
Data-Driven Evidence-Based Syntactic Sugar Design
David OBrien

Dept. of Computer Science
Iowa State University

Ames, IA, USA
davidob@iastate.edu

Robert Dyer
University of Nebraska-Lincoln

Lincoln, NE, USA
rdyer@unl.edu

Tien N. Nguyen
Computer Science Department
University of Texas at Dallas

Dallas, Texas, USA
tien.n.nguyen@utdallas.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, IA, USA

hridesh@iastate.edu

ABSTRACT
Programming languages are essential tools for developers, and
their evolution plays a crucial role in supporting the activities of
developers. One instance of programming language evolution is
the introduction of syntactic sugars, which are additional syntax
elements that provide alternative, more readable code constructs.
However, the process of designing and evolving a programming lan-
guage has traditionally been guided by anecdotal experiences and
intuition. Recent advances in tools and methodologies for mining
open-source repositories have enabled developers to make data-
driven software engineering decisions. In light of this, this paper
proposes an approach for motivating data-driven programming
evolution by applying frequent subgraph mining techniques to a
large dataset of 166,827,154 open-source Java methods. The dataset
is mined by generalizing Java control-flow graphs to capture broad
programming language usages and instances of duplication. Fre-
quent subgraphs are then extracted to identify potentially impactful
opportunities for new syntactic sugars. Our diverse results demon-
strate the benefits of the proposed technique by identifying new
syntactic sugars involving a variety of programming constructs
that could be implemented in Java, thus simplifying frequent code
idioms. This approach can potentially provide valuable insights
for Java language designers, and serve as a proof-of-concept for
data-driven programming language design and evolution.
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1 INTRODUCTION
Throughout a programming language’s lifetime, new features to
evolve its expressiveness and functionality such as syntactic sugars
are introduced from the intuition and anecdotal experiences of its
designers. The adoption and success of these improvements vary
wildly [11] based on the needs of the language’s community. In
this paper, we argue that this traditional avenue of programming
language evolution is flawed due to this variability. Instead, pro-
gramming language evolution should best serve its community by
adhering to the common idioms its developers express, and seek
to improve the power of these idioms with complimentary evolu-
tion. Thus, this paper advocates for the philosophy of data-driven
programming language design and evolution.

The closest approach to data-driven programming language de-
sign is the practice of previewing new features prior to release, as
seen in programming languages such as Java and Python. In these
cases, a new language feature is unofficially released to gather feed-
back from its user base before finalizing the official design. However,
the initial feature is often still proposed based on intuition.

To address this issue, we leverage a large-scale dataset of open-
source repositories to extract the frequent patterns found in code.
These frequent patterns thus represent common idioms in which
a language’s features are utilized, and can be valuable sources of
information to guide language evolution. Software engineering
research is no stranger to frequent pattern mining. These tech-
niques have been leveraged to mine frequent API elements [18, 21],
API pairs [12, 38, 39, 42], API usage patterns [23, 25], change
patterns [9, 22, 35, 36], and code clone detection [6, 30]. Previ-
ous works [3, 4, 33] have mined idioms in source code with non-
parametric Bayesian probabilistic tree substitution grammars. Par-
ticularly, Allamanis et al. [3] mined loop idioms and recommends
the Enumerate operator from one such idiom. However, this is
the only enhancement argued for, and its users do not evaluate
its design. In this study, we aim to recommend multiple enhance-
ments beyond just loop idioms and to evaluate their design amongst
participants with relevant experience. Additionally, these previous
approaches [3, 4, 33] are non-deterministic by nature of probabilistic
mining. To provide deterministic results, we instead opt to leverage
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int result;
if (n > 0) {

result = 1;
} else {

result = -1;
}

(a) Not using ternary

int result = n > 0 ? 1 : -1;

(b) Using ternary

Figure 1: Example syntactic sugar: ternary operator

the scalable information-retrieval-based frequent subgraph mining
capabilities provided by the Boa infrastructure [10].

This paper aims to mine frequent code patterns that can be
simplified by new syntactic sugars to motivate data-driven pro-
gramming language evolution. As a proof of concept, we focus on
the Java programming language, with the goal of recommending
new syntactic sugars using techniques to mine Java software repos-
itories at scale [10]. For instance, the ternary operator is a syntactic
sugar depicted in Figure 1. Suppose a programming language did
not support the ternary operator, but its developers frequently im-
plemented idioms similar to (a) in Figure 1. The knowledge of this
idiom’s wide popularity could encourage the implementation of the
ternary operator. Without this knowledge, there might exist missed
opportunities for impactful syntactic sugars.

Therefore, to identify frequent idioms not yet supported by an
existing syntactic sugar, this paper employs a data-driven approach
to analyze frequent control and data patterns in a large corpus of
source code. We represent the code as generalized control-flow
graphs (CFGs) which model the broad programming language fea-
ture usages andmodels duplicate usage and data patterns. To extract
frequent subgraphs from the generalized CFGs, we utilize subgraph
mining algorithms provided by Boa [10]. These subgraphs are then
filtered using a rule-based approach formed from historical obser-
vations to identify potential candidates for new syntactic sugars.
The resulting set of subgraphs represents common code idioms,
which are analyzed and compared with desugared syntactic sugars
from other languages.

In evaluating our generalization, we find that our approach yields
a greater quantity of subgraphs with a larger size, frequency, and
potential to motivate syntactic sugars than a baseline of mining
direct abstract syntax trees which contains no generalization.

To further motivate our approach’s effectiveness and the plausi-
bility of data-driven programming language evolution, we organize
a catalog of 7 potential new Java syntactic sugars, encompassing
multiple programming language functionalities. In total, these syn-
tactic sugars can express common code idioms found millions of
times in our corpus. We perform a user study to evaluate the design
of our syntactic sugars.

