
Classpects: Unifying Aspect- and Object-Oriented
Language Design

Hridesh Rajan
Department of Computer Science, University of Virginia

151 Engineer’s Way, P.O. Box 400740
Charlottesville, Virginia 22904-4740, USA

+1 434 982 2296

hr2j@cs.virginia.edu

Kevin J. Sullivan
Department of Computer Science, University of Virginia

151 Engineer’s Way, P.O. Box 400740
Charlottesville, Virginia 22904-4740, USA

+1 434 982 2206

sullivan@cs.virginia.edu

ABSTRACT
The contribution of this work is the design, implementation, and
early evaluation of a programming language that unifies classes
and aspects. We call our new module construct the classpect. We
make three basic claims. First, we can realize a unified design
without significantly compromising the expressiveness of current
aspect languages. Second, such a design improves the conceptual
integrity of the programming model. Third, it significantly
improves the compositionality of aspect modules, expanding the
program design space from the two-layered model of AspectJ-like
languages to include hierarchical structures. To support these
claims, we present the design and implementation of Eos-U, an
AspectJ-like language based on C# that supports classpects as the
basic unit of modularity. We show that Eos-U supports layered
designs in which classpects separate integration concerns flexibly
at multiple levels of composition. The underpinnings of our
design include support for aspect instantiation under program
control, instance-level advising, advising as a general alternative
to object-oriented method invocation and overriding, and the
provision of a separate join-point-method binding construct.

Categories and Subject Descriptors
D.1.5 [Object-oriented Programming], D.2.2 [Design Tools and
Techniques]: Modules and interfaces, Object-oriented design
methods, D.2.3 [Coding Tools and Techniques]: Object-oriented
programming, D.3.3 [Language Constructs and Features]:
Classes and objects; Modules, packages

General Terms
Design, Human Factors, Languages.

Keywords
Aspect-oriented, classpect, join point-method binding.

1. INTRODUCTION
Aspect-oriented programming languages and methods have begun
to attract significant attention from industry and from the research
community. The most visible languages to date are AspectJ and
related languages [3][4][8][12][15][19]. Early in the design of
AspectJ, tradeoffs were made against generality, orthogonality,
and other such design principles, in favor of adoptability, which,
among other things, was seen as a key to a convincing empirical
evaluation of the chief concepts of aspect-oriented design.

Although the jury is still out, aspect-oriented views of modularity,
the new and in some cases radical capabilities of aspect languages,
and trends toward industrial adoption combine to warrant research
on the design, implications, and uses of such languages and
methods. In this paper, we reexamine one of the most fundamental
decisions made early in the design of AspectJ: to support separate
but closely related class and aspect module constructs. We also
study the commitment that this decision entailed to a two-level
program design style, with systems organized as object-oriented
base layers advised by superimposed aspects. Kiczales reports
that the decision was based requests from users, who wanted to be
able to easily see and control uses of the new mechanisms [13].

Our motivation rests on two observations. First, separating classes
and aspects reduces the conceptual integrity of the programming
model [6], arguably making it harder in the long run for
programmers to understand and use aspect-oriented programming.
Second, the asymmetry of classes and aspects complicates system
composition and ultimately harms modularity. Asymmetries occur
in two areas. First, while aspects can advise classes, classes cannot
advise aspects, and aspects cannot advise aspects as flexibly as
they can advise classes. Second, aspects instances cannot be
created or manipulated under program control in the same ways as
class-based objects [24][27]. In practice, these asymmetries
constrain designers to the two-layer architectural style that we
mentioned. Hierarchical layering of aspects is difficult at best.

In this work, we present a model that unifies the capabilities of
classes and aspects in a single, more expressive construct that we
call the classpect. We claim and show this unification is possible
without reducing the expressiveness of AspectJ-like languages;
that it improves the conceptual integrity of the design model; that
it creates valuable new possibilities for program design, with
hierarchical aspect composition as a practical new possibility; and
that it ultimately enables the modularization of what we call
higher-order crosscutting concerns.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

To evaluate the feasibility of our ideas and to support evaluation,
we designed and implemented a classpect-oriented language
called Eos-U. Eos-U extends C#, has the aspect capabilities of
AspectJ, and unifies classes and aspects. Our compiler handles
existing C# programs and supports classpects with an enhanced
notion of class. There is no longer a separate aspect construct.

The rest of the paper is as follows. Section 2 describes the AspectJ
model and our requirements for a unified model. Section 3 present
Eos-U. Sections 4–8 discuss separation of integration concerns
and support our claims for the improved compositionality of Eos-
U. Section 9 assesses the nature and potential importance of our
results. Second 10 discusses related work. Section 11 concludes.

2. BACKGROUND AND MOTIVATION
To make this work self-contained, we briefly review the AspectJ
model. The central idea is that aspects are class-like constructs
that enable the modular representation of crosscutting concerns. A
concern is a dimension in which a design decision is made [17],
and it is crosscutting if its realization in traditional object-oriented
designs leads to scattered and tangled code. Scattered means not
local to a module but fragmented across a system. Tangled means
intermingled with code for other concerns [14].

Aspect languages add five key constructs to the object-oriented
model: join points, pointcuts, advice, inter-type declarations, and
aspects.1 We provide a simple example.

1 aspect Tracing {
2 pointcut tracedCall():
3 call(* *(..));
4 before(): tracedCall() {
5 /* Advice: Trace before each call matched by tracedCall */
6 }
7 }

A join point is a point in program execution exposed by the
semantics of the language to possible modification by aspects.
The execution of a method is an example of a join point. A
pointcut (lines 2-3) is a predicate that selects a subset of join
points for modification: here, any call to any method. An advice
(lines 4-6) serves as a before, after, or around method to effect
such an extension at each join point selected by a pointcut. An
aspect (lines 1-7) is a class-like module that uses these constructs
to modify behaviors defined by the classes of a software system.

