
Repairing Deep Neural Networks: Fix Patterns and Challenges
Md Johirul Islam
mislam@iastate.edu

Dept. of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA, USA

Rangeet Pan
rangeet@iastate.edu

Dept. of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA, USA

Giang Nguyen
gnguyen@iastate.edu

Dept. of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA, USA

Hridesh Rajan
hridesh@iastate.edu

Dept. of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA, USA

ABSTRACT
Significant interest in applying Deep Neural Network (DNN) has
fueled the need to support engineering of software that uses DNNs.
Repairing software that uses DNNs is one such unmistakable SE
need where automated tools could be beneficial; however, we do
not fully understand challenges to repairing and patterns that are
utilized when manually repairing DNNs. What challenges should
automated repair tools address? What are the repair patterns whose
automation could help developers? Which repair patterns should
be assigned a higher priority for building automated bug repair
tools? This work presents a comprehensive study of bug fix pat-
terns to address these questions. We have studied 415 repairs from
Stack Overflow and 555 repairs from GitHub for five popular deep
learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to
understand challenges in repairs and bug repair patterns. Our key
findings reveal that DNN bug fix patterns are distinctive compared
to traditional bug fix patterns; the most common bug fix patterns
are fixing data dimension and neural network connectivity; DNN
bug fixes have the potential to introduce adversarial vulnerabilities;
DNN bug fixes frequently introduce new bugs; and DNN bug local-
ization, reuse of trained model, and coping with frequent releases
are major challenges faced by developers when fixing bugs. We
also contribute a benchmark of 667 DNN (bug, repair) instances.

CCS CONCEPTS
• Software and its engineering→ Software defect analysis; •
Computing methodologies→ Machine learning.

KEYWORDS
deep neural networks, bugs, bug fix, bug fix patterns

ACM Reference Format:
Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020.
Repairing Deep Neural Networks: Fix Patterns and Challenges. In 42nd
International Conference on Software Engineering (ICSE ’20), May 23–29,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380378

2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3377811.3380378

1 INTRODUCTION
The availability of big data has fueled the emergence of deep neural
networks (DNN). A DNN consists of a set of layers. Each layer con-
tains a set of nodes collecting inputs from the previous layer and
feeding the output to nodes in the next layer via a set of weighted
edges. These weights are adjusted using examples, called training
data, and set to values that minimize the difference between actual
outputs of the DNN and expected outputs measured using an objec-
tive function called loss function. The availability of big data has
made it possible to accurately adjust weights for DNNs containing
many layers. Thus, many software systems are routinely utilizing
DNNs. SE for DNNs has thus become important.

A significant SE problem in the software that uses DNNs is the
presence of bugs. What are the common bugs in such software?
How do they differ? Answering these questions has the potential
to fuel SE research on bug detection and repair for DNNs. Fortu-
nately, recent work has shed some light on this issue. Zhang et
al. [41] have identified bug types, root causes, and their effects in
Tensorflow library for DNN. Islam et al. [11] have studied an even
larger set of libraries including Caffe, Keras, Tensorflow, Theano, and
Torch to identify bug characteristics. While prior work presents an
initial study on repair patterns for Tensorflow, these works have not
focused on the characteristics of repairs. Since repairing software
that uses DNNs is an unmistakable SE need where automated tools
could be very helpful, fully understanding the challenges to repair-
ing and patterns that are utilized when manually repairing bugs in
DNNs is critical. What challenges should automated repair tools
address? What are the repair patterns whose automation could help
developers? Which repair patterns should be prioritized?

Motivated by these questions, we conduct a comprehensive study
of bug repair patterns for five DNN libraries Caffe, Keras, Tensorflow,
Theano, and Torch. We leverage the dataset of DNN bugs published
by Islam et al. [11] that consists of 415 bugs from Stack Overflow and
555 bugs from GitHub. We then collect the code snippets used to fix
these bugs from both Stack Overflow and GitHub. We then manually
study these repairs and label them according to a classification
scheme developed using the open coding approach. To study the
fix in Stack Overflow we study the accepted answers and answers
with score >= 5 from Stack Overflow post that fixes the bug in the
original post. To study the bug fix patterns in GitHub, we take the
bug-fix commits in the dataset and study the code that is changed

https://doi.org/10.1145/3377811.3380378
https://doi.org/10.1145/3377811.3380378
https://doi.org/10.1145/3377811.3380378

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan

to fix the bug. If we do not find any fixes that match our selection
criteria in Stack Overflow and relevant fix in GitHub we discard
those bugs. In total, we have studied 320 bug fix codes in Stack
Overflow and 347 bug fix codes in GitHub. We have also analyzed
these bug fixes to answer the following research questions:
RQ1 (Common bug fix patterns)What are the most common

bug fix patterns?
RQ2 (Fix pattern across bug types) Are the bug fix patterns

different for different bug types?
RQ3 (Fix pattern across libraries) Are the bug fix pattern dif-

ferent for different libraries?
RQ4 (Risk in fix) Does fixing a DNN bug introduces a new bug?
RQ5 (Challenges) What are the challenges in fixing DNN bugs?

Our key findings are as follows: DNN bug fix patterns are distinctive
compared to traditional bug fix patterns; the most common bug fix
patterns are fixing data dimension and network connectivity; DNN
bug fixes have the potential to introduce adversarial vulnerabili-
ties [10]; DNN bug fixes frequently introduce new bugs; and DNN
bug localization, reuse of trained model, and coping with frequent
releases are major challenges faced by developers when fixing bugs.
We also contribute a benchmark of 667 DNN (bug, repair) instances.
This benchmark is also publicly accessible [13].

2 METHODOLOGY
2.1 Dataset
In our study, we build on the bug dataset prepared by Islam et
al. [11] to collect and to prepare the dataset of bug fixes. The bug
dataset contains 415 bugs from Stack Overflow and 555 bugs from
GitHub for 5 different deep learning libraries as shown in Table 1.

Table 1: Summary of the bug repair dataset.

Library Stack Overflow GitHub
Bugs [11] Fixes (current) Bugs [11] Fixes (current)

Caffe 35 27 26 17
Keras 162 143 348 167
Tensorflow 166 118 100 90
Theano 27 15 35 32
Torch 25 17 46 41
Total 415 320 555 347

Collecting Stack Overflow bug fixes: To collect the bug fixes
in Stack Overflow bug dataset, we study all the answers correspond-
ing to the post ids in Stack Overflow bug dataset. If a post has
accepted an answer with code, then we consider that code snippet
as a fix. If the accepted answer doesn’t have code but describes
what needs to be fixed in the original bug we consider those as fix
as well. If a bug post does not have an accepted answer but has an
answer with >= 5 scores we consider them as fixes also as score 5
is considered as an acceptable quality metric in prior works [11].
Following this methodology, we were able to find 320 fixes for 320
bug related posts in the Stack Overflow dataset.

Collecting GitHub bug fixes: To collect GitHub bug fixes,
we went to the link of the buggy code snippets in the dataset. If
the code snippet was fixed in a later revision, then we take those
fixes. A single line may contain multiple bugs [11]. A single bug fix

Table 2: Summary of the bug fix patterns.

Bug
Fix Pattern

Definition

Loss function add, remove or replace the loss function.
Network
connection

change node connectivity in the DNN, e.g. change
weights, remove edges, add backward propagation.

