
Are Prompt Engineering and TODO Comments Friends or Foes?
An Evaluation on GitHub Copilot

David OBrien
Dept. of Computer Science

Iowa State University
Ames, IA, USA

davidob@iastate.edu

Sumon Biswas
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA
sumonb@cs.cmu.edu

Sayem Mohammad Imtiaz
Dept. of Computer Science

Iowa State University
Ames, IA, USA

sayem@iastate.edu

Rabe Abdalkareem
Dept. of Computer Science
Omar Al-Mukhtar University

Elbyda, JK, Libya
rabe.abdalkareem@omu.edu.ly

Emad Shihab
Concordia University
Montreal, QC, Canada

emad.shihab@concordia.ca

Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, IA, USA

hridesh@iastate.edu

ABSTRACT
Code intelligence tools such as GitHub Copilot have begun to bridge
the gap between natural language and programming language. A
frequent software development task is the management of technical
debts, which are suboptimal solutions or unaddressed issues which
hinder future software development. Developers have been found
to “self-admit” technical debts (SATD) in software artifacts such
as source code comments. Thus, is it possible that the information
present in these comments can enhance code generative prompts to
repay the described SATD? Or, does the inclusion of such comments
instead cause code generative tools to reproduce the harmful symp-
toms of described technical debt? Does the modification of SATD
impact this reaction? Despite the heavy maintenance costs caused
by technical debt and the recent improvements of code intelligence
tools, no prior works have sought to incorporate SATD towards
prompt engineering. Inspired by this, this paper contributes and
analyzes a dataset consisting of 36,381 TODO comments in the
latest available revisions of their respective 102,424 repositories,
from which we sample and manually generate 1,140 code bodies
using GitHub Copilot. Our experiments show that GitHub Copilot
can generate code with the symptoms of SATD, both prompted and
unprompted. Moreover, we demonstrate the tool’s ability to auto-
matically repay SATD under different circumstances and qualita-
tively investigate the characteristics of successful and unsuccessful
comments. Finally, we discuss gaps in which GitHub Copilot’s suc-
cessors and future researchers can improve upon code intelligence
tasks to facilitate AI-assisted software maintenance.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Software
and its engineering→ Software creation and management.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639176

KEYWORDS
technical debt, GitHub Copilot, LLM, code generation
ACM Reference Format:
DavidOBrien, Sumon Biswas, SayemMohammad Imtiaz, RabeAbdalkareem,
Emad Shihab, and Hridesh Rajan. 2024. Are Prompt Engineering and TODO
Comments Friends or Foes? An Evaluation on GitHub Copilot. In 2024
IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24),
April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639176

1 INTRODUCTION
Artificial intelligence (AI) has begun to aid software developers by
offering a range of development tasks [8, 17, 32, 33, 36, 49], including
code generation [16], comment maintenance [32, 33, 36, 57], defect
resolution [33, 36, 57], and automated code review [17, 49, 57].
These intelligent coding solutions leverage AI advancements and
a vast corpus of open-source software data. Microsoft’s GitHub
Copilot [16] is a notable example, trained on billions of lines of
code fromGitHub repositories using OpenAI’s Codexmodel [7]. We
select GitHub Copilot to evaluate upon in this study due to recent
research’s involvement [34, 37, 41] and its capabilities, as Copilot
was found to achieve a 61-91% success rate in providing immediate
solutions or a potential useful starting point for developers [37].

“Technical debt” (TD) is a widely recognized phenomenon in
the software development industry, which was first introduced by
Ward Cunningham [9]. TD refers to the long-term impact of in-
sufficient solutions on the development process [5, 13, 26, 46, 48].
TD can include unfinished implementations, hacky workarounds,
poor code quality, outdated documentation, and many other poor
software quality symptoms. While TD is often described as a finan-
cial metaphor [1], it can also have a significant impact on other
expenses beyond monetary means, such as time and effort required
to maintain and improve the system [5, 13, 26, 46, 48].

Potdar and Shihab [42] explored the concept of “self-admitted
technical debts” (SATD) which are locations where developers ac-
knowledge the existence of a TD. The most commonly researched
SATDs are those left as source code comments (e.g., TODO com-
ments) [3, 14, 18, 28–31, 38, 42, 43, 55], although SATD has been
found in other software artifacts such as issue trackers [24, 25, 52],
build systems [53], code review [21], and Docker files [2]. SATD has

https://doi.org/10.1145/3597503.3639176
https://doi.org/10.1145/3597503.3639176


ICSE ’24, April 14–20, 2024, Lisbon, Portugal David OBrien, Sumon Biswas, Sayem Mohammad Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

also been leveraged in practice [50], and SATD in practice and open
source share similarities [54]. Many distinct symptoms of TD have
been reported as SATD such as Requirement Debts, Code Debts,
Defect Debts, Test Debts, Design Debts, and Documentation Debts
[3, 42]. Prior works have been proposed to assist in technical debt
management by using AI techniques to detect and classify SATD
comments [18, 27, 28, 30, 31, 43, 44], classify a SATD’s removal
[56], and remove obsolete (previously fixed) TODO comments [15],
and evaluate transformers and LLMs’ applicability towards SATD
repayment [35]. Specifically, this study investigates TODO com-
ments as a subset of SATD, and thus we refer to our data as TODO
comments. We also refer to the SATD broadly when discussing
prior works and future works which our study can motivate.

Since TD can affect a plethora of software maintenance activi-
ties, a technique to assist in repaying the accrued technical debts
would be valuable. Because TD can be disclosed in natural language
through SATD [42], and GitHub Copilot has been shown to perform
well upon natural language prompts [37], is it possible that SATD
comments could serve as instruction in these prompts to produce
less technically indebted code? In doing so, are the symptoms of the
SATD reproduced or repaid in the proceeding generations? Addi-
tionally, is it possible that not all TODO comments are well fit to be
included in code generation prompts? For instance, the comment
TODO: this is hacky is very vague and describes poor qualities
of pre-existing code. Meanwhile, TODO: add divide by zero
checks is another TODO comment which describes a specific fu-
ture action to be implemented. In these two instances, is it possible
that there are characteristics of TODO comments such as implying
an action or text clarity which better equip a SATD comment to
become a prompt for code generation? The examination of code
generations from prompts including TODO comments can provide
insights into prompt engineering best practices to generate techni-
cal debt by analyzing successfully and unsuccessfully repaid TODO
comments. However, to the best of our knowledge, no prior works
have investigated the extent to which the symptoms associated within
TODO comments can be resolved by supplementing code generation
prompts with the information available in these comments.

Inspired by these questions, we curated a dataset consisting
of 36,381 TODO comments found in the most recent revisions of
Python repositories as of January 2022 from a dataset utilized by a
prior research [11]. From this dataset, we manually examined 1,013
comments to extract a statistically significant sample of 380 fitting
TODO comments with a confidence interval of 95% and a margin
of error of 5%. From the 380 TODO comments, we generate 1,140
function bodies using different prompt-constructing procedures to
gain initial insights into how TODO comment-including prompts
affects Copilot’s output. This dataset is publicly available, making it
a usable resource for future research in AI-assisted software main-
tenance. A thorough analysis of the dataset enables the following
research questions to be explored:

• RQ1: Does the presence of TODO comments impact the
quality of GitHub Copilot’s generated code? Since code
generative tools such as Copilot are trained on open-source
software [16] where SATD is prevalent [42], it is crucial to
understand if its generated code reproduces the symptoms

of TODO comments from training data, and if so, explore
ways to mitigate this issue.

• RQ2: Can GitHub Copilot generations repay developer-
written TODO comments? Given that GitHub Copilot is
trained on a vast amount of software data [16], we investigate
if its generated code can serve as alternative solutions which
do not contain the TD symptoms of developer-written code.

• RQ3: Can TODO comments be modified to enhance
prompts which lead to generated code that repays the
symptoms? Prior work speculates whether a TODO com-
ment can be modified to document software following the
TODO comment’s resolution [15]. Could this be utilized to
engineer prompts which produce TODO comment-repaying
solutions?

We have made the following contributions in this paper:
(1) To the best of our knowledge, the first study evaluating the

applicability of prompt engineering via TODO comment
inclusion/modification to assist in automatic technical debt
repayment.

(2) Recommendable best practices for prompt engineering to
produce code which avoids the symptoms of SATD being
reproduced by code generative tools.

(3) Insights on the limitations of code generative tools and inspi-
rations for future research on code intelligence techniques
applied towards SATD repayment.

(4) A publicly available dataset consisting of 1,140 GitHub Copi-
lot generations which future work can evaluate against to
facilitate AI-assisted software maintenance.

The rest of this paper is organized as such: Section 2 discusses
the methodology, Section 3 overviews the results of the specified
RQs, Section 4 discusses the implications of our findings, Section 5
overviews our threats to validity, Section 6 outlines related work,
and Section 6 concludes this paper.

