
Manas: Mining Software Repositories to Assist AutoML
Giang Nguyen

gnguyen@iastate.edu

Dept. of Computer Science, Iowa State University

Ames, IA, USA

Md Johirul Islam

jhislam@amazom.com

Amazon Inc

Austin, TX, USA

Rangeet Pan

rangeet@iastate.edu

Dept. of Computer Science, Iowa State University

Ames, IA, USA

Hridesh Rajan

hridesh@iastate.edu

Dept. of Computer Science, Iowa State University

Ames, IA, USA

ABSTRACT
Today deep learning is widely used for building software. A soft-

ware engineering problem with deep learning is that finding an

appropriate convolutional neural network (CNN) model for the

task can be a challenge for developers. Recent work on AutoML,

more precisely neural architecture search (NAS), embodied by tools

like Auto-Keras aims to solve this problem by essentially viewing

it as a search problem where the starting point is a default CNN

model, and mutation of this CNN model allows exploration of the

space of CNN models to find a CNN model that will work best for

the problem. These works have had significant success in produc-

ing high-accuracy CNN models. There are two problems, however.

First, NAS can be very costly, often taking several hours to complete.

Second, CNN models produced by NAS can be very complex that

makes it harder to understand them and costlier to train them. We

propose a novel approach for NAS, where instead of starting from

a default CNN model, the initial model is selected from a repos-

itory of models extracted from GitHub. The intuition being that

developers solving a similar problem may have developed a bet-

ter starting point compared to the default model. We also analyze

common layer patterns of CNN models in the wild to understand

changes that the developers make to improve their models. Our

approach uses commonly occurring changes as mutation operators

in NAS. We have extended Auto-Keras to implement our approach.

Our evaluation using 8 top voted problems from Kaggle for tasks
including image classification and image regression shows that

given the same search time, without loss of accuracy, Manas pro-
duces models with 42.9% to 99.6% fewer number of parameters

than Auto-Keras’ models. Benchmarked on GPU, Manas’ models

train 30.3% to 641.6% faster than Auto-Keras’ models.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; •Computingmethodologies→Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KEYWORDS
Deep Learning, AutoML, Mining Software Repositories (MSR)

ACM Reference Format:
Giang Nguyen, Md Johirul Islam, Rangeet Pan, and Hridesh Rajan. 2021.

Manas: Mining Software Repositories to Assist AutoML. In Proceedings of
The 44th International Conference on Software Engineering (ICSE 2022). ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
An increasingly larger number of software systems today are in-

cluding deep learning. Deep learning uses a convolutional neural

network (CNN) model, essentially a graph with weighted edges and

nodes that are weighted functions, to convert inputs to the output.

As more software systems incorporate deep learning, more soft-

ware developers have to design and train CNN models. Designing a

CNN model is very difficult, and developers often struggle leading

to bugs. Model bugs are frequent bugs in CNN programs [24, 25].

Recent work on neural architecture search (NAS) aims to solve

this problem [53]. NAS techniques start from a collection of default

CNN models and search for a suitable model for the problem. The

search space is defined by the collection of default models and a col-

lection of mutation operators that are used to modify CNN models

to create new candidates. NAS techniques have been implemented

in industrial-strength tools such asAuto-Keras [26]. NAS techniques
face two problems. First, NAS can be very costly, e.g., Auto-Keras
takes 8-12 hours on high performance machines to search for mod-

els with reasonable accuracy (90+%). The accuracy drops rapidly if

the search time is reduced. Second, CNN models produced by NAS

can be very complex that makes it harder to understand them for

maintenance, and costlier to train and retrain them.

We introduceManas (MiningAssistedNeural Architecture Search)

to alleviate the limitations of NAS. The fundamental intuition be-

hind Manas is that mining and using the hand-developed models

that are available in open-source repositories as default models

or starting point of search can help NAS leverage human devel-

oper efforts. Manas applies this intuition in two ways. First, hand-

developed models are mined to search for a better starting point for

NAS. Second, the change patterns of the hand-developed models

are mined to identify more suitable mutation operators for NAS.

We have realized Manas by extending Auto-Keras, the state-of-
the-art NAS framework.Auto-Keras is open source and outperforms

state-of-the-art methods like SEAS [13], NASBOT [27] making it a

suitable baseline [26]. Some key technical contributions in Manas
include model matching, a technique for matching the problem that

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan

(a) Problem (b) Solution

Figure 1: An example from StackOverflow showing the necessity to change model architecture

the developer intends to solve with the hand-developed models

mined from repositories,model adaptation, a technique for adapting
the mined model to the problem context, model transformation, a
technique for adapting the mined model for further improving met-

ric values, and training adaptation that leverages mined parameter

values from the repositories to change the optimizer.

To evaluate Manas, we use the top-8 problems from diverse do-

mains obtained from Kaggle for machine learning tasks including

image classification and image regression. Our evaluation shows

that given the same amount of searching time, Manas generates
simpler neural architectures than Auto-Keras without losing accu-

racy. In terms of the models’ size, Manas’ models have 42.9% to

99.6% fewer numbers of parameters than Auto-Keras’ models. We

observed up to 641.6% faster training speed when training models

produced by Manas as compared to those produced by Auto-Keras.
Our main contributions are the following:

• We have proposed a novel approach for NAS that leverages

software repository mining.

• We have proposed methods to identify the suitable models

by analyzing user’s intents and adapting models.

• We have utilized the common patterns to transform mined

models to improve the performance of these models in terms

of error rate, MSE, model complexity, and training time.

• Wehave implemented these ideas in a SOTANAS framework,

Auto-Keras [26]. Our artifact is available here [3].

The paper is organized as follows: §2 presents a motivating

example, §3 presents preliminaries and problem statement, §4 de-

scribes the Manas approach for NAS, §6 describes the limitations

and threats to validity of Manas, §7 describes related work, and §8

presents concludes

2 MOTIVATION
Deep Learning has received much attention in both academia and

industry. Therefore, many deep learning libraries and tools are

created for supporting a large number of deep learning develop-

ers. Although these libraries and tools make deep learning more

accessible, there are still many challenges. One of the challenging

problems is constructing an appropriate CNN model architecture,

which also has been shown as a frequent bug in CNN programs by

Islam et al. [24]. For instance, Figure 1a shows a query [1] posted on
StackOverflow where a developer is unable to find an appropriate

CNNmodel for their intent. In particular, the question discusses the

difficulty that the ResNet architecture does not give the result as

the developer expected. In response, an expert suggests changing

the CNN model. Figure 1b shows the solution of the expert for the

question of the developer. The expert suggested that the developer

should add dropout layers to minimize overfitting.

Neural architecture search (NAS) aims to solve this problem [53].

NAS takes the training data as an input to automatically define the

neural network for that data. Moreover, NAS is able to tune the

hyperparameter of the searched neural network. There are both

commercial and open-source realizations of NAS. For example, a

developer can pay about $20 per hour to use Google’s AutoML.

Auto-Keras is an AutoML system using NAS [26] created as an

open-source alternative. Auto-Keras returns outstanding results

compared with state-of-the-art handmade models on CIFAR10 [28],

MNIST [29], and FASHION [49] datasets. Auto-Keras is shown to

outperform state-of-the-art methods like SEAS [13], NASBOT [27].

NAS has two limitations. First, it can be very costly. For example,

Auto-Keras consumes 2,300% [41] more GPU computation time com-

pared to using handmade model. Second, NAS often produces very

complex models that are hard to understand and time-consuming

to train. To illustrate, we used Auto-Keras on another dataset Blood
Cell [34] from Kaggle. The model created by Auto-Keras for Blood
Cell problem has more than 2.3 million learnable parameters and

more than 7 weight layers. The searched CNN models are con-

structed based on the architecture of the large default CNN models;

thus, the models produced by Auto-Keras are often really large.

