness in a controlled setting, they may limit
the generalizability of our findings to other refactoring types or
design issues and introduce false positives. To address this, we
plan to use ML filtering techniques and expand our approach
to a broader range of refactoring types and design issues.

X. RELATED WORK

A. LLM for Code Generation and Understanding
Researchers explored LLMs for code understanding and

generation tasks [3, 14, 15]. Recent works leverage emergent
capabilities of LLMs, such as In-Context Learning for code
intelligence tasks [11, 16, 17, 18, 31], while others explore the
use of multi-agents and LLMs [8]. Dilhara et al. [32] combines
static analysis and LLM to improve the effectiveness of trans-
formation by example. For refactoring tasks, Pomian et al. [19]
proposes a technique to query and rank LLM-suggested extract
method refactorings. Shirafuji et al. [33] introduces a few shot-
learning technique to apply refactoring fixes on code snippets.
In contrast, our work explores how static analysis agents
can supplement LLMs to suggest refactorings that improve
software design [34]. Towards detecting and fixing software
design issues, previous works have explored approaches for
predicting refactoring activity, often at the function level [13].

B. LLM-based Agents for Software Engineering
Bouzenia et al. [8] presents an approach where an LLM,

tasked with program repair, is augmented with “agents” that
utilize external tools to explore the codebase, test patches, and
plan goals. Zhang et al. [20] helps an LLM agent explore a
codebase via provided code search APIs to resolve an issue au-
tonomously. To our knowledge, our work is the first to leverage
a multi-agent framework to detect design issues with LLM-
friendly code analysis summary, and context-aware prompts.

XI. DISCUSSION AND FUTURE WORK

Large Language Model: The effectiveness of LOCAL-
IZEAGENT relies on the code generation capabilities of the
underlying LLM. While we use generic LLMs like GPT-4,
Claude, and Gemini, which outperform code-specific mod-
els [29, 30], evaluating other LLMs provides good insights.
Moreover, we use an LLM-based refactoring-agnostic rank-
ing algorithm. Future research could also explore developing
ranking algorithms tailored to specific refactoring types as
in Pomian et al. [19]. Our agent-based framework allows
researchers to easily adapt and improve it.

IDE Integration: We could enhance developer tools and
workflows by integrating with IDEs. Similar to recent advance-
ments in IDE-integrated AI assistants [19, 35], future research
could focus on embedding our output into IDEs to provide
developers with context-aware, prioritized suggestions.

Expanding Design Issue Coverage: We currently target
three design categories: modularity, information hiding, and
complexity. Expanding this scope to include additional design
principles, such as abstraction and system structure, would
broaden the range of design issues our tool can identify. Future
work should explore alternative static analysis tools beyond
PMD to identify a wider range of design issues.

Supporting More Refactoring Types: We currently focus
on local design issues within a class. Extending to han-
dle global refactoring issues across multiple classes/modules
presents challenges, such as developing techniques to capture
inter-class relations and dependencies. Additionally, the lack
of comprehensive benchmarks for project-level refactoring is
an obstacle. Creating benchmarks through collaborative efforts
or by mining large repositories is essential for future research.

XII. CONCLUSION

This paper introduces LOCALIZEAGENT, a novel approach
that leverages LLMs to effectively localize design issues in
evolving codebases. Its key innovations include the leverage of
multi-agent learning for collaborative refactoring, generating
natural-language summaries of code metrics and dependencies
to reduce input data loads and overcome the LLMs’ context
window limitations, and employing context-aware prompt-
ing tailored to specific refactoring types. Evaluated on real-
world codebases, LOCALIZEAGENT achieves 206%, 166%,
and 138% relative improvements in accuracy for identifying
design issues compared to baseline LLM techniques.

XIII. DATA AVAILABILITY

A replication package, including the source code and
dataset, is available at [36].

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion under Grants: 25-12857, 25-12858, 15-18897, 15-13263,
21-20448, 19-34884, and 22-23812. The third author was
supported in part by 21-20386 and the National Security
Agency grant NCAE-C-002-2021. All opinions are those of
the authors and do not reflect the views of sponsors. Generative
AI was used to revise sections of this paper.

