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Abstract—Reinforcement Learning (RL) is increasingly
adopted to train agents that can deal with complex sequential
tasks, such as driving an autonomous vehicle or controlling a
humanoid robot. Correspondingly, novel approaches are needed
to ensure that RL agents have been tested adequately before
going to production. Among them, mutation testing is quite
promising, especially under the assumption that the injected
faults (mutations) mimic the real ones.

In this paper, we first describe a taxonomy of real RL faults
obtained by repository mining. Then, we present the mutation
operators derived from such real faults and implemented in the
tool µPRL. Finally, we discuss the experimental results, showing
that µPRL is effective at discriminating strong from weak test
generators, hence providing useful feedback to developers about
the adequacy of the generated test scenarios.

Index Terms—reinforcement learning, mutation testing, real
faults

I. INTRODUCTION

Reinforcement Learning (RL) is being applied to various

safety-critical systems such as traffic control, drone navigation,

and power grids [1–3]. Due to its relevance in such systems,

RL developers need to make sure that their RL agent is tested

thoroughly. Mutation testing [4, 5] is a powerful technique to

ensure that the test set exercises the system in an adequate way,

but existing attempts to apply mutation testing to RL [6, 7] are

limited, and do not cover the full spectrum of faults that may

affect an RL agent. In this paper, we construct a comprehensive

taxonomy of real faults identified by repository mining (we

analysed 2,787 posts, 3.6 times more than previous work [8])

and we develop an RL mutation tool, named µPRL, which

implements new mutation operators (MOs) mimicking the real

faults in the taxonomy.

Our taxonomy of real RL faults targets RL developers who

use well-known frameworks, such as StableBaselines3 [9]

and OpenAI Gym [10], for their projects. We mined Stack-

Exchange and GitHub posts and then manually analysed

the relevant artifacts to identify real bugs that developers

experience. Then, we derived 15 mutation operators from the

taxonomy and implemented 8 of them in the tool µPRL. These

operators have been evaluated on four environments provided

by OpenAI Gym [10] and HighwayEnv [11]: CartPole, Park-

ing, LunarLander, and Humanoid [11–14]. The Humanoid

environment is a particularly challenging robotics environment

with a high dimensional observation space, thereby requiring

extensive computational resources. In the evaluation, we ap-

plied µPRL to environments with both discrete and continuous

action spaces, and we considered popular Deep RL (DRL)

algorithms, including DQN, PPO, SAC, and TQC [15–18].

Experimental results indicate that our mutation tool µPRL

is useful in discriminating strong from weak test scenario

generators and achieves a high sensitivity to the test set

quality, substantially higher than that of the state of the art

tool RLMutation [7]. We also show that the new fault types

introduced in our taxonomy are major contributors to the

increased sensitivity of our mutation operators.

II. RELATED WORK

We organise the related works into those analysing Deep

Learning (DL)/RL faults and those mutating DL/RL models.

A. Fault Classification

DL Faults: Humbatova et al. [19] proposed a DL faults

taxonomy using StackOverflow and GitHub artifacts. Islam et

al. [20] studied the frequency, root cause, impact and pattern

of bugs while using deep learning software.

RL Faults: Nikanjam et al. [8] developed a fault taxonomy

for RL programs. They studied 761 RL artifacts obtained from

StackOverflow and GitHub. While analysing GitHub they went

over issues from the following frameworks - OpenAI Gym,

Dopamine, Keras-rl and Tensorforce.

Their work focuses on mistakes developers make while writ-

ing an RL algorithm from scratch. However, RL algorithms are

notoriously hard to implement [21], and even small implemen-

tation details have a dramatic effect on performance [22, 23].

Our work considers the perspective of software developers

who use RL as a tool to address an engineering problem.

Therefore, we focus on bugs that arise while using reliable RL

implementations [8–10, 24–26] (or bugs that can be mapped
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to those occurring in reliable implementations) . We compare

with the taxonomy of Nikanjam et al. [8] in Section III-D.

Andrychowicz et al. [27] studied the effect of more than

50 design choices on an RL agent’s performance by training

around 250k agents. They used this study to recommend

various hyperparameter choices.

B. Mutation Testing for AI-based systems

Mutation testing for DL: DeepMutation [28] and

MuNN [29], were the pioneers in recognising the need for

mutation operators specifically tailored to DL systems. Subse-

quently, DeepMutation was extended to a tool called DeepMu-

tation++ [30], focusing on operators that can be applied to the

weights or structure of an already trained model. Jahangirova

and Tonella [31] performed an extensive empirical evaluation

of the mutation operators proposed in DeepMutation++ and

MuNN. DeepCrime [32] differs from DeepMutation++ in that

it uses a set of mutation operators derived from real faults in

DL systems [19]. Such operators are applied to a DL model

before training.

Mutation testing for RL: There are currently two papers

dedicated to mutation testing of RL systems. Lu et al. [6]

introduce a set of RL-specific mutation operators, including

element-level mutation operators and agent-level mutation

operators. The element-level mutations consider the injection

of perturbations into the states and rewards of an agent. Agent-

level mutations introduce errors into an already trained agent.

If a trained agent’s policy is represented by a Q-table [33],

an agent-level mutation would fuzz the state-action value

estimations stored in the table. If the policy of a trained agent

is implemented by a neural network, an agent-level mutation

would remove a neuron from the input or output layer of the

network. In addition, the authors propose operators that affect

the exploration-exploitation balance by, for instance, mutating

the exploration rate of the agent during training.

However, such mutation operators are not based on any

real-world fault taxonomy or existing literature. Moreover,

mutation killing is computed on a single repetition of the

experiment, not accounting for randomness in the training

process. Previous literature shows that RL algorithms are

sensitive to the random seed [21], suggesting that statistical

evaluations are needed to draw reliable conclusions [34].

Tambon et al. [7] explore the use of higher order mutants,

i.e., the subsequent application of different mutations to a pro-

gram under test, in the context of RL. The mutation operators

they propose, implemented in the tool RLMutation, are based

on a number of sources. As a basis, the authors have adopted

the existing operators for RL [6] and DL systems [29, 30, 32]

and complemented them with operators extracted from the

state-of-the-art taxonomies of RL faults [35] and real DL

faults [19]. They divided the obtained operators into three

broad categories: environment-level, agent-level, and policy-

level operators. Mutations at the environment-level include

faults related to the observations the agent perceives in the

environment, for instance due to faulty sensors or deliberate

attacks. Operators at the agent-level stem from the faults that

developers make while implementing RL agorithms, such as

omitting the terminal state or selecting a wrong loss function.

Finally, policy-level mutations focus on the agent’s policy

network, mutating activation functions or number of layers.

These mutations are used to create first-order mutants. Among

them, those that are not trivial, i.e., that are not killed by all the

test environments, are considered for higher-order mutation.