2 METHODOLOGY
This section describes our approach for utilizing open-source repos-
itories to create prompts for GitHub Copilot generations.

2.1 Dataset
In order to address the research questions outlined, we have elected
to utilize the Boa Language and Infrastructure [12]. Boa has been
demonstrated to be a capable and efficient solution for large-scale
mining of software repositories. Relevantly, OBrien et al. [38] demon-
strated its capabilities of extracting self-admitted technical debt
(SATD) comments fromPythonmachine learning repositories. There-
fore, we decide to also study Python repositories due to its in-
creasing popularity in both machine learning and recent research
[4, 10, 11, 38, 40]. Moreover, in this study, we have chosen to ex-
pand the scope beyond solely machine learning repositories, opting
instead to utilize a dataset of diverse Python repositories provided
by the Boa Language and Infrastructure as of February 2022. This
dataset has been employed in prior research for the analysis of
Python programming paradigms [11].

This dataset consists of repositories whose primary language is
Python, was gathered from GitHub in February 2022, and consists
of repositories created from 2008-2021. The repositories in this



Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot ICSE ’24, April 14–20, 2024, Lisbon, Portugal

dataset were cloned in descending order of star count, resulting
in each contained repository having a minimum of 24 stars. We
present the statistics for the overall dataset in Table 1. Despite the
dataset comprising over 293 million file snapshots, in order to focus
only on analyzing currently existing TODO comments (comments
beginning with the word "todo", case insensitive) using GitHub
Copilot, we have mined only the most recent snapshots, which
encompasses a total of 23,848,176 files.

Table 1: The dataset statistics

Granularity Amount
Projects 102,424
Revisions 32,231,939
Unique Files 63,681,580
File Snapshots 293,231,664
AST Nodes 105,512,426,611

2.2 Creating TODO Comment Dataset
In this section, we describe our approach for gathering, filtering,
and sampling a dataset of Python TODO comments and docstrings.
Data from this section is provided in Table 2.

In order to analyze the potential of code generative tools to
reproduce and resolve issues admitted in TODO comments, we
have undertaken a thorough extraction and filtering process of the
TODO comments present in the Boa dataset. Through querying the
most recent snapshots of Python files, we have identified a total
of 36,381 TODO comments. Adhering to established protocols for
discerning SATD comments as outlined in previous literature [38],
we have eliminated any comments with duplicate signatures (exact
same comment in the same file) and those that are not native to
their respective repository (instead in a local copy of a library or
package) by removing those with substrings such as “site-packages”.
This methodical approach ensures that all comments analyzed were
created by their respective repository developers and eliminates the
possibility of duplicate comments being present within a repository.
This results in a dataset of 29,672 TODO comments.

We reuse a sampling method previously employed in prior stud-
ies on SATD [14, 38]. Specifically, in later sections, we continually
sample from the 29,672 TODO comments until we identify 380 fit-
ting TODO comments. This sample size is chosen with a confidence
level of 95% and a margin of error of 5%. This statistically significant
sample will be the focus of our analysis in the subsequent sections.
In our analysis of the sampled source code functions, we found that
the smallest function consisted of 0 statements (unimplemented
functions), the largest comprised 197 statements, and the median
function size was 8.5 statements, reflecting a wide variety in code
sizes within the dataset.

2.3 GitHub Copilot Generations
In this section, we will describe the process followed to create
a dataset of GitHub Copilot generations from TODO comments,
documentation strings (docstrings), and function headers found in
open-source repositories.

In order to evaluate differing prompts’ effectiveness in resolving
TODO comments, we created a local copy of Python files containing

Table 2: Overview of our TODO comment preprocessing

Preprocessing Step TODOs Remaining
Total Extracted 36,381
Unique + Native 29,672
Sampled 380

TODO comments. By generating code within a copy of the original
file, we aim to simulate how developers would utilize Copilot and
provide additional context to Copilot [16].

We adopt a strategy that leverages the use of docstrings to guide
Copilot, as previously employed in related work [34]. In doing so,
we leverage existing software data to perform prompt engineer-
ing. Docstrings, which are blocks of natural language describing
the functionality, inputs, outputs, or examples of a Python func-
tion, serve as valuable information for Copilot to generate code.
Therefore, in our analysis, we preserve the docstrings found in the
original functions. Additionally, we also retain the function headers,
which include the function name, input names, and type hints, if
provided. By providing both docstrings and function headers as
input, we establish a context for Copilot to generate within.

Because some samples are unfit for inclusion in this study, we
continually sample from our population of 29,672 TODO comments
until we achieve 380 fitting samples. A sample can be deemed
unfit for many reasons such as the TODO comment appearing
outside of a function body, the respective function does not contain
a docstring (lacking providable context), the TODO comment is very
ambiguous (e.g., the comment containing only the word TODO), and
the TODO comment or the entire repository having been removed
since the Boa dataset was created. Therefore, each sampled instance
is manually labeled as being fit or unfit for this study.

Human labeling is prone to bias and mistakes. Therefore, we
follow a iterative procedure [45] used in a variety of studies in soft-
ware engineering to mitigate this effect [6, 20, 38]. At each iteration,
two labelers would independently label 38 function bodies as to
whether it is appropriate for our study or not. The comments’ loca-
tion and available context are all assessed at this stage. Following
each iteration, the Cohen’s Kappa would be measured between the
labelers. Cohen’s Kappa is a statistical measure to evaluate classifi-
cation agreement which discards the possibility that the labelers
agree randomly. A Cohen’s Kappa above 0.8 is considered as “ex-
cellent” agreement. Following each iteration, the labelers would
meet to discuss their disagreements, with a third author prepared
to settle any disagreements left unsettled.

Through this process, the labelers achieved consistent “excel-
lent” agreement, with Kappa values of 0.9408, 0.8177, and 0.9444 in
each iteration. With consistent “excellent” agreement, the labelers
independently labeled until 380 fitting samples were achieved. In
total, 1,013 comments were manually investigated before 380 fitting
instances were found to serve as the basis for later generations.

After gathering 380 relevant samples, we used the Visual Stu-
dio Code IDE to manually generate Copilot generations, as there
was no available API for Copilot at the time of experimentation
[16]. This method is consistent with previous evaluations of Copi-
lot [37, 41]. For each triplet of information (function header, doc-
string, TODO comment), we generated three function bodies using
3 unique prompts with GitHub Copilot for a total of 1,140 (380 * 3)



ICSE ’24, April 14–20, 2024, Lisbon, Portugal David OBrien, Sumon Biswas, Sayem Mohammad Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

generations. We use Copilot’s first provided generation following
prior work, which speculated a partial solution 61-91% of the time
[37]. Although the prompt-constructing strategies used may intro-
duce bias to our results, this study aims to provide initial insights
into the alignment between TODO comments and effective code
generation prompts. Therefore, if the prompts in this study are
found to be successful, it could inspire future work to experiment
with alternative processing of TODO comments for prompt con-
struction. An example of our prompt-constructing procedure is
illustrated in Figure 1. The three prompts per triplet are as follows:

(1) DS (Docstring): We pass only the docstring and original
function header from the open-source repositories as a Copi-
lot prompt.

(2) DS-TD (Docstring-TODO): We append the TODO comment
to the beginning of the docstring to construct a Copilot
prompt. The decision to append at the start of the docstring
was decided so that the context of the TODO comment is
the first task consumed as input by Copilot.

(3) DS-MTD (Docstring-Modified TODO): Prior works note
that the removal of the word “TODO” from a TODO com-
ment can suffice as the documentation after the specified
change is completed [15]. Therefore, this generation prepro-
cesses the TODO comment by discarding the word “TODO”
before appending the modified TODO comment ahead of the
docstring.

Evaluating or validating the generated code is a challenging
task, and technical debt repayment is no different. In this paper,
we follow work which evaluates human repayment of SATD and
evaluate Copilot’s generations with rigorous manual evaluation
[55] and we involve two labelers to reduce bias. Previously, Mas-
tropaolo et al. [34] utilized software tests from the repositories
and similarity scores to evaluate their generations. However, Mas-
tropaolo et al. [34] found that re-using these tests may not evaluate
desired behaviors, and leveraging similarity metrics may produce
misleading results (e.g., a correctly-behaving generation that wildly
differs from ground truth causes a correct solution to have a lower
score). In SATD repayment specifically, resolving SATD may in-
volve untested aspects such as code legibility and documentation.
The multitude of solutions available can introduce variability in
similarity scores, making such metrics less reliable. Thus, this study
leverages manual evaluation of SATD repayment.