The main contributions of our work are as follows:
(1) A proof-of-concept for data-driven programming language

design and evolution through the recommendation of syntac-
tic sugars simplifying several programming language func-
tionalities.

(2) A generalized control-flow graph representation for broader
programming language usage and duplication extraction.

(3) An empirical evaluation against a baseline, highlighting our
generalization’s effectiveness.

(4) A catalog of 7 potential new Java syntactic sugars that can
simplify millions of instances in open-source repositories.

(5) A user study to estimate the user evaluation of the syntactic
sugars’ design.

This paper is organized as follows: Section 2 motivates our ap-
proach by displaying a catalog of 7 syntactic sugars inspired from
idioms mined via our approach. Section 3 explains our approach
in detail. Section 4 presents the results of our empirical evaluation,
comparing our approach to a sampled baseline. Section 5 shows the
results of our study on the entire dataset, details the frequencies
of our catalog of syntactic sugars, and provides the results of a
survey conducted with experienced Java programmers. Section 6
identifies potential threats to the validity of our study. Section 7
reviews related works in the area. Finally, Section 8 concludes the
paper and highlights our main contributions.

2 MOTIVATION FOR SYNTACTIC SUGARS
Syntactic sugars are expressive and can represent an assortment
of idioms through more human-readable or condensed syntax. To
motivate data-driven programming language evolution, this section
proposes syntactic sugars designed to “sweeten” an assortment of
frequent idioms. By leveraging our approach, we present 7 new Java
syntactic sugars that only took one week to investigate and discuss
their designs. These syntactic sugars are diverse, simplifying a set
of idioms consisting of a variety of constructs including repeated
statements, if-statements, null handlers, and error involvement.

It is important to note that although we propose concrete syntax
for these mined sugars, the primary focus of this paper is on iden-
tifying frequently occurring idioms that could motivate effective
syntactic sugars. There can be many syntactic sugar designs for
the same idiom, each with different trade-offs. Thus, the reader is
encouraged to focus more on the patterns being identified and less
on the actual syntaxes proposed.

2.1 Repeated Statements
First, let us consider the case where idioms consist only of the same
kind of repeated statement. Such repetition could possibly be sim-
plified by condensing it with a new syntactic sugar. As an example,
consider the idiom consisting of multiple, successive assignment
statements as shown on the left of Figure 2.

id = 0;
name = "Bob";
age = 50;

(a) desugared

id,name ,age = 0,"Bob" ,50;

(b) sugared

Figure 2: Potential syntax for Javamultiple assignment

From mining thousands of repositories, our approach finds that
this idiom is frequently implemented by Java developers. We call
this the multiple assignments idiom and propose a Java syntactic
sugar for it on the right side of Figure 2. Our approach aided in
identifying the recurring pattern as a possibility for a new syntactic
sugar. Afterward, we referred to other languages, e.g. Python’s tuple
unpacking, for inspiration in suggesting the syntax for the new
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sugar. This sugar can provide a potentially more human-readable
syntax to express this Java idiom.

a++;
b++;

(a) desugared

(a, b)++;

(b) sugared

Figure 3: Potential syntax for Java multiple ++

As another example, consider when multiple increment oper-
ators (++) appear in succession, such as on the left of Figure 3.
Our approach found this to be another frequently occurring id-
iom. To address this repetitive and potentially redundant code, we
propose a new syntactic sugar, as shown on the right of Figure 3.
This sugar allows developers to perform multiple increments with
a single, concise operation. This sugar can provide syntax which is
potentially easier to read and write for Java developers.

2.2 Negation of If-Statement
In addition to repeated statements, we mined several idioms in-
volving if-statements. Here we present potential syntactic sugars
motivated by our mined idioms. Instead of eliminating duplication
like the sugars previously discussed, the sugars in this category
aim to improve human readability by rephrasing the if-statements
to better communicate their intended logic. The implementation of
these syntactic sugars can potentially improve the readability and
understandability of these frequent idioms.

if (!cond) {
body

}

(a) desugared

unless (cond) {
body

}

(b) sugared

Figure 4: Potential syntax for Java unless

Following the mining of over 166 million method bodies, we
find a frequent idiom involving the negation of an if-statement’s
condition. Taking inspiration from programming languages like
Perl and Ruby which support an unless statement to invert an if-
statement, we propose the introduction of such a construct in Java.
Figure 4 portrays the design of the proposed unless-statement.

if (a || b || c) {
body

}

if (a && b && c) {
body

}

(a) desugared

any (a, b, c) {
body

}

all (a, b, c) {
body

}

(b) sugared

Figure 5: Potential syntax for Java any/all

Additionally, if-statements with repeated conditional operators
(&& and ||) are a frequent idiom, motivating the potential impact of

a construct to better express them. Figure 5 exemplifies a separate
syntactic sugar of any and all syntactic sugars to express || and
&& conditions respectively. These sugars can potentially viewed as
easier to understand, despite requiring the same number of tokens
to express as the original idiom.

2.3 Null Handlers
Alongside previously discussed categories, our approach also ex-
tracts frequent idioms that handle null values. Therefore, frequent
null-handling operations provide an impactful opportunity for sim-
plification. In this section, we propose a Java null if null (?!) syntactic
sugar to express the behavior shown in a mined frequent idiom
shown on the left side of Figure 6.

if (something != null) {
body

}
return null;

(a) desugared

something ?!;
body

(b) sugared

Figure 6: Potential syntax for Java null if null

The proposed null if null operator (?!) is similar to Kotlin’s not-
null assertion operator (!!) but behaves differently. The proposed
operator skips the body if the respective variable is null and always
returns null if no other value is returned in the body. This could
compress this frequent handling of null values in Java similar to
how syntactic sugars of other languages provide null handlers such
as null conditionals and null coalesces.