Add layer add another layer to the DNN model
Layer
dimension

change a layer’s input and output size, e.g. to make
it compatible with adjacent layers’ dimension

Data
dimension

align the input data’s dimension with the layer
dimension

Accuracy
metric

replace the accuracy metric being used to measure
the correctness of a model, often to match better

Data type change the type of data given as input to the DNN
Activation change the activation function used in the DNN
Iterations change the number of times the training would be

done, e.g. modify batch size, epoch or add a loop
Versioning adapt the code to the new version of the library
API contract fix API compositions so that the output of an API

meets the preconditions of another API
Data
wrangling

fix the form of the data for downstream operations
without modifying its intent

Monitor add diagnostics code to monitor training
Optimizer change the optimization function used by the DNN
Change
neural
architecture

overhaul the design of the DNN’s architecture in-
cluding a new set of layers and hyperparameters,
generally because changes above can’t fix the bug

commit might fix multiple bugs. We consider them different fixes.
For example, in the same fix API name is updated from deprecated
to a new version and the dimension is also fixed. We consider
them as two different fixes. Some of the bugs are not yet fixed in
the repositories and some repositories have been made private or
deleted since the previous study. We omitted those bugs. Following
this methodology, we collected 347 bug fixes from GitHub.

2.2 Bug Fix Pattern Classification
Next, we created a classification scheme to manually label the
bug fix dataset. We started with the classification scheme used by
Pan, Kim, and Whitehead [23] and found that their classification
scheme has 28 non-ML bug fix categories and among them only 4
fix categories are applicable for the DNN-related fixes. Then, we
used the open coding approach to refine it to come with a pattern of
15 different kinds of DNN-specific bug fix patterns. We conducted a
pilot study where two Ph.D. students individually studied the fixes
to come up with a possible classification. Each student proposed a
set of classes that were then reconciled during an in-person meeting
where all the authors were present. In the in-person meeting, the
authors validated the classification schemes from two individual
raters and updated the classification scheme based on the outcome
of the reconciliation effort under the supervision of the moderator.
Our pilot study revealed that there are a number of unique bug
fix patterns in our DNN setting. Therefore, the classification from
prior work had to be significantly modified. The final classification
is shown in Table 2 and discussed below.

Repairing Deep Neural Networks: Fix Patterns and Challenges ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Finding 1 ⇒ We found that DNN bug fix patterns are
very different from traditional bug fix patterns such as [23].

2.2.1 Loss Function. This group of fixes is based on the addition, re-
moval, or update of the loss function during training. The loss func-
tion is a key parameter that helps the training process to identify the
deviation from the learned and actual examples. Different kind of
problems demand a different loss function, e.g., cross-entropy loss
is widely used in the classification problems whereas mean square
error loss (MSE) is mostly used for regression-based problems. Some
problems ask for a custom loss function for better training result
and we group this kind of fixes into this class.

2.2.2 Network Connection. This group of fixes changes the con-
nection between nodes in the DNN. A DNN is a graph, where edges
are the weights and bias and nodes are the elements of each layer.
For example, in a dense layer, the weight edges are fully connected
with the next layer and the dimension of the layer determines the
number of nodes to be available in that layer. Those bug fixes that
reconfigure these connections for better results are classified in this
category. The changes include change of weight, removing edges
by pruning the network, adding backward propagation, etc.

2.2.3 Add Layer. In any classification based problem, there will
be at least two layers in the model, the input layer, and the output
layer. To learn the features of the input, a DNN frequently needs
more intermediate layers (called hidden). This group of fixes adds
more layers to the DNN to improve performance. Added layers
can be dense, where two consecutive layers are fully connected,
convolution layer, where convolution function has been applied to
the input, dropout layer for reducing the overfitting, etc.

2.2.4 Layer Dimension. These fixes change the dimensions of the
layers to make them compatible with adjacent layers and input.

2.2.5 Data Dimension. Data dimension related fix is similar to
layer dimension, but it is related to the input data rather than to the
DNN layers. The dimension of the data needs to be aligned with the
DNN. This type of fix is mostly needed when the input dimensions
of the DNN and the data dimension do not match.

2.2.6 Accuracy Metric. To measure the correctness of a DNN, the
accuracy metric is one of the key parameters to be configured.
The problem type has a huge influence on the type of accuracy
metric to be used, e.g., classification problems are judged using
classification accuracy, F1 score or confusion matrix, but these
metrics are unsuitable for assessing a regression-basedmodel where
logarithmic loss is more suitable.

2.2.7 Data Type. This group of fixes changes the data type of
inputs to match the DNN’s expectation.

2.2.8 Activation. The activation function for a node in a layer of
DNN maps inputs to the output. This group of fixes changes the
activation function used in a layer to better match the problem.

2.2.9 Iterations. This group of fixes adjusts the number of times
the training process will be run.

This is generally done to improve accuracy or to reduce over-
fitting. These fixes include changing batch size or epoch. In some
cases, developers add a loop around the entire training process.

2.2.10 Versioning. DNN libraries are being rapidly developed, and
a number of releases are not backward compatible that breaks code.
This group of fixes adapts a code to work with the new version of
the DNN library.

2.2.11 API Contract. When the output of a DNN API is fed to
the input of another DNN API operation, these two operations
have to be compatible. This group of fixes adds adapters to fix
incompatibilities between composed operations.

2.2.12 Data Wrangling. Data wrangling refers to changing the
form of data without changing its intent. It is generally done to fix
the data for the downstream operations. This group of fixes adds
data wrangling to fix a DNN, e.g. by data shifting, shuffle, etc.

2.2.13 Monitor. The fixes in this category add code for diagnostics
during the training process, typically to print training statistics.
This group of fixes do not repair the flaw in the code, but they help
to localize the bug.

2.2.14 Optimizer. This group of fixes modifies the optimization
algorithms used by the DNN model. The optimization algorithm,
which is dependent on the problem, determines the iterative process
followed to improve the accuracy of the DNN model.

2.2.15 Change Neural Architecture. This group of fixes essentially
re-do the DNN model because the initial model was unsuitable.

2.3 Labeling
For labeling, we used the classification scheme shown in Table 2.
Two Ph.D. students with expertise in these DNN libraries were
requested to label the fixes according to the classification scheme.
We held multiple training sessions to train the raters with the
classification scheme.We used the Kappa coefficient [36] tomeasure
the agreement between the raters after the labeling of every 100 bug
fix patterns. We found that the Kappa coefficient was 82% for the
first 100 labelings, 85% for the second 100 labeling. This high value of
the Cohen’s Kappa coefficient indicates perfect agreement between
the raters. In the presence of a moderator, the repair patterns for
which there was a label conflict between the raters were reconciled.
We adapted this methodology from [11]. Following this strategy,
we labeled all the fixes and reconciled the labeling conflicts through
moderated discussions. The Kappa score throughout the process
was >85% indicating a clear understanding and perfect agreement.

3 BUG FIX PATTERNS
In this section, we explore the answer to RQ1 to understand what
are the most common bug fix patterns in DNN. To answer RQ1, we
take the labeled dataset and statistical distribution of the bug fix
patterns across different categories. We also analyze the source code
and diffs for those fixes to understand the challenges underlying
those patterns. Fig. 1 shows the distribution of different bug fix
patterns in Stack Overflow and GitHub.