Our mutation tool µPRL differs substantially from both Lu

et al. [6] and Tambon et al. [7], because it is grounded on

a novel taxonomy of real faults experienced by developers

that rely on existing, mature frameworks for the creation of

RL agents. This rules out the syntactic state/reward/policy

perturbations introduced by Lu et al. [6] and the mistakes

made by programmers when implementing RL algorithms

from scratch that are instead considered by Tambon et al. [7].

Since RLMutation [7] includes also real faults that may occur

when developers rely on existing RL frameworks, we conduct

a detailed comparison with the existing taxonomy and tool in

Section III-D and Section V-C, respectively.

III. TAXONOMY OF REAL RL FAULTS

We constructed a taxonomy of real RL faults in a bottom-up

way, starting from the collection of artefacts, obtained through

software repository mining. We then labeled such artefacts, to

eventually organise the labels into a taxonomy.

A. Mining of Software Artefacts

In our preliminary investigation, we observed that most

discussions about faults reported by developers implementing

an RL agent happen in Stack Exchange. We also noticed

several commit messages about RL faults in GitHub. Hence,

we mined these two repositories.

1) Mining GitHub: The foremost challenge while mining

GitHub repositories was identifying popular RL frameworks.

Nikanjam et al. used Keras-rl, Dopamine, Tensorforce, and

OpenAI Gym [8]. However, OpenAI Gym is only used to

simulate the interactions between an agent and the environ-

ment, and does not provide RL algorithms. While investigating

the remaining frameworks we found that Tensorforce is no

longer maintained and Keras-rl did not get updated since

November 2019 [10, 24–26]. Therefore, to identify popular

RL frameworks we checked top-tier Machine Learning and

Software Engineering Conferences, such as ICML, ICSE,

ESEC/FSE, and ASE. We manually inspected 89 papers,

dropping all papers that focused on model-based RL, inverse

RL, and multi-agent RL. This filtering step left us with 9

papers from SE conferences and 47 papers from ICML-22

that provided actionable insights. While many were custom

implementations of RL algorithms, the majority of the papers

that used frameworks used StableBaselines3 [9] (7 overall).

We followed Humbatova et al.’s [19] approach to mine

GitHub repositories. We searched for files containing the string

“stable baselines3” using the GitHub Search API, and found

27,413 files. Since the API has a limit of 1k results per

query, we searched for file sizes between 0 and 500k bytes,

with a step size of 250 [19]. We identified 4,272 repositories
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corresponding to these files. We then dropped all repositories

that had less than 10 stars, 100 commits, 10 forks, and 5

contributors, which left us with 67 repositories. As the next

step, we manually verified whether they were related to RL

and dropped the repositories containing tutorials and code

examples using StableBaselines3, obtaining the list of the final

43 repositories. These 43 repositories were then used to extract

issues, pull requests (PRs) and commit messages. While

extracting the issues, we only extracted those that contained

the label “bug”, “defect” or “error” in them. Following Islam et

al. [20] we only selected commits that contain the term “fix”.

To automate the process of extracting relevant artifacts from

GitHub, we followed Humbatova et al. [19]: we combined

all issues, PR titles, descriptions, and comments along with

commit messages into a text dump. We did data-cleaning on

the words within the text dump (dropped stop words, non-word

characters, etc) and counted the frequency of each remaining

word. Words that had a frequency lower than 20 (raised from

10 [19], to obtain a manageable list of words) were dropped,

resulting in a list of 14,921 words. We divided the final list

of words among 3 authors to identify relevant RL words and

obtained 118. We then selected the corresponding issues, PRs,

and commits, a total of 1,120 [19, 20].

2) Mining Stack Exchange: To include questions on Data

Science and Artificial Intelligence, which might be relevant for

our taxonomy, we mined both StackOverflow (SO) and Stack

Exchange’s (SE) Data Science (DS) and Artificial Intelligence

(AI) Q&A websites (with SO falling under the umbrella of

SE).

TABLE I: Number of unique tags and posts in SE and SO

# Tags (All) # Tags (RL) # Posts

Artificial Intelligence (AI-SE) 974 104 783
Data Science (DS-SE) 668 9 245

StackOverflow (SO-SE) 63,653 19 3,682

Total 65,295 132 4,710

We used SE’s Data Explorer to extract posts from SO and

SE. We first extracted all tags from these websites; then,

we filtered all tags without the term “reinforcement” in their

respective name, excerpt (i.e., short description), or wikibody

(i.e., detailed description). The resulting 132 tags were then

used to select all posts from SE. Next, we excluded all posts

without an accepted answer [19]. We also filtered out the posts

whose title contained the terms “how”, “install” or “build”, to

discard how-to questions. During manual inspection, we found

that many posts were not RL specific, but rather related to Ma-

chine Learning in general. Therefore, we dropped all posts that

had only one tag and it was “machine-learning”. Following this

procedure, we obtained 4,710 posts (see Table I).

Given the large number of posts, we performed various pilot

studies to gauge the data quality of selected samples, and man-

ually filtered out irrelevant posts. These pilot studies yielded a

large number of false positives. Upon a closer examination of

the dataset, we found that the posts from SO contained around

78% of the total posts and the tag “artifical-intelligence” was

present in 2,779 SO posts (without dropping duplicates). A

big chunk of the posts within this category contained posts

concerning classical AI, such as the A∗ algorithm. Therefore,

we dropped all posts that either contained the tag “artificial-

intelligence” or a combination of “artificial-intelligence” and

“machine-learning”, without another RL tag. Lastly, following

Islam et al. [20], we kept only posts that contained code. This

brought our final dataset size down to 1,667.

3) Manual Labelling: One group of labellers manually

analysed the artifacts and dropped false positives. Five authors

participated in the labeling process for taxonomy construction.

Each post in the dataset was randomly assigned to two authors.

We used the procedure by Humbatova et al. [19] for the label-

ing process. The authors therein, developed a tool that helped

them manage the labels. This tool allowed each assessor to

pick a label generated by their colleagues. In case none of

the labels matched the post description, they created their own

label and added it to the tool, which then became accessible to

others. We pre-loaded all labels created by Nikanjam et al. [8]

into the labeling tool, to be consistent with, and build upon,

the existing RL fault taxonomy [8]. Furthermore, to check

the disagreement between various participants, we measured

Krippendorf’s Alpha [36, 37], which handles more than two

raters, with each rater only labeling a subset of the posts.

Krippendorf proposed to reject data where the confidence

interval of the reliability falls below 0.667. Ideally the value

of alpha should be 1.00 but variables with values greater

than 0.800 could be relied upon [37, 38]. During labeling,

the two raters of each post met together to resolve conflicts,

when any such conflict arouse. When no resolution between

two raters could be reached for a certain post, the overall

group made the final decision through voting [19]. While the

average agreement (Krippendorf’s Alpha) was 0.546 before

the consensus meeting, it raised to 0.926 after the meeting.