REFERENCES

[1] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and
N. Zazworka, “Managing technical debt in software-
reliant systems,” in Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 47–52. [Online].
Available: https://doi.org/10.1145/1882362.1882373

[2] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou,
and P. Avgeriou, “The financial aspect of managing
technical debt,” Inf. Softw. Technol., vol. 64, no. C, p.
52–73, aug 2015. [Online]. Available: https://doi.org/10.
1016/j.infsof.2015.04.001

[3] Y. Wang, H. Le, A. Gotmare, N. Bui, J. Li, and
S. Hoi, “CodeT5+: Open code large language models
for code understanding and generation,” in Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, H. Bouamor, J. Pino, and
K. Bali, Eds. Singapore: Association for Computational
Linguistics, Dec. 2023, pp. 1069–1088. [Online].
Available: https://aclanthology.org/2023.emnlp-main.68

[4] “OpenAI,” https://openai.com/.
[5] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shu-

jie, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu et al.,
“Graphcodebert: Pre-training code representations with
data flow,” in International Conference on Learning
Representations, 2021.

[6] F. Mu, L. Shi, S. Wang, Z. Yu, B. Zhang,
C. Wang, S. Liu, and Q. Wang, “ClarifyGPT: A
Framework for Enhancing LLM-Based Code Generation
via Requirements Clarification,” Proc. ACM Softw.
Eng., vol. 1, no. FSE, jul 2024. [Online]. Available:
https://doi.org/10.1145/3660810

[7] R. Bairi, A. Sonwane, A. Kanade, V. D. C., A. Iyer,
S. Parthasarathy, S. Rajamani, B. Ashok, and S. Shet,
“CodePlan: Repository-Level Coding using LLMs and
Planning,” Proc. ACM Softw. Eng., vol. 1, no. FSE,
jul 2024. [Online]. Available: https://doi.org/10.1145/
3643757

[8] I. Bouzenia, P. Devanbu, and M. Pradel, “Repairagent:
An autonomous, llm-based agent for program repair,”
in Proceedings of the IEEE/ACM 47th International
Conference on Software Engineering, April 27-May 3,
2025 2025.

[9] X. Wang, B. Li, Y. Song, F. F. Xu, X. Tang, M. Zhuge,
J. Pan, Y. Song, B. Li, J. Singh et al., “OpenDevin: An
Open Platform for AI Software Developers as Generalist
Agents,” arXiv preprint arXiv:2407.16741, 2024.

[10] N. Wadhwa, J. Pradhan, A. Sonwane, S. P. Sahu,
N. Natarajan, A. Kanade, S. Parthasarathy, and S. Ra-
jamani, “CORE: Resolving Code Quality Issues using
LLMs,” Proceedings of the ACM on Software Engineer-
ing, vol. 1, no. FSE, pp. 789–811, 2024.

[11] A. Ni, M. Allamanis, A. Cohan, Y. Deng, K. Shi,
C. Sutton, and P. Yin, “Next: Teaching large language
models to reason about code execution,” in International
Conference on Machine Learning (ICML’24). PMLR,
2024.

[12] A. Hooda, M. Christodorescu, M. Allamanis, A. Wilson,
K. Fawaz, and S. Jha, “Do large code models understand
programming concepts? Counterfactual analysis for code
predicates,” in Proceedings of the 41st International
Conference on Machine Learning (ICML’24), vol. 235.
PMLR, Jul 2024, pp. 18 738–18 748. [Online]. Available:
https://proceedings.mlr.press/v235/hooda24a.html

[13] M. Aniche, E. Maziero, R. Durelli, and V. H. S. Durelli,
“ The Effectiveness of Supervised Machine Learning
Algorithms in Predicting Software Refactoring ,” IEEE
Transactions on Software Engineering, vol. 48, no. 04,
pp. 1432–1450, Apr. 2022. [Online]. Available: https://
doi.ieeecomputersociety.org/10.1109/TSE.2020.3021736

[14] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu,
and B. Ray, “NatGen: generative pre-training by
“naturalizing” source code,” in Proceedings of the 30th
ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York, NY,
USA: ACM Press, 2022, p. 18–30. [Online]. Available:
https://doi.org/10.1145/3540250.3549162