2.4 Error Involvement
Handling errors is a frequent task performed by developers in many
situations. Therefore, this category separates itself from previous
sections by exploring syntactic sugars designed to express patterns
of error-handling code such as throwing or catching errors.

if (obj instanceof MyObject) {
body

} else {
throw exception;

}

(a) desugared

requireType obj MyObject;
body

(b) sugared

Figure 7: Potential syntax for Java requireType

A frequently recurring idiom found in our mining process is one
that involves checking if a variable is an instance of a provided type
and triggering an error if it does not meet this requirement. The
left side of Figure 7 exemplifies such an instance.

To address the verbosity of this common pattern and convey its
desired behavior, we propose the requireType syntactic sugar and
exemplify its usage in Figure 7. This operator has the potential to
effectively reduce the amount of code required to express such a
frequently implemented idiom.

Continuing our examination, we find another syntactic sugar
that can be motivated by a frequently occurring error-handling
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try {
body

} catch (Error1 e) {
throw e;

}

(a) desugared

try {
body

} rethrow (Error1 e) with e;

(b) sugared

Figure 8: Potential syntax for Java rethrow

idiom. This second idiom is a catch block dedicated to rethrowing
another error. This can assist when developers want to catch broad
exception types, but omit catching specific ones.

Figure 8 demonstrates an instance of the mined idiom and the
proposed syntactic sugar’s design. Accompanying the previously
discussed requireType, the proposed rethrow syntactic sugar of-
fers an alternative for simplifying error-catching and rethrowing
operations by specifying which error is to be caught and which is
to be thrown in response. Both syntactic sugars presented have the
potential to advance the expression of error-handling idioms.

Although the sugars presented here are all new features, our
approach can also motivate language features currently being de-
veloped by Java designers, such as the upcoming string templates
being previewed in Java 21 [29]. Our approach mined idioms that in-
volve the composition of string literals, which could have prompted
designing a feature such as string templates.

3 APPROACH
In this section, we describe our approach for extracting potential
syntactic sugars from a large corpus of Java source code. Section 3.1
provides background on frequent subgraph mining. Section 3.2 dis-
cusses the datasets mined. Section 3.3 describes our approaches for
mining control-flow graphs. Section 3.4 explains how we filter and
manually analyze potential syntactic sugar subgraphs. An overview
of our approach is depicted in Figure 10.

3.1 Background
In the context of a graph database, frequent subgraph mining [2, 14,
17, 26, 31, 32, 41] is the process of identifying patterns and structures
that appear frequently across a set of graphs. The task involves
extracting subgraphs, which are subsets of the nodes and edges of
a given graph, that appear in a number of separate graphs of the
input database at least as many times as a user-defined minimum
frequency threshold value. The subgraphs are then grouped based
on their similarity, with two subgraphs being considered the same if
they are isomorphic to each other. This means that the same subset
of node and edge types are connected in the same way in separate
graphs in the database. The frequency of a subgraph is determined
by the percentage of graphs in which it appears, which must be
greater than the user-defined minimum frequency threshold in
order for it to be considered a frequent subgraph. This approach
allows for the identification of common patterns, which can be used
for further analysis and understanding of the underlying structure
of the entire graph set.

We provide an example of a frequent subgraph mining task in
Figure 9 where the graph database consists of 3 connected and
directed graphs with a set of four node types (A, B, C, and D) and

A B

A C

A
B

D

A B C D

A B A C A D

A
B

D

A

B

A B

Graph
Database

All Candidate
Subgraphs

All Subgraphs At
Least 66% Frequent

Figure 9: Frequent subgraphmining example of a given graph
database and user-defined threshold of 66%

a user-defined minimum frequency threshold of 66%. To be con-
sidered frequent, a subgraph must appear in at least 2 out of the
3 graphs in the database. The graph database is depicted in the
leftmost box, while the center box illustrates the set of all possible
subgraphs as candidates for being frequent. It is important to note
that in frequent subgraph mining, even the subgraph containing
each individual node with no edges is considered a candidate sub-
graph, as well as the subgraph consisting of every node and edge.
Finally, the rightmost box shows all subgraphs that have met the
minimum frequency threshold of 66% and appeared in at least 2
out of the 3 graphs in the original database.

In this paper, we leverage the Boa infrastructure because of its
proven capabilities in other works [10, 11, 27]. Specifically, we use
its provided capabilities to mine frequent subgraphs. Boa uses a scal-
able and deterministic candidate generation approach to gather and
aggregate frequent subgraph candidates using Hadoop MapReduce,
which enables the efficient handling of large graph sets.

3.2 Dataset
In this paper, we leverage a large-scale public dataset provided in
Boa. We choose to use this dataset since it is the largest dataset
provided, excludes forked projects, and contains frequent subgraph
mining capabilities. The dataset statistics are reported in Table 1.

Table 1: “2019 October/GitHub” (full) Java dataset statistics

Granularity Amount

Projects 380,125
Revisions 23,229,406
Unique Files 146,398,339
File Snapshots 484,947,086
AST Nodes 71,810,106,868
Recent Snapshot Methods 166,827,154

We choose to mine the most recent snapshots of all Java methods
in our dataset, totaling over 166 million methods. These methods
are transformed to CFGs, which is a data structure that has been
leveraged in previous studies [1, 20, 24, 40, 43]. We utilize Boa as a
starting point to modify and analyze these CFGs, which provides
capabilities for traversing and mining the information present.
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2019 Java
Boa Dataset

166,827,154
CFGs

Transform source code
to graph representation

166,827,154
Generalized CFGs

Remove project-
specific information, 

manipulate contextual
data 1,865 

Frequent Subgraphs

Large-scale frequent
subgraph mining Rule-based filtering

926  
Frequent Subgraphs

Manual inspection

32 Java Syntactic
Sugars Found

Figure 10: Overview of the workflow of our approach for discovering data-driven syntactic sugars

ENTRY

int result; 
VARIABLE DECLARATION

n > 0 
GREATER THAN

result = 1; 
ASSIGN LITERAL

result = -1; 
ASSIGN LITERAL

return result; 
RETURN VARIABLE ACCESS

True False

ENTRY

ENTRY

VARIABLE DECLARATION

GREATER THAN

int ASSIGN LITERAL int ASSIGN LITERAL

RETURN VARIABLE ACCESS

True False

ENTRY

DEF-USE DEF-USE

Figure 11: Example control-flowgraph (left) and the same control-flowgraphwith our generalization criteria (right). Information
that is dropped from traditional CFG nodes to generalized CFG nodes is shown in red. The information gained in a CFG node
during generalization is shown in blue.