Smaller CNN models train faster and save more energy [22]. Han

et al. have shown that reducing the number of parameters of deep

learning models can reduce the training time by 3× to 4×, and

energy comsumption by 3× to 7× [19]. The rest of this work de-

scribes our approach Manas that addresses these limitations. As an

example, for the Blood Cell dataset, Manas produces a model that

decreases the error rate by 47.1%, the model depth by 14.3%, the

model width by 87.0%, and increases the training speed by 56.9%

compared with Auto-Keras’s model. The model produced by Manas
has 6 layers and 0.3 million parameters (neurons), whereas the

model produced by Auto-Keras has 7 layers, 2.3 million parameters.

3 PRELIMINARIES AND PROBLEM
STATEMENT

Preliminaries (NAS): We define NAS like it was defined in Auto-
Keras’ papers [26]. Given a search space S∗

and the input data

Manas: Mining Software Repositories to Assist AutoML ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA

CFG

.py Files Filtering

Model Mining

Filtered .py Files

Extract ML
Model

.py Files

Model Database

Extract ML
Optimizer

Input .py File

Extract
Intent

User’s Intent

Best DNN Models

Mined DNN Models

DNN Optimizers

Abstract Neural
Network

Github

Neural
Architecture

Search Model
Adaptation

Adaptation Component

Input

Converted DNN
Model

Global_Pool

Relu

Flatten

Model Transformation

Softmax

Neural
Architecture

Search

Best Default
DNN Model

Transformed
DNN Models

Dropout

BN
Training

Adaptation

Optimizer

Suggested Default
DNN Models

Model Matching

DNN Model
Filtering

Matching
Input Channel

Matching
Input Size

Matching
Output

Output

Meta-
information Intent Derivation

Models’ Intent

DNN Model
Clustering

Figure 2: An Overview ofManas. Two inputs are mined models from repository (left-top), and user’s initial file (middle-top).

D split into Dtrain and Dval , the goal is to find an optimal neu-

ral architecture N∗ ∈ S∗
, which achieves the lowest value of the

cost function in dataset D. Search space S∗
covers all the neural

architectures created from default neural networks.

N∗ = argmin

N∗∈S∗

Cost(N ′(θ∗),Dval) (1)

θ∗ = argmin

θ
L(N ′(θ),Dtrain) (2)

Where Cost and L are the cost function and lost function, θ is the

learned parameter of N ′
.

Problem statement: This work aims to utilize the neural net-

works from open source repositories to optimize the neural archi-

tecture search. We extract the intents of both input dataset and

mined neural networks to determine better starting points (initial

models) for NAS. Given a neural architecture space S containing all

neural networks, the goal is to find optimal initial architectureN ∈

S for NAS. The optimal initial architecturesN support NAS to find

out the optimal neural network N∗
faster. Based on the Equations

1 and 2, we define N ′
as follows:

N ′ = argmin

N∈S

L(N ,Dtrain) (3)

N ′
is the neural network with lowest error among the initial archi-

tectures.

4 MANAS
The Figure 2 shows the overview of Manas. Manas has five major

components that we describe below.

1 To initialize Manas for NAS, the model database must be

populated by mining models from open source repositories.

Currently, Manas collects high quality models from GitHub
by extracting Python files fromKeras projects. These projects
are selected using certain filtering criteria to ensure code

quality. Then, API usage is used to filter Python files to those

that contain models. Finally, both the models and the values

for optimizer are extracted to store in the model database.

This database is constructed once and should be updated

periodically as new models are added frequently.

2 The intent of both users and models are identified to select

the good models from the database. The user’s intent is

identified by analyzing the user’s dataset while models are

analyzed to infer the models’ intent.

3 Model matching matches the user’s intent with the models

to obtain a good starting point. It selects the modes which

have the closest intent with the user by using the model

clustering approach. In case that there are too many models,

the model filtering approach will be applied to reduce the

number of models.

4 The selected models and optimizer values are adapted into

Manas by adaptation system.

5 The selected models are transformed by model transforma-

tion based on related state-of-the-art papers and common

layer API patterns of mined models. The transformation can

enhance the performance of the models in terms of errors

and training speed.

4.1 Model Mining

Top 10000
repositories

202174
programs

GitHub
API Query

42,139
programs

CFG

Star Count Python

1. Keras keyword
2. Python language
3. Created 2015-2020

Meta-data of
GitHub repositories

29,846
models

793
models

1,370
models

Incomplete
 models

Support
by Manas

Non-duplicate
models

Keras

38,808
models

E
xtracting
m

odels

Figure 3: Model mining process.

In order to extract CNN models and their optimizers from source

code repositories, we build a source code analyzer based on the

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan

control flow graph (CFG) 1 . Figure 3 shows the overview of model

mining process.

GitHub repositories’ meta-data collection: We collect the

meta-data of GitHub repositories by using a GitHub API query
1
.

Meta-data contains basic information of a repository such as au-

thors, repository’s name, etc. The query allows us to obtain the

meta-data of the GitHub repositories with three filtering criteria

including Python programming language, containing Keras key-
word, and created date between 2015-01-01 and 2020-12-31. From

the meta-data, we obtain GitHub URLs of the top 10,000 repositories
with the most star count to ensure the quality of the models [7]. The

URLs help us to access the repositories to collect the CNN models.

Keras programs collection: We obtain 202,174 Python pro-

grams from collected repositories; however, only 42,139 programs

use Keras API. In particular, we use CFG to analyze their import

statements of Python programs to only collect which one import

Keras API.
Models extraction: In this work, since Manas only works with

Keras CNN, we will explain how we extract CNN from Keras pro-
grams.We use CFG to extract a model from a deep learning program.

We manually create a list of function calls used to build neural net-

works of Keras based on Keras’ documentation [2]. Then, CFG

examines every API call to collect the functions contained in the

list and their connections. The collected functions represent the

layers in the models. The connections between functions represent

the layer connections in the models. The reason for using CFG

is to collect complete models from programs even if they contain

branches. For example, the CFG contains a convolutional block

followed by a Dense block in the "if" branch and a skip connection

in the "else" branch. If a convolutional block combines with a dense

block or a convolutional block combines with a skip connection to

be a complete model, we will extract those parts in the branches to

collect the complete model. In case that there is a loop containing a

part of a model in the CNN programs. If the number of iterations is

available to extract that part completely, we will collect it to com-

plete the model. If there is a method call in the program containing

a part of the model, we will collect it to complete the model. For the

other cases, when the parts in the branches cannot complete the

model or cannot be extracted, we will ignore them. For instance,

a part of the model in a loop whose numbers of iterations are un-

available cannot be extracted. After this step, we collected 38,808

models from 42,139 Keras programs. The number of models is less

than the number of Keras programs because many programs does

not contain models. We assume that a program contains a model if

it has at least an API used to build a model.

Rather than mining only neural architectures, we also mine

their optimizers that deep learning developers carefully select after

spending manual efforts on retraining their models. Then, when-

ever a model is selected as an initial model,Manas trains the model

with its optimizer instead of the default one. Optimizers are algo-

rithms deciding how the parameters of the models change. Every

optimizer has strengths and weaknesses; thus, it is necessary to

choose a suitable optimizer. While models are the decisive factor

to the performance of Manas, we note that it is wasteful if we

1
"https://api.github.com/search/repositories?q=keras+language:python+created:

yyyy-mm-dd"

cannot fully use these models. In other words, good models with

wrong optimizers cannot produce a good performance. To obtain

the optimizer, we use the same process of extracting CNN models

by creating a list of functions related to the optimizer. After that,

CFG analysis is used to obtain the API call, which contains the

optimizer.

Incomplete models detection: A complete model includes an

input layer, hidden layers, and an output layer [52]. The input

layer is the first convolutional layer of the neural network, which

is distinguished from the other convolutional layers based on its

parameters. In particular, only the API call representing for input

layer contains input_shape parameter. The output layer is the last

linear layer of the CNN. Hidden layers are the layers between the

input layer and the output layer, including convolutional layers, ac-

tivation layers, and fully connected layers (linear layers). Therefore,

if an extracted model does not have convolutional layers, activation

layers, or linear layers, we will consider that the model is incom-

plete. By removing incomplete models, there are 29,846 models

left.