Finally, all the authors went through all the posts together

for a final pass.

B. Taxonomy Construction

We followed Islam et al.’s [20] approach to build the

taxonomy tree, wherein we built our tree on top of another

existing RL fault tree by Nikanjam et al.’s [8] (marked in

orange/blue in Figure 1). For new labels (marked in green in

Figure 1), we followed Humbatova et al.’s [19] approach to

group them into higher-level categories.

C. The Final Taxonomy

Reward Function. This category is related to faults af-

fecting the reward function guiding the RL agent towards the

learning objective.

❶ Defining the reward function - Designing the reward func-

tion is critical to achieve good performance in RL. We found

the following faults associated with it. Suboptimal reward

function – Defining a good reward function is challenging,

especially for complex tasks involving multiple constraints.

For instance, learning a robust policy for quadrupedal robots,

requires a complex reward function encouraging linear and
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RL Fault

Reward function

Defining the reward function

Suboptimal reward function (7 SE; 8 GH)

Sparse reward (1 SE; 0 GH)

Reward function not defined for entire range
of behaviour (0 SE; 1 GH)

Potential of terminal step not fixed to zero (0 SE; 2 GH)

Normalising the reward function

Missing reward normalisation/scaling (4 SE; 3 GH)

Unnecessary reward normalisation (0 SE; 1 GH)

Wrapping reward after observation normalisation
(0 SE; 1 GH)

Suboptimal discount factor (6 SE; 1 GH)

Training process

Training budget

Small number of mcts simulations (1 SE; 0 GH)

Not enough episodes/iterations (training) (5 SE; 1 GH)

RL function approximator design

Missing policy-gradient clipping (0 SE; 1 GH)

Suboptimal learning start (0 SE; 1 GH)

Non-random starting state (2 SE; 1 GH)

Non-stochastic policy (0 SE; 1 GH)

Use of inappropriate function approximator for the
given environment (1 SE; 0 GH)

Use of variable horizon in environment where fixed
horizon is more appropriate (0 SE; 1 GH)

Suboptimal number of rollout steps (0 SE; 1 GH)

Normalisation

Missing action normalisation (0 SE; 1 GH)

Suboptimal / Missing normalisaton of observations
(1 SE; 6 GH)

Wrong normalisation of advantage (0 SE; 1 GH)

Inference

Misconfiguration of the agent to a deterministic inference
(1 SE; 1 GH)

Misconfiguration of the agent to a stochastic inference
(0 SE; 1 GH)

RL Fault

Environment setup

Termination flags

Flags indicating successful termination or
timeout not set properly (2 SE; 3 GH)

Missing check for dones (0 SE; 1 GH)

Action selection

Suboptimal action space (1 SE; 1 GH)

State representation

Subtoptimal frame skip parameter
(1 SE; 0 GH)

Suboptimal scaling of features (1 SE; 0 GH)

Suboptimal features for state
representation (1 SE; 0 GH)

Suboptimal state space (7 SE; 0 GH)

Suboptimal replay buffer

Suboptimal replay buffer design (2 SE; 1 GH)

Suboptimal replay buffer size (2 SE; 0 GH)

Suboptimal sampling from replay buffer
(1 SE; 0 GH)

Network update

Suboptimal network update
frequency (3 SE; 1 GH)

Biased target network (0 SE; 1 GH)

Suboptimal Polyak constant value (1 SE; 0 GH)

Suboptimally balancing value and policy
networks (1 SE; 0 GH)

Wrong network update / Wrong update rule
(2 SE; 1 GH)

Environment exploration

Suboptimal exploration rate - Epsilon (2 SE; 0 GH)

Suboptimal exploration decay (2 SE; 0 GH)

Missing exploration (2 SE; 0 GH)

Suboptimal minimum exploration rate (1 SE; 0 GH)

Suboptimal application of Dirichilet noise
(1 SE; 0 GH)

Suboptimal noise sampling (1 SE; 0 GH)

Missing reset/close environment (2 SE; 3 GH)

Regularisation [27]

Suboptimal entropy coefficient (1 SE; 0 GH)

Fig. 1: Taxonomy of real RL faults: green indicates new fault types; orange and blue indicate fault types in common with the

previous taxonomy [8]; blue indicates the ones that we renamed. SE/GH are preceded by the number of instances found in

StackExchange/Github.
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angular velocities, while penalising vibrations and energy con-

sumption [39]. Manually setting weights for these components

is not an easy task for developers [40], while they may

greatly impact the learning effectiveness. Sparse Reward –

This deals with cases where the reward is provided on rare

occasions, for instance, at the end of each episode rather

than at each timestep. In some environments, a sparse reward

makes training ineffective or even impossible [41]. Reward

function not defined for the entire range of behavior – This

fault occurs when the reward function does not account for

all of the trajectories that the agent might take. Potential of

terminal step not fixed to zero – This fault is related to the

process of reward shaping, wherein the agent is provided with

supplemental rewards, to make the learning smoother. When

the shaping function is based on a potential, the value of such

potential should be zero at the terminal step.

❷ Normalising the reward function – A class of faults

associated with reward functions is related to normalisation.

Missing reward normalisation/scaling – Reward scaling typi-

cally involves taking the product of the environment rewards

with a scalar (r̂ = rσ̂) [42, 43]. In certain environments

clipping is an alternative to scaling. Existing studies [21] show

that the choice of reward scaling/clipping has a large impact

on the output of the training process. Unnecessary reward

normalisation – This fault occurs when reward function nor-

malisation is not required and its use is actually detrimental

to training. Wrapping reward after observation normalisation

– In this fault, observations are normalised before a wrapper

is applied to the reward function, making the wrapper sub-

optimal. Suboptimal discount factor – The discount factor γ
is a critical parameter used to trade off future and immediate

rewards. When γ is close to 0, the agent focuses on actions

that maximise the short-term reward, whereas when γ is close

to 1, the agent privileges actions that maximise future rewards.

Training Process. This category consists of faults that affect

the training process of the RL agent.

❸ Training budget – This category concerns faults related

to the number of iterations used to train the RL agent. Small

number of mcts simulations – This fault was observed in the

context of the AlphaGoZero algorithm [44]. This algorithm

uses Monte Carlo Tree Search (MCTS) to learn optimal

actions. Having a low number of MCTS simulations may

lead to suboptimal actions being selected [44–46]. Not enough

episodes/iterations (training) – This fault occurs when the

number of training iterations for the RL algorithm is low. This

prevents the RL algorithm from learning a good policy.

❹ RL function approximator design – A critical element in

RL is the function approximator learnt during training. This

category consists of faults that occur due to the design choices

related to the selection of the function approximator. Missing

policy-gradient clipping – Incorporating policy-gradient clip-

ping improves the performance of actor-critic algorithms [27].