It is important to note that the primary objective of our assess-
ment is not to assess the technical accuracy or functional equiva-
lence of the generated code, as this is performed by prior work [37].
Instead, the evaluation aims to determine the extent to which the
symptoms associated with the TODO comments, as identified in the
original code, are addressed in the generated code through varying
prompts including, excluding, or modifying TODO comments. Man-
ual labeling has been used previously to assess the repayment of a
SATD [55]. Even if the generated code does not behave correctly, its
generation could still guide the user to a quicker resolution of the
technical debt Nguyen and Nadi [37]. However, assessing whether
AI-generated solutions expedite or impede a technical debt’s reso-
lution is out of the scope of this study. Instead, our primary focus is
whether the inclusion of a TODO comment influences the output
of code generative tools, and whether this influence can resolve the

Manual Generation with Copilot

divide(num1, num2) '''Divides two numbers''' TODO: check divide by
zero

def divide(num1, num2): 
     '''Divides two numbers''' 
     return num1 / num2

def divide(num1, num2): 
     '''TODO: check divide by zero 
     Divides two numbers''' 
     return num1 / num2

def divide(num1, num2): 
     '''check divide by zero 
     Divides two numbers''' 
     if num2 == 0: 
          return 0 
     return num1 / num2

DS Generation DS-TD Generation DS-MTD Generation

Function Header Docstring TODO Comment

Figure 1: The process for creating three generations from
open-source repository. Red text represents the input to
GitHub Copilot; blue text represents the generated code.

TODO comment’s symptoms. To do so, we consider the different
prompt inputs to be our independent variable, and Copilot’s output
from varying prompts is our dependent variable. Because our ex-
perimental setup maintains the same file for the varying prompts
to be placed within, any changes to Copilot’s output are due to the
different prompts leveraged in the respective generations.

The authors have labeled 3 questions regarding the 3 genera-
tions for each triplet of information. For edge-case samples, multiple
labelers were consulted to assign an appropriate label. These ques-
tions assess whether or not the Copilot generations fix or contain
the concerned TODO comment symptoms. For example, the DS
and DS-TD generations in Figure 1 do not implement error checks
as admitted by the original TODO comment, and therefore, they
do not solve the symptoms of the TODO comment. Conversely,
the DS-MTD generation implements error checking, and the la-
belers assigned this generation as repaying the TODO comment.
Specifically, the three questions examined are:

(1) Does the DS generation fix the symptoms of the concerned
TODO comment? In Figure 1, the DS generation does not
implement error checks.

(2) Does the DS-TD generations contain the symptoms of the con-
cerned TODO comment? Notably, the DS-TD generation in
Figure 1 does not implement error checks. The cause for
these patterns in explored in later sections.

(3) Does the DS-MTD comment fix the symptoms of the concerned
TODO comment? In Figure 1, when the TODO comment
is modified, Copilot outputs code with the specified error
checks. This suggests that proper promptmodification can ef-
fectively guide Copilot towards resolving TODO comments,
thus assisting in software maintenance.

This study employed a thorough labeling process to enable ac-
curate and consistent results. A training session was held by the
authors where the characteristics of TODO comments and Copi-
lot’s potential effects were discussed. Following this, utilizing the
same method previously used for identifying TODO-docstring-
header triplets, the authors went through four rounds of labeling,



Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot ICSE ’24, April 14–20, 2024, Lisbon, Portugal

achieving improving levels of agreement as measured by Cohen’s
Kappa scores of 0.508, 0.7419, 0.8488, and 0.8819. All discrepancies
are discussed and resolved with a moderator prepared to settle
unresolved disagreements. The third and fourth iterations which
received 0.8488 and 0.8819 indicate consistent excellent agreement
among the authors, which further confirms the validity and relia-
bility of the results. To ensure transparency and reproducibility, all
authors’ independent labels, as well as the final settled labels, are
made available in our replication package.

3 RESULTS
In this section, we delve into the findings of our examination of
1,140 GitHub Copilot generations, whose generation procedures are
described in the preceding section. Our study aims to uncover the
impact of TODO comments on AI code generations and assess the
feasibility of using Copilot to address the symptoms of TODO com-
ments found in open-source repositories via three different Copilot
generations, i.e., input containing only the docstring (DS), input
containing docstring and TODO (DS-TD), and input containing
docstring and modified TODO (DS-MTD).

3.1 Impact of TODO Comments on Generations
RQ1: Does the presence of TODO comments impact the

quality of GitHub Copilot’s generated code?
RQ1 aims to investigate whether code generative tools such as

GitHub Copilot can generate code containing the symptoms de-
scribed in TODO comments by injecting them with the unmodified
TODO comment text. Since GitHub Copilot was trained on open-
source repositories, where self-admitted technical debts have been
found [42], is it possible the tool may reproduce these technical
debts if prompted with SATD such as TODO comments? Or, have
tools such as GitHub Copilot mitigated the generation of these
symptoms? In the former case, the generation of technical debt
symptoms could be problematic as it would impede developer pro-
ductivity, rather than expedite it. This concern is drawn from prior
research [7] which comments that large language models on code
may not produce high-quality code because their predictive goals
are focused on reproducing the distribution of their training data
rather than producing code of measured quality. Thus, the labelers
assess both the DS and DS-TD generations produced by Copilot
and their relation to the original developer-written code. By reading
relevant information (docstrings, TODO comments, used or similar
nearby code), the labelers determine whether the TODO comment
symptoms are present in each generation. Additionally, the original
code is also reviewed to provide perspective or additional context
to the TODO comment’s symptoms.

In order to understand if GitHub Copilot is capable of repro-
ducing TODO comment symptoms, we conducted a comparison
between the DS and DS-TD generations. These generations were
defined in the previous section, the only difference between the
two inputs is the presence of the unchanged TODO comment in
DS-TD. Therefore, any changes in the generated code (harmful or
helpful) would be due to the varying prompts. Our analysis aimed
to determine if the presence of the TODO comment influenced the
DS-TD generation to produce the technical debts described.

Table 3: Confusion matrix of DS and DS-TD results.

Does DS Repay?
Does DS-TD Reproduce? No Yes Total
No 13 53 66
Yes 285 29 314
Total 298 82 380

To provide an example of the effect in question, we illustrate
an instance from our analysis in Figure 2. The TODO comment in
question is TODO: Document, which indicates a lack of documen-
tation in the original code where the TODO comment was found.
Missing, incomplete, or out-of-date documentation is a recurring
technical debt found in open-source repositories [3, 42]. In the DS
generation which does not contain the TODO comment, Copilot
generates code with source code comments throughout, despite
not being explicitly instructed to prioritize documentation in the
inputted docstring.

However, when the aforementioned TODO comment is included
in the prompt for the DS-TD generation, the generated code is
absent of source code comments. Ideally, the inclusion of a TODO
comment would act as additional instruction for Copilot to specifi-
cally address the tasks disclosed. However, the opposite effect was
observed in some cases such as Figure 2; the TODO comment in-
jection causes Copilot to instead reproduce the admitted technical
debt rather than repay. The cause is likely due to the nature of
next-token predictors such as GitHub Copilot [7] where instead of
solving the TODO comment, the code which was found near simi-
lar comments in its training data (i.e., code near comments similar
to TODO: Document lack documentation) influences the output to
instead omit the source code comments. This instance exemplifies
that the presence of a TODO comment can have a negative impact
on the quality of code produced.

We present the results of our evaluation in Table 3. RQ1 is con-
cerned with instances where the presence of a TODO comment
caused a negative effect which is not implemented without the
TODO comment in the DS Generation, such as the previously de-
scribed example in Figure 2. Therefore, RQ1 focuses on cases where
the DS generation repays the described TODO symptoms, and the
DS-TD generation reproduces the admitted technical debt.

Figure 3 shows that the TODO comment’s symptoms are resolved
by the DS generation in 82 cases. Of the 82 cases, the symptoms are
reintroduced in 29 of the respective DS-TD generations. Therefore,
we witness 35.36% of our investigated TODO comments causing
a previously repaid technical debt to be instead be reproduced
in the Copilot generations when involved in the prompt. Thus,
the inclusion of the TODO comment has a negative effect on the
generated code quality.

Although developers in practice may not place TODO comments
in their prompts, this result indicates 1) the majority of the stud-
ied TODO comments may require additional preprocessing to be
repaid through code generative prompt engineering, 2) although
the characteristics of Copilot’s training data are not disclosed [16],
Copilot’s training data likely contains TODO comments since it was
shown to reproduce TODO comment symptoms when prompted
with these comments, and 3) TODO comment symptom-containing



ICSE ’24, April 14–20, 2024, Lisbon, Portugal David OBrien, Sumon Biswas, Sayem Mohammad Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

1 # Load the rule image
2 rule_img = cv2.imread(rule_image_name , cv2.

IMREAD_GRAYSCALE)
3 # Load the density image
4 density_image = cv2.imread(density_image_name , cv2.

IMREAD_GRAYSCALE)
5 # Save the density image in temp folder
6 cv2.imwrite('temp/density_image.png', density_img)
7 return rule_img , density_img

1 rule_img = cv2.imread(rule_image_name , cv2.
IMREAD_GRAYSCALE)

2 density_image = cv2.imread(density_image_name , cv2.
IMREAD_GRAYSCALE)

3 cv2.imwrite('temp/density_image.png', density_img)
4 return rule_img , density_img

Figure 2: DS (left) and DS-TD (right) Copilot generations where DS-TD includes “TODO: Document” in the prompt.