Supported byManas:AsManas currently supports a few kinds

of layers that are convolutional layer, linear layer, batch normaliza-

tion layer, concatenate layer, add layer, max pooling layer, dropout

layer, Softmax layer, ReLU layer, flatten layer, and global pooling

layer, we filter out the models containing unsupported layers. After

this step, we have 1,370 models left.

Model duplication detection:We obtain 793 models after re-

moving the duplicate ones. If two models have the same abstract

neural network, there will be a duplicate model. We will explain in

detail about the abstract neural network in Section 4.4.

4.2 Intent Derivation
Intent derivation 2 is used to extract both user’s intents and

model’s intents. The user’s intent is extracted by analyzing the

training data while we analyze the input layer and output layer of

a model to acquire the intent of models.

User’s Intent and Model’s Intent Derivation:We obtain the

user’s intents by analyzing the dataset and obtain the model’s

intents by analyzing the input layer and the output layer. Taking

an image classification as an example, we obtain the user’s intents

including input size and output channel from the image data. On

the other hand, the model’s intents also are the input size and

the output channel of the model can be obtained by analyzing the

the first convolutional layer and the last linear layer of a CNN

model, which are the input layer and the output layer the model,

respectively.

Example 1. The Line 1 is an API call representing for the input
layer of a CNN. We extract the value of the argument input_shape
from the input layer to obtain the input size and the input channel,
which are (120, 180) and 3, respectively. The output channel is obtained
from the output layer 3. By extracting the first argument’s value of
the output layer, we obtain the value of the output channel.
Conv2D('input_shape': [3, 120, 180], activation='relu')
...
Dense(10, activation='relu')

Since we currently focus on image problems like image classifica-

tion and image regression, we use the input size, the input channel,

"https://api.github.com/search/repositories?q=keras+language:python+created:yyyy-mm-dd"
"https://api.github.com/search/repositories?q=keras+language:python+created:yyyy-mm-dd"

Manas: Mining Software Repositories to Assist AutoML ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA

and the output channel of image as intent of user and model. First,

the input size includes the height and the width extracted from

input data and models. Second, the input channel represents the

number of primary colors in the image. Third, the output channel

is the number of output categories of the data and models.

4.3 Model matching
Model matching 3 is a ranking system used to find good models

for a certain problem by using the intents. Instead of using constant

default models, model matching finds the suitable models to uses

them as default models for NAS.

Model clustering: Model clustering uses the intents of both

the input dataset and mined neural networks to select appropriate

initial architecturesN for NAS. First of all,Manas clusters themined

models based on the intents of the models and the input dataset.

Secondly, in meta-feature (intent) space, our approach identifies

closest clusters to the input dataset. Lastly, Manas uses all the

models in the closest cluster to the dataset as the initial architectures

for NAS. Formally, we determine the initial architectures N for

dataset D in Equation 3 as follows:

N = {Ck | n ∈ Ck ,Ck ∈ C} (4)

C = {G(∆ok ,∆sk) | ∆ik = 0,k ∈ [1, |S|]} (5)

dist(n,D) =

{
min ∆o if min ∆i = 0

min ∆s if min ∆i = 0,min ∆o = 0

(6)

In Equation 5, C is a set of clusters of neural network detected by

clustering algorithm G-means [18], which uses a statistical test to

automatically decide the number of clusters. ∆ok , ∆ik , and ∆sk are

measured as follows:

∆ik = |i − ik | (7)

∆ok = |o − ok | (8)

∆sk =
√
(w −wk)

2 + (h − hk)
2

(9)

Where i , o, w , and h are the input channel, the number of output

classes, the input width, and the input height of the dataset, re-

spectively. Similarly, ik , ok ,wk , and hk are the input channel, the

number of output classes, the input width, and the input height of

a model k, respectively. The idea behind the clustering equations

is that there are two types of the input channel, including 1 and

3. Therefore, we classify the neural networks that have the same

input channel first. Then, we use (∆o, ∆s) as the input of G-means

to split the mined models into clusters. After that we identify the

closest model n to the input dataset like Equation 6. The closest

model is identified based on the priority of ∆o and ∆s that ∆o takes
precedence over ∆s . We have tried to run our tool in different orders

of priority ∆o and ∆s; however, this order of priority gives us the

best results. The closest cluster to the input dataset is the cluster

which contains the closest model. Then, we select all the models in

the closest cluster to the input dataset as the initial models N for

NAS shown in Equation 4.

Model filtering: If the number of initial models found by the

model clustering approach is too large, we use model filtering to

filter some models to increase the performance of Manas. In the

searching process, Manas trains all the default neural networks to
select the best one. After that NAS is applied to tune the selected

model. Thus, with a specific time budget, the more time Manas

spends on trying the default models, the less time it spends on

NAS for model searching. To filtering neural networks, we detect

the equivalent architectures. We treat each neural architecture

as a graph, whose trainable layers like convolutional layers or

dense layers represent vertices, connections between two trainable

layers represent edges, and channels of the outgoing trainable layers

represent the weights of edges between two vertices. We use Cosine

similarity to measure the similarity between two vertices. Mi j is

an element of the similarity matrix of vertex vi of a graph GA and

vertex vj of a graph GB , which is measured as follows:

Mi j =

∑n
k=1wikw jk√∑m

l=1w
2

il

√∑k
n=1w

2

jl

(10)

Suppose that vk is the common neighbor of vertex vi and vertex

vj , we have wik and w jk are the weights edges vkvi and vkvj ,
respectively. We also havewil orw jl are the weights of edges that

incident with each of the vertices vi and vj , respectively.

wpq =

{
weight of the edge between vp and vq in a graph G

0 otherwise

(11)

We create a similarity matrixM for each pair of graphs and classify

equal matrices into the same classes. In this work, we filter the

models by only using the neural network whose graphs belong to

the class having the highest number of matrices. In other words,

we will only choose the most used architecture in the determined

initial architecture for NAS. We consider the most frequent archi-

tecture to be more suitable than others because many deep learning

developers repeatedly use these neural architectures. Non-trainable

layers like Dropout or activation are not used as the factors to

detect the similarities of the neural architectures because we want

to utilize the various usages of these layers to increase the perfor-

mance of Manas. Particularly, different models can have the same

graph structure because of the differences in non-trainable layers;

therefore, a graph can refer to many different neural architectures.

4.4 Adaptation System
The adaptation system 4 is used to adapt deep learning models and

optimizers from the database into Manas. We store the extracted

CNN models in a database as an abstract neural network (AbNN),

which is an abstract representation of the neural network. This

representation has the structure as a network where the nodes

are API calls, and the connections are the order between API calls.

We use this representation to adapt models and their optimizers

into Manas. From each node, we obtain the name of layer and

its parameters, which can be converted into an API call. Figure 4

presents an example of AbNN built from an mined model. Notice

that if an activation parameter is implemented as an argument

inside a layer, we consider that the activation is a separate layer.