[15] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An
open large language model for code with multi-turn
program synthesis,” in The Eleventh International
Conference on Learning Representations (ICLR’23),
2023. [Online]. Available: https://openreview.net/forum?
id=iaYcJKpY2B

[16] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar,
L. P. Wassi, M. Merler, B. Sobolev, R. Pavuluri,
S. Sinha, and R. Jabbarvand, “Lost in translation:
A study of bugs introduced by large language
models while translating code,” in Proceedings of
the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. New York,
NY, USA: ACM Press, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639226

[17] Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen,
and X. Peng, “Exploring the Potential of ChatGPT
in Automated Code Refinement: An Empirical Study,”
in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: ACM Press, 2024. [Online].
Available: https://doi.org/10.1145/3597503.3623306

[18] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel,
and L. Zhang, “Fuzz4All: Universal Fuzzing with
Large Language Models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software
Engineering, ser. ICSE ’24. New York, NY, USA:
ACM Press, 2024. [Online]. Available: https://doi.org/
10.1145/3597503.3639121

https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1016/j.infsof.2015.04.001
https://aclanthology.org/2023.emnlp-main.68
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3643757
https://doi.org/10.1145/3643757
https://proceedings.mlr.press/v235/hooda24a.html
https://doi.ieeecomputersociety.org/10.1109/TSE.2020.3021736
https://doi.ieeecomputersociety.org/10.1109/TSE.2020.3021736
https://doi.org/10.1145/3540250.3549162
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3623306
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/3597503.3639121

[19] D. Pomian, A. Bellur, M. Dilhara, Z. Kurbatova,
E. Bogomolov, T. Bryksin, and D. Dig, “Together
We Go Further: LLMs and IDE Static Analysis for
Extract Method Refactoring,” 2024. [Online]. Available:
https://arxiv.org/abs/2401.15298

[20] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury,
“Autocoderover: Autonomous program improvement,” in
Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA
2024. New York, NY, USA: ACM Press, 2024, p.
1592–1604. [Online]. Available: https://doi.org/10.1145/
3650212.3680384

[21] PMD, “PMD Static Analysis Tool,” https:
//docs.pmd-code.org/latest/pmd rules java design.html,
Accessed 2024.

[22] annonymous, “ChatGPT Prompt of the Motivating
Example,” 2024, https://chatgpt.com/share/
2986fa56-357d-4ea9-a821-9e8607389d9b.

[23] J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang,
and H. Hemmati, “Prompt engineering or fine tuning:
An empirical assessment of large language models in
automated software engineering tasks,” arXiv preprint
arXiv:2310.10508, 2023.

[24] T. Ahmed, K. S. Pai, P. Devanbu, and E. Barr,
“Automatic semantic augmentation of language model
prompts (for code summarization),” in Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. New York,
NY, USA: ACM Press, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3639183

[25] H. Van Vliet, H. Van Vliet, and J. Van Vliet, Software
engineering: principles and practice. John Wiley &
Sons Hoboken, NJ, 2008, vol. 13.

[26] R. Schwanke, L. Xiao, and Y. Cai, “Measuring archi-
tecture quality by structure plus history analysis,” in
Proceedings of the 35th International Conference on
Software Engineering (ICSE’13), 2013, pp. 891–900.

[27] L. Layman, G. Kudrjavets, and N. Nagappan,
“Iterative identification of fault-prone binaries using
in-process metrics,” in Proceedings of the Second ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’08. New
York, NY, USA: ACM Press, 2008, p. 206–212. [Online].
Available: https://doi.org/10.1145/1414004.1414038

[28] N. Tsantalis, M. Mansouri, L. M. Eshkevari,
D. Mazinanian, and D. Dig, “Accurate and efficient

refactoring detection in commit history,” in Proceedings
of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY,
USA: ACM, 2018, pp. 483–494. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180206

[29] W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos,
T. Li, D. Li, B. Zhu, H. Zhang, M. I. Jordan, J. E.
Gonzalez, and I. Stoica, “Chatbot arena: An open
platform for evaluating llms by human preference,” in
ICML, 2024. [Online]. Available: https://openreview.net/
forum?id=3MW8GKNyzI

[30] “Chatbot arena leaderboard,” 2024, https://huggingface.
co/spaces/lmsys/chatbot-arena-leaderboard.