1 elif isinstance(index , slice):
2 #TODO -Should we copy the alphabet and gap character?
3 new_align = Alignment(self._alphabet)
4 new_align._records = self._records[index]
5 return new_align

Figure 3: A piece of a DS-MTD generation involving the com-
ment TODO - See Bug 2554 for changing the __init__method
which produced an unrelated TODO comment

outputs are not currently mitigated. These findings can motivate
future work, which is discussed further in Section 4.1.
Finding 1: Because code generative tools can reproduce their
training data, 35.36% of the 380 TODO comments studied had
their symptoms reproduced when directly included in prompts.
Furthermore, other notable cases occurred when generations

were being conducted in this study. Figure 3 shows the snippet of
a generation which was a DS-MTD generation which concerned
the TODO comment TODO - See Bug 2554 for changing the
__init__method which could be considered a Defect Debt by prior
works [3, 42] due to referencing a bug report. In the resulting
generation shown in Figure 3, another unrelated TODO comment
was generated by Copilot: TODO - Should we copy the alphabet
and gap character?which questions the absence of functionality,
thus suggesting it is a functional Requirement Debt [3].

Currently, RQ1 discussed the effects of TODO comments that
were prompted (i.e., the unmodified TODO comment is included
in the prompt). The TODO comment displayed in Figure 3 was
generated unprompted (i.e., there was no information in the prompt
involving a TODO comment or the generated Requirement Debt).
Yet, Copilot’s generation still included this unrelated TODO com-
ment, likely caused by TODO comments in the training data re-
lated to the prompted task. In other words, because similar code
in the training data contained TODO comments, these unrelated
symptoms were included in the generated solution. This further
emphasizes the need for mitigating SATD such as TODO comments
from code intelligence tools, since even in situations where TODO
comments are not explicitly mentioned in the prompt, the harmful
symptoms and TODO comments are still producible.
Finding 2: Code generative tools can reproduce TODO comments
and their symptoms unprompted (without explicit instruction).

3.2 Repaying TODO Comments through Copilot
RQ2:CanGitHubCopilot generations repay developer-written
TODO comments?

RQ2 delves into the potential impact of GitHub Copilot on self-
admitted technical debts in software development. Despite the best
efforts of developers, the creation and maintenance of software can
be challenging, with factors such as lack of experience, unaware-
ness, and time constraints leading to the accumulation of technical
debt [5, 9, 13, 26, 46, 48]. RQ2 investigates whether GitHub Copilot
can help mitigate these challenges by producing code that repays
the technical debts admitted with existing TODO comments in
open-source software. Our intuition is that in providing develop-
ers with fast, potentially high-quality code generated from a vast
corpus of software data, code-generative tools can help repay the
TODO comment symptoms accumulated by developers. To answer
RQ2, we use the same labeling results presented in RQ1, but do
not compare with the results of the DS-TD generation, we only
investigate successful DS generations.

Our methodology for RQ2 involves analyzing theDS generations
produced by GitHub Copilot against the TODO comments found in
the original code. By comparing the generated code to the original
code, we can analyze whether the generated code addresses and
potentially resolves the admitted symptoms as is done by prior work
[55]. If the generated code is found to address the symptoms, it may
serve as an alternative to human-written code or may accelerate
the repayment of these specific technical debts.

Figure 4 provides such an illustration of the potential impact
of GitHub Copilot’s code generation on a TODO comment. In the
original developer-written code, a TODO comment is present, ad-
mitting a lack of error checking on the filehash parameter, thus
considered to be a Defect Debt [3, 42]. However, the DS generation
which re-uses the same developer-written docstring has ensured to
implement such a check without explicit specification to do so in
theDS prompt. This suggests that Copilot generates code which ad-
dresses technical debts not prioritized by developers. Furthermore,
this illustrates the potential for Copilot to automatically resolve
technical debts without additional prompt engineering.

The results presented in Table 3 offer an indication into the po-
tential of Copilot to address TODO comment symptoms. 82 (21.57%)
instances were identified where the DS generations produced by
Copilot effectively address the symptoms of the TODO comment,
indicating that the code generated by Copilot is not burdened by the
same technical debt as developer-written code. This suggests that
Copilot has the potential to be a valuable tool for software mainte-
nance, offering an alternative solution for replacing or assisting in
the repayment of technically indebted code.
Finding 3: In our dataset, 21.57% of TODO comment symptoms
were labeled as resolved in the DS generation, relying solely on
the information provided within the developer-written docstring.



Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot ICSE ’24, April 14–20, 2024, Lisbon, Portugal

1 #TODO error checking on filehash
2 #build the query string
3 query = "download/v1/" + filehash
4 return query

1 #validate parameters
2 if len(filehash) != 64:
3 raise Exception("Invalid file hash")
4 query = "download/v1/" + filehash
5 return query

Figure 4: A comparison between developer-written code (left) and the DS Copilot generation (right).

We further investigate the 82 DS generations that were identi-
fied to at least address the TODO comments that developers imple-
mented in the original code. In doing so, we aim to identify themes
of technical debts that developers have encountered that Copilot
generations repay in its DS generations. These themes are thus
technical debts which Copilot-written code may assist in repay-
ing. We find three recurring themes in our studied 82 repayments:
defect-handling, additional support, and better assumptions.

Previous work on SATD types [3, 42] has classified a taxon-
omy. One such instance is the Defect Debt, characterized as known
defects’ resolutions deferred to a later time due to competing prior-
ities. In a similar vein, we find that TODO comments involving the
handling of defects is a task which DS Copilot generations can per-
form without any specific instruction. Defect-handling examples
of comments resolved by DS generations include TODO: add std
OSError attributes or pick more approp. exceptionwhich
motivates more fitting exception throwing and TODO: Warning
of unhandled characters which self-admits a currently unim-
plemented warning. Both of these comments are repaid without
including the respective TODO comments in the DS prompts.

In our dataset, we find a reoccurring theme involving supporting
new features as a task that DS Copilot generations were able to
provide. Such examples include TODO: Support URLS that don’t
start with ‘static’ and the comment TODO: this has to be
improved now that we also support other datasets that
may not have list.txt, our studied DS generations for these
examples do not depend on these hardcoded values or restrictions.

Finally, we find that developers’ TODO comments indicate poor
assumptions which results in questionable decisions later in its
lifetime. For example, the comment TODO err_crit is never
used? self-admits a technical debt where an input parameter is
never used. However, the DS generation does not ignore err_crit
and instead involves it in the computation.
Finding 4: Defect-handling, additional support, and better as-
sumptions are identifiable themes in which code generative tools
can assist in mitigating the TODO comment symptoms.

1 elif FLAGS.platform == 'nccl2 ':
2 exe = fluid.ParallelExecutor(
3 use_cuda=True ,
4 loss_name=self.debug_keys [0],
5 main_program=self.get_main_program(FLAGS),
6 exec_strategy=fluid.ExecutionStrategy ())

Figure 5: DS-MTD generation whose prompt includes the
modified TODO comment “parallel executor”.

3.3 Repaying TODO Comments with Prompt
Engineering

RQ3: Can TODO comments be modified to enhance prompts
which lead to generated code that repays the symptoms?

RQ3 builds on RQ2 by exploring how Copilot can be used to
address TODO comments. Since RQ2 finds that Copilot generations
can resolve symptoms of TODO comments via generating from
docstrings alone, RQ3 investigates whether prompt engineering can
enable TODO comment repayment. Building on prior work’s spec-
ulation [15], we experiment with removing the word “TODO” from
TODO comments to include them as documentation-like instruc-
tion as part of Copilot’s docstring input. This approach is referred
to asDS-MTD generations. For RQ3, we manually examine the out-
put of the DS-MTD generations and compare it with the original
developer-written code as done in prior generations. However, we
also refer back to the previous DS and DS-TD generations to see
if the modifications of the prompts caused the generated code to
differ. If the produced code is identical, then the labels should reflect
this as well. However, in cases where the code differs, the authors
investigated the difference and determine whether the DS-MTD
generation resolves the TODO comment symptoms.

We exemplify this procedure and motivate its results with the
Copilot generation shown in Figure 5. Note that for presentation’s
sake, the resulting generation contains more code than illustrated,
but only the code relevant to this finding is shown. However, all
generations in their entirety can be found in our replication package.
In Figure 5, the concerning TODO comment is TODO: parallel
executor which self-admits the symptoms of a lack of a parallel
executor functionality, thus this can be considered a functional
Requirement Debt [3, 42]. In the DS and DS-TD generations, no
parallel executor is implemented either from a lack of specification
or misalignment involving the word “TODO” as RQ1 previously
speculated. When the word “TODO” is removed from this comment,
the text becomes parallel executor. The elimination of the term
“TODO” alters the comment’s semantics, and might improve the
generated output. Rather than producing code which is similar
to code near comments like TODO: parallel executor in its
training data, which likely lacks the desired parallel executor, the
comment parallel executor is now expected to be describing
code that meets the desired specification in Copilot’s training data.
Thus, the DS-MTD generation contains the illustrated relevant
code in Figure 5 whereas no parallel executors were generated in
the DS nor DS-TD generations. Thus, even a minor adjustment to
a TODO comment can positively impact its generation’s quality
when included in a prompt.