3.1 Data Dimension

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan

Data dimension

Network
connection

Data type Layer dimension

Loss function

Versioning

Iterations

Add layer

Change Neural Arch

API Contract

18.8%

17.8%

14.1% 9.7%

 6.2%

 6.2%

 5.3%

 4.7%

 4.7%

 3.1%

(a) Distribution of Bug Fix Patterns in Stack Overflow (Labels less
than 3.1% are hidden)

Versioning

Network
connection

Data type

Data dimension

Data Wrangling

Add layer

Change Neural Arch

Iterations

Loss function
Activation

17.6%

Layer
dimension

14.1%
13.0%

 7.5%

 6.1%

 5.8%

 5.2%

 4.3%

 3.7%
 3.2%

15.6%

(b) Distribution of Bug Fix Patterns in GitHub (Labels less than
3.2% are hidden)

Figure 1: Bug fix pattern distribution

Table 3: Bug Fixes in Stack Overflow (SO) and GitHub (GH)

Caffe Keras Tensorflow Theano Torch
SO GH SO GH SO GH SO GH SO GH

Loss function 11.1% 0.0% 6.3% 1.2% 4.2% 7.8% 13.3% 6.25% 5.9% 4.9%
Network
connection

14.8% 11.8% 18.9% 10.2% 22% 13.3% 0.0% 21.9% 0.0% 26.8%

Add layer 11.1% 11.8% 5.6% 9.6% 2.5% 1.1% 0.0% 0.0% 5.9% 2.44%
Layer
dimension

3.7% 0.0% 7.0% 26.3% 13.6% 3.3% 13.3% 9.4% 11.8% 9.8%

Data dimension 22.2% 0.0% 22.4% 9.6% 11.9% 2.2% 26.7% 15.6% 23.5% 7.3%
Accuracy
metric

0.0% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Data type 3.7% 29.4% 7.7% 13.8% 19.5% 10.0% 26.7% 6.2% 29.4% 14.6%
Activation 7.4% 0.0% 3.5% 3.6% 0.8% 0.0% 6.7% 12.5% 0.0% 2.4%
Iterations 7.4% 5.9% 4.95% 3.6% 5.9% 4.4% 0.0% 9.4% 5.9% 2.4%
Versioning 0.0% 0.0% 6.3% 9.0% 8.5% 51.1% 6.7% 0.0% 5.9% 0.0%
API contract 3.7% 0.0% 2.1% 1.2% 5.1% 1.1% 0.0% 3.1% 0.0% 0.0%
Data wrangling 0.0% 35.3% 4.2% 2.4% 1.7% 1.1% 0.0% 6.2% 0.0% 19.5%
Monitor 11.1% 5.9% 2.8% 1.2% 1.7% 4.4% 0.0% 0.0% 0.0% 4.9%
Optimizer 0.0% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4%
Change neural
arch.

3.7% 0.0% 5.6% 8.4% 2.5% 0.0% 6.7% 9.4% 11.8% 2.4%

Finding 2⇒ Fixing data dimension is the most common
bug fix pattern (18.8%) in Stack Overflow that can affect the
robustness of DNN model.

A large number of bugs (59 out of 415) in Stack Overflow are fixed
by changing the data dimension. This suggests that most DNN
models can easily be broken if the data processing pipeline changes
or a different format of data is fed to the DNN. For example, in the
following code snippet, we see how the bug discussed in a Stack
Overflow post1 is fixed by adding a dimension to the input images.

model = Sequential ()
...
model.compile ()
model.load_weights('./ ddx_weights.h5')
img = cv2.imread('car.jpeg', -1) # this is is a 32x32

RGB image
img = np.array(img)
+ img = img.reshape ((1, 3, 32, 32))
y_pred = model.predict_classes(img , 1)
print(y_pred)

In the listing, the developer wants to read a CIFAR-10 image whose
dimension is (32,32,3) but the expected image size was (1,3,32,32).
Data dimension change can be categorized into the following kinds.

1https://stackoverflow.com/questions/37666887

Resize. Resizing the input data is common, e.g. resizing an input
image of shape (190,150) to (150, 150). A risk in this kind of fix is
the loss of information from the input due to resizing. Surprisingly,
this risk is never stated in the fixes presented on the bug fixes we
have studied. 11 out of the 59 data dimension fixes involve resizing
the data. Resizing can be done in two ways: downscale or upscale.
The downscale is the method where the risk due to data loss is
critical from our observation. Upsampling does not have this risk
of data loss, and recent results suggest that adding noise to the data
can potentially increase the robustness of a model [38].

Finding 3 ⇒ 63% of the resize related posts in Stack
Overflow utilize the downscaling that can decrease the ro-
bustness of a DNN.

7 out of the 11 data resizing post in Stack Overflow involves
downscaling. Downscaling decreases the robustness and [37] has
shown that a simple resize downscaling operation can have a neg-
ative impact on the robustness. During downscaling, significant
information loss occurs, and that eventually decreases the features
learned by the DNN. A DNN trained with downscaled images will
be easier to attack compared to the one trained with original images.
Our findings suggest that it would be useful to verify the effect of
the resizing fix on the vulnerability of the DNN.

Reshape. Reshaping the input occurs when the input vector
shape is changed. For example, a vector of size (32, 32) is changed
to (1,32,32). In this case, no data loss happens and the tensor order
is changed from 2D to 3D. An example of this fix is presented in
the Stack Overflow post #415637202. The reshaping does not lead
to data loss. 38 out of 59 data dimension fixes involve reshaping
the dimension of the input. Reshape may also involve changing
the dimension through one hot encoding like the following code
snippet to fix Stack Overflow post #493929723:

train_labels = to_categorical(train_labels)

Reorder. Tomake this kind of dimension change, the input data is
ordered mostly to change the channel position. In image classifica-
tion problems, channel refers to the color channels of three primary
2https://stackoverflow.com/questions/41563720
3https://stackoverflow.com/questions/49392972

Repairing Deep Neural Networks: Fix Patterns and Challenges ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

colors. (height, width, channel) represents the typical structure of
a 3D image. For example, the input of shape (32,32,3) is changed
to (3,32,32) to fix some bugs. Here the channel number is moved
to the first argument from the third argument. It can also involve
changing the image dimension order format like from RGB to BGR as
in the following snippet for fixing Stack Overflow post # 338285824:

img = caffe.io.load_image("ak.png")
+ img = img [: ,: ,:: -1]*255.0 # convert RGB ->BGR

Finding 4 ⇒ Reorder and reshaping (79.7% of the data
dimension fixes in Stack Overflow) need an understanding of
the specifications of the DNN layers as well as the libraries.

9 out of 59 data dimension fixes involve reordering the dimension of
inputs. This is done because some of the libraries require dimension
in a specific order. These fixes are seen in the bugs where the
developer works with multiple libraries having different channel
position requirements in the image data, such as Stack Overflow post
#456452765. DNN training can be assumed as a gradient descent
based optimization problem, which can be computed when all the
functions utilized in the model creation are differentiable. Data
should be changed in such a fashion that does not affect the gradient
descent computation to avoid side effects. In reshape and reorder,
the only changes occur is the addition of dimension and reordering
of the values that do not impact the gradient descent computation.
So these changes theoretically have no side effects in the DNN
models’ behavior.

3.2 Layer Dimension

Finding 5⇒ In GitHub layer dimensions fixes are used
more frequently (15.6%) to fix the crash related bugs (75.9%).

In GitHub, data dimension related fixes involve 7.5% of all the fixes.
On the other hand, fixing the layer dimensions to make the DNN
compatible with input data is a more common practice in GitHub.
Dimension related fixes can be done by analyzing the input and
output of the layers by converting a neural network into a data flow
graph. This kind of fixes includes dimension reduction or addition
based on the adjacent layers’ structure. However, these fixes can
be either done by changing the data dimension to match the data
with the layer dimension or vice-versa. The choice of the fix has
an impact on the performance of the model. This phenomenon
is known as the curse of dimensionality [9]. The curse of dimen-
sionality states that increasing or decreasing the dimension can
lead to overfitting/underfitting problems. PCA [17], T-SNE [21] are
some examples of the dimension reduction techniques that reduce
the dimension of the features but these techniques suffer from the
curse of dimensionality. To build an automated approach to avoid
this side effect, a tool needs to optimize the performance of the
model by either changing the data dimension or the layer dimen-
sion. AutoML [16] has done some preliminary work in this field
that restructures the model by changing the layer dimension and

4https://stackoverflow.com/questions/33828582
5https://stackoverflow.com/questions/45645276/

adding layers to increase the performance. To the best of our knowl-
edge, no tool currently exists that analyzes both data dimension
and layer dimension changes to pick the optimum operations for a
DNN model.

3.3 Version-related Fixes

Finding 6⇒ Versioning-related bug fixes are the highest
(17.6%) in GitHub indicating the high maintenance cost in
DNN software due to library versioning.