Suboptimal learning starts – When the training process starts,

the agent is allowed to take a series of random actions without

learning. The “learning starts” hyperparameter is a critical

parameter that controls when the agent starts learning, after

the training process has begun. Non-random starting state –

Starting at the same state each time the agent is reset, prevents

it from exploring the surrounding states and leads to overfit-

ting. Non-stochastic policy – Certain RL algorithms require

a stochastic policy and therefore the function approximator

must be stochastic in nature. Implementing a deterministic

function approximator could lead to a drop in performance.

Use of inappropriate function approximator for the given

environment – RL problems of different sizes, in terms of state

and action spaces, require different approximation techniques.

Relatively smaller problems might be solved using tabular

methods whereas larger problems might require linear or non-

linear function approximators (such as neural networks) [33].

Use of variable horizon in environment where fixed horizon

is more appropriate – This fault occurs when reward learning

is adopted during RL training. For effective reward learning

(e.g., from human preferences), a fixed episode length was

found to be often a better choice [47].

Suboptimal number of rollout steps – This fault occurs in

the context of on-policy algorithms and refers to the number

of rollout steps per environment used to update the policy.

This hyperparameter significantly affects the algorithm’s per-

formance [27].

❺ Normalisation – This category is related to normalisation

in the context of training. Missing action normalisation –

Action normalisation has been found to be helpful, especially

when the actions are continuous [48]. Suboptimal / Missing

normalisaton of observations – Andrychowicz et al. [27]

recommend to always normalise observations. As per their

experiments, doing this was critical for achieving high perfor-

mance in almost all the environments. Wrong normalisation of

advantage – RL algorithms such as PPO [16] and A3C [49],

compute the advantage function, i.e., an estimate of the value

of a certain action in a given observation. Normalising this

estimate with a single sample or a few samples may result

in diverging computations (NaN), and to gradients with large

variances.

Inference. This category deals with faults that occur at

inference time, i.e., after the RL algorithm has been trained.

Misconfiguration of the agent to a deterministic inference

– During inference, forcing an agent to take deterministic

actions when it was trained with a stochastic policy, might

lead to a drop in performance [33]. In fact, for problems where

appreciable generalisation is required at inference time (e.g.,

when there is a substantial development-to-production shift),

a better policy may be a stochastic one. Misconfiguration of

the agent to a stochastic inference – Forcing an agent that

was trained with a deterministic policy to become stochastic

at inference time, thereby carrying out exploratory behavior,

can also lead to a performance drop.

Environment setup. Faults related to the environment setup

fall under this category.

❻ Termination flags – Flags that denote when an episode

has ended might be set incorrectly. Flags indicating successful

termination or timeout not set properly – Flags for termination

and timeout should only be set in terminal states. Terminal
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states are critical for calculating state values, and these values

are recursively used to compute the values for previous states.

Missing check for dones – During training the algorithm needs

to correctly check whether a state is terminal (i.e., done), as

this determines how the targets for the optimisation problem

are computed.

❼ Action selection – This fault occurs when the user defines

an action space that makes learning difficult or impossible

(e.g., representing actions as discrete integers vs bit vectors).

❽ State representation – This category deals with faults as-

sociated with the definition of environment states. Suboptimal

frame skip parameter – The frame skip parameter forces an

action to be repeated for a specific number of frames. This

parameter was found to have a significant impact, in terms of

learning efficiency, in environments requiring high-frequency

policies, such as Atari games and robotic applications [50, 51].

Suboptimal scaling of features – State features must be scaled

appropriately, in order for an RL algorithm to learn efficiently.

Suboptimal features for state representation – In order to speed

up learning, rather than feed in raw state inputs and expect

the learning algorithm to identify useful patterns, developers

could use their domain knowledge and engineer the state to

include relevant, possibly higher level, features. Suboptimal

state space – The RL paradigm assumes that the environment

the agent operates in, follows the Markov property, i.e., that

the current state the agent perceives, summarises all the past

interactions of the agent with the environment. In other words,

all the information the agent needs to make optimal actions,

need to be in the state space of the agent. If some crucial

information are hidden from the agent, the Markov property

does not hold, and the agent cannot learn optimally [52].

Suboptimal replay buffer. Off-policy RL algorithms typi-

cally use a replay buffer during training.

Suboptimal replay buffer design – Catastrophic forget-

ting [53] might be caused by the under-representation of data

for specific tasks in the replay buffer. This fault is common

in multi-tasks RL settings [54], i.e., when the RL agent has

multiple objectives, but also in single environments that can

be decomposed in sub-objectives (or levels) [55]. Suboptimal

replay buffer size – The replay buffer size is a non-trivial

tunable hyperparameter. While a smaller replay buffer may

lead to relevant data getting replaced too quickly, a large

buffer might lead to older and irrelevant data getting sampled,

reducing learning efficiency [56]. Suboptimal sampling from

replay buffer – It is crucial that the sampling process maintains

the i.i.d. (identical and independently distributed) property

of the data, and that the sampled data are not temporally

correlated. If this property does not hold, the learning process

might be negatively affected.

Network update. This category refers to updating the

parameters of the neural networks implementing the function

approximators.

Suboptimal network update frequency – The frequency of

the target network updates is too low/high, impacting the learn-

ing effectiveness [8]. Biased target network – This fault occurs

when the target network parameters are not independent from

the online network’s. The target network prevents the policy

from exploring alternative solutions while the online network

is being updated [15]. This fault prevents the target network

from converging to the optimal one. Suboptimal Polyak con-

stant value – An alternative to duplicating the online network

weights as target network weights, is to perform soft updates

by Polyak averaging. The critical hyperparameter controlling

such soft updates is the Polyak update coefficient [15, 57].

Suboptimally balancing value and policy networks – This

fault occurs while using the AlphaGo algorithm [58]. This

algorithm uses MCTS to select actions by utilising value and

policy networks. The parameter λ balances the decisions of

these two networks. A fault occurs when a poor value of the

hyperparameter λ is set [45, 46, 58]. Wrong network update /

Wrong update rule – New data cannot be optimally learned by

the RL algorithm (e.g., because the learning rate of the neural

networks decays too quickly) [8].

Environment Exploration. We found a variety of critical

exploration hyperparameters in various RL algorithms. Explor-

ing too little may cause the RL algorithm to be unable to

discover high reward states and actions; exploring too much

prevents the agent from exploiting what it has learned.