Figure 6 depicts the results of our manual assessment of DS and
DS-MTD generations. Notably, our generations involving lever-
aging and processing the TODO comments to provide modified
context and instruction resulted in 40 (10.53%) additional TODO



ICSE ’24, April 14–20, 2024, Lisbon, Portugal David OBrien, Sumon Biswas, Sayem Mohammad Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

Repaid by  
DS Generation

Repaid by  
DS-MTD Generation

4023 59

Figure 6: Comparison of TODO comments repaid by DS and
DS-MTD generations.

comment repayments beyond the 82 (21.58%) DS generations’ re-
payments. In total, 122 (32.11%) of the 380 TODO comments were
labeled as addressed by Copilot in our study. Therefore, with just
minor modifications (removing the word “TODO”), code genera-
tion was able to repay more technical debts. This is because of
the additional effective information available in TODO comments
for guiding software maintenance. Yet, the presence of the word
“TODO” in unmodified TODO comments can reverse the semantics
of the comment, thus prompting code generative tools for code
without the desired effects. Therefore, the following observation
is made: although directly injecting TODO comments into prompts
can reproduce the symptoms, preprocessing these comments before
prompt engineering can enable next-token code generation techniques
to repay the technical debts. Even though the modification to pro-
duce a DS-MTD is simple, this initial study can motivate future
works which can perform heavier preprocessing to extract effective
instruction and specification from TODO comments to generate
symptom-avoiding code. This observation sets our work apart from
previous work investigating the robustness of Copilot given similar
prompts [34], since our study finds that modified SATD within
prompts can enable code generations involving less technical debt.
Finding 5: Omitting “TODO” in comments enables code genera-
tive tools to address 10.53% additional comments, highlighting
potential for preprocessing for TODO technical debt repayment.
Motivated by these results, we sought to understand the charac-

teristics of the comments which allowed Copilot to be successful
or unsuccessful in repaying the described symptoms. Two of the
authors reviewed the comments’ texts separated by having been
repaid by a DS or DS-MTD generation in this study (122 total)
and those not repaid by either (258 total). In doing so, the authors
identified recurring characteristics about the information present
in these comments. In the end, all 380 comments were reviewed
and discussed by both authors to assign labels, and the resulting
datasets are available in our replication package. These characteris-
tics are described, exemplified, and explained how the comments
are fitting or unfitting for inclusion in prompt engineering in Table
4 and 5. It is important to note that a comment can receive multiple,
or none of the characteristics in this labeling process.

Characteristics found to likely contribute to effective prompt
engineering can assist in creating large-scale datasets of SATDs
which are likely repayable by code generation for future studies

and can provide prompt engineering best practices. Characteris-
tics found to likely harm effective prompt engineering can inspire
future work towards heavier TODO comment preprocessing to
make these TODO comments prompt-ready or alternative strate-
gies for automatic technical debt repayment. Additionally, future
researchers can build classifiers to automatically separate TODO
comments to aid the repayment by AI tools.

Specifically, we observe that TODO comments that describe
concrete actions, rather than identifying poor symptoms of code
resulted in many repaid instances. This is because the task of code
generation is to reproduce code from its training data which the
prompts describe. If a TODO comment describes an actionable
instruction, then this previous disclosure of an absence of func-
tionality can become additional requirement for code generation.
Meanwhile, TODO comments which only describe symptoms of
code instead cause code generative tools to reproduce these poor
qualities rather than generate a solution to mitigate these qualities.
Fucci et al. [14] provides a classification of SATD comments’ con-
tent, including classes such as poor implementation choices and
misalignment, which we speculate to be the symptoms rather than
solution-providing comments, e.g., the comments shown in Table 5.
Additionally, we find that supplying extra contextual information,
rationales, or future considerations can also assist in technical debts
in being repaid by Copilot with our various prompt constructing
techniques. This is due to the additional details present in these
comments that can guide Copilot to generate the intended qual-
ity or functionality. However, Copilot has additional difficulties
in cases such as TODO comments questioning software or TODO
comments which have relationships to the original body of code.
These observations can motivate currently unexplored future work
on additional code intelligence tasks applied to SATD such as code
editing and code Q&A. We discuss this further in Section 4.2.

4 DISCUSSION
This paper studies TODO comments specifically, since TODO com-
ments were found to be prevalent in all projects studied in Huang
et al. [18] and consist of over half of the SATD studied. Additionally,
Gao et al. [15] provides speculations on TODO comments specif-
ically which we form our prompt engineering strategies around.
Although our work is on TODO comments specifically, our results
can motivate SATD mitigation and AI-assisted technical debt re-
payment broadly.

4.1 Mitigation of SATD Generation
Our experiments demonstrate that code-generative tools can gen-
erate TODO comment symptoms prompted or unprompted. While
code generation tools aim to enhance developer productivity, the
presence of SATD can impede development and add complexity to
software systems [42]. To address this issue, we propose prepro-
cessing and postprocessing techniques to mitigate this reaction.

We propose a preprocessing technique for cleaning the training
data of these tools. This technique involves removing any code
that contains instances of SATD from the training data. Previous
research on source code comment completion used this approach to
prevent SATD comments from being completed by the downstream



Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 4: Helpful characteristics found in the 122 repayable SATD comments

Quality
Name

Description How it can Affect Prompts Example(s) Percentage

Concrete
Action

SATD comments may describe de-
sired implementation or action.

Since code generation produces code according
to instructions, these SATD comments are well-
aligned with the goals of code generation.

todo: support sparse matrix!!,
todo: check if the name does not
contain forbidden characters:

65.57%

Contextual
Info

SATD comments may include con-
textual details such as where or
when a change is to occur.

SATDs which provide adequate context can guide
code generative tools to produce relevant code.

todo: fix code to fail with clear
exception when filesize cannot be
obtained

32.79%

Rationale SATD comments may provide rea-
son for the described repayment.

SATDswhich detail the rationale of its repayment
can provide non-functional requirements for its
generation.

todo: would it be more efficient
using a dict or hash values
instead

6.56%

Future Con-
sideration

SATD comments may imply con-
siderations of changes.

The DS generations may make these future con-
siderations without being specified to.

todo: need tau possibly here 27.87%

Table 5: Harmful characteristics found in the 258 non-repaid SATD comments

Quality
Name

Description How it can Affect Prompts Example(s) Percentage

Symptom SATD comments disclose poor
quality code instead of concrete
actions.

Inclusion of these comments in prompts leads
to generative tools producing poor-quality code
instead of solutions.

todo: untested for glms?,
todo: too much slop permitted
here impossible, todo# too long?

14.34%

Proximity SATD comments refer to code
nearby in the original body.

Without access to the original code, the relation-
ship between these comments and specific code
segments is lost, hindering code generation’s per-
formance.

todo: fix next line,
todo: clean this up,
todo: complete this documentation

32.95%

Question SATD comments question poor
qualities of code.

When injected into prompts, they result in code
with these questionable qualities instead of solu-
tions.

todo: remove redundant attributes
and fix the code that uses them?,
todo: how to accommodate
regression?

15.12%

model [32]. We recommend applying this approach to code gen-
eration as well, to ensure that SATD comments are not produced
by the generative model. Additionally, removing SATD from the
training data may also prevent the model from reproducing SATD-
affected code in later generations. This modification could lead to
the generation of code that fully resolves the symptoms of injected
unmodified TODO comments, unlike observations made in RQ1.

A second approach is a postprocessing mechanism that involves
incorporating SATD identification into Copilot’s ranking proce-
dures. SATD detection has been approached by many prior works
[18, 27, 28, 30, 31, 43, 44]. Currently, Copilot generates multiple
candidate generations for a given prompt, then uses a ranking pro-
cedure to determine the order in which they are presented to the
user [16]. By removing candidates that are identified to contain
SATD from consideration or adjusting the ranking procedure to
prefer candidates without SATD, the likelihood of SATD being out-
put can be reduced. This modification has the advantage of not
requiring any pre-existing code generative models to be retrained.

4.2 AI-Assisted TD Maintenance & Repayment
As shown in our results for RQ2 and RQ3, there are plenty of TODO
comments that Copilot was unable to repay. We find that although
GitHub Copilot and SATD exist at the bridge of natural language
and programming language, there are characteristics of a TODO
comments that do not align well with a generative prompt. In these

instances, we find that AI agents which generate code may not
be the only tool which can assist in alleviating the symptoms of a
self-admitted technical debt.