We have found that inGitHub, long-running projects have to fix a
lot of bugs due to frequently changing versions of the DNN libraries.
A number of these fixes require changing the API signatures to
match with changes in the libraries. We have also observed a more
complicated fix pattern for projects that use Tensorflow library
as discussed in §7.3. Tensorflow often makes invasive, backward-
incompatible changes adding difficulties to fix the introduced bugs.
This indicates that the maintenance cost in DNN software is high.

3.4 Network Connection

Finding 7 ⇒ Network Connection is a prevalent fix
in both Stack Overflow (17.8%) and GitHub (14.1%) to fix
crash (57.14%), incorrect functionality (16.19%), and bad
performance (12.38%) effects.

The tensor and data flow through the network in a DNN during
forward and backward propagation or prediction. For a smooth
flow of data, the end-to-end connectivity in the network is essential.
57 out of 415 fixes require fixing or adjusting the connectivity in
the network. We have found three kinds of network connection
repairs.

Merge layers. A number of repair cases fixed bugs by merging
two parallel layers into a single layer. For example, the following
code snippet shows a fix,

+ main_branch . add (Merge ([branch_1 , branch_2] , mode = ' dot '))

where two different branches are connected through dot product.
The network was disconnected in the bug leading to a crash.

Add feedback loops and input layers. In some bug fixes, a feedback
loop is added in the DNN model. In some of the fixes, the model is
connected to the input via an input layer like the following:

+ l s tm_ou t = LSTM(1 2 8 , i npu t_ shape =(maxlen , l en (cha r s))) (n e t _ i npu t)

Transfer learning. Transfer learning is a popular technique that
takes an already-trained network with a different dataset. Then, the
new model modifies the last layers to support the goal of the new
problem and then performs some retraining without modifying
the weights and biases of the layers from the previous network.
We have observed several network connection fixes needed when
the developer is attempting transfer learning. Generally these fixes
change the last few layers of the DNN. One such kind of fix is
shown below from Stack Overflow post #572481216:

6https://stackoverflow.com/questions/57248121/

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan

+ model_final.fit_generator(train_generator.flow(np.
array(X_train), np.array(y_train), batch_size =32),

+ validation_data=test_generator.flow(np.array(X_test),
np.array(y_test), batch_size =32),

+ steps_per_epoch=len(X_train)/32,
+ validation_steps=len(X_test)/32,
+ epochs =50)

In this example, the developer wants to train the imagenet with a
pretrained network VGG19 that has been used for face recognization.
In this bug, the developer does not provide the correct data input
size that leads to an error and fix was to include a data generator
that loads the training data as expected by the VGG19 model.

3.5 Add Layer

Finding 8 ⇒ 30% of the add layers related fixes in Stack
Overflow includes adding Dropout layer that can increase the
training time ∼2-3x.

In a DNN model, adding layers helps to increase the performance
and learn the features more accurately. We have found that a vast
majority (∼30%) of these bug fix patterns includes the addition of
the dropout layer. Dropout layer helps in removing the effect of the
overfitting [31] that can also be achieved by using backpropagation.
According to [31], backpropagation works better for the training
dataset but does not work for new data. Dropout layer randomizes
the structure of the architecture that helps the neural network to
learn more features with every iteration. Dropout layer removes
the connection between layers randomly stopping the data flow
through those nodes and edges. Randomly reducing connections
can have a negative impact on training time. With Dropout layers,
the convergence of the training takes ∼2-3x more time [31].

3.6 Loss Function

Finding 9⇒ Among DNN hyperparameters, change of
loss function happens to fix 6.2% (highest) of the bugs in
Stack Overflow and 3.7% in GitHub that helps to enhance
prediction accuracy and increase the robustness against
adversarial attacks.

Loss function plays a crucial role in the convergence of the training
process and in getting better accuracy during prediction. A model
with wrong loss function does not learn the decision boundary of
the features well and there can be overlap between the decision
boundaries [14, 24] in the high dimensional feature space making
the model vulnerable to adversarial attacks [29]. By a careful and
deeper analysis of these loss function related fixes, we have found
that they can be categorized into the following kinds:

Add new loss function. The fixes in this category involve adding
a custom or built-in loss function. 10 out of 23 fixes fall into this
category. In some of the fixes, it is needed to modify the network
connectivity for the new loss function to work. For example, in
the following fix of the bug in Stack Overflow post #512570377, the
last layer is kept outside the gradient descent computation during
training by adding trainable = False.

7https://stackoverflow.com/questions/51257037/

output = Dense(1, trainable = False)(hidden_a)

The custom loss function was designed by the developer in such
a way that all but the output layer participate to lead to the conver-
gence of the model. However, the convergence was not successful,
as the output layer was actively participating in the forward and
backward propagation that caused an abrupt change in the value of
the loss function. Fixing these bugs require live trainable parameter
analysis. This approach will help to monitor the active trainable
parameters during the training to localize and fix these bugs. Cur-
rently, the developer needs to rely on theoretical knowledge to fix
these bugs due to the lack of such kind of analysis frameworks.

Change loss function. 9 instances of bug fixes fall into the cat-
egory of changing the loss function. Our analysis of these fixes
reveals that the choice of these loss functions is sometimes confus-
ing. Developers need to understand the data properties and the goal
of the DNN task to come up with a proper loss function. For exam-
ple, in constructing DNN models for classification problems, the
developers are confused between the choice of binary_crossentropy

and categorical_crossentropy as discussed in the fix of Stack Overflow
post #457994748 and Stack Overflow post #420812579. The first loss
function works better for the binary classification problems; how-
ever, when the classification problem has more than two categories,
one should use categorical_crossentropy as a loss function to avoid
poor performance. Sometimes, the fix involves adding some filter to
the mathematical operation used in the loss function. For example,
we see the following bug fix of Stack Overflow post #3422331510

cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.
clip_by_value(y_conv , 1e-10 ,1.0)))

caused by the following line:

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

In the above code snippet, the problem is that the user will get NaN
values if y_conv becomes negative as the log of negative numbers
is undefined. The fix adds a clipper function to filter out negative
values to the log operation. In another fix of the same kind of bug
in Stack Overflow post #4252140011, softmax is used as the filtering
operation that stops propagating values <= 0 to the log operation.

softmax = tf.nn.softmax(logits)
xent = -tf.reduce_sum(labels * tf.log(softmax), 1)

3.7 Commonality of Fix Patterns in Stack
Overflow and GitHub

Finding 10 ⇒ The p-value is 0.83 between the bug fix
pattern distributions of Stack Overflow and GitHub indicat-
ing commonality of bug fix patterns in Stack Overflow and
GitHub.

8https://stackoverflow.com/questions/45799474/
9https://stackoverflow.com/questions/42081257
10https://stackoverflow.com/questions/34223315/
11https://stackoverflow.com/questions/42521400/

Repairing Deep Neural Networks: Fix Patterns and Challenges ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

API Bug

Data Bug

NMSB.Initia
lization Bug

NMSB.Logic Bugs

NMSB.Processing Bug

SB.Control and Sequence Bug

SB.Data flo
w Bug

SB.Initia
lization Bug

SB.Logic Bugs

SB.Processing Bug

Bug Type

0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 o

f F
ix

 P
at

te
rn

s

Accuracy Metric
Add Layer
API Contract
Versioning

Activation
Data Type
Iterations
Change Neural Arch

Optimizer
Data Dimension
Data Wrangling
Neural Connection

Layer Dimension
Loss Function
Monitor

Figure 2: Distribution of Bug Fix Patterns for Different Bug
Types Stack Overflow

API Bug

Coding Bug

Data Bug

NMSB.Control and Sequence Bug

NMSB.Logic Bugs

NMSB.Processing Bug

SB.Control and Sequence Bug

SB.Data flo
w Bug

SB.Initia
lization Bug

SB.Logic Bugs

SB.Processing Bug

Bug Type

0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 o

f F
ix

 P
at

te
rn

s

Accuracy Metric
Add Layer
API Contract
Versioning

Activation
Data Type
Iterations
Change Neural Arch

Optimizer
Data Dimension
Data Wrangling
Neural Connection

Layer Dimension
Loss Function
Monitor

Figure 3: Distribution of Bug Fix Patterns for Different Bug
Types GitHub

We have conducted a t-test at 95% significance level to understand
the distribution of bug fix patterns in Stack Overflow and GitHub.
The null hypothesis is H0 : the distributions are the same. The null
hypothesis is to be rejected if the p-value is less than 5% or 0.05. Our
computation shows that the p-value is very high (0.83). So, H0 can
not be rejected concluding that the distributions are similar. We also
notice that though in some bug fix categories e.g., data dimension,
layer dimension, and versioning, there is a significant difference
among the Stack Overflow and GitHub distributions, the other cate-
gories have a similar share of occurrences in Stack Overflow and
GitHub. This indicates that the bug fix patterns have commonality
across Stack Overflow and GitHub.