3.3 Generalized Control Flow Graph
Our goal in this paper is to identify opportunities for new syntactic
sugars in a programming language by analyzing the current usage
of language features to discover opportunities to advance the syntax.
Previous work [4] found that performing frequent subgraph mining
on an unmodified tree structure of source code results in very small
andmeaningless idioms. This is because only small andmeaningless
subgraphs are frequent across multiple projects when all available
information is involved in the mining process. To alleviate this, we
propose a novel modification of control-flow graphs (CFG) designed
for later frequent subgraph mining. CFGs are chosen to mine due
to being a popular higher-level representation of source code. The
mining of these modified CFGs enables the discovery of frequent
code idioms and redundancies that could be simplified with the
introduction of new syntactic sugars. We term these simplifiable
subgraphs as being “sugarable”. This approach aims to identify
sugarable subgraphs and promote language evolution.

We identify that syntactic sugars implemented in Java previously
can be motivated by popular combinations of operations (e.g., +=)
as well as compressing duplicate code (e.g., multiple variable dec-
larations). Therefore, the subgraphs representing common idioms
should express the broad operations and provide the context of
duplication between neighboring expressions. During preliminary
experimentation, we found that the broad similarities between CFG
nodes contain noise that differentiates them from each other. This
would cause them to be considered two different subgraphs during

our later mining procedures. However, there is contextual infor-
mation that certain subgraphs might require to contain enough
information to confidently be considered as sugarable. Our tech-
nique generalizes the CFG nodes such that two CFG nodes that are
broadly similar get mapped to the generalized same type to enable
frequent subgraph mining of common idioms.

Therefore, our approach manipulates source code data across
the CFG nodes and edges. Specifically, our generalization 1) re-
moves project-specific information, 2) re-uses data of other CFG
nodes to provide additional context, and 3) represents generalized
neighboring data duplication across the CFG edges.

Figure 11 illustrates a CFG without generalization and a CFG
with generalization for comparison and is discussed throughout
the rest of this subsection.

Our technique innovates atop traditional CFGs by mapping sim-
ilar programming language features through discarding specific
information (e.g., variable names, user-defined types, and literal
values other than null) as depicted in red in Figure 11. Discarding
project-specific information is crucial in allowing similar subgraphs
to be treated as the same during the frequent subgraph mining
process. Discarding irrelevant information to increase analysis per-
formance is an action also explored by [5, 8, 34, 37], but no works
consider which pieces of information are relevant in the context of
sugarable subgraph mining. As a result of our novel application of
this process, frequent code idioms can be identified and considered
frequent regardless of project-specific information.
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result == null 
EQ:null

result = 0; 
ASSIGN LITERAL

True

EQ:null

int ASSIGN LITERAL

True USE-DEF

[2] [3]

result = result ?: 0;

[1]

Figure 12: [1] The Elvis operator in Kotlin,
[2] Java equivalent CFG subgraph of desugared Elvis operator,
[3] our approach’s generalization of [2]

For instance, in Figure 11 two integer assignments (result = 1
and result = -1) are originally represented as separate CFG nodes
in the traditional CFG due to the difference in literal values getting
assigned. However, these integer assignment nodes are considered
the same type of node in our generalized representation after the
removal of project-specific information from the original represen-
tation (variable name and assigned value). This allows for the detec-
tion of patterns such as the desugared usage of the ternary operator
from this specific subgraph. This broad pattern would have been
difficult to uncover through frequent subgraph mining with the
original CFG representation which contained project-specific and
subgraph-differentiating information. Therefore, such a subgraph
is sugarable because of the duplicate operators in a control-flow
structure and previous languages supplying a syntactic sugar atop
this idiom. If this subgraph is found to be a frequently-occurring
idiom, this would motivate the potential impact of supporting the
ternary operator if it had not already been implemented in Java. Our
process of removing project-specific information and generalizing
CFG nodes thus helps identify sugarable subgraphs.

In Figure 11, the information introduced to new areas of a CFG
during our generalization process is depicted in blue text. Our tech-
nique balances the need for generalization with the importance
of context by reapplying information evident in other locations
of a CFG. For instance, the original CFG representation involving
result’s assignment in Figure 11 lacks the assigned variable’s type.
However, our approach tracks this information from the variable
declarations earlier in the CFG and reapplies it to generalized nodes
whenever the variable is assigned a value, providing additional
context for understanding potential type-specific syntactic sug-
ars (e.g., string interpolation) which could simplify the assignment.
Without this information, the generalized CFG nodes would simply
be ASSIGN LITERAL, lacking potentially crucial details about the
type of literal being assigned and introducing ambiguity which can
prevent a subgraph from being viewed as sugarable. Thus, our ap-
proach strikes a balance between generalization and the provision
of the context of extracted subgraphs.