Previously, we have speculated that SATD which expresses a
question may cause difficulties for code generation to repay. In
these instances, a code Q&A agent trained upon varying circum-
stances may best assist in resolving these comments as opposed
to code generation. In our dataset, we find that developers leave
TODO comments whose questions involve API applicability, ex-
press unknown developer knowledge, disclose doubts about current
implementations, and ask questions about their specific software
system. An example of a question about API applicability is TODO:
refactor. Can I use disag_upsample()?, which can be assisted
by a code Q&A trained on API documentation to guide develop-
ers on its intended usage and prevent misusage. TODO comments
involving unknown developer knowledge include TODO: figure
out swap! and TODO: how to properly limit max number of
function calls?, which can be assisted by code Q&A trained on
development tutorials or Stack Overflow posts to educate inexpe-
rienced developers on best practices. TODO comments disclosing
doubts on current implementations include TODO(zhiting): is
it okay to have stand-alone random generator? and TODO:
is m.ClassDeclaration enough? Meanwhile, an example of a
TODO comment questioning a specific software system is TODO:
unused? Both types of comments doubting current implementa-
tions and questioning aspects of their specific system can be assisted



ICSE ’24, April 14–20, 2024, Lisbon, Portugal David OBrien, Sumon Biswas, Sayem Mohammad Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

by code Q&A which learns facts about a software system to act as
a senior developer to answer the rationale behind design decisions.

Previously it was discussed that comments such as TODO - should
these be in if clause? and TODO - This potentially needs
to be expanded refer to code in proximity to the concerning
comment. Because our experiments discard the original code to
generate potentially technical debt-free code, this relationship is
lost, and thus these comments do not translate well to Copilot
prompts. However, there are code intelligence techniques involv-
ing “code editing” [57] where code is refined according to specific
instructions. In these scenarios, the original code is used as an addi-
tional channel of input. Thus, our study can motivate future work
which could replicate our experiments with code editing techniques
to compare to our code generation performances. Speculatively,
these techniques may also perform well on comments which only
disclose symptoms, since common solutions to these symptoms
may be learnable and reapplicable.

Finally, some TODO comments were out of scope of our experi-
ments, such as TODO make another listener for target-changed,
which indicates a task of creating another function. Our study only
generated function bodies which our TODO comments were found
in, and thus this comment was out of the scope of our experiments.
Future work could investigate system-wide SATD resolution and its
relationship with the existing surrounding code using code intelli-
gence techniques. Additionally, future works can expand upon our
work by incorporating code quality metrics to evaluate the quality
of the generated code. Additionally, our analysis is only performed
with the most recent revisions of the repositories and does not con-
sider how TODO comments and their corresponding code evolve
over time. Therefore, future work can explore how code intelligence
tools can assist in software evolution and improve developers’ in-
teraction with Copilot by exploring how often developers approve
or modify generated solutions.

5 THREATS TO VALIDITY
Internal validity: To ensure the accuracy of our labeled data, we
adopted an iterative process where two authors independently la-
beled the dataset and resolved disagreements with a third author.
Cohen’s Kappa measure was employed to verify that the agree-
ment between the authors’ labels was not due to chance. Through
several iterations, the two authors consistently achieved excellent
agreement, following a well-established approach used in prior
studies involving manual investigation [6, 20, 38, 45]. Although we
systematically generate code, it is possible that users with differing
skill levels may use Copilot in different ways, creating a feedback
loop between users and Copilot to produce the best solutions.

Although we only study Python repositories, the mined dataset
consists of over 100,000 projects that have at least 24 stars onGitHub.
Additionally, the function bodies studied contain 0-194 source code
statements, reflecting a wide variety of task complexities and po-
tential topics. Additionally, the choice to leverage docstrings in our
prompts led our studied instances to include only Python functions
with docstrings. Our prompt-construction procedures could intro-
duce bias, considering that we may have overlooked potentially
more effective prompts during the study. However, we ensured a
systematic approach by applying the procedure to all 380 fitting

TODO comments. Furthermore, we have made all generations and
labels available in our replication package, promoting transparency
and open science.

During the labeling process, the authors labeledwhether a GitHub
Copilot generation resolved the symptoms of a concerning TODO
comment found originally in an open-source repository. Although
it is possible that the generated code is functionally different than
the original open-source code, the correctness of the generation
and other dynamic factors are not evaluated in this study. Previous
works have evaluated the correctness of GitHub Copilot genera-
tions [37] to find up to 91% of the time, Copilot could provide a
partial fix. Instead, we have evaluated whether the generations con-
tain or resolve the symptoms of the concerning TODO comment
depending on its presence or modification in the prompt. Regard-
less of correctness or loss of functionality, the generations were
labeled according to their relationship with the concerning TODO
comment as done for human SATD repayment in prior works [55].
Prior work also found that harmful code can be produced from
Copilot [41], however, we do not evaluate this alongside TODO
comment resolution. Additionally, it is possible that the TODO com-
ment could be misleading, obsolete, or inaccurate. Although this
could lead to misinterpretation, multiple labelers were consulted to
decide on a difficult TODO comment label. Finally, since the labelers
were aware of the prompting techniques used, this knowledge may
have unconsciously added bias to their labels.

External validity: We selected GitHub Copilot for its promi-
nence in previous works [34, 37, 41] and its extensive training by
OpenAI and GitHub, despite some implementation details being
unavailable due to its proprietary nature. Nevertheless, the tech-
niques discussed in Section 4 for improving preprocessing and post-
processing can be adapted to any code-generative tool to achieve
SATD-free code generations. Moreover, our findings can likely ap-
ply to other code generative tools since current state-of-the-art
approaches, like Copilot, utilize next-token predictors for code gen-
eration [7]. Hence, we argue that our claims regarding reproducing
and repaying SATD can be generalized to other code-generative
tools.

6 RELATEDWORKS
6.1 Management of Technical Debt
“Technical debt” was coined by Ward Cunningham, comparing soft-
ware development to debt, emphasizing the importance of repay-
ment [9]. Numerous studies investigate its impact on software prod-
ucts and developers [5, 13, 26, 46, 48]. Tom et al. [48] conducted
a survey revealing TD’s influence on developers’ morale, produc-
tivity, quality, and project risk. For technical debt management
[5], Li et al. [26] surveyed various aspects, including identification,
measurement, prioritization, prevention, monitoring, repayment,
documentation, and communication. Prior works proposed TD
measurement techniques like SQALE [22, 23]. This paper utilizes
GitHub Copilot to aid in technical debt repayment, specifically
addressing technical debts admitted through TODO comments in
different stages of ML pipeline [4].

Potdar and Shihab [42] introduced “self-admitted technical debt”
(SATD), revealing intentional disclosures by developers in software
artifacts. SATD is prevalent in issue trackers [24, 25, 52], code review



Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[21], build systems [53], and Docker files [2]. Most SATD research,
including this work, focuses on exploring SATD in source code
comments (e.g., TODO comments) [3, 14, 18, 28–31, 38, 42, 43, 55].

Our study leverages AI techniques to aid TODO comment man-
agement. Prior research explores similar AI-based approaches for
managing self-admitted technical debt (SATD) through DL and text
mining [18, 27, 28, 30, 31, 43, 44]. Zampetti et al. [56] introduces a
DL-based method to classify SATD into 6 removal strategies [55] for
developer assistance. Addressing the complexities of SATD removal
status [29, 55] and outdated comments [47, 51], Gao et al. [15] pro-
poses an approach that tracks “obsolete” TODO comments using
comment text, source code, and commit messages. Mastropaolo
et al. [35] is the most similar work to ours, as they examine how
LLMs (pretrained, finetuned, and chatbot) can be used to repay
SATD. However, our work differentiates itself from Mastropaolo
et al. [35] by proposing prompt engineering for GitHub Copilot
and evaluating how often the symptoms of TODO comments are
reproduced in the downstream code generations.

6.2 GitHub Copilot Evaluations
Code intelligence tasks, boosted by deep learning [8, 17, 32, 33, 36,
49], include code generation [16], comment maintenance [32, 33,
36, 57], defect resolution [33, 36, 57], and automated code review
[17, 49, 57]. In this study, we assess GitHub Copilot’s performance
in the automatic repayment of TODO comments through prompt
engineering. However, other aspects of Copilot have been evaluated
by prior works [19, 34, 37, 41].

Mastropaolo et al. [34] finds that semantic-preserving changes
in prompts can affect the output of Copilot, thus questioning the
robustness of Copilot. In contrast, our work examines how well
modifying prompts with TODO comments can lead to code gen-
eration that resolves specified technical debt symptoms. Pearce
et al. [41] utilized GitHub Copilot to generate code for high-risk
CWE scenarios, revealing 40% vulnerability in insecure prompts.
Nguyen and Nadi [37] evaluated Copilot’s generation on LeetCode
and found initial correct answers in 27%-57% of cases, with 61%-91%
of time providing a potentially useful starting point for developers.
Imai [19] examines how well Copilot serves as a pair programmer.