Aspects also support the data abstraction and inheritance abilities
of classes, but they do differ from classes. First, aspects can use
pointcuts, advice, and inter-type declarations. In this sense, they
are strictly more expressive than classes. Second, instantiation of
aspects and binding of advice to join points are wholly controlled
by the Aspect language runtime. There is no new for aspects.
Aspect instances are thus not first-class, and, in this dimension,
classes are strictly more expressive than aspects. Third, although
aspects can advise methods with fine selectivity, they can select
advice bodies to advise only in coarse-grained ways.

In earlier work [24][27], we addressed the limits of aspects with
respect to instantiation and join point binding under program

1 Eos-U supports inter-type declarations, also called introductions,

but they are not essential to or discussed further in this paper.

control, but we left aspects and classes separate and incomparable,
and the resulting compositionality problems unresolved. We now
tackle this problem, leading to a design in which advising emerges
as a general alternative to overriding or method invocation.

We see two basic requirements for a unified, more compositional
model. First, a new model should preserve the expressive power
of AspectJ. This constraint rules out the use of languages with
much more limited join point and pointcut models. Second, a
unified design should be based on a single, first-class, class-like
module construct, and a single method construct for procedural
abstraction (whereas AspectJ has both methods and advice).

3. EOS-U: THE UNIFIED DESIGN
Eos-U provides a proof of concept. Eos-U is a classpect-oriented
version of Eos [23], which is itself an AspectJ-like extension of
C# [20][21]. Eos fully supports instance-level aspects, which
means that it provides first-class aspect instances (new) and
instance-level advice binding under program control. The rest of
this section presents the Eos-U language design in more detail.

3.1 Unifying Classes and Aspects
Eos-U unifies aspects and objects in three ways. First, it unifies
aspects and classes. A class in Eos-U supports the full classpect
notion: all C# class constructs, all of the essential capabilities of
AspectJ aspects, and the Eos extensions to aspects needed to make
them first-class objects. Second, Eos-U eliminates advice in favor
of using methods only, with a separate and explicit join-point-
method binding construct. Third, Eos-U supports a generalized
advising model. To the usual object-oriented mechanisms of
explicit or implicit method call and overriding based on
inheritance we add implicit invocation using before and after
advice, and overriding using around advice, respectively.

3.2 Crosscut Specification
Eliminating anonymous advice in favor of named methods led us
to make join-point-method bindings separate and abstract, in a
style similar to the event-method binding constructs of implicit
invocation systems [9][26][28]. Eos-U separates what we call
crosscut specifications from advice bodies (now just methods). A
crosscut specification defines both a pointcut and when given
advice should run: before, after or around. This separation allows
one to reason separately about binding issues and to change them
independently; and it supports advice abstraction, overloading,
and inheritance based on the existing rules for methods.

The grammar production, binding_declaration (Figure 1) presents
our crosscut specification construct. A binding_declaration has
four parts. The first, opt_static, specifies whether a binding is
static. Non-static bindings result in instance-level advising [23]:
selective advising of the join points of individual object instances.
Static bindings affects all instances of advised classes. The second
part of a binding (after/before/around) states when the advising
method executes: after, before, or around. The third part,
pointcuts, selects the join points at which an advising method
executes. The final part specifies the advising method.

A binding provides a list of methods to execute at a join point, in
the order specified. A binding can also pass reflective information
about the join point to the methods invoked, by binding method
parameters to reflective information using the AspectJ pointcut
designators such as this, target, args, etc. As with around advice
in AspectJ, an Eos-U method bound around is allowed to return a
value, so around bindings must be declared with return types.

Methods subject to binding have to follow certain rules. First, a
method must be accessible in the class declaring a binding.
Second, a method bound before or after a join point can have only
void as a return type. Third, a method bound around a join point
must have a return type that matches the return type at the join
point. For example, if method Foo is bound around the execution
join point execution(public int *.Bar()), then it must return int.

The listing in Figure 2 presents an advice construct as it would
appear in current aspect languages and the equivalent method
binding in Eos-U. The advice (lines 2-4) executes around the join
point execution(public int *.Bar()). The binding separates the
advice body (lines 3-4) from the crosscut specification (line 2).
The advice body becomes the body of the method Foo (lines 7-9).
The crosscut specification becomes part of the binding (line 10).

3.3 Around Bindings
Around advice in AspectJ is executed instead of a join point, and
can invoke the join point using proceed. In essence, the around
method overrides the join point method, with calls to proceed
being analogous to delegating calls to super. In Eos-U a method
bound around is also executed instead of the join point. If the
method might need to call the overridden method, the first method
takes an argument of type Eos.Runtime.AroundADP. This class
represents a delegate chain including the original join point and
other around method bindings, and it provides a method called
InnerInvoke to invoke the next element in the delegate chain. The
argument to the method is bound to the delegate chain at the join
point using the pointcut designator aroundptr (line 6 in Figure 3).

The binding (lines 5-6) binds the method Cache around the
execution of SomeClass.SomeMethod and exposes the around
delegate chain at the join point using the pointcut expression
aroundptr(d), which binds the reference to the delegate chain to
the argument d of the method Cache (lines 1-4). The method
Cache can invoke the inner delegate in the chain by invoking
InnerInvoke on d (line 3).

Unifying around advice and methods poses a question: whether to
allow proceed in all methods. Allowing proceed in methods that
are bound around but not in other methods introduces a special
case. Making inner join point invocations explicit in an object-
oriented