Our approach extends the traditional CFG representation by
generalizing neighboring variable definitions and usages. Conven-
tionally, data dependence analysis forms edges to depict the de-
pendence of a variable’s usage on its latest definition. However,
this does not provide spatial information and can lead to edges
connecting nodes far apart in the original source code. In this study,
we aim to extract idioms consisting of neighboring CFG nodes to
be considered as syntactic sugar opportunities. An example of a
sugarable idiom consisting of neighboring information is the Elvis
operator (?:) in Kotlin, where the syntactic sugar implicitly checks

if a variable’s value is null, and if so, evaluates to a second specified
value. Usage of this syntactic sugar in an assignment statement is
shown in Figure 12. When considering the desugared equivalent of
the Elvis operator, it’s crucial to know that the same variable is both
used (checked against null) and redefined (assigned to provided
value) in separate expressions. This highlights how syntactic sugars
can simplify neighboring code idioms that involve the same data,
which is not captured by traditional data dependence.

To address this, we modify the neighboring edges in the CFG to
carry additional data context. Our approach introduces four types of
edge modifiers: DEF-DEF, DEF-USE, USE-DEF, and USE-USE. These
edge modifiers represent whether the source node defines or uses a
variable defined or used in the destination node. By incorporating
this generalized information, our approach captures important local
relationships between expressions, making it easier to identify
and motivate syntactic sugars with the applied context while still
generalizing these cases to enable large-scale subgraph mining.
One such data edge, USE-DEF, is shown in our generalized CFG of
Kotlin’s Elvis operator’s desugared Java equivalent in Figure 12.

3.4 Frequent Subgraph Mining
A weakness of frequent subgraph mining is the dependence on the
user-defined threshold to determine whether a subgraph appears in
enough graphs to be considered frequent. Therefore, we choose to
leverage a different programming language’s established syntactic
sugars to mine a threshold of potential syntactic sugar use cases:
Kotlin, a programming language that compiles into the Java Virtual
Machine (JVM) was created as an alternative to Java when creating
Android applications and contains syntactic sugars that Java does
not. We identify 4 syntactic sugars in Kotlin that do not have a
Java equivalent (string interpolation, Elvis operator, getter and setter
properties, and not-null assertion). Since Java does not contain these
syntactic sugars, we consider what their desugared equivalents, the
expanded form of the syntactic sugar, would appear as in Java. Fol-
lowing this, our Java dataset is mined for how often these desugared
Kotlin syntactic sugars appear. Thus, any subgraph that appears at
least as often as the least frequently appearing desugared syntactic
sugar from Kotlin is viewed as a candidate for syntactic sugar.

Although mining Kotlin syntactic sugars may bias our results to-
wards Kotlin-like syntactic sugars as opposed to Java-like syntactic
sugars, the four chosen syntactic sugars, despite being selected from
Kotlin, are not exclusive to Kotlin and are also present in multiple
programming languages. For example, string interpolation, one of
the selected syntactic sugars, is not unique to Kotlin and can also be
found in other languages such as Python, Scala, and Swift, among
others. Similarly, getter and setter properties, another selected sugar,
are present in C#. Additionally, the not-null assertion appears in
TypeScript, and null-handling syntactic sugars similar to Kotlin’s
Elvis operator can be found in C# and Ruby, albeit under different
names. In doing so, although the syntactic sugars were chosen from
a similar language to Java, we aim to reduce bias by mining those
syntactic sugars in Kotlin which are language agnostic.

The results of our experiment are shown in Table 2, with not-null
assertion being the least frequent, appearing in 0.061% of methods.
We use this as our threshold for frequent subgraphmining since any
code idiom that appears more oftenwould be at least as impactful on
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Table 2: Occurrences of desugared Kotlin syntactic sugars
found in 2019/Java Boa dataset

Syntactic Sugar Java Method # Java Method %

String Interpolation 1,992,642 1.194%
Elvis Operator 391,010 0.234%
Getter/Setter Properties 8,721,251 5.228%
Not-Null Assertion 101,675 0.061%

Total: 166,827,154 100%

existing code as implementing the not-null assertion syntactic sugar
from Kotlin. Although there might be other desugared syntactic
sugars not mined that appear less often than the not-null assertion,
using a lower threshold would only add more subgraphs to our
results, but all subgraphs presented in this paper would still be
considered frequent.

Filtering process. Following the extraction of frequent subgraphs
from our generalized CFGs, we employ a filtering process to effi-
ciently investigate the potentially large number of subgraphs. We
establish a set of rules, drawing inspiration from previous updates
to the Java programming language. By basing these rules on previ-
ous enhancements, we hope to uncover new sugars that can align
with Java’s previous evolutionary patterns.

Specifically, we define the following rules to filter the extracted
frequent subgraphs.

(1) Duplication: syntactic sugars such as multiple variable dec-
laration involve compressingmultiple CFG nodes of the same
type. This rule captures subgraphs where all nodes are of
the same type.

(2) Data Edge: because sugars such as the ternary operator
involve data reuse between nodes, this rule captures all sub-
graphs with at least one data edge.

(3) Null: Java 8 introduced the Optional class to enable users
to assist in operating upon null values. This rule captures
subgraphs where at least one node involves a null literal.

(4) ErrorHandling: syntactic sugars such asmultiple catches in-
volve sugars to simplify error handling idioms. This rule cap-
tures subgraphs where at least one node is a "Try", "Catch",
or "Throw" node kind.

(5) Entry and Exit: Java 16 provides Records to simplify the
creation of data classes and generate certainmethods entirely.
This rule captures subgraphs that contain both the "Entry"
and "Exit" nodes.

The labeling process involved in this study is as follows. For a
collection of frequent subgraphs, the subgraphs are first divided
by the number of nodes contained. Each subgraph of size 1 is then
manually inspected by the first author. Although subgraphs of size
1 might be seen as small-scale, it is important to note that these are
CFG subgraphs of size 1, which can contain multiple potentially
simplifiable AST nodes. The investigated CFG subgraph is noted
if there is enough information present to allow a syntactic sugar
to simplify. When evaluating a subgraph for syntactic sugar, the
authors consider whether the idiom represented by the subgraph
is a complete entity or just a piece of a larger construct (e.g., the
beginning of an if-statement rather than the entire body). If the

subgraph is not a self-contained unit, it may require additional
contextual information to determine if a syntactic sugar is relevant
to the situation. Additionally, subgraphs with many nodes and
edges that introduce ambiguity may not be suitable for syntactic
sugar. Another criterion considered is whether the introduction of
syntactic sugar can lead to code compression, reduced duplication,
or enable a more expressive operation. The authors also consider
whether the subgraph shares similarities with existing syntactic
sugars in another programming language. If a known syntactic
sugar already exists that addresses a similar coding pattern or idiom,
its relevance to the subgraph is considered before deciding if the
subgraph motivates a similar syntactic sugar.