Figure 4: Fix of Stack Overflow #49742061

4 FIX PATTERNS ACROSS BUG TYPES
To answer RQ2, we analyze the correlation between the bug types
in the bug dataset presented by [11] and the bug fix patterns studied
by this paper using the distribution of the bugs and their corre-
sponding fixes. The distribution of bug fix patterns across different
bug types in Stack Overflow and GitHub are shown in the Fig. 2
and 3, respectively. The horizontal and the vertical axes describe
the different bug types from [11] and the percentage of different
fix patterns needed to fix those bugs, respectively.

Finding 11⇒ For API bugs, fixing of the specifications
between APIs is dominant (42% in Stack Overflow and 48%
in GitHub) .

Fixing API specifications involves changing API contracts due to
API versioning and supporting inter-library operations within a
model. Fixing API specifications is needed due to the following
reasons:

Change of specifications due to version upgrade. 20 fixes in Stack
Overflow involve changing specifications which are required due
to the change of the library version. The changes during the up-
grade of the library version involves the following changes: change
fully qualified method names, change API signature, and change
probabilistic behavior of the APIs. Though fixes due to the change
of fully qualified method names and change of API signature are
well-studied problems [3, 7, 15], the fixes due to the change of
probabilistic behavior of the APIs are hard and different from tra-
ditional API changes. Localizing of these bugs are difficult due to
the lack of sophisticated probabilistic analysis tools for DNN. For
example, the bug discussed in Stack Overflow #4974206112 says
that the results are different in two versions of Tensorflow. The fix
of this bug involves adding a dead code line that tweaks around
the underlying probabilistic behavior of the APIs by overriding
the modified random seed. The fix of Stack Overflow #49742061 is
shown in Fig. 4. The fix adds the line Xf = tf.contrib.layers.flatten(

X) before the line R = tf.random_uniform(shape = ()). This addition
overrides the random seed in the new version with the one in the
previous version.

Our observation gives the intuition that the fix of versioning
bugs due to the change of the probabilistic distribution in different
version needs new DNN specific probabilistic analysis techniques.

12https://stackoverflow.com/questions/49742061/

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan

Figure 5: Fix of Stack Overflow #54497130

Change specification to support interlibrary. In these fixes, the
DNN program uses more than one library. These bugs arise due
to the similar assumption of the behavior and specifications for
different APIs in different libraries. Fixing of these bugs requires the
expertise in both the libraries e.g., the bug discussed in Stack Over-
flow #5449713013 that is shown in Fig. 5. The discussion points to an
issue in the official Tensorflow repository. The solution suggested to
avoid using APIs from other libraries to pre-process images. How-
ever, in similar scenarios, the use of specialized image processing
libraries is recommended to get better performance.

From Fig. 2 and 3, we have found that fixing the data dimension
is the most prominent pattern (41.77%) for fixing data bugs in Stack
Overflow. For fixing data bugs in GitHub, the most prominent fix
patterns are the change of data type (38.64%) and data dimension
(29.55%). This suggests that for fixing data bugs, the major changes
are related to data dimensions. This happens because the dimension
of the data is very important for the correct functionality of the
DNN model.

For fixing logic bugs the most common practice is to modify the
network connectivity (∼27.03% in Stack Overflow and ∼33.33% in
GitHub). A detailed discussion on network connectivity is presented
in §3.4. Whereas, a significant amount of data flow bugs can be fixed
by changing the layer dimension (∼36.36% in Stack Overflow and
∼38.98% in GitHub). A detailed discussion on fixing layer dimension
is presented in §3.2.

These observations give us the intuition that for fixing different
types of bugs, unique technical approaches might be needed.

5 FIX PATTERNS ACROSS LIBRARIES
To answer RQ3, we have studied the distribution of fix patterns
across the 5 libraries. Then, we have conducted statistical pairwise
t-test at 95% significance level between the libraries. Table 4 shows
the p-values found from this test across the libraries.
Table 4: P-value of the distribution of Bugs btween the li-
braries

Library Caffe Keras Tensorflow Theano Torch
Caffe 1.0 0.0045 0.00735 0.19 0.30
Keras 0.0045 1.0 0.84 0.0021 0.0024
Tensorflow 0.0073 0.84 1.0 0.0039 0.0044
Theano 0.19 0.0021 0.0039 1.0 0.80
Torch 0.30 0.0024 0.0044 0.80 1.0

We assume the null hypothesis is H0: the distribution of the fix
patterns across two libraries are same. If the p-value is less than 5%
or 0.05, then we reject H0. The p-value for the library pairs Caffe-
Theano (.19),Caffe-Torch (.30),Keras-Tensorflow (0.84), Theano-Torch
(0.8) are much greater than 5%. So in these, cases we can not reject
13https://stackoverflow.com/questions/54497130/

the null hypothesis. So, the libraries Caffe, Theano, and Torch show
similar kind of bug fix patterns. The pair Keras-Tensorflow form a
very strong related groupwith a p-value close to 100%. This suggests
that similar kinds of automatic bug fix tools may be reused for Caffe,
Theano, and Torch after converting into a common intermediate
representation. Similarly, Keras and Tensorflow bugs can be fixed
using similar technical approaches.

6 INTRODUCTION OF BUGS THROUGH
FIXES

Finding 12⇒ 29% of the bug fixes introduce new bugs in
the code adding technical debt [30] and maintenance costs.

To answer RQ4, we have analyzed 100 randomly chosen fixes from
Stack Overflow to understand whether fixing a bug can introduce
a new bug. We have read the replies to the answers selected by
filtering criteria discussed in §2. Then, we have identified whether
the fix introduced new bugs by analyzing all replies to the answer
fixing the original bug and classify them into bug type, root cause,
and impact using the classification scheme proposed by the prior
work [11]. We have found that 29% fixes in the randomly sampled
dataset introduce at least one new bug in the code. Here, a new bug
indicates that the original bug was fixed by the solution posted;
however, the solution introduces a new bug that is different from
the original bug type. Furthermore, we have compared the bug
type, root cause, and the effect of the bugs of Stack Overflow posts
with the newly introduced bugs and have found that only 6.8%,
13.8%, and 24.1% of the bugs match the classification of the parent
bug type, root cause, and impact, respectively. This result shows
that a majority of the bugs introduced are of new types and their
behavior is entirely different than that of the parent bugs’. In the
Table 5, we have shown the distribution of the new bugs across
the different libraries and how these new bugs are classified into
different categories of bug type, root cause, and impact. We have
also found that the Crash (55.8%) is the most common impact of
these new bugs and a majority of these bugs are of API Bug (37.9%),
and the most common root cause of these bugs are API Change
(34.5%) that includes the change of either the signature of the API
or the fully qualified name of the API. 44.8% and 34.5% of the newly
introduced bugs are from Keras and Tensorflow. Caffe, Theano, and
Torch related bug fixes introduce 10.34%, 3.45%, and 6.90% new bugs,
respectively.