7 CONCLUSION
The title of this paper questions whether prompt engineering and
TODO comments are friends or foes. To provide an answer, this
paper has manually gathered 380 TODO comments from open-
source repositories to generate 1,140 GitHub Copilot generations.
First, we find that unmodified TODO comments can cause Copilot
to produce technically indebted code. However, we also find that
TODO comments possess valuable information that can serve as
actionable instructions or additional specifications in these prompts.
Depending on the characteristics of these comments, our study
exemplifies how prompt engineering can be leveraged to address
more instances of TODO comments’ symptoms. The examination
of successfully and unsuccessfully repaid TODO comments enabled
us to provide prompt engineering best practices for producing
less technically indebted code. Ultimately, we demonstrate how
code generation can perform towards automatic technical debt
repayment and motivate future work for the improvement of code

generative tools and the application of other code intelligence tools
towards automatic technical debt repayment.

DATA AVAILABILITY
The scripts and resulting TODO comment data is publically avail-
able on Zenodo [39].

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation under
Grants CCF-15-18897, CNS-15-13263, CNS-21-20448, CCF-19-34884,
CCF-22-23812, and NRT-21-52117. All opinions are those of the
authors and do not reflect the views of sponsors. Generative AI was
used to revise sections of this paper’s writing.

REFERENCES
[1] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, and

Paris Avgeriou. 2015. The financial aspect of managing technical debt: A sys-
tematic literature review. Information and Software Technology 64 (2015), 52–73.
https://doi.org/10.1016/j.infsof.2015.04.001

[2] Hideaki Azuma, Shinsuke Matsumoto, Yasutaka Kamei, and Shinji Kusumoto.
2022. An empirical study on self-admitted technical debt in Dockerfiles. Empirical
Software Engineering 27, 2 (2022), 49. https://doi.org/10.1007/s10664-021-10081-7

[3] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on
self-admitted technical debt. In International Conference on Mining Software
Repositories. ACM, New York, NY, USA, 315–326.

[4] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and
Practice of Data Science Pipelines: A Comprehensive Study of Data Science
Pipelines In Theory, In-The-Small, and In-The-Large. In ICSE’2022: The 44th Inter-
national Conference on Software Engineering (Pittsburgh, PA, USA). Association
for Computing Machinery, New York, NY, USA, 2091–2103.

[5] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder
Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. 2010. Managing
Technical Debt in Software-Reliant Systems. In Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research (Santa Fe, New Mexico, USA)
(FoSER ’10). Association for Computing Machinery, New York, NY, USA, 47–52.
https://doi.org/10.1145/1882362.1882373

[6] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin
Peng. 2022. Understanding Performance Problems in Deep Learning Systems. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
357–369. https://doi.org/10.1145/3540250.3549123

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[8] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad
Aghajani, Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele Bavota. 2021.
An Empirical Study on the Usage of Transformer Models for Code Completion.
IEEE Transactions on Software Engineering PP (11 2021), 1–1. https://doi.org/10.
1109/TSE.2021.3128234

[9] Ward Cunningham. 1992. The WyCash Portfolio Management System. SIGPLAN
OOPS Mess. 4, 2 (dec 1992), 29–30. https://doi.org/10.1145/157710.157715

[10] Luca Di Grazia and Michael Pradel. 2022. The Evolution of Type Annotations
in Python: An Empirical Study. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering (Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Ma-
chinery, New York, NY, USA, 209–220. https://doi.org/10.1145/3540250.3549114

[11] Robert Dyer and Jigyasa Chauhan. 2022. An Exploratory Study on the Pre-
dominant Programming Paradigms in Python Code. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022).

https://doi.org/10.1016/j.infsof.2015.04.001
https://doi.org/10.1007/s10664-021-10081-7
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/3540250.3549123
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1145/157710.157715
https://doi.org/10.1145/3540250.3549114


ICSE ’24, April 14–20, 2024, Lisbon, Portugal David OBrien, Sumon Biswas, Sayem Mohammad Imtiaz, Rabe Abdalkareem, Emad Shihab, and Hridesh Rajan

Association for Computing Machinery, New York, NY, USA, 684–695. https:
//doi.org/10.1145/3540250.3549158

[12] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: a
language and infrastructure for analyzing ultra-large-scale software repositories.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). IEEE Press, San Francisco, CA, USA, 422–431.

[13] Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and Ian Gorton.
2015. Measure It? Manage It? Ignore It? Software Practitioners and Technical
Debt. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York,
NY, USA, 50–60.

[14] Gianmarco Fucci, Nathan Cassee, Fiorella Zampetti, Nicole Novielli, Alexander
Serebrenik, and Massimiliano Di Penta. 2021. Waiting around or job half-done?
Sentiment in self-admitted technical debt. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). IEEE Computer Society, United
States, 403–414. https://doi.org/10.1109/MSR52588.2021.00052

[15] Zhipeng Gao, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2021.
Automating the Removal of Obsolete TODO Comments. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 218–229. https:
//doi.org/10.1145/3468264.3468553

[16] GitHub. 2022. GitHub Copilot Your AI pair programmer. GitHub. Retrieved
August 8, 2022 from https://github.com/features/copilot

[17] Vincent J. Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel.
2021. Towards Automating Code Review at Scale. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021).
Association for Computing Machinery, New York, NY, USA, 1479–1482. https:
//doi.org/10.1145/3468264.3473134

[18] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identify-
ing Self-Admitted Technical Debt in Open Source Projects Using Text Mining.
Empirical Softw. Engg. 23, 1 (feb 2018), 418–451. https://doi.org/10.1007/s10664-
017-9522-4

[19] Saki Imai. 2022. Is GitHub Copilot a Substitute for Human Pair-Programming?
An Empirical Study. In Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: Companion Proceedings (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 319–321. https:
//doi.org/10.1145/3510454.3522684

[20] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
510–520. https://doi.org/10.1145/3338906.3338955

[21] Yutaro Kashiwa, Ryoma Nishikawa, Yasutaka Kamei, Masanari Kondo, Emad
Shihab, Ryosuke Sato, and Naoyasu Ubayashi. 2022. An empirical study on
self-admitted technical debt in modern code review. Information and Software
Technology 146 (2022), 106855. https://doi.org/10.1016/j.infsof.2022.106855

[22] Jean-Louis Letouzey. 2012. The SQALE method for evaluating Technical Debt.
In 2012 Third International Workshop on Managing Technical Debt (MTD). IEEE
Press, Zurich, Switzerland, 31–36. https://doi.org/10.1109/MTD.2012.6225997

[23] Jean-Louis Letouzey and Michel Ilkiewicz. 2012. Managing Technical Debt with
the SQALE Method. IEEE Software 29, 6 (2012), 44–51. https://doi.org/10.1109/
MS.2012.129

[24] Yikun Li, Mohamed Soliman, and Paris Avgeriou. 2020. Identification and Reme-
diation of Self-Admitted Technical Debt in Issue Trackers. In 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). IEEE
Computer Society, Los Alamitos, CA, USA, 495–503. https://doi.org/10.1109/
SEAA51224.2020.00083

[25] Yikun Li, Mohamed Soliman, and Paris Avgeriou. 2022. Identifying self-admitted
technical debt in issue tracking systems using machine learning. Empirical
Software Engineering 27, 6 (2022), 495–503. https://doi.org/10.1007/s10664-022-
10128-3

[26] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220. https://doi.org/10.1016/j.jss.2014.12.027

[27] Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping
Li. 2018. SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt
Detection Tool. In Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 9–12. https:
//doi.org/10.1145/3183440.3183478

[28] Rungroj Maipradit, Bin Lin, Csaba Nagy, Gabriele Bavota, Michele Lanza, Hideaki
Hata, and Kenichi Matsumoto. 2020. Automated Identification of On-hold Self-
admitted Technical Debt. In 2020 IEEE 20th International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE Computer Society, Los
Alamitos, CA, USA, 54–64. https://doi.org/10.1109/SCAM51674.2020.00011

[29] Everton Da S. Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander
Serebrenik. 2017. An Empirical Study on the Removal of Self-Admitted Technical
Debt. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE Computer Society, Los Alamitos, CA, USA, 238–248. https://doi.
org/10.1109/ICSME.2017.8

[30] Everton da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying
different types of self-admitted technical Debt. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD). IEEE Computer Society, Los Alami-
tos, CA, USA, 9–15. https://doi.org/10.1109/MTD.2015.7332619

[31] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using
Natural Language Processing to Automatically Detect Self-Admitted Technical
Debt. IEEE Transactions on Software Engineering 43, 11 (2017), 1044–1062. https:
//doi.org/10.1109/TSE.2017.2654244

[32] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota. 2021. An Empirical
Study on Code Comment Completion. In 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE Computer Society, Los
Alamitos, CA, USA, 159–170. https://doi.org/10.1109/ICSME52107.2021.00021