Suboptimal exploration rate - Epsilon – This hyperparam-

eter refers to the suboptimal setting of the epsilon parameter,

present in various RL algorithms [15]. Suboptimal exploration

decay – During the start of RL training, the algorithm is

expected to explore states extensively, to identify promising

states and actions. However, as the algorithm progresses, the

amount of exploration is typically reduced so that the agent

can exploit its existing knowledge. Missing exploration – This

label refers to the case where the agent does not explore

at all [8]. Suboptimal minimum exploration rate – Once the

exploration parameter has been completely decayed, it should

be left to a value that is still greater than zero. This ensures

that the agent continues to explore for the remaining training

budget. However, too large values will interfere with learning,

while a value that’s too low will prevent experiencing new

states and actions. Suboptimal application of Dirichilet noise

– Dirichilet noise is used by the AlphaGo algorithm for ex-

ploration. The noise sampled from the Dirichilet distribution,

which requires careful setting, is added to the root node’s

prior probabilities [44]. Suboptimal noise sampling – This

fault was found in the usage of the Deep Deterministic Policy

Gradient (DDPG) algorithm. DDPG incorporates exploration

during training by adding noise to actions. The choice of

the distribution to sample the noise affects the exploration

efficacy [57]. Missing reset/close environment – This fault

deals with forgetting to reset or to close the environment

during training or inference [8].

Regularisation – Policy regularisation improves the perfor-

mance of RL algorithms [59].

Suboptimal entropy coefficient – The Asynchronous Actor

Critic and PPO algorithms [16, 49] incorporate the policy’s

entropy to the loss function, to improve exploration. Therefore

the entropy coefficient hyperparameter becomes critical to

control the exploration rate of the agent.
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D. Comparing Prior Work with our Taxonomy

Nikanjam et al. [8]’s final taxonomy has 11 fault categories.

Our taxonomy contains five of these categories (with orange

background in Figure 1), plus one which we renamed (with

blue background in Figure 1). The remaining five categories

do not match any category in our taxonomy for at least one

of the following reasons: (1) the fault could not be mapped to

an RL framework, i.e., it only affects re-implementations of

RL algorithms; (2) the fault is not RL-specific, e.g., the fault

is a generic DL fault; (3) there is no evidence for the fault in

our mined posts, e.g., the associated posts contain a how-to

question, instead of describing actual issues and discussing

possible solutions; (4) the fault is a generic coding error;

(5) the associated post does not refer to any code implementing

the RL agent. For the matching fault types, we used the same

labels as Nikanjam et al. [8], except for “Suboptimal explo-

ration rate”, which we renamed to “Suboptimal exploration

decay”, specifying more precisely that the fault is related to

how fast/slow the exploration rate is decayed over time.

IV. MUTATION ANALYSIS

A. Mutation Operators

TABLE II: List of proposed mutation operators in µPRL.

Group Operator ID IS

Reward function
Change Discount Factor SDF Y
Make Reward Sparse SPR N
Change Reward Scale SRS N

Training process

Change Number of Rollout Steps SNR Y
Change Learning Start SLS Y
Reduce Episodes/Iterations NEI Y
Introduce Deterministic Start State NRS N
Remove Normalisation of Actions MNA N
Remove Normalisation of Observations MNO N

Regularisation Change Entropy Coefficient SEC Y

Network update
Change Network Update Frequency SNU Y
Change Polyak Constant Value SPV Y

Suboptimal Replay Buffer Change Replay Buffer Size SBS N

Environment exploration
Change Minimum Exploration Rate SMR Y
Change Exploration Rate SER N

To define a set of mutation operators, we analysed all

of the 48 unique fault types in the RL taxonomy of real

faults (see Section III-C). The extraction of mutation operators

was organised into three stages. First, two of the authors

independently went through the whole list of faults types and

each derived potential mutation operators (MOs) from the

inspected faults. Then, they have performed conflict resolution

between themselves, and produced a list of proposed operators.

At the next step, two other authors have separately inspected

the set of candidate MOs and the faults that did not inspire

any MO. Both of the authors have shown full agreement with

the initial list of the operators, i.e. have not proposed any

new MOs or rejected the existing ones. At the last stage,

two authors, one from each stage, have gone through the

list of MOs to document their feasibility and applicability

scenarios. The MO extraction process, as well as the comments

on the possible implementation approaches, are available in

our replication package [60]. In total, we propose 15 mutation

operators, with 8 of them implemented in our tool µPRL.

Table II enlists the final set of proposed MOs, which are

divided according to the corresponding top category of the

taxonomy (Column 1). Column 2 provides a short description

of each MO, while Column 3 specifies a short abbreviated

name. The last column “IS”, which stands for “Implementation

Status”, shows whether an operator is implemented or not. The

operators that are domain specific, i.e., that require a custom

implementation for each case study, have not been imple-

mented, as they are not generally applicable. For instance, the

“Make Reward Sparse” operator requires knowledge of how

the reward function is implemented in a given environment,

while the “Missing Normalisation” operators are not applica-

ble in environments where actions are discrete or observations

are not normalised by default.

In total, the operators span six out of the eight top categories

of the taxonomy. “Training process” is the most populated

category with six of the proposed operators. Most of the

operators stem from one fault type in the taxonomy, with the

name of the MO corresponding to the name of the taxonomy

leaf. “Change reward scale” is an exception to this rule as it

corresponds both to the “Missing reward normalisation/scal-

ing” and “Unnecessary reward normalisation” fault types.

B. Mutation Analysis Procedure

To ensure reliable and statistically sound evaluation of the

quality of test sets, we adopt the definition of statistical

killing [31]: a mutant is killed by a test set if the prediction

accuracies of original and mutated model computed on such

test set differ in a statistically significant way.

However, RL presents numerous differences w.r.t. DL mod-

els that we need to account for when evaluating an RL

agent. In RL, since the agent is trained online, a test can

be represented as an initial configuration of the environment

where the agent operates [61, 62]. Let us consider the CartPole

subject environment, consisting of a cart moving to keep a

pole vertically aligned (this is the classical inverted pendu-

lum problem). Its initial configuration e is a 4-dim vector

e = [x, ẋ, θ, θ̇], where x is the initial position of the cart, ẋ is

the initial velocity of the cart, θ is the initial angle of the pole

w.r.t. the vertical axis, and θ̇ is the initial angular velocity of

the pole. Trained RL agents are typically evaluated using a set

of randomly generated initial environment configurations [63],

to test their generalisation capabilities. As there is no explicit

test set to evaluate RL agents in a given environment, we refer

to a test environment generator (or test generator TG for short),

rather than a test set; a random TG, which randomly generates

initial environment configurations, is one example of TG.

Let A be the RL agent under test. To support statistical

analysis of mutation killing [31], we train n instances of

A for N time steps each. For each instance, an arbitrary

random seed is chosen for the generation of a reproducible

sequence of initial environment configurations (environment
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configurations, for short), which are used to train the agent,

within the N time steps budget. Then, for any given mutation

operator P and its configuration P (j), j ∈ JP , we train n
mutant instances by reusing the same set of random seeds,

and, as a result, the same sequence of initial environment

configurations used to train the original agent instances. In

this way, we create n pairs of original and mutant instances

(oi,mi) that are trained on the same sequence (or sequence

prefix, if a shorter sequence is used) of initial environments.