4.5 Model Transformation
Even though the mined models are from the top star GitHub reposi-
tories, they are not perfect. Therefore, in step 6 , we transform the

initial architectures bymodifying or adding the batch normalization

(BN) layer, the flatten layer, activation layers, the global average

pooling (GAP) layer, and the dropout layer to optimize NAS in

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan

1 Conv2D(64, kernel_size = (3, 3),activation='relu',

input_shape=(3, 120, 180))

2

3 MaxPooling2D(pool_size=(2,2))

4 Conv2D(32, activation='relu')

5

6 MaxPooling2D(pool_size=(2,2))

7 Dropout(0.25)

8 Flatten()

9 Dense(20, activation='softmax')

12 SGD(lr=0.01, decay=1e−6)

(a) Extracted model

1 {'func': 'Conv2D', 'input_shape': [3, 120, 180], 'arg2

': 64, 'kernel_size': [3, 3]}

2 {'func': 'relu'}

3 {'func': 'MaxPool2d', 'pool_size': [2, 2]}

4 {'func': 'Conv2D', 'arg1': 64, 'arg2': 32}

5 {'func': 'relu'}

6 {'func': 'MaxPool2d', 'pool_size': [2, 2]}

7 {'func': 'Dropout', 'arg1': 0.25}

8 {'func': 'Flatten'}

9 {'func': 'linear', 'arg1': 128, 'arg2': 20}

10 {'func': 'softmax'}

11

12 {'func': 'SGD', 'lr': 0.01, 'decay': 1e−06}

(b) Abstract Neural Network

Figure 4: Building an abstraction of neural network from
extracted model

terms of speed, errors, and the number of parameters. We choose

these layers to modify the default models because of two reasons.

Firstly, we have found many common patterns related to these lay-

ers. Secondly, many recent studies have shown the effectiveness of

these layers on increasing the performance of deep learning models.

We have created a set of pre-defined rules to transform networks

based on related state-of-the-art papers and common function calls’

patterns from mined models. Manas analyzes these architectures
to determine whether the network satisfies the pre-defined rules. If

these rules are satisfied, the pre-defined model transformations will

be applied. The pre-defined model transformations support NAS

to ignore transformations offered by our approach and focus on

the other transformations. The model transformations do not work

for Auto-Keras’ initial neural architectures because those default
models have already included these transformations.

1 (0): Conv2d(3, 32, ...)

2

3 (1): Tanh()

4 (2): MaxPool2d(kernel=2, stride=2, ...)

5

6 (3): Conv2d(32, 32, ...)

7

8 (4): Tanh()

9 (5): MaxPool2d(kernel=2, stride=2, ...)

10

11 (6): Flatten()

12 (7): Linear(in=32, out=32, ...)

13 (8): ReLU()

14

15 (9): Linear(in=32, out=2, ...)

16 (10): Softmax()

(a) Original model

1 (0): Conv2d(3, 32, ...)

2 (1): BatchNorm2d(32, ...)

3 (2): ReLU()

4 (3): MaxPool2d(kernel=2, stride=2, ...)

5 (4): Dropout2d(p=0.5)

6 (5): Conv2d(32, 32, ...)

7 (6): BatchNorm2d(32, ...)

8 (7): ReLU()

9 (8): MaxPool2d(kernel=2, stride=2, ...)

10 (9): Dropout2d(p=0.5)

11 (10): GlobalAvgPool2d()

12 (11): Linear(in=32, out=32, ...)

13 (12): ReLU()

14 (13): Dropout2d(p=0.25)

15 (14): Linear(in=32, out=2, ...)

16 (15): Softmax()

(b) Transformed model

Figure 5: Original CNN model vs transformed CNN model

Batch normalization layer constraint: We add a new batch

normalization layer between the convolutional layer and the activa-

tion layer to increase training speed [23]. Using BN means that we

modify the activations to normalize the input layer to decrease the

training time. Many well-known neural architectures like ResNet

[20], DenseNet [21], EfficientNet [44] use BN to increase the train-

ing speed. BN is also popular in optimizing NAS [12, 14, 53].

Example 2. According to Figure 5a, the original model has a convo-
lutional layer connects to a ReLU layer, which is an activation function
layer. Thus, in Figure 5b, following the batch normalization layer con-
straint, Manas adds a new BN layer between the convolutional layer
and the ReLU layer like following example.

1 (0): Conv2d(3, 32, ...)

3 (1): ReLU()

(a) Original model

1 (0): Conv2d(3, 32, ...)
2 (1): BatchNorm2d(32, ...)
3 (2): ReLU()

(b) Transformed model

Figure 6: Example of batch normalization layer constraint

Global average pooling layer constraint: We use GAP to re-

shape the data into the correct format for fully connected layers

to prevent overfitting [30]. Moreover, we use the mined models as

default models for NAS; thus, the original input size of the initial

models and the input size of the dataset can be different, which can

cause a shape mismatch bug. However, using GAP can solve this

problem since it does not care about the input shape.

Example 3. According to Figure 5a, the origin model used the
flatten layer to pass the feature map through the CNN. Therefore, in
Figure 5b, following the constraint about GAP layer, Manas transforms
flatten into GAP like following example.

1 Flatten()
2 Linear(in=32, out=32, ...)

(a) Original model

1 GlobalAvgPool2d()
2 Linear(in=32, out=32, ...)

(b) Transformed model

Figure 7: Example of global average pooling layer
constraint

Activation layer constraint: We investigate the patterns of

usages of activation functions used in the mined model. We have

found 3218 hidden layers used in 793 models, where ReLU is used

2946 times, accounting for 94.55%. Therefore, we replace the current

activation layers of convolutional layers with ReLU.

Example 4. According to Figure 5a, the origin model uses Tanh for
the convolutional layer. Thus, following the constraint of the activation
layer, Manas transforms Tanh to ReLU like following example like
following example.

1 (3): Conv2d(32, 32, ...)
2

3 (4): Tanh()

(a) Original model

1 (5): Conv2d(32, 32, ...)
2 (6): BatchNorm2d(32, ...)
3 (7): ReLU()

(b) Transformed model

Figure 8: Example of activation layer constraint

Dropout layer constraint: We investigate the frequency of

dropout [42] layers and their drop rates used in the mined model.

Out of 806 times that Dropout is used in hidden layers, the drop

rate of 0.25 is used 385 times, which accounts for 47.8%. Out of 753

times that dropout is used in fully connected layers, the drop rate

of 0.5 is used 529 times, which accounts for 70.3%. Thus, We add

Dropout with a drop rate of 0.25 to the hidden layers and Dropout

with a drop rate of 0.5 fully connected layers.

Example 5. According to Figure 5a, the origin model does not use
the dropout layer. Therefore, in Figure 5b, following dropout layer
constraint, Manas adds dropout layers into a convolutional layer with

Manas: Mining Software Repositories to Assist AutoML ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA

0.25 drop rate and a dropout layer into the fully connected layer with
0.5 drop rate like following example.

1 Conv2d(32, 32, ...)
2 ReLU()
3 MaxPool2d(kernel=2, stride=2, ...)
4

(a) Original model

1 Conv2d(32, 32, ...)
2 ReLU()
3 MaxPool2d(kernel=2, stride=2, ...)
4 Dropout2d(p=0.5)

(b) Transformed model

Figure 9: Example of dropout layer constraint

All the transformations except Dropout transformation are ap-

plied simultaneously to the mined models before searching. After

the best model is selected from candidate models, dropout trans-

formation is applied to the best model. Since adding dropout does

not always improve the model’s errors, we utilize NAS to identify

whether using dropout is good or bad.

5 EVALUATION
We implement Manas by extending Auto-Keras [26]. All experi-
ments use Python 3.6, with 16GB GPU Tesla V100. In these ex-

periments, we use 8 datasets for image classification and image

regression, which are obtained from Kaggle based on the vote count.
The efficiency and effectiveness of Manas are evaluated in four as-

pects. Firstly, we evaluate the metric values including error rate

and MSE that is lower the better, model complexity, and training

speed of Manas by comparing it with Auto-Keras. Secondly, we
evaluate the model matching approach’s efficiency and effective-

ness. Lastly, we evaluate the efficiency and effectiveness of model

transformation and training adaptation approaches.

Since many models for different Kaggle datasets have already
been published on GitHub, it is possible that some Kaggle models

of the testing dataset have already been included in our mined

models. To avoid this problem, for each dataset, we have compared

the default model of Manas with the top 5 lowest error rate models

from Kaggle. Manas default model is not one of Kaggle’s models.