After discussion between the authors, there existed frequent
subgraphs that the authors believed motivated a syntactic sugar,
but were unsure of a proper syntax to propose. These cases are
considered sugarable in our evaluation, although a named syntac-
tic sugar is not assigned. However, to provide transparency, all
frequent subgraphs as well as their assigned labels are available
in our replication package. Following the completion of frequent
subgraphs of size 𝑛, we continue labeling all frequent subgraphs
of size 𝑛 + 1 which pass one of the listed filtering rules until no
new named syntactic sugars are motivated which were not already
motivated by frequent subgraphs of a smaller size.

4 EMPIRICAL EVALUATION
In this section, we evaluate our mining approach to extract multiple,
frequent, and sugarable frequent subgraphs.

To evaluate the effectiveness of our approach, we establish a
baseline for comparison. We apply the same frequent subgraph
mining and labeling techniques described in Section 3 on a dataset
of Java control flow graphs (CFGs) that have not undergone any
generalization process. This dataset consists of pretty-printed Java
abstract syntax tree (AST) nodes extracted from Boa [10]. By com-
paring the results of this evaluation to our generalization criteria,
we aim to demonstrate that our approach of extracting syntactic
sugars from open-source repositories through generalization is
more effective than directly mining the AST nodes containing all
available information.

Table 3: Sampled “2019 October/GitHub” Java Boa dataset

Granularity Amount

Projects 7,988
Revisions 31,645
Unique Files 191,945
File Snapshots 622,613
AST Nodes 92,311,223
Recent Snapshot Methods 241,264

However, due to the large-scale nature of our original dataset,
which comprises over 166 million Java methods, using Boa’s fre-
quent subgraph mining algorithms on CFG node types derived from
pretty-printed AST nodes resulted in insufficient memory errors.
This is because CFGs without generalization have a large number
of potential candidate subgraphs. To overcome this limitation, we
evaluate a dataset sampled from the original Java Boa dataset, with
the dataset statistics provided in Table 3.
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From this sampled dataset, we extracted the subgraphs with our
generalization scheme described in Section 3 as well as extracted
the subgraphs of the pretty-printed Java AST nodes. For each set of
extracted subgraphs, we followed the labeling strategy described in
Section 3, where we increasingly label all subgraphs of increasing
size until no new syntactic sugars can be motivated.

For each set of extracted subgraphs, we use the following metrics:
(1) Total frequent subgraphs: The number of frequent sub-

graphs that were extracted at each size.
(2) Investigated subgraphs: The number of frequent sub-

graphs that were manually examined after being filtered
according to the criteria outlined in Section 3.

(3) Median frequency: The median frequency of all frequent
subgraphs at the current size. This represents the median
number of CFGs in which the frequent subgraphs appear.

(4) Sugarable: The number of frequent subgraphs that were
labeled as sugarable after the labeling process was complete.

(5) New sugars: The number of frequent subgraphs that moti-
vate a new syntactic sugar that was not previously motivated
by a frequent subgraph of a smaller size.

(6) Unique sugars: Of all the sugarable frequent subgraphs, the
number of uniquely named sugars that are involved with the
frequent subgraphs at this size. This metric is different from
"new sugars" because it includes both new and previously
motivated sugars at each size interval, while "new sugars"
only include new sugars at that specific size.

Table 4: Results for sampled Boa Dataset with generalization

Total
Freq.
SGs

Invest.
SGs

Median
Freq.

Sugar-
able

New/
Unique
Sugars

1 node 156 156 814 44 13/13
2 nodes 628 249 337 116 16/16
3 nodes 592 309 294 57 4/11
4 nodes 377 173 260 11 0/6

Table 5: Results for sampled Boa Dataset without generaliza-
tion (pretty-printed Java AST)

Total
Freq.
SGs

Invest.
SGs

Median
Freq.

Sugar-
able

New/
Unique
Sugars

1 node 148 148 205 8 3/3
2 nodes 106 22 214 0 0/0

The results for the generalized frequent subgraphs and the pretty-
printed Java AST subgraphs are presented in Tables 4 and 5, respec-
tively. From the data, we draw the following conclusions:

(1) Subgraph size: By using our generalization criteria, we
were able to identify sugarable frequent subgraphs that con-
sisted of four CFG nodes, as opposed to only finding sug-
arable subgraphs with one CFG node without generalization.
This demonstrates that our generalization criteria enable the
discovery of sugarable subgraphs that are larger than our
established baseline, i.e., without generalization.

(2) Number of subgraphs: Across all investigated subgraph
sizes, our approach extracted more frequent subgraphs when
using our generalization criteria as opposed to not using
generalization. This is because our generalization approach
allows for CFG nodes with similar use cases to be considered
the same CFG node type, rather than only considering two
CFG nodes as the same type if they are identical. This leads
to the discovery of more frequent subgraphs, and thus more
potential areas to discover sugarable programming patterns.

(3) Subgraph frequency: Across all investigated subgraph
sizes, our approach with generalization found subgraphs
that were more frequent than the baseline. This means that
the subgraphs investigated are likely to have a larger impact
than the syntactic sugars extracted from frequent subgraphs
mined without generalization.