[31] M. Geng, S. Wang, D. Dong, H. Wang, G. Li,
Z. Jin, X. Mao, and X. Liao, “Large language
models are few-shot summarizers: Multi-intent comment
generation via in-context learning,” in Proceedings
of the IEEE/ACM 46th International Conference on
Software Engineering, ser. ICSE ’24. New York,
NY, USA: ACM Press, 2024. [Online]. Available:
https://doi.org/10.1145/3597503.3608134

[32] M. Dilhara, A. Bellur, T. Bryksin, and D. Dig, “Unprece-
dented code change automation: The fusion of llms and
transformation by example,” Proceedings of the ACM
on Software Engineering, vol. 1, no. FSE, pp. 631–653,
2024.

[33] A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita, and
Y. Watanobe, “Refactoring programs using large lan-
guage models with few-shot examples,” in 2023 30th
Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2023, pp. 151–160.

[34] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn,
L. Li, X.-B. D. Le, and D. Lo, “Refining ChatGPT-
Generated Code: Characterizing and Mitigating Code
Quality Issues,” ACM Trans. Softw. Eng. Methodol.,
vol. 33, no. 5, Jun. 2024. [Online]. Available: https:
//doi.org/10.1145/3643674

[35] D. Pomian, A. Bellur, M. Dilhara, Z. Kurbatova,
E. Bogomolov, A. Sokolov, T. Bryksin, and D. Dig,
“EM-Assist: Safe Automated ExtractMethod Refactoring
with LLMs,” in Companion Proceedings of the 32nd
ACM International Conference on the Foundations of
Software Engineering, ser. FSE 2024. New York,
NY, USA: ACM Press, 2024, p. 582–586. [Online].
Available: https://doi.org/10.1145/3663529.3663803

[36] anonymous, “LocalizeAgent Reproducibility Package,”
2024, https://github.com/fraolBatole/LocalizeAgent.

https://arxiv.org/abs/2401.15298
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://docs.pmd-code.org/latest/pmd_rules_java_design.html
https://docs.pmd-code.org/latest/pmd_rules_java_design.html
https://chatgpt.com/share/2986fa56-357d-4ea9-a821-9e8607389d9b
https://chatgpt.com/share/2986fa56-357d-4ea9-a821-9e8607389d9b
https://doi.org/10.1145/3597503.3639183
https://doi.org/10.1145/1414004.1414038
http://doi.acm.org/10.1145/3180155.3180206
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://doi.org/10.1145/3597503.3608134
https://doi.org/10.1145/3643674
https://doi.org/10.1145/3643674
https://doi.org/10.1145/3663529.3663803
https://github.com/fraolBatole/LocalizeAgent

	Introduction
	Background
	Motivation
	Motivating Example
	Key Ideas
	Key Idea 1 [Multi-Agent Collaborative Design Issue Detection and Fixing Suggestions]
	Key Idea 2 [LLM-Friendly Code Context Representation]
	Key Idea 3 [Context-Aware Prompt Generation]
	Key Idea 4 [LLM-based Ranking Agent]

	Problem Formulation

	LocalizeAgent Approach
	Overview
	Design Issues
	Refactoring Types

	Planning and Analysis Agents
	Design Issues Analysis Agent
	Context Extraction via Program Analysis Agents
	Lightweight Code Analysis Tools
	Integration with LocalizeAgent

	Context-aware Prompting Agent
	Design Issue Localization and Ranking
	Design Issue Localization
	Prompting to Rank the Localized Design Issues

	Evaluation
	Experimental Methodology
	Dataset
	Rule-Based Design Issues Filtering
	Dataset Statistics
	Models
	Metrics

	Effectiveness on Localizing Design Issues (RQ1)
	Localizing Single Design Issues (RQ1-A)
	Localizing multiple design issues (RQ1-B)

	Sensitivity Analysis (RQ2)
	Ablation Study (RQ3)
	Time Complexity and Cost of APIs (RQ4)

	Limitations and Threats to Validity
	Related Work
	LLM for Code Generation and Understanding
	LLM-based Agents for Software Engineering

	Discussion and Future Work
	Conclusion
	Data Availability