Moreover, since most of the models from Kaggle are published as

Jupyter Notebooks, we only mine the model written as Python files.

To evaluate the performance of our method, we use 8 different

image datasets collected from Kaggle: Blood Cell [34], Breast Can-
cer [35], Flower [32], Intel Image Classification (IIC) [6], Malaria [4],
MNIST: Ham [31], Sign Language Digits (SD) [33], and Sign Lan-
guage (SL) [45]. These dataset are often used for image classification

task; however, we treat prediction targets them as numerical val-

ues for image regression task. We only use image datasets because

Auto-Keras only apply NAS for image data. If a dataset is already

separated into training data and validation data, we will directly

use it. However, for the dataset that does not have separate train-

ing data and validation data, we divide it into two subsets, 80% of

randomly selected images are used for training and the remaining

images for validation.

5.1 Results
5.1.1 RQ1: How efficient is Manas? To evaluate the efficiency of

Manas, we run both Manas and Auto-Keras on 8 datasets for image

classification and image regression. We vary the search time from 2

hours to 20 hours, which are described in Figure 10. Table 1 shows

the error rate, MSE, depth, number of parameters, and speed of the

best models of Manas and Auto-Keras. By the best model, we mean

one that has the lowest error rate or MSE after search timeout. By

comparing Manas and Auto-Keras, two conclusions can be drawn.

First of all, Table 1 shows that Manas produces models, which

has lower error rate or MSE compared with Auto-Keras’ models.

The lower errors ofManas compared with Auto-Keras indicates that
using mined models as the starting points for NAS can produce

better models. Notably,Manas outperformsAuto-Keras by achieving
17.6% lower error rate on average. For some problems like IIC
and MNIST: HAM for image classification task, the decrease of the

error rate of Manas compared with Auto-Keras is small because the

models created by Manas and Auto-Keras have reached the limit

of error rate. Therefore, a small decrease in error rate is a major

improvement. We use the error rate as the main evaluation metric

to clearly point out this improvement of Manas to Auto-Keras.
Secondly, Manas achieves lower errors with less complicated

models compared to Auto-Keras. Using mined models on NAS sig-

nificantly decreases the complexity of the produced models. On

average, models generated byManas are 75.7% less deep and 93.0%
less wide compared to the models generated by Auto-Keras for im-

age classification task. Similarly, Manas creates models with 74.4%
less deep and 89.1% less wide compare to Auto-Keras’s models for

image regression task. Simpler DNN models train faster and save

more energy [22] than the complex ones. Han et al. have shown
that reducing the number of parameters of deep learning models

can reduce the training time by 3× to 4×, and energy comsumption

by 3× to 7× [19]. Table 1 also shows that on average, Manas’ mod-

els run faster than Auto-Keras’ model 247.1% and 66.3% in image

classification and image regression, respectively.

5.1.2 RQ2: How efficient are model transformation and optimizers
modification? We create an ablation study to observe the efficiency

of the model transformation and modifying optimizers via mining

separately.

Ablation Study:
• Original Manas (OM) represents mined models + no trans-

formation + no optimizer + NAS.

• Transformed Manas (TM) represents mined models + trans-

formations + no optimizer + NAS.

• Manas (MN) represents for mined models + transformations

+ optimizers + NAS.

• Auto-Keras (AK) represents NAS.
We observe the error values of Original Manas, Transformed Manas,
Manas, andAuto-Keras by executing them on 8 datasets for 20 hours

for both image classification and image regression. To evaluate

the efficiency of the model transformation, we compare Original
Manas and Transformed Manas. We compare Transformed Manas
and Manas to evaluate the efficiency of optimizers modification. To

evaluate the combination of all methods, we compare Manas and
Auto-Keras.

Notice that we have applied the model transformation on Auto-
Keras’ models; however, this did not lead to any improvement

because those default models use BN layers or Dropout layers ap-

propriately. Figure 10b does not have the Original Manas series
because the best models of Original Manas and Transformed Manas

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan

Table 1:Manas Classification & Regression Results

Data

Image Classification Image Regression

Error rate

(%)

Depth

(layers)

Param #

(million)

Speed

(epoch/min)
MSE

Depth

(layers)

Param #

(million)

Speed

(epoch/min)

AK MN AK MN AK MN AK MN AK MN AK MN AK MN AK MN

Blood Cell 18.9 10.0 (↓ 47.1%) 7 6 (↓ 14.3%) 2.3 0.3 (↓ 87.0%) 5.1 8.0 (↑ 56.9%) 0.16 0.11 (↓ 31.3 %) 21 9 (↓ 57.1%) 11.2 0.1 (↓ 99.1%) 2.7 8.4 (↑ 211.1%)

Breast Cancer 6.9 6.9 (↓ 0.0%) 21 8 (↓ 61.9%) 11.2 0.5 (↓ 95.5%) 0.2 0.5 (↑ 150%) 0.05 0.06 (↑ 20.0%) 26 7 (↓ 73.1%) 11.4 0.04 (↓99.6%) 0.2 0.6 (↑ 200.0%)

Flower 14.6 12.8 (↓ 12.3%) 121 11 (↓ 90.9%) 7.0 1.5 (↑ 78.7%) 2.7 3.8 (↑ 40.7%) 0.64 0.65 (↓ 1.5%) 21 9 (↓ 57.1%) 11.2 0.4 (↓ 96.4%) 3.3 4.3 (↑ 30.3%)

IIC 8.9 8.6 (↓ 3.4%) 27 7 (↓ 74.1%) 15.5 0.5 (↓ 96.8%) 0.7 2.6 (↑ 73.1%) 0.58 0.59 (↑ 1.7%) 122 5 (↓ 95.9%) 7.0 0.3 (↓ 95.7%) 0.7 2.4 (↑ 242.9%)

Malaria 2.3 1.6 (↓ 30.4%) 30 7 (↓ 76.7%) 20.3 0.3 (↓ 98.5%) 1.7 4.3 (↑ 152.9%) 0.02 0.02 (↓ 0%) 21 8 (↓ 61.9%) 11.2 0.4 (↓ 96.4%) 2.4 4.7 (↑ 95.8%)

MNIST: Ham 20.6 20.3 (↓ 1.5%) 7 6 (↓ 14.3%) 0.9 1.6 (↑ 77.8%) 2.2 1.4 (↓ 36.4%) 0.81 0.73 (↓ 9.9%) 26 13 (↓ 50.0%) 11.9 0.4 (↓ 96.6%) 1.1 5.2 (↑ 372.7%)
SD 0.5 0.0 (↓ 100.0%) 22 11 (↓ 50.0%) 11.3 0.7 (↓ 93.8%) 8.9 66.0 (↑641.6%) 0.05 0.1 (↑ 100.0%) 21 12 (↓ 42.9%) 11.2 0.4 (↓ 96.4%) 48.4 78.2 (↑ 61.6%)

SL 0.0 0.0 (↓ 0.0%) 22 6 (↓ 72.7%) 11.3 0.3 (↓ 97.3%) 5.5 8.0 (↑ 45.5%) 0 0 (↓ 0.0%) 27 10 (↓ 63.0%) 12.6 7.2 (↓ 42.90%) 5.0 2.6 (↓ 48.0%)

Avg 9.1 7.5 (↓17.6%) 32.1 7.8 (↓75.7%) 10.0 0.7 (↓93.0%) 3.4 11.8 (↑247.1%) 0.3 0.3 (↓0.0%) 35.6 9.1 (↓74.4%) 11.0 1.2 (↓89.1%) 8.0 13.3 (↑ 66.3%)
In the table, Avg, AK and MN represent average, Auto-Keras, and Manas, respectively. In each cell, ↓ and ↑ represent a decrease percentage and an increase percentage, respectively.