[33] Antonio Mastropaolo, Nathan Cooper, David N. Palacio, Simone Scalabrino,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2022. Using Transfer
Learning for Code-Related Tasks. IEEE Transactions on Software Engineering 49
(2022), 1580–1598. https://api.semanticscholar.org/CorpusID:249718125

[34] A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino, R. Oliveto,
and G. Bavota. 2023. On the Robustness of Code Generation Techniques: An Em-
pirical Study on GitHub Copilot. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA,
2149–2160. https://doi.org/10.1109/ICSE48619.2023.00181

[35] A. Mastropaolo, M. Di Penta, and G. Bavota. 2023. Towards Automatically Ad-
dressing Self-Admitted Technical Debt: How Far Are We?. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE Com-
puter Society, Los Alamitos, CA, USA, 585–597. https://doi.org/10.1109/ASE56229.
2023.00103

[36] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
Association for Computing Machinery, New York, NY, USA, 336–347. https:
//doi.org/10.1109/ICSE43902.2021.00041

[37] Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copi-
lot’s Code Suggestions. In Proceedings of the 19th International Conference on
Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22). Association
for Computing Machinery, New York, NY, USA, 1–5. https://doi.org/10.1145/
3524842.3528470

[38] David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shi-
hab, and Hridesh Rajan. 2022. 23 shades of self-admitted technical debt: an
empirical study on machine learning software. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (, Singapore, Singapore,) (ESEC/FSE 2022). As-
sociation for Computing Machinery, New York, NY, USA, 734–746. https:
//doi.org/10.1145/3540250.3549088

[39] David OBrien, Sumon Biswas, Sayem Imtiaz, Rabe Abdalkareem, Emad Shihab,
and Hridesh Rajan. 2023. Replication package for “Are Prompt Engineering and
TODO Comments Friends or Foes? An Evaluation on GitHub Copilot”. https:
//zenodo.org/records/10460738

[40] David OBrien, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. 2024. Data-
Driven Evidence-Based Syntactic Sugar Design. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering (Lisbon, Portugal,
2024-04-17) (ICSE). Association for Computing Machinery, New York, NY, USA,
to appear.

[41] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). Association for Computing Machinery, New York, NY, USA, 754–768. https:
//doi.org/10.1109/SP46214.2022.9833571

[42] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer
Society, United States, 91–100. https://doi.org/10.1109/ICSME.2014.31

[43] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, XinyuWang, and John Grundy.
2019. Neural Network-Based Detection of Self-Admitted Technical Debt: From
Performance to Explainability. ACM Trans. Softw. Eng. Methodol. 28, 3, Article 15
(2019), 45 pages.

[44] Barbara Russo, Matteo Camilli, and Moritz Mock. 2022. WeakSATD: Detecting
Weak Self-Admitted Technical Debt. In Proceedings of the 19th International
Conference on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22).
Association for Computing Machinery, New York, NY, USA, 448–453. https:
//doi.org/10.1145/3524842.3528469

[45] C.B. Seaman. 1999. Qualitative methods in empirical studies of software en-
gineering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.

https://doi.org/10.1145/3540250.3549158
https://doi.org/10.1145/3540250.3549158
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1145/3468264.3468553
https://doi.org/10.1145/3468264.3468553
https://github.com/features/copilot
https://doi.org/10.1145/3468264.3473134
https://doi.org/10.1145/3468264.3473134
https://doi.org/10.1007/s10664-017-9522-4
https://doi.org/10.1007/s10664-017-9522-4
https://doi.org/10.1145/3510454.3522684
https://doi.org/10.1145/3510454.3522684
https://doi.org/10.1145/3338906.3338955
https://doi.org/10.1016/j.infsof.2022.106855
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1109/MS.2012.129
https://doi.org/10.1109/MS.2012.129
https://doi.org/10.1109/SEAA51224.2020.00083
https://doi.org/10.1109/SEAA51224.2020.00083
https://doi.org/10.1007/s10664-022-10128-3
https://doi.org/10.1007/s10664-022-10128-3
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1145/3183440.3183478
https://doi.org/10.1145/3183440.3183478
https://doi.org/10.1109/SCAM51674.2020.00011
https://doi.org/10.1109/ICSME.2017.8
https://doi.org/10.1109/ICSME.2017.8
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.1109/ICSME52107.2021.00021
https://api.semanticscholar.org/CorpusID:249718125
https://doi.org/10.1109/ICSE48619.2023.00181
https://doi.org/10.1109/ASE56229.2023.00103
https://doi.org/10.1109/ASE56229.2023.00103
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1109/ICSE43902.2021.00041
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3540250.3549088
https://doi.org/10.1145/3540250.3549088
https://zenodo.org/records/10460738
https://zenodo.org/records/10460738
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1145/3524842.3528469
https://doi.org/10.1145/3524842.3528469


Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot ICSE ’24, April 14–20, 2024, Lisbon, Portugal

https://doi.org/10.1109/32.799955
[46] C. Seaman and Y. Guo. 2011. Measuring andMonitoring Technical Debt. Advances

in Computers 82 (2011), 25–46.
[47] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*icomment:

Bugs or Bad Comments?*/. In Proceedings of Twenty-First ACM SIGOPS Sym-
posium on Operating Systems Principles (Stevenson, Washington, USA) (SOSP
’07). Association for Computing Machinery, New York, NY, USA, 145–158.
https://doi.org/10.1145/1294261.1294276

[48] Edith Tom, Aybüke Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (2013), 1498–1516. https://doi.org/10.
1016/j.jss.2012.12.052

[49] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost
Code Review Automation. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 2291–2302. https://doi.org/10.1145/
3510003.3510621

[50] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. 2016. Continuous De-
livery Practices in a Large Financial Organization. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE Computer Soci-
ety, Los Alamitos, CA, USA, 519–528. https://doi.org/10.1109/ICSME.2016.72

[51] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In Proceedings of the 27th
International Conference on Program Comprehension (Montreal, Quebec, Canada)
(ICPC ’19). IEEE Press, San Francisco, CA, USA, 53–64. https://doi.org/10.1109/
ICPC.2019.00019

[52] Laerte Xavier, Fabio Ferreira, Rodrigo Brito, and Marco Tulio Valente. 2020.
Beyond the Code: Mining Self-Admitted Technical Debt in Issue Tracker Systems.
In Proceedings of the 17th International Conference on Mining Software Repositories
(Seoul, Republic of Korea) (MSR ’20). Association for Computing Machinery, New
York, NY, USA, 137–146. https://doi.org/10.1145/3379597.3387459

[53] Tao Xiao, Dong Wang, Shane McIntosh, Hideaki Hata, Raula Gaikovina Kula,
Takashi Ishio, and Kenichi Matsumoto. 2022. Characterizing and Mitigating
Self-Admitted Technical Debt in Build Systems. IEEE Transactions on Software
Engineering 48, 10 (2022), 4214–4228. https://doi.org/10.1109/TSE.2021.3115772

[54] Fiorella Zampetti, Gianmarco Fucci, Alexander Serebrenik, and Massimiliano
Di Penta. 2021. Self-admitted technical debt practices: a comparison between
industry and open-source. Empirical Software Engineering 26 (11 2021). https:
//doi.org/10.1007/s10664-021-10031-3

[55] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2018. Was
Self-Admitted Technical Debt Removal a Real Removal? An In-Depth Perspective.
In 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). Association for Computing Machinery, New York, NY, USA, 526–536.

[56] Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta. 2020. Au-
tomatically Learning Patterns for Self-Admitted Technical Debt Removal. In
2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE Computer Society, Los Alamitos, CA, USA, 355–366.
https://doi.org/10.1109/SANER48275.2020.9054868

[57] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Mi-
los Gligoric. 2023. CoditT5: Pretraining for Source Code and Natural Lan-
guage Editing. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 22, 12 pages.
https://doi.org/10.1145/3551349.3556955

https://doi.org/10.1109/32.799955
https://doi.org/10.1145/1294261.1294276
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1109/ICSME.2016.72
https://doi.org/10.1109/ICPC.2019.00019
https://doi.org/10.1109/ICPC.2019.00019
https://doi.org/10.1145/3379597.3387459
https://doi.org/10.1109/TSE.2021.3115772
https://doi.org/10.1007/s10664-021-10031-3
https://doi.org/10.1007/s10664-021-10031-3
https://doi.org/10.1109/SANER48275.2020.9054868
https://doi.org/10.1145/3551349.3556955

	Abstract
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Creating TODO Comment Dataset
	2.3 GitHub Copilot Generations

	3 Results
	3.1 Impact of TODO Comments on Generations
	3.2 Repaying TODO Comments through Copilot
	3.3 Repaying TODO Comments with Prompt Engineering

	4 Discussion
	4.1 Mitigation of SATD Generation
	4.2 AI-Assisted TD Maintenance & Repayment

	5 Threats to Validity
	6 Related Works
	6.1 Management of Technical Debt
	6.2 GitHub Copilot Evaluations

	7 Conclusion
	References