Finding 13⇒ 37.9% of the new bugs are from API Bug,
34.5% of them are due to API Change, and 55.2% of them
end in a crash.

In Fig. 6, the relation between the parent bugs’ root cause, type and
effect with the newly introduced bugs’ distribution has been visual-
ized. In this visualization, the old represents the parent bug and the
relation has been drawn by a connection between two bug distribu-
tions. The width of the connection determines the strength of the
relation. The perimeter covered by each bug type/root cause/impact
depicts its overall strength. We have found that a large section of
bug fixes introduces API bug and the major reason for that is the

Repairing Deep Neural Networks: Fix Patterns and Challenges ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

O
ld

 D
at

a

Old NMSB.L

Old SB.CSB

Old SB.L

O
ld SB.P

AP
I

Data SB.DF

SB
.I

SB.Logic

SB.P

(a) Root Cause

O
ld

 A
TC

Old CCM

Old IPS

Old SI

O
ld U

T

AT
C

AP
IC

APIM IPS
SI

U
T

(b) Bug Type

O
ld

 B
P

Old CrashOld IF

O
ld Unknown

BP

Crash

IF

(c) Impact

Figure 6: Bug fix pattern distribution: SB.P→SB.Processing, SB.L→SB.Logic, DF→Data Flow,SB.I→SB.Initialization,
ATC→Absence of Type Checking, BP→Bad Performance, IF→Incorrect Functionality

Table 5: Statistics of the Introduction of New Bugs During Bug Fix

Bug Type Root Cause ImpactLibrary API Bug Data Bug SB.DF SB.I SB.L SB.P ATC APIC APIM IPS SI UT Bad performance Crash IF
Caffe 0% 0% 0% 0% 100.0% 0% 0% 0% 0% 33.3% 66.7% 0% 66.7% 0% 33.3%
Keras 30.8% 7.69% 30.7% 0% 23.1% 7.69% 7.69% 30.8% 0% 15.4% 15.4% 30.8% 23.1% 61.5% 15.4%
Tensorflow 60.0% 20.0% 0% 10% 10.0% 0% 20% 60% 0% 10% 10% 0% 20% 70% 10%
Theano 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 100% 0% 100% 0% 0%
Torch 50.0% 0% 50% 0% 0% 0% 0% 0% 50% 0% 0% 50% 0% 50% 50%

API change that mostly due to the versioning of the APIs and these
fixes primarily lead to a crash and bad performance.

7 CHALLENGES IN FIXING BUGS
In this section, we explore the answer to RQ5 to identify the com-
mon challenges faced by the developers in fixing the DNN bugs. To
understand the challenges, we have used a classification scheme
separate from bug fix patterns. Similar to the labeling performed for
bug fix patterns, two raters have independently classified each post
used in this study. These classes of new challenges are described
below:

7.1 DNN Reuse
Training DNN models can be expensive because it requires sophis-
ticated computational resources and a large amount of labeled data
that might not be readily available. This has led to the reuse of DNN
models that creates unique issues such as backdoor attack [5], injec-
tion of bias [2], and mismatch between the intent of the pretrained
DNN model and the intent of the developer.

base_model = ResNet50 (i npu t_ shape = (2 2 4 , 224 , 3) ,
i n c l u d e _ t o p = Fa l s e , we igh t s = ' imagenet ' , p oo l i ng = ' avg ')
+ x=base_model . ou tpu t
+ x = Dense (5 1 2 , a c t i v a t i o n = ' r e l u ') (x) # add new l a y e r
+ x = Dropout (0 . 5) (x) # add new l a y e r
+ x = Dense (5 1 2 , a c t i v a t i o n = ' r e l u ') (x) # add new l a y e r
+ x = Dropout (0 . 5) (x)

In the example above from Stack Overflow post # 4922644714, the
developer wants to train a predefined DNNmodel structure ResNet50

using the cancer dataset. The trained network results in overfitting
as the developer was not aware of the structure of the reused model
and needed to modify the network by adding dropout and dense
layers to reduce the effect of overfitting.

14https://stackoverflow.com/questions/49226447

7.2 Untraceable or Semi-Traceable Error
In case of a crash bug, the common strategy to localize the bug is
to analyze the error message. However, we have found that bug
localization is very challenging in DNN software because errors
and faults are non-trivially related. To illustrate, consider the code
snippet below from Stack Overflow post # 3347442415:

model = S e q u e n t i a l ()
model . add (Dense (h i dden_ s i z e , input_d im= i n pu t _ s i z e , i n i t = ' uni form '))
model . add (A c t i v a t i o n (' tanh '))
. . .
y_pred = model . p r e d i c t (X_nn)

This code produces the following error trace:

t t r i b u t e E r r o r Traceback (most r e c e n t c a l l l a s t)
< ipython−input−17−e6d32bc0d547 > in <module > ()
1
−−−−> 2 y_pred = model . p r e d i c t (X_nn)
491 def p r e d i c t (s e l f , X , b a t c h _ s i z e =128 , v e rbo se =0) :
492 X = s t anda r d i z e _X (X)
−−> 493 return s e l f . _ p r e d i c t _ l o o p (s e l f . _ p r e d i c t , X , b a t c h _ s i z e ,
v e rbo se) [0]
494
495 def p r e d i c t _ p r o b a (s e l f , X , b a t c h _ s i z e =128 , v e rbo se =1) :

A t t r i b u t e E r r o r : ' S e q u e n t i a l ' objec t has no a t t r i b u t e ' _ p r e d i c t '

From this error message, a developer might start digging into the
code of predict function and the Sequential object; however, the issue
is the missing compilation step. Due to this, the model connection
is not initialized and error propagates to the predict operation and
halts the training process. We have studied randomly 50 bugs yield-
ing Crash from Stack Overflow. We have found that 11 out of
50 posts does not indicate any error message and in rest of
the 39, 20 posts have a fix that does not match with the error
message.

15https://stackoverflow.com/questions/33474424

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan

7.3 Fast and Furious Releases
We have previously discussed that a large number of fixes are due
to the rapid versioning and invasive changes in DNN libraries.

Table 6: Tensorflow API changes. Change= # of operations
changed in comparison to the previous version.

Version # of Symbols Change Release Date [33]
v2.0 (Beta) 6504 2185 Jun 7, 2019
v1.14.0 8363 59 Jun 18, 2019
v1.13.1 3560 39 Feb 25, 2019
v1.12.0 3314 52 Nov 1, 2018
v1.11.0 3145 175 Sep 25, 2018
v1.10.0 3230 N/A Aug 7, 2018

To study this challenge, we have labeled all removed, reconfig-
ured, or renamed operations of Tensorflow from version 1.10 to 2.0
(latest in June 2019).

In Table 6, we have shown the number of symbols of operations
available for each Tensorflow releases and the number of operations
that have been deleted, renamed, or reconfigured in comparison
to the previous version. We have found that from the v1.14
to v2.0 26% of the operations have been changed. We have
also studied Keras v2.0, v2.1, v2.2, and v2.3 to understand whether
this problem is only prevalent in Tensorflow or not. Our study has
found that during the transition from v2.0-v2.1, v2.1-v.2.2, and v2.2-
v2.3, the percentage of changes in operation are 6%, 8%, and 4%,
respectively.