(4) Syntactic sugars discovered: Across all investigated sub-
graphs, our approach discovered more sugarable subgraphs
and more new syntactic sugars not previously found. This
is because our generalization criteria capture the broad pro-
gramming language use cases, allowing for common patterns
to appear as frequent subgraphs instead of infrequent when
mining subgraphs without any generalization.

From our empirical evaluation, we find that our generalization
criteria in frequent subgraph mining lead to a significant improve-
ment in the extraction of sugarable results. The results obtained
from the sampled data demonstrate that the use of generalization
results in the identification of larger, more abundant, and frequent
subgraphs, as well as an increase in the number of sugarable sub-
graphs. The results of our evaluation demonstrate that our general-
ization criteria significantly enhance the performance of frequent
subgraph mining, highlighting the potential of this method in un-
covering more meaningful and useful programming patterns. a

5 EMPIRICAL RESULTS
5.1 Sugarable Pattern Discovery Result
This section presents the results of our technique applied to the
complete dataset of 166 million Java source code methods. These
results have been obtained through a manual examination of the
data and are available in the replication package [28]. We evaluated
the entire corpus of 166,827,154 CFGs available in the “2019 Octo-
ber/GitHub” Boa dataset with the same evaluation metrics outlined
in Section 3. The findings are presented in Table 6. We provide an
analysis of the effectiveness of our technique on a large scale.

Running our tool on the full Java dataset, we were able to extract
a total of 1,865 frequent subgraphs, which range in size from 1-4
nodes. Through the application of our rule-based filtering method
outlined in Section 3, 926 of these subgraphs were selected for
further manual investigation. While a significant portion of the
initial set of frequent subgraphs was removed through this filtering
process, the goal of this study is to identify new opportunities for
syntactic sugars in the Java programming language. To that end,
the rules used in the filtering process were specifically designed to
target subgraphs that align with previous updates in Java.

The results of our manual examination of the filtered frequent
subgraphs yielded a total of 241 sugarable subgraphs. We consider a
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Table 6: Results for entire Boa Dataset with generalization

Total
Freq.
SGs

Invest.
SGs

Median
Freq.

Sugar-
able

New/
Unique
Sugars

1 node 163 163 522,965 50 13/13
2 nodes 669 246 238,973 120 16/16
3 nodes 639 324 205,421 59 3/10
4 nodes 394 193 200,701 12 0/6

subgraph to be sugarable if it exhibits characteristics such as redun-
dancies that can be compressed, operations that can be combined,
or if it resembles a known syntactic sugar from another program-
ming language. It is worth noting that some sugarable subgraphs
were not assigned a specific named syntactic sugar due to the lack
of confidence in the appropriate syntax to simplify the respective
subgraph. Overall, our proposed approach aimed to identify oppor-
tunities for new syntactic sugars that can simplify Java code and
improve its readability and maintainability.

In our results, we identified 32 named syntactic sugars that have
the potential to simplify the frequent subgraphs that we have iden-
tified. It is important to note that this number is considered to be a
lower bound, as more experienced programming language design-
ers may be able to discover additional syntactic sugars that were
not identified through our manual investigation process. The full
dataset is available in our replication package [28] so that others
can inspect and identify additional sugars. In order to provide a
clear understanding of our results, the 7 syntactic sugars presented
previously in Section 2 were selected from amongst these 32 ones.

5.2 Frequency Results

Table 7: Amount of CFGs for different syntactic sugars

Sugar Amount of CFGs

Multiple Assignment 5,543,853
Multiple ++ 292,449
Unless 9,574,658
Any/All 10,267,105
Null if Null 236,567
requireType 116,742
Rethrow 1,994,698

In Section 2, a catalog of syntactic sugars was presented to pre-
view the results of our technique. We now present the frequencies
of all the subgraphs that motivate these syntactic sugars’ creation
in Table 7. It is worth noting that these numbers serve as a lower
bound, as there could be infrequent subgraphs that also motivate
the same syntactic sugar. Additionally, this sum only represents the
number of CFGs that contain at least one instance of the subgraph.
By nature of frequent subgraph mining, if multiple instances of a
frequent subgraph appear in a single CFG, it is not multiply counted.
By presenting the frequency of the subgraphs that motivate each
syntactic sugar, we demonstrate the potential impact that could
be achieved by incorporating these syntactic sugars into future

Table 8: survey participants

Frequency

Graduate Student 48.39%
Practitioner 45.16%
Other 6.45%

Table 9: Experience in Java of survey participants

Experience Frequency

0-2 years 16.13%
2-5 years 22.58%
5-10 years 38.71%
10-15 years 6.45%
15-20 years 3.23%
20+ years 12.90%

versions of Java. These results serve as a motivator for language
designers to adopt data-driven programming language evolution.

5.3 Survey on Human Subjects
Adoption of new language features can vary [11, 16] and syntactic
sugar specifically can introduce ambiguities in code understand-
ing [13]. Therefore, to evaluate the quality of the designed sugars
presented in Section 2, we conducted a survey involving 31 partici-
pants with experience in Java programming. In the survey, partici-
pants are asked to provide their title and their years of experience
with Java. The results are reported in Table 8 and Table 9. As seen,
our participants consist of both graduate students and practitioners.
The majority of our participants have 5 or more years of experience.
Participants are then presented with the desugared and sugared
figures shown in Section 2 and asked for their preference on a Likert
scale. The results of these questions are depicted in Table 10.

Our survey reveals that over half of our participants prefer three
of our proposed syntactic sugars compared to their desugared equiv-
alents, showcasing the potential of the syntactic sugars discovered.
For example, 74.19% of participants favor “Any and All” syntac-
tic sugars over the current Java code. Participants have described
them as "Seems to read ‘easier’ (matches how we would state the
condition in natural language) and unambiguously, so I’m a fan of
the new feature." Another participant notes "the new features would
allow for composition that reduces the potential for errors arising
from confusion over operator precedence and associativity." Thus, we
conclude that our approach often identifies idioms that can inspire
user-preferred syntactic sugars.