In each evaluation metric, the bold value show the best percentage change of Manas compared to Auto-Keras. -

are the same. In other words, the model already contains all the

transformation constraints, so there is no transformation applied

to the model. Similarly, Figure 10e does not have the Transformed
Manas series because the optimizers of the best model of Trans-
formed Manas and Manas are the same. The selected model’s opti-

mizer of this problem is not available; therefore, we use the default

optimizer of Auto-Keras for this model. From the results are shown

in Figure 10, we draw four observations.

First of all, model transformation increases the performance

of Manas in terms of errors and converge time. Figures 10a, 10c,

10f, 10g show that Transformed Manas achieve lower errors than
Original Manas most of the time. The activation layers, GAP layer,

and the dropout layers contribute to the better errors of Transformed
Manas compared toOriginal Manas. For example, the dropout layers

can prevent overfitting, which decreases the errors. The model

transformation also helps Manas to converge faster. As we can

observe Figures 10a, 10c, 10f, 10g, Original Manas has higher errors
compared to Transformed Manas in the first 2 hours of training,

which indicate the TransformedManas converge faster thanOriginal
Manas. Transformed Manas has a fast converge speed thanks to BN.

Secondly, mined optimizers helpManas to reduce errors and con-
verge faster. In most of problems, the best models of Manas have
lower errors than the best models of Transformed Manas. Moreover,

Manas can converge easier with the mined optimizers. For instance,

the Figures 10d, 10f, 10g shows that Transformed Manas has trou-
ble converging. After 8 hours of searching, Transformed Manas
cannot find out better models while Manas succeeds. Transformed
Manas has trouble in converging since it does not have an suitable

optimizer for those problems like Manas.
Thirdly,Auto-Kerasmay have lower errors thanManas in the first

few hours; however, in the last hours, Manas often finds out better

models than Auto-Keras. For example, Figures 10b, 10c, 10d, and

10m show that Auto-Keras has the errors at the beginning; however,
as time gone we have not seen any improvement in Auto-Keras
results. The reason for this problem is that Auto-Keras starts with
very complicated models that take a lot of time to train; therefore,

the number of models is searched by Auto-Keras are small, which

decreases the chance to find out good models of Auto-Keras. Manas
starts with simple models, which trains faster. Therefore, Manas
may not be off to a good start, but in the end, it still outperforms

Auto-Keras. The observation shows the benefit of using simple

mined models in NAS.

Lastly, Figure 10 indicates that Manas obtains lower error rates
than Auto-Keras in almost different time periods. As we can observe

in Figures 10a and 10i, Manas always outperforms Auto-Keras in
terms of error rate in the 20-hours of searching. Figure 10 shows that

the longer searching time sometimes gives worse models. During

the searching process, the NAS estimates the errors of searched

models and selects the best one. However, the estimation may not

be accurate, leading to an incorrect choice. This problem of NAS

indicates the importance of using a simple model. Simple models

can train faster that increases the chance for NAS to search for more

models. Since the estimation of NAS can be incorrect; thus, if we

increase the number of searched model, we can increase the chance

to obtain better models. For example, after 8-hours of searching,

NAS goes wrong with IIC problem when it produces worse models

than before. However, when we keep searching for new models,

NAS gradually fixes the problem to obtains a good model.

Table 2: Efficiency of Model Matching

Data

Blood

Cell

Breast

Cancer

Flower IIC

Mala-

ria

Ham SD SL

Task IC IM IC IM IC IM IC IM IC IM IC IM IC IM IC IM

Total 793

MC 5 5 5 7 18 6 11 46 5 7 6 11 69 4 5 5

MF - - - - - - - 12 - - - - 12 - - -

In each cell, IC, IM, MM, and MF represent image classification, image regression, model clustering

and model filtering, respectively. The unit of all the data in the table is the number of models.

Table 3:Manas vs Auto-Keras for Well-known Problems

Data

Error Rate

(%)

Depth

(layers)

Param #

(million)

Speed

(epoch/min)

AK MN AK MN AK MN AK MN

CIFAR10 7 7.7 (↑ 10.0%) 21 10 (↓ 52.4%) 19.4 0.8 (↓ 95.9%) 1 2.9 (↑ 190.0%)

Fashion 5.2 11(↑ 111.5%) 22 9 (↓ 59.1%) 14.7 1.8 (↓ 87.8%) 2.1 1.8 (↓ 14.3%)

MNIST 0.5 0.7 (↑ 40.0%) 23 6 (↓ 73.9%) 19.3 2.9 (↓ 85.0%) 1.3 3.1 (↑ 138.5%)

Avg 4.2 6.5 (↑ 54.8%) 22 8.3 (↓ 62.3%) 17.8 1.8 (↓ 89.9%) 1.5 2.6 (↑ 73.3%)

In each cell, Avg, AK and MN represent average, Auto-Keras, and Manas, respectively.

5.1.3 RQ3: How efficient is model matching? The goal of model

matching is not only selecting good default models for Manas but
also reducing the number of default models. From Table 1, we

observe the efficiency of model matching, when Manas can outper-

form Auto-Keras in many different perspectives. Table 2 shows that

Manas: Mining Software Repositories to Assist AutoML ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

10

20

30

40

50

60

70

Er
ro

r R
at

e
(%

)

Original Manas
Transformed Manas
Manas
Auto-Keras

(a) Blood Cell Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

6.0

6.5

7.0

7.5

8.0

8.5

Er
ro

r R
at

e
(%

)

Transformed Manas
Manas
Auto-Keras

(b) Breast Cancer Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

10

20

30

40

50

60

70

Er
ro

r R
at

e
(%

)

Original Manas
Transformed Manas
Manas
Auto-Keras

(c) Flower Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

2.0

2.5

3.0

3.5

Er
ro

r R
at

e
(%

)

Original Manas
Transformed Manas
Manas
Auto-Keras

(d) Malaria Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

20

22

24

26

28

30

Er
ro

r R
at

e
(%

)

Original Manas
Manas
Auto-Keras

(e) MNIST: Ham Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

10

12

14

16

18

20

Er
ro

r R
at

e
(%

)

Original Manas
Transformed Manas
Manas
Auto-Keras

(f) IIC Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0

20

40

60

80

Er
ro

r R
at

e
(%

)

Original Manas
Transformed Manas
Manas
Auto-Keras

(g) SD Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Er
ro

r R
at

e
(%

)

Original Manas
Transformed Manas
Manas
Auto-Keras

(h) SL Classification

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(i) Blood Cell Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.050

0.055

0.060

0.065

0.070

0.075

0.080

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(j) Breast Cancer Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.6

0.7

0.8

0.9

1.0

1.1

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(k) Flower Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.02

0.04

0.06

0.08

0.10

0.12

M
SE

Original Manas
Transformed Manas
Auto-Keras
Manas

(l) Malaria Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(m) MNIST: Ham Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(n) IIC Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(o) SD Regression

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Searching Time (hrs)

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

Original Manas
Transformed Manas
Manas
Auto-Keras

(p) SL Regression

Figure 10: Error Rate and MSE of Auto-Keras, Original Manas, Transformed Manas, andManas over time

model matching, including model clustering and model filtering,

can significantly reduce the number of default models for Manas.
We use all 793 mined models as input for each problem, which may

take few days to complete training. By using model matching, we

decrease the number of default models by 99% on average. Taking

SD in image classification as an example, after using DNN clus-

tering, there are remaining 69 default models. Therefore, we use

DNN filtering on this dataset to reduce the number of models of

SD from 69 models to 12 models, which eliminates 82.6% number

of the DNN model.

5.1.4 RQ4: How efficient is Manas for well-known problems? We

also evaluate Manas with the well-known datasets like FASHION,

MNIST, or CIFAR10 for the image classification task. Table 3 shows

the error rate, depth, number of parameters, and speed of the best

models of Manas and Auto-Keras. As can be observed, Auto-Keras
achieve better error rates on these datasets than Manas; however,
Auto-Keras produces larger models to achieve these error rates

while Manas uses much smaller models to get close to the error

rates of Auto-Keras in CIFAR10 and MNIST problems. Particularly,

Manas’ models are 62.3% shorter and 89.9% than Auto-Keras âĂŹ

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan

models on average, which increases the training speed of Manas’
models by 73.3% compared to Auto-Keras âĂŹ models. Auto-Keras
achieves better error rates thanManas sinceAuto-Keras uses ResNet
and DenseNet as initial models. These neural networks are well-

tuned to achieve outstanding results on these datasets, which once

again shows that using good initial architecture optimizes NAS.