A non-trivial challenge for repairing DNN software is the proba-
bilistic behavior of the APIs. Some of these version upgrades also
change the probabilistic behavior of the APIs causing some diffi-
cult bugs. An example is presented below where the change of the
probabilistic distribution changes the output of the same operation
with different versions16.

with Tensor f low 1 . 3
Z3 = [[−0 . 4 4670227 . . . 0 . 4 6 8 5 2 0 6 4]
[−0 . 17601591 . . . 0 . 5 7 4 7 7 8 5]]
with Tensor f low 1 . 4+
Z3 = [[1 . 4 4 1 6 9 8 4 3 . . . 1 . 3 6 5 4 6 7 0 7]
[1 . 4 0 7 0 8 4 5 8 . . . 1 . 2 6 2 4 8 5 8 6]]

8 THREATS TO VALIDITY
External Threat. A source of external threat can be the dataset used
to study the bug repair pattern. To alleviate this threat we use a
benchmark dataset of DNN bugs prepared by [11].

Internal Threat. An internal threat can be the coding approach
used to classify the bug fix patterns.We use thewidely adopted open
coding approach to come with a classification scheme to minimize
this threat. Two Ph.D. students independently came up with the
classification schemes. Then, these schemes were merged through
moderated discussions. The expertise of the raters can be another
source of an internal threat. We alleviate this threat by involving
raters who have expertise in both the DNN libraries and the bug
fix patterns. The raters were also trained on the coding scheme
before the labeling. We also use kappa coefficient to measure the
inter-rater agreement throughout the labeling process. And the
value of kappa coefficient indicates that the labeling was successful
with a perfect agreement.
16https://stackoverflow.com/questions/49742061

Another threat is the number of posts in Stack Overflow for
each library are not the same. To mitigate this threat, we have
performed an ANOVA test on the Stack Overflow bug fix patterns.
We have found that F (0.0002) < F-critical (2.50) that implies that
the distribution of the bug fix in Stack Overflow is not unbalanced.

9 DISCUSSION
We have analyzed the bug fix patterns in DNN and have found
that there are significantly different new patterns compared to the
non-ML bug fix patterns. There are also new challenges in fixing
these bugs. In the analyses of RQ1, we have found that major fixes
are related to data dimension, layer dimension, network connection,
addition of layer, and loss function. To fix such issues, we need to
know the structure of the network, how data flowing through the
network is modified through various mathematical operations, how
the performance evolves during forward and backward propagation
due to the use of loss function, accuracy metrics, etc. This presents
a number of immediate research challenges related to DNN API
design and verification. To apply the data-related fixes, we need to
understand the implicit dependencies between the data and model.
This problem is akin to the notion of implicit coupling between
modules. Studying various existing techniques to address strongly
coupled data could be beneficial to fix the data-related problems.
To fix the connections among consecutive layers in a neural net-
work, the DNN model needs to be converted to a suitable common
intermediate representation (IR). Then, we need to perform a reach-
ability analysis to find the portion of the graph disconnected from
the rest to fix such connection-related problems. Also, the fixes
related to the addition of layer and change of loss function can be
addressed automatically by mining specifications related to such
layers and loss function from large codebases [22, 35].

In RQ1, we have also shown that some of the bug fixes have
a negative impact on the robustness of DNN models [4]. Study-
ing such cases further and developing tips for new developers is
necessary so that they avoid falling into these traps without this
knowledge. In RQ2, we have seen that bug fixes are different for
different bug types. We have noticed that fixing API bugs require
fixing the specification between APIs. These fixes can be achieved
by validating the compatibility among APIs by adding robust test
suites before releasing new versions. In RQ3, we have identified the
commonalities among the fix patterns of different libraries. Efforts
on repairing bugs in DNNs are certainly needed, and they can focus
on these commonalities to cover more ground quickly. In RQ4, we
have observed that fixing bugs can lead to new bugs. Our findings
identifies some common situations where this happens, e.g., fixing
layer dimension has the possibility of adding data bugs. We con-
cluded our analyses by showing that new challenges are present in
fixing DNN bugs. Though some of these fixing strategies have been
adopted by existing tools, more work on validation and repair is
warranted in several SE sub-communities such as program analysis,
runtime verification, formal methods, etc. Analysis representation
specific to DNNs can be developed to enable repair work. Runtime
monitoring framework for DNNs would be useful to prevent errors
from occurring and to collect traces for dynamic analyses based
repair techniques. Safety critical data science applications of DNNs
need these efforts to become more dependable [27].

Repairing Deep Neural Networks: Fix Patterns and Challenges ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

10 RELATEDWORKS
The closest related works are that by Zhang et al. [41], Islam et
al. [11] and Pan, Kim, and Whitehead [23].

Study on traditional non-DNNBugs. Pan, Kim, andWhitehead [23]
have studied seven Java projects to discuss the bug fix patterns in
these projects. They have also proposed a classification scheme in
categorizing the bug fix patterns in Java. The classification includes
9 broad categories and a total of 26 lower-level categories. This
prior research suggests that the IF-related and Method Call (MC)
related bugs are most frequent. In DNN bug fix strategies, the MC
and sequence addition or deletion related bug fix pattern is present.
We do not find any evidence of other bug fix strategies in DNN
and that has inspired us to derive a classification scheme using the
open coding approach to classify the DNN bug fix patterns.

Programming bugs are well-studied in software engineering.
There is a rich body of empirical studies on bugs, e.g. [6, 8, 18–
20, 28, 39] and bug repair, e.g. [1, 23, 25, 42]; however, these works
have not studied DNN bugs and repairs that have their own set of
unique challenges [11, 12, 34, 41].

Study on DNN Bugs. Zhang et al. [41] have studied bug patterns
in Tensorflow using both GitHub and Stack Overflow. They have
discussed the new patterns and characteristics of the bugs by Ten-
sorflow users to write DNN applications. They have also discussed
the three new challenges in detecting and localizing these bugs. The
study was limited to Tensorflow and also does not discuss the bug
fix patterns. We generalize to a number of deep learning libraries
and identify the new patterns of fixing the bugs in DNN software.
We also discuss the new challenges in fixing these bugs. We have
discussed three new challenges in fixing DNN bugs.

Islam et al. [11] have studied five different DNN libraries. They
have done a more general study on DNN bug characteristics be-
yond Tensorflow. However, their work has not discussed the bug
fix patterns and challenges in fixing those bugs. Our work focuses
on the identification of the bug fix patterns and challenges in those
fixes. We have utilized the dataset prepared by this work.

Sun et al. [32] studied the issues in 3 ML libraries scikit-learn,
Caffe, and paddle to understand the bug fix patterns in these li-
braries. However, we study the DNN models created using DNN
libraries. Our findings do not have any commonalities.

Zhang et al. [40] studied 715 Stack Overflow bug related posts
for TensorFlow, PyTorch, and Deeplearning4j to classify the ques-
tions into 7 different categories and built an automated tool that
categorizes questions based on the frequently found words from
each category and computing the tf-idf value with respect to the
keywords. Also, the authors have studied the challenges of answer-
ing the question in Stack Overflow by calculating the response time
for each category and have found 5 categories of root causes for the
bug related posts. Whereas, our study has been on the bug fixing
strategies for 5 DNN libraries.

Pham et al. [26] studied three deep learning (DL) libraries Tensor-
flow, CNTK, and Theano to localize and detect deep learning bugs
using cross-validating different backend i.e., Tensorflow, CNTK. In
contrast, our work studied five DL libraries, using bug-fix commits
from GitHub and Stack Overflow posts, that allowed us to draw
interlibrary observations of the fixing strategies. Also, our work
expanded the study to include deeper discussion about each fix

pattern, the common challenges developers face while fixing these
bugs, and how fixing bugs introduces a new bug.