1) Killability: We first define the killed predicate for an MO

parameter configuration P (j) and then we use it to define the

notion of killable (and its complement, likely-equivalent) MO

configuration P (j).
To decide whether a mutant is killed by a test generator TG,

we execute each pair (oi,mi) of original and mutant agents

in test mode on the sequences of environment configurations

generated by TG. Since TG might generate different sequences

depending on the agent under test, with no loss of generality

we assume that two different test sequences Toi = TG(oi) and

Tmi
= TG(mi) are obtained when applying TG to either the

original agent oi or the mutant mi. When such a dependency

does not hold (i.e., the dependency between TG and the agent

under test), there is a single test sequence T = Toi = Tmi
.

This happens for instance when using a random TG or a

predefined sequence of environment configurations T as test

set. It is also convenient to assume that the two test sequences

have the same length L = |Toi | = |Tmi
|.

We represent the result of the execution of each pair

(oi,mi) on the corresponding sequences (Toi , Tmi
) as a 4-

tuple (Soi , Foi , Smi
, Fmi

), where Soi and Foi are the num-

ber of successes and failures for the i-th original agent

instance oi, with Soi + Foi = L; the variables Smi
and

Fmi
store these measurements for the paired i-th mutant

instance mi, with Smi
+ Fmi

= L. Given the contingency

table [[Soi , Foi ], [Smi
, Fmi

]] for each pair (oi,mi) we apply

the Fisher’s test [64] to decide whether the mutant instance

mi is killed or not, the killed predicate K being defined as:

K(oi,mi) = 1 ⇔ pvalue < 0.05. Note that mutating the

original agent may result in a mutant that improves over the

performance of the original (weaker) agent [65]; in this case a

certain pair can be killed because Fo′
i
> Fm′

i
, i.e., the original

instance o′i fails more often than the mutated instance m′

i.

All such pairs (o′i,m
′

i) are discarded and for them the killed

predicate is conventionally set to zero, i.e., K(o′i,m
′

i) = 0.

The killed predicate K of a given mutant configuration P (j)
is calculated for a given test generator TG based on the number

of killed instance pairs over the total number of pairs n− w,

where w is the number of pairs where the original instance is

weaker (i.e., fails more often) than its mutated instance pair:

K(TG, P, j) =

{

1 (true) if KR(TG, P, j) ≥ 0.5

0 (false) otherwise

where KR(TG, P, j) = 1/(n − w) ·
∑n

i=1
K(oi,mi) is the

killing rate (i.e., proportion of killed mutant instances). A

certain mutant configuration P (j) is killed if at least half of

its pairs is killed, excluding those pairs where the original

instance is weaker than the mutant instance.

The notion of likely-equivalent (and its complement, kill-

able) mutant that we use in our mutation procedure, is based

on the one proposed in DeepCrime [32]: a mutant is likely-

equivalent if the training data cannot capture the differences

between the original and mutant model. Hence, to decide

whether the MO parameter configuration P (j) is killable we

check if it is killed by the training data. Specifically, we set

TG = TRSoi , i.e., we replay both oi and mi on the set of

training environment configurations TRSoi and compute the

killing predicate K(TRSoi , P, j). As TRSoi was used to train

oi and at least a prefix of TRSoi was used to train mi, we

expect TRSoi to be highly discriminative between original and

mutant [32].

A mutation operator P is killable if at least one of its mutant

configurations P (j) is killable. If a mutation operator is not

killable, it is deemed likely-equivalent and discarded.

2) Triviality: We are also interested in checking whether

a certain MO generates mutants that are trivial to kill. To

evaluate triviality of each mutant, we reuse the results of

the replay of each original agent and mutant pair (oi,mi)
on their set of training environment configurations TRSoi

from killability analysis. From TRSoi , we select the subset of

environment configurations where the original agent instance

oi succeeds, and check in how many of these environment

configurations the mutant instance mi fails. We calculate the

average proportion of failing environment configurations over

all the pairs, and, if it exceeds 90%, we consider the mutant to

be trivial. We exclude trivial mutants from our analysis, as they

would inflate the mutation score without being discriminative.

3) Mutation Score: Once the likely-equivalent mutants are

sorted out, for each pair (oi,mi) we generate L test environ-

ment configurations using the given test generator TG. The

mutation score of a test generator TG, for a given mutation

operator P , is the average killing rate KR across all mutant

configurations P (j)1. Given an RL mutation tool, the overall

mutation score MS for a test generator TG is calculated as the

average across the tool’s MOs:

MS(TG,OP) =
1

|OP|

∑

P∈OP

1

|JP |

∑

j∈JP

KR(TG, P, j) (1)

V. EMPIRICAL EVALUATION

RQ1 [Usefulness]: Are µPRL’s mutation operators useful?

Do they discriminate between test environment generators of

different qualities?

In the first research question, we investigate whether the mu-

tation testing pipeline in µPRL is able to generate non-trivial,

killable and discriminative mutants, i.e., mutants that would

tell apart test environment generators of different qualities.

Metrics. To answer RQ1 we measure triviality and killability

for each mutation operator in each subject environment and

RL algorithm. We also measure the mutation scores of two

1Considering the killing rate KR rather than the killed predicate K , ensures
that the mutation score computation is more fine-grained.
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test generators (details provided in Section V-B), namely Weak

(TGW ) and Strong (TGS). To evaluate the discriminative

power of the mutants, we measure the sensitivity between the

Weak and Strong test generators as defined in DeepCrime [32],

when MS(TGS ,OP) ≥ MS(TGW ,OP):

Sensitivity =
|MS(TGS ,OP)− MS(TGW ,OP)|

MS(TGS ,OP)
(2)

while we set it to zero when MS(TGS ,OP) < MS(TGW ,OP).
RQ2 [Comparison]: How does µPRL compare with the state-

of-the-art RLMutation approach?

In this research question, we compare our tool with an

existing mutation tool for RL, namely RLMutation [7].

Metrics. To answer RQ2, we compare µPRL and RLMutation

on the same subject environments and RL algorithms used

for RQ1, by measuring sensitivity of TGW and TGS on the

mutants produced by both approaches.

RQ3 [New Fault Types]: What is the impact of the new fault

types identified in our taxonomy and implemented in µPRL?

In this research question, we evaluate the specific contribu-

tion of the new fault types that emerge from our taxonomy,

w.r.t. existing RL fault taxonomies in the literature. In particu-

lar, we consider the impact of the five new mutation operators,

namely SNR, SLS, NEI, SEC, and SPV.

Metrics. To answer RQ3, we compute the sensitivity of the

newly introduced fault types for each pair subject environment

(env) – RL algorithm (A).