6 LIMITATIONS AND THREATS TO VALIDITY
Limitations: In this work, Manas directly derives the intent from

the image dataset, which is limited to the image classification and

image regression problems. As such,Manas could be extended with
other meta-features that suit other machine learning problems, but

in this work, we have focused on image classification and image

regression. Manas can only work with few kinds of layers since it

only uses the layers that Auto-Keras supports. This limitation can

decrease the performance of Manas because if Manas supported
more layers, it can mine more kinds of models from the software

repositories.

Internal Validity:We have tried our best to obtain the results

of Manas and Auto-Keras on as many datasets as possible. Because

of the time limit, Manas is currently evaluated on 8 datasets. All

the source code, trained models, datasets, and evaluation data are

public for reproduction to mitigate these threats.

External Validity: First of all, Manas only focuses on image

classification/regression problems. We rely on meta-features to find

good starting points for NAS; therefore, one possible threat is that

meta-features (intents) do not work for other types of problems.

However, Auto-Sklearn [16] and Auto-Sklearn 2.0 [15] mitigate this

threat by showing that using meta-features can increase the perfor-

mance of AutoML systems in terms of training speed and accuracy

on structured datasets. Secondly,Manas only focuses on CNN. Thus,
another threat is that the model transformation approach does not

work for other types of models. Nevertheless, Cambronero et al. [9]
propose AMS showing that using unspecified complementary and

functionally related API components can improve the performance

of AutoML systems for classical models such as Linear Regression

or Random Forest. The difference between Manas and AMS is that

AMS applies these transformations to search space while Manas
applies these transformations to default models.

7 RELATEDWORK
Neural architecture search: NAS is a technique for automati-

cally finding appropriate neural architectures which can outper-

form most of the hand-designed neural networks. Specifically, NAS

needs a the training dataset as the input to create a powerful neu-

ral architecture. There are many different approaches for a NAS

system; however, most of them have three main components which

are search space, search strategy, and optimization strategy. The

search space represents the search boundary of a NAS system lim-

iting what kinds of neural network can be searched and optimized.

For instance, Baker et al. [5] use the convolutional architecture

with pooling, linear transformations as a search space. Around

the same time, Zoph et al. [53] use a similar search space; how-

ever, the authors use more skip connection for the search space.

The search strategy is used to search appropriate models in a de-

fined search space. There are many approaches to search models

such as reinforcement learning [5, 8, 51, 53, 54] or evolutionary

algorithms [40, 43, 50]. This optimization strategy supports NAS

to guide the network search process. The optimization strategy

evaluates a searched model with training data without training

these models. Recently, many methods are proposed to optimize

NAS [27, 36, 39]. In our work, Manas mines the neural networks

from repositories to enhance the power of NAS by supporting it to

have a better starting point.

AutoML: AutoML is a process for constructing an appropri-

ate model architecture for a specific problem automatically. Many

features that AutoML can provide to deep learning users, such

as automated data augmentation, automated hyperparameter tun-

ing, or automated model selection. A lot of AutoML systems have

been created like Auto-WEKA [46] on top of WEKA [17, 48], Auto-

Sklearn [16] on top of Scikit-learn, which support deep learning

user to automate tuning hyperparameter and model selection. Some

other AutoML systems can support deep learning users to auto-

mate optimizing the full ML pipeline. For instance, TPOT [37, 38]

uses evolutionary programming to optimize ML software. However,

a main disadvantage of these systems are very slow because of

the high GPU computation requirement. Recently, Auto-Keras is
created to handle this problem, which has implemented network

morphism [11, 47] to reduce the searching time of NAS. Network

morphism is a technique to morph a neural architecture without

changing its functionality. Nevertheless, even though Auto-Keras
apply network morphism technique, it still takes a lot of GPU com-

putation. Our approach uses DNNmodel mining and common layer

patterns to enhance the performance of AutoML system.

Mining software repositories: Cambronero et al. [10] pro-
posed AL, a system that leverages existing machine learning code

from repositories to synthesize final pipelines. AL can generate

ML pipelines for a wide range of problems without any manual

selection. Cambronero et al. [9] also proposed AMS, which auto-

mated generates new search space for AutoML systems by utilizing

source code repositories. The new search space is created based on

an input ML pipeline, which increases the performance of AutoML

systems. However, these only operate classical machine learning

models, whereas Manas works with neural networks.

Meta-features:Auto-Sklearn [16] uses 38meta-features of struc-

tured datasets to find a better starting point. Feurer et al. [15] pro-
poses Auto-Sklearn 2.0, which reduces the number of meta-features

to 3, including the number of data points, the number of features,

and the number of classes. The reasons for the reduction are that

good meta-features are time-consuming and memory-consuming to

generate. We also do not know which meta-features work best for

which problem. Unlike Auto-Sklearn and Auto-Sklearn 2.0, Manas
uses meta-features to find a better starting point for NAS, which

works for neural networks. Moreover, Manas also proposes the

meta-features, which helps NAS find a better starting point for

image datasets.

8 CONCLUSION
We present Manas, a technique for NAS, which uses the mining

technique to assist NAS. The key idea of Manas is to mine mod-

els from repositories to enhance NAS. In particular, we use CNN

models mined from software repositories as the default model of

Manas: Mining Software Repositories to Assist AutoML ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA

NAS. From a large number of models, we use the model matching

approach to find good models for a problem. We also apply some

transformations for those models to enhance their performances.

With better default models,Manas can increase NAS’s performance,

which leads to better CNNmodels as search results. Our experiment

shows that Manas can produce better CNN models in error rate

and MSE, model complexity, and training speed than Auto-Keras.
Future work will involve extending Manas to problems beyond

those tackled in this paper, such as video classification. The model

search can also be further improved to other kinds of layers.

REFERENCES
[1] Anonymized. 2015. Resnet network doesn’t work as expected. https://stackoverflow.

com/questions/49226447/resnet-network-doesnt-work-as-expected

[2] Anonymized. 2021. Keras documentation. https://keras.io/api/

[3] Anonymized. 2021. Manas artifact. https://github.com/tess100766/Manas

[4] Arunava. 2018. Malaria Cell Images Dataset. https://www.kaggle.com/iarunava/

cell-images-for-detecting-malaria

[5] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/

forum?id=S1c2cvqee

[6] Puneet Bansal. 2018. Intel Image Classification. https://www.kaggle.com/

puneet6060/intel-image-classification

[7] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding

the factors that impact the popularity of GitHub repositories. In 2016 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
334–344.

[8] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2018. Efficient

architecture search by network transformation. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[9] José P Cambronero, Jürgen Cito, and Martin C Rinard. 2020. Ams: Generating

automl search spaces from weak specifications. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 763–774.

[10] José P Cambronero and Martin C Rinard. 2019. AL: autogenerating supervised

learning programs. Proceedings of the ACM on Programming Languages 3, OOP-
SLA (2019), 1–28.

[11] Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. 2016. Net2Net: Accelerating

Learning via Knowledge Transfer. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.

05641

[12] Yukang Chen, Tong Yang, Xiangyu Zhang, GAOFENG MENG, Xinyu Xiao,

and Jian Sun. 2019. DetNAS: Backbone Search for Object Detection. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.

Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/

228b25587479f2fc7570428e8bcbabdc-Paper.pdf

[13] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Simple and efficient

architecture search for Convolutional Neural Networks. https://openreview.net/

forum?id=SySaJ0xCZ

[14] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Efficient Multi-

Objective Neural Architecture Search via Lamarckian Evolution. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=

ByME42AqK7

[15] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and

Frank Hutter. 2020. Auto-sklearn 2.0: The next generation. arXiv preprint
arXiv:2007.04074 (2020).

[16] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel

Blum, and Frank Hutter. 2015. Efficient and robust automated machine learning.

In Advances in neural information processing systems. 2962–2970.
[17] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[18] Greg Hamerly and Charles Elkan. 2004. Learning the k in k-means. In Advances
in neural information processing systems. 281–288.

[19] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-

ing Deep Neural Network with Pruning, Trained Quantization and Huffman

Coding. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1510.00149

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700–4708.

[22] Forrest N Iandola, MatthewWMoskewicz, Khalid Ashraf, and Kurt Keutzer. 2016.

Firecaffe: near-linear acceleration of deep neural network training on compute

clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2592–2600.

[23] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[24] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A

Comprehensive Study on Deep Learning Bug Characteristics. In ESEC/FSE’19:
The ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) (ESEC/FSE 2019).

[25] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-

ing Deep Neural Networks: Fix Patterns and Challenges. In ICSE’20: The 42nd
International Conference on Software Engineering (Seoul, South Korea).

[26] Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-Keras: An Efficient Neural

Architecture Search System. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 1946–1956.

[27] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,

and Eric P Xing. 2018. Neural Architecture Search with Bayesian Optimisation

and Optimal Transport. In Advances in Neural Information Processing Systems,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett

(Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/

2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf

[28] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[30] Min Lin, Qiang Chen, and Shuicheng Yan. 2014. Network In Network. In 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun

(Eds.). http://arxiv.org/abs/1312.4400

[31] Kevin Mader. 2018. Skin Cancer MNIST: HAM10000. https://www.kaggle.com/

kmader/skin-cancer-mnist-ham10000

[32] Alexander Mamaev. 2017. Flowers Recognition. https://www.kaggle.com/

alxmamaev/flowers-recognition

[33] Arda Mavi. 2017. Sign Language Digits Dataset. https://www.kaggle.com/

ardamavi/sign-language-digits-dataset

[34] Paul Mooney. 2017. Blood Cell Images. https://www.kaggle.com/

paultimothymooney/blood-cells

[35] Paul Mooney. 2017. Breast Histopathology Images. https://www.kaggle.com/

paultimothymooney/breast-histopathology-images

[36] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong Jin, and Lihi Zel-

nik. 2019. XNAS: Neural Architecture Search with Expert Advice. In Ad-
vances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32.

Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/

00e26af6ac3b1c1c49d7c3d79c60d000-Paper.pdf

[37] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. 2016.

Evaluation of a tree-based pipeline optimization tool for automating data science.

In Proceedings of the Genetic and Evolutionary Computation Conference 2016. ACM,

485–492.

[38] Randal S Olson, Ryan J Urbanowicz, Peter C Andrews, Nicole A Lavender, Jason H

Moore, et al. 2016. Automating biomedical data science through tree-based

pipeline optimization. In European Conference on the Applications of Evolutionary
Computation. Springer, 123–137.

[39] Junran Peng, Ming Sun, ZHAO-XIANG ZHANG, Tieniu Tan, and Junjie Yan. 2019.

Efficient Neural Architecture Transformation Search in Channel-Level for Object

Detection. In Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),

Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/

3aaa3db6a8983226601cac5dde15a26b-Paper.pdf

[40] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-

matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution of

image classifiers. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2902–2911.

[41] Adrian Rosebrock. 2019. Auto-Keras and AutoML: A Getting Started

Guide. https://www.pyimagesearch.com/2019/01/07/auto-keras-and-automl-a-

getting-started-guide

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

https://stackoverflow.com/questions/49226447/resnet-network-doesnt-work-as-expected
https://stackoverflow.com/questions/49226447/resnet-network-doesnt-work-as-expected
https://keras.io/api/
https://github.com/tess100766/Manas
https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria
https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria
https://openreview.net/forum?id=S1c2cvqee
https://openreview.net/forum?id=S1c2cvqee
https://www.kaggle.com/puneet6060/intel-image-classification
https://www.kaggle.com/puneet6060/intel-image-classification
http://arxiv.org/abs/1511.05641
http://arxiv.org/abs/1511.05641
https://proceedings.neurips.cc/paper/2019/file/228b25587479f2fc7570428e8bcbabdc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/228b25587479f2fc7570428e8bcbabdc-Paper.pdf
https://openreview.net/forum?id=SySaJ0xCZ
https://openreview.net/forum?id=SySaJ0xCZ
https://openreview.net/forum?id=ByME42AqK7
https://openreview.net/forum?id=ByME42AqK7
http://arxiv.org/abs/1510.00149
https://proceedings.neurips.cc/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f33ba15effa5c10e873bf3842afb46a6-Paper.pdf
http://arxiv.org/abs/1312.4400
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/alxmamaev/flowers-recognition
https://www.kaggle.com/alxmamaev/flowers-recognition
https://www.kaggle.com/ardamavi/sign-language-digits-dataset
https://www.kaggle.com/ardamavi/sign-language-digits-dataset
https://www.kaggle.com/paultimothymooney/blood-cells
https://www.kaggle.com/paultimothymooney/blood-cells
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://www.kaggle.com/paultimothymooney/breast-histopathology-images
https://proceedings.neurips.cc/paper/2019/file/00e26af6ac3b1c1c49d7c3d79c60d000-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/00e26af6ac3b1c1c49d7c3d79c60d000-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3aaa3db6a8983226601cac5dde15a26b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3aaa3db6a8983226601cac5dde15a26b-Paper.pdf
https://www.pyimagesearch.com/2019/01/07/auto-keras-and-automl-a-getting-started-guide
https://www.pyimagesearch.com/2019/01/07/auto-keras-and-automl-a-getting-started-guide

ICSE 2022, May 21âĂŞ29, 2022, Pittsburgh, PA, USA Giang Nguyen, Johir Islam, Rangeet Pan, and Hridesh Rajan

[43] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. 2017. A genetic

programming approach to designing convolutional neural network architectures.

In Proceedings of the Genetic and Evolutionary Computation Conference. ACM,

497–504.

[44] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International Conference on Machine Learning.
PMLR, 6105–6114.

[45] Tecperson. 2017. Sign Language MNIST. https://www.kaggle.com/datamunge/

sign-language-mnist

[46] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2013.

Auto-WEKA: Combined selection and hyperparameter optimization of classifica-

tion algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 847–855.

[47] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network

morphism. In International Conference on Machine Learning. 564–572.
[48] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann.

[49] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747 (2017).

[50] Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 1379–1388.

[51] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. 2018. Practical

block-wise neural network architecture generation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2423–2432.

[52] Runjie Zhu, Xinhui Tu, and Jimmy Xiangji Huang. 2020. Chapter seven - Deep

learning on information retrieval and its applications. In Deep Learning for
Data Analytics, Himansu Das, Chittaranjan Pradhan, and Nilanjan Dey (Eds.).

Academic Press, 125–153. https://doi.org/10.1016/B978-0-12-819764-6.00008-9

[53] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement

Learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=r1Ue8Hcxg

[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning

transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

https://www.kaggle.com/datamunge/sign-language-mnist
https://www.kaggle.com/datamunge/sign-language-mnist
https://doi.org/10.1016/B978-0-12-819764-6.00008-9
https://openreview.net/forum?id=r1Ue8Hcxg

	Abstract
	1 Introduction
	2 Motivation
	3 Preliminaries and problem statement
	4 Manas
	4.1 Model Mining
	4.2 Intent Derivation
	4.3 Model matching
	4.4 Adaptation System
	4.5 Model Transformation

	5 Evaluation
	5.1 Results

	6 Limitations and Threats To Validity
	7 Related Work
	8 Conclusion
	References