11 CONCLUSION AND FUTUREWORK
The widespread adoption of deep neural networks in software sys-
tems has fueled the need for software engineering practices specific
to DNNs. Previous work has shown that like traditional software,
DNN software is prone to bugs albeit with very different charac-
teristics. It is important to further understand the characteristics
of bug fixes to inform strategies for repairing DNN software that
has these bugs. How do developers go about fixing these bugs?
What challenges should automated repair tools address? To that
end, we conducted a comprehensive study to understand how bugs
are fixed in the DNN software. Our study has led to several findings.
First of all, we find that bug fix patterns in DNN are significantly
different from traditional bug fix patterns. Second, our results show
that fixing the incompatibility between the data and the DNN alone
can be of significant help to developers of DNN software, especially
if the developers can be warned about the impact of their bug fix
on the robustness of the DNN model. Third, our study shows that a
prevalent bug fix pattern is version upgrade. While version upgrade
is well-studied in SE research, our bug fix patterns suggest that
automated repair tools will need to address at least two unique chal-
lenges: invasive, backward incompatible changes and probabilistic
behavior change. Fourth, our study shows that the structure of the
DNN itself needs to be represented in repair tools because several
fix patterns rely on identifying incompatibilities in that structure.
For instance, network connection fixes where disconnected layers
are identified and connected, or adding missing layers, etc. Fifth,
we have found that a significant number of bug fixes introduce
new bugs in the code. Finally, we have identified three challenges
for fixing bugs: bug localization is very difficult, reuse of the DNN
model is hard because of limited insights into its behavior, and
keeping up with rapid releases is hard.

This study opens up several avenues for future work. First and
perhaps most immediately, a number of bug fix patterns identified
by this work can be automated in repair tools. Such tools for bug
repairs can help the developers integrating DNN into their software.
Second, an abstract representation of the DNN along with the code
that uses it can be developed. We saw several bug fix patterns that
rely on analyzing such a representation. Third, there is a critical
need to improve bug localization for DNN by addressing unique
challenges that arise, and by creating DNN-aware bug localization
tools. Fourth, there is an urgent need to detect bugs introduced by
dimension mismatch and specially changes that have the poten-
tial to introduce vulnerabilities in the DNNs. Fifth, urgent work
is needed on upgrade tools that encode the semantics of version
changes and keep up with the change in the signature and seman-
tics of DNN libraries. This is important to keep pace with rapid
development in this area.

ACKNOWLEDGMENTS
This work was supported in part by US NSF under grants CNS-15-
13263, and CNS-19-34884. All opinions are of the authors and do
not reflect the view of sponsors. We thank ICSE’20 reviewers for
constructive comments that were very helpful.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan

REFERENCES
[1] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and

Abraham Bernstein. 2010. The missing links: bugs and bug-fix commits. In Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering. ACM, 97–106.

[2] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[3] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. Why and
how Java developers break APIs. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 255–265.

[4] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
39–57.

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv preprint
arXiv:1712.05526 (2017).

[6] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
2001. An empirical study of operating systems errors. In ACM SIGOPS Operating
Systems Review, Vol. 35. ACM, 73–88.

[7] Jens Dietrich, Kamil Jezek, and Premek Brada. 2014. Broken promises: An empiri-
cal study into evolution problems in java programs caused by library upgrades. In
2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering (CSMR-WCRE). IEEE, 64–73.

[8] Felipe Ebert, Fernando Castor, and Alexander Serebrenik. 2015. An exploratory
study on exception handling bugs in Java programs. Journal of Systems and
Software 106 (2015), 82–101.

[9] Jerome H Friedman. 1997. On bias, variance, 0/1—loss, and the curse-of-
dimensionality. Data mining and knowledge discovery 1, 1 (1997), 55–77.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[11] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
Comprehensive Study on Deep Learning Bug Characteristics. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2019). ACM,
New York, NY, USA, 510–520.

[12] Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, and Hridesh Rajan. 2019.
What Do Developers Ask About ML Libraries? A Large-scale Study Using Stack
Overflow. arXiv preprint arXiv:1906.11940 (2019).

[13] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. A Bench-
mark for Bugs and Fix Patterns for DeepNeural Networks. https://github.com/lab-
design/ICSE2020DNNBugRepair.

[14] Katarzyna Janocha and Wojciech Marian Czarnecki. 2017. On loss functions for
deep neural networks in classification. arXiv preprint arXiv:1702.05659 (2017).

[15] Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break–an
empirical study. Information and Software Technology 65 (2015), 129–146.

[16] Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Auto-keras: Efficient neural
architecture search with network morphism. arXiv preprint arXiv:1806.10282
(2018).

[17] Ian Jolliffe. 2011. Principal component analysis. Springer.
[18] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang

Zhai. 2006. Have things changed now?: an empirical study of bug characteristics
in modern open source software. In Proceedings of the 1st workshop on Architec-
tural and system support for improving software dependability. ACM, 25–33.

[19] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In ACM SIGARCH Computer Architecture News, Vol. 36. ACM, 329–339.

[20] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How do developers fix cross-project correlated bugs? A case study on
the GitHub scientific Python ecosystem. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 381–392.

[21] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[22] HoanAnhNguyen, Robert Dyer, Tien NNguyen, andHridesh Rajan. 2014. Mining
preconditions of APIs in large-scale code corpus. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
166–177.

[23] Kai Pan, Sunghun Kim, and E James Whitehead. 2009. Toward an understanding
of bug fix patterns. Empirical Software Engineering 14, 3 (2009), 286–315.

[24] Rangeet Pan, Md Johirul Islam, Shibbir Ahmed, and Hridesh Rajan. 2019. Identi-
fying Classes Susceptible to Adversarial Attacks. arXiv preprint arXiv:1905.13284
(2019).

[25] Jihun Park, Miryung Kim, Baishakhi Ray, and Doo-Hwan Bae. 2012. An empir-
ical study of supplementary bug fixes. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories. IEEE Press, 40–49.

[26] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
cross-backend validation to detect and localize bugs in deep learning libraries.
In Proceedings of the 41st International Conference on Software Engineering. IEEE
Press, 1027–1038.

[27] Hridesh Rajan. 2020. D4 (Dependable Data Driven Discovery) Framework. Techni-
cal Report. Iowa State University.

[28] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018.
Bugs. jar: A large-scale, diverse dataset of real-world Java bugs. In 2018 IEEE/ACM
15th International Conference on Mining Software Repositories (MSR). IEEE, 10–13.

[29] Sean Saito and Sujoy Roy. 2018. Effects of Loss Functions And Target Represen-
tations on Adversarial Robustness. arXiv preprint arXiv:1812.00181 (2018).

[30] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine learning: The
high interest credit card of technical debt. (2014).

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[32] Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017.
An empirical study on real bugs for machine learning programs. In 2017 24th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 348–357.

[33] TensorFlow. 2019. TensorFlowGithub. https://github.com/tensorflow/tensorflow/tags/.
[34] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An empiri-

cal study of bugs in machine learning systems. In 2012 IEEE 23rd International
Symposium on Software Reliability Engineering. IEEE, 271–280.

[35] Gias Uddin, Barthélémy Dagenais, and Martin P Robillard. 2012. Temporal
analysis of API usage concepts. In Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, 804–814.

[36] Anthony J Viera, Joanne M Garrett, et al. 2005. Understanding interobserver
agreement: the kappa statistic. Fam med 37, 5 (2005), 360–363.

[37] Qixue Xiao, Kang Li, Deyue Zhang, and Yier Jin. 2017. Wolf in Sheep’s Clothing-
The Downscaling Attack Against Deep Learning Applications. arXiv preprint
arXiv:1712.07805 (2017).

[38] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2017. Miti-
gating adversarial effects through randomization. arXiv preprint arXiv:1711.01991
(2017).

[39] Shahed Zaman, Bram Adams, and Ahmed E Hassan. 2011. Security versus
performance bugs: a case study on firefox. In Proceedings of the 8th working
conference on mining software repositories. ACM, 93–102.

[40] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael R. Lyu, and Miryung Kim. 2019.
An Empirical Study of Common Challenges in Developing Deep Learning Ap-
plications. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). IEEE.

[41] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on TensorFlow program bugs. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
129–140.

[42] Hao Zhong and Zhendong Su. 2015. An empirical study on real bug fixes. In
Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press, 913–923.