A. Subject Environments and RL Algorithms

Subject Environments. We evaluated our approach using

two subject environments used in previous work [7], namely

CartPole [12] and LunarLander [14] to be able to compare

our approach with RLMutation, and we added two new subject

environments, one concerning the driving domain, i.e., Park-

ing [11], and a robotic environment, namely Humanoid [13],

both of which are commonly used in the RL literature. Each

environment has an initial configuration that is generated

randomly at the beginning of each episode, according to the

constraints determined by each environment.

RL Algorithms. We selected four RL algorithms that are

widely used in the literature. DQN [15] is representative of

value-based algorithms, while PPO [16] is a widely used

policy-gradient algorithm. SAC [17] and TQC [18] are hybrid

algorithms, i.e., blending value-based and policy-gradient tech-

niques. DQN, SAC and TQC are off-policy algorithms, while

PPO is an on-policy algorithm. The different characteristics

of these four RL algorithms, allow for the application of all

MOs of µPRL.

B. Procedure

RQ1 [Usefulness]. For each subject environment we trained

the original agents with the applicable RL algorithms using the

hyperparameters provided by Raffin et al. [66]. DQN is only

applicable to CartPole and LunarLander, as it only supports

discrete action spaces, while SAC and TQC only support

continous action spaces, hence they are only applicable on

Parking and Humanoid. PPO cannot be applied on Parking

as it is a goal-based environment that requires an off-policy

algorithm. We discarded the PPO algorithm on Humanoid as

with the default hyperparameters, the agent had a near zero

success rate in repeated training instances.

We trained n = 10 original agents for each pair subject

environment – RL algoritm (env, A), to account for the ran-

domness of the training process. Then, for each applicable

mutation operator (MO) P given the pair (env, A), we ran-

domly sampled j = 5 mutant configurations.

When designing the sampling range for each MO, we

started from the corresponding search space already defined by

Raffin et al. [66] for hyperparameter tuning, but we adjusted

it to increase the chance of generating challenging mutant

configurations. For categorical search spaces, concerning six

out of eight MOs, we decreased by 50% the upper and/or lower

bounds of the original hyperparameter search space (for SDF

we did not increase the upper bound as the original highest

value 0.9999 is very close to the theoretical maximum 1.0).

Three exceptions concern the SLS, NEI (not available in the

original hyperparameter search space), and SNU operators,

where we considered the corresponding mutation search space

as relative to the training time steps budget.

After training the original agents and the corresponding

mutant configurations for each pair (env, A), we replay the

training environment configurations. For each mutation oper-

ator P , we select the configuration P (j) that is killable, non-

trivial, and closest to the original value.

The next step after replay is building the Weak (TGW )
and Strong (TGS) test environment generators. To obtain

TGW , we first generated 200 test environment configurations

at random and executed them on the original agent. During

the execution we track the quality of control (QOC) of the

trained agent, as a way to measure the confidence of the

agent during a certain episode. For instance in CartPole, the

agent can fail in two ways, i.e., either if it brings the cart

too far from the center (2.4m) or if the pole it is controlling

falls beyond a certain angle (12◦). At each time step t the

QOCt is the minimum between two (normalised) distances,

i.e., the absolute distance between the current position of the

cart and 2.4, and the absolute difference between the current

angle of the pole and 12◦. Likewise, the QOC metric can

be defined for the other subject environments. Then, for each

test environment configuration we take the minimum QOC

value, and we rank the 200 test environment configurations in

descending order of QOC. Finally, we select the first 50 test

environment configurations, as those generated by TGW .

To obtain TGS , we resort to the approach by Uesato et

al. [61] and Biagiola et al. [62], which consists of training a

failure predictor on the training environment configurations,

to learn failure patterns of the trained agent in order to

generate challenging test environment configurations. Since

our objective is to kill mutants, we train one neural network as

failure predictor for each selected mutant configuration. Then,

we use the trained neural network predictor in each mutant

configuration to select 100 promising test environment config-
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TABLE III: Results for RQ1, RQ2, RQ3. Gray cells indicate that the specific mutation operator is not applicable to a certain

(env, A) pair. Boldfaced values indicate that an operator is killable, while the symbol “–” stands for “not available”. Underlined

operators indicate new fault types w.r.t. existing taxonomies, and Avg new refers to the average computed only for underlined

operators. The sensitivity of RLMutation is reported in the last row.
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SEC .00 .00 – – – .00 1.0 .10 .78 .87

SMR .20 .60 .90 .90 .00 .00 .80 .14 1.0 .86

SDF .00 .80 .40 .44 .09 .00 .20 .40 .50 .20 .25 1.0 .10 .67 .85 .20 1.0 .67 .70 .04 .20 1.0 .80 1.0 .20 .00 .80 .10 .60 .83 .75 .75 – – – .60 .80 .10 .20 .50

SLS .40 .60 .50 .75 .33 .00 .80 .17 .60 .72 .00 .80 .00 1.0 1.0 .00 .60 .00 .30 1.0 .00 1.0 .00 .22 1.0 .00 .00 – – –

SNR .00 .00 – – – .00 .75 .10 .75 .87

NEI .00 .80 .60 .67 .10 .00 .20 .50 .60 .17 .00 .67 .00 .70 1.0 .20 .60 .00 .67 1.0 .20 1.0 .00 .80 1.0 .00 .80 .00 .30 1.0 .20 1.0 .00 .20 1.0 .00 .40 .00 .00 –

SNU .20 .80 .90 .80 .00 .00 1.0 .56 .88 .36

SPV .00 .80 .00 1.0 1.0 .00 .40 .00 .90 1.0 .00 .50 .00 .10 1.0 .00 .00 – – –

Avg .16 .72 .66 .71 .11 .00 .10 .45 .55 .18 .06 .85 .08 .73 .90 .08 .84 .31 .77 .60 .10 .90 .20 .95 .80 .00 .65 .03 .53 .96 .24 .81 .00 .17 1.0 .15 .30 .05 .10 .50

Avg new .20 .70 .55 .71 .22 .00 .07 .50 .60 .18 .00 .81 .07 .74 .91 .10 .70 .09 .64 .86 .07 .87 .00 .93 1.0 .00 .60 .00 .50 1.0 .07 .83 .00 .17 1.0 .00 .13 .00 .00 –

RLMut. .90 .90 .00 .92 .92 .00 .83 .83 .04 1.0 .82 .00 – – – – – – – – – – – –

urations, where each selected test environment configuration

is chosen to maximise the probability of the failure predictor

out of 500 candidates generated at random.