It is a possibility that our survey results depict a lower bound,
since the participants are asked about the syntactic sugar’s design,
it might be possible that participants might prefer an alternative
syntactic sugar to simplify the same coding idiom. We provide
comments where the participants recommend modifications to our
controversial syntactic sugar designs in Table 10. Therefore, this
survey shows for each sugar the minimum preference that users
might have for sugaring our identified idioms since they might
potentially be more popular sugars to express our mined idioms.
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Table 10: Results on Participant Preferences & Feedback on Syntactic Sugars

Sugar Preference Comments
Multiple Assignment 58.06% Have the flexibility to put meaningful groups of variables together
Multiple ++ 45.16% I think it would be a useful feature. It would be more useful if we can increment by any

constant together, not just 1, like (a,b)+=2.
Unless 41.94% I like the idea of unless, but the "else" case seems awkward. Is there a better word than

unless?
Any & All 74.19% Seems to read ’easier’ (matches how we would state the condition in natural language)

and unambiguously, so I’m a fan of the new feature.
Null if Null 29.03% The syntax appears to perform an implicit return in a way that is very subtle and

unclear. A null-coalescence operator would be helpful, however.
requireType 45.16% I would actually go a step further and suggest a more robust pattern matching syntax,

similar to rust or scala, which allows exhaustively enumerating types/patterns.
Rethrow 51.61% This makes it very elegant. A very useful suggestion.

6 THREATS TO VALIDITY
In our mining process, we utilized the 2019 Java dataset provided
by Boa. This dataset was chosen as it contains thousands of diverse
projects and provides support for frequent subgraph mining, which
is essential for our study. Other large-scale Java datasets could be
used in our study. However, note that newer versions of Java have
been released since 2019, and new syntactic sugars and language
usage patterns may have emerged. Despite this, we conducted a
manual inspection of the extracted frequent subgraphs and consid-
ered cases where a new Java syntactic sugar or an existing syntactic
sugar could simplify the subgraph. These results are available in
our replication package. It is also worth noting this is only possible
due to the wealth of Java data available. This approach may not
apply to less popular programming languages.

It is also worth noting that some of the files in the dataset may
be perfect duplicates of each other. Previous research has shown
that Java repositories have a low percentage of file clones, with
58% of the files being distinct [19]. However, these clones could still
impact our results if the presence of duplicated files skewed the
frequency of certain subgraphs in our dataset. This is important to
keep in mind when interpreting and applying our results.

Throughout this study, decisions were made which may intro-
duce bias into our results. First, we employed a rule-based approach
to filter our extracted subgraphs which were formed atop obser-
vations made regarding previous Java changes. Additionally, sub-
graphs were manually investigated by one author. The goal of this
study is to motivate the plausibility of data-driven programming
language design and evolution through mining frequent code id-
ioms, rather than exhaustively identifying all possible syntactic
sugars to implement in Java. We argue that the presentation of 7
new syntactic sugars mined from our approach and the performed
survey’s results show the effectiveness of our decisions. Addition-
ally, any recommendable sugarable subgraphs that were missed
(either filtered out by our rule-based approach or misclassified by
manual reviewing) are still available on our replication package for
future researchers and language designers to refer to.

7 RELATEDWORK
Previous works [3, 4] utilized probabilistic mining techniques
to extract frequent code idioms. In the context of refactorings,

Sivaraman et al. [33] extended that research; however, these ap-
proaches are non-deterministic. In contrast, we adopt a determinis-
tic information-retrieval approach to facilitate data-driven language
design and evolution. Notably, this topic was explicitly excluded
from the scope of prior research which leverages idiom mining
for refactorings [33]. Allamanis et al. [3] mines loop idioms to sug-
gest that LINQ could benefit from the Enumerate using a mined
loop idiom as evidence. However, our work recommends multiple
enhancements beyond just loop idioms, and we also evaluate our
designs in a user study consisting of experienced Java programmers.

Mining the patterns of library usages has been a frequently ex-
plored application of frequent pattern mining [12, 18, 21, 38, 39, 42].
Nguyen et al. [23, 25] proposes techniques to mine and utilize
context-preserving graph representations of source code for anom-
aly detection and code completion. However, these approaches are
focused on API usage, not programming language usage, which is
the main focus of our study.

In the area of code refactorings, Brito et al. [7] characterized non-
trivial subgraphs representing refactorings in Java and JavaScript
applications, while Janke and Mäder [15] mined version control sys-
tems to extract 25 frequent change patterns found across multiple
software projects. Additionally, detecting and classifying common
code changes has been explored by other works [9, 22, 35, 36]. How-
ever, these works focus on change patterns and not patterns of the
most recent usage of programming language features.

Our approach of generalizing a graph representation of source
code is comparable to works that remove irrelevant elements to
produce more efficient and fruitful results [5, 8, 34, 37]. However,
prior works do not explore the necessary information to preserve
for sugarable subgraph mining.

8 CONCLUSION
In this paper, we proposed a data-driven approach for program-
ming language design and evolution by identifying common code
idioms through frequent subgraphmining, andmanually evaluating
the extracted subgraphs for opportunities to implement impact-
ful syntactic sugars. To accomplish this goal, we have generalized
166,827,154 CFGs to capture the broad programming language usage
patterns. From this process, we found 241 total sugarable subgraphs
and specifically cataloged and evaluated 7 potential new syntactic
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sugars for Java, including syntactic sugars involving duplication,
if-statements, nulls, and errors. Our empirical results demonstrate
the feasibility of data-driven programming language design and
evolution, exemplifying new Java syntactic sugars that can simplify
millions of common programming idioms.

9 DATA AVAILABILITY
The Boa queries, output from those queries, and all processing
scripts are made available in a replication package on Zenodo [28].
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