RQ2 [Comparison]. To compare µPRL with RLMutation, we

considered all the mutants produced by RLMutation which

are publicly available. Then, for each killable mutant of

RLMutation, we executed the test environment configurations

generated by TGW and TGS . For each original and mutant

pair, we used RLMutation to compute the killed predicate;

we then computed the mutation score for TGW and TGS , as

the ratio between the number of killed mutants and the total

number of killable mutants.

C. Results

RQ1 [Usefulness]. Table III shows the evaluation of µPRL for

all subject environments and RL algorithms. Rows represent

the MOs, while columns show the results of our mutation

pipeline for each MO. For each pair (env, A), we report the

percentage of trivial mutant configurations for each MO (%

trivial), the percentage of killable configurations (% killable),

the mutation scores (MS) for the TGW (Weak) and TGS

(Strong) test generators, and the individual sensitivity (Sen-

sitivity). For instance, in (CartPole,DQN), the SLS mutation

operator (4th row), has 40% of mutant configurations that

are trivial, 60% of configurations that are killable, while the

mutation score for TGW = 0.50 and TGS = 0.75, hence

sensitivity is 0.33. We compute the mutation score for a given

operator only if the operator is killable, and non-trivial. For

instance, in (CartPole,PPO), the SEC operator is non-killable

(% killable = 0.00), while in (Humanoid, SAC), the SDF

operator is killable (% killable = 0.75), but all the killable

configurations are trivial (% trivial = 0.75), hence we do not

compute the mutation score for them.

We observe that for CartPole the sensitivity is quite low,

i.e., 0.11 for DQN and 0.18 for PPO. Indeed, the DQN agent

in CartPole is very weak, such that even TGW is effective

at killing mutant configurations (its mutation score is 0.66

on average, while the mutation score of TGS is 0.71). On

the other hand, the PPO agent on CartPole is very hard to

kill for training environment configurations (on average the

percentage of killable mutant configurations is 0.10), and, for

killable configurations, TGS has only a slight edge w.r.t. TGW .

However, for the remaining subject environments, which are

more complex than CartPole (i.e., these environments are

harder to learn for an RL agent), the average sensitivity ranges

from a minimum of 0.50 in (Humanoid, TQC) to a maximum

of 1.00 in (Humanoid, SAC).

RQ1 [Usefulness]: Overall, the mutation operators of µPRL

are effective at discriminating strong from weak test gener-

ators, especially in complex environments where the mini-

mum sensitivity is 0.50 and the maximum is 1.0.

RQ2 [Comparison]. The last row of Table III shows the

average mutation score and sensitivity of RLMutation on the

common pairs of subject environments and RL algorithms.

We observe that, in all cases, the mutants created by µPRL

are more sensitive than the mutants of RLMutation, whose

maximum sensitivity is 0.04, for (LunarLander,PPO).

RQ2 [Comparison]: In all subject environments and RL

algorithms, µPRL create mutants that are more sensitive

than RLMutation’s.
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RQ3 [New Fault Types]. In Table III we underline the

mutation operators coming from the new fault types that

are not present in existing RL fault taxonomies. The Avg

new row shows the average metric values considering only

the underlined mutation operators. For instance, for the pair

(CartPole,DQN), the average sensitivity across all mutation

operators is 0.11, while the average sensitivity only consider-

ing the new fault types is 0.22. Overall, the mutation operators

associated to new fault types have higher sensitivity than the

total average in 5 cases; the same sensitivity in 2 cases (in one

case sensitivity is not computable for the new operators).

RQ3 [New Fault Types]: Mutation operators associated

to new fault types contribute substantially to increase the

sensitivity of µPRL.

VI. THREATS TO VALIDITY

Internal Validity. An internal threat to the study’s validity

might come from the labeling of the artifacts. We addressed

this threat by having at least two labelers independently label

each post. We also fixed the disagreements within labelers

and used Krippendorff’s Alpha to quantify the disagreements.

Furthermore, we initially conducted pilot studies to refine

the labeling process. An additional internal validity threat

concerns the subjective bias while constructing the taxonomy

tree from the generated labels. This was alleviated by all the

authors providing feedback on the final tree.

External Validity. An external validity threat is related to

the generalizability of the bugs found on Stack Exchange and

GitHub. While the sources of the bugs might be limited, we

cross referenced top conferences and highly cited works, to

ensure that such issues have been studied in the literature. The

selection of conferences to identify a popular RL framework

also poses an external validity threat. While we considered the

top tier ML conference, i.e., ICML, considering other top ML

conferences, could have given us a better picture of popular

RL frameworks in the ML community. Generalization might

also be affeced by our choice of mining Github only consid-

ering StableBaselines3. Although StableBaselines3 is the RL

framework used by the majority of the papers in the selection

of conferences we considered, by not investigating other RL

frameworks we might lose out on a variety of important faults.

Lastly, an additional external validity threat is related to the

limited number of subject environments we considered in the

evaluation. We selected CartPole and LunarLander to enable

comparisons with previous work. Additionally, we considered

Parking and Humanoid, which are also heavily used in DRL

research. Overall, this selection of environments, supporting

both discrete and continuous action spaces, allowed us to apply

four foundational DRL algorithms, namely DQN, PPO, SAC

and TQC.

Conclusion Validity. Conclusion validity threats are related

to how random variations in the experiments are handled, and

the inappropriate use of statistical tests. Since RL algorithms

are notoriously sensitive to the random seed [21], we train

original and mutated agents multiple times (i.e., n = 10),

and we used rigorous statistical tests (i.e., the Fisher’s test) to

decide whether the mutated agent is killed. Recently Agar-

wal et al. [34] proposed bootstrap sampling to overcome

the uncertainty given by a few-run RL training regime. We

acknowledge that our experimental setting may benefit from

bootstrap sampling, and by using the RLIABLE library [34],

we re-computed the killability predicate on all 1.7k mutant

instances using bootstrap sampling. In particular, we computed

the probability of improvement, and estimated the confidence

intervals using 2k samples. We found that the killed predicate

computed using bootstrap sampling agrees with the killed

predicate based on Fisher’s test 88% of the time. Moreover,

when in disagreement, 65% of the times the mutant instance

is killed by the Fisher’s test, indicating a higher statistical

power than bootstrap sampling. Hence, these results suggest

that bootstrap sampling would bring minimal benefit to our

experimental setting, although it can be used as an alternative

to the Fisher’s test for the killed predicate.

VII. CONCLUSIONS AND FUTURE WORK

We present a taxonomy of real RL faults. Using this

taxonomy, we extracted mutation operators and implemented

them in our tool µPRL. We evaluated its effectiveness in

discriminating strong and weak test generators on a diverse

set of environments using popular RL algorithms. Our tool

also achieves higher sensitivity compared to the prior work,

RLMutation, with a significant contribution from the operators

that are derived from new taxonomy branches.

VIII. DATA AVAILABILITY

Our taxonomy labeling results are available on our replica-

tion package [67]. We also share the code of µPRL [60].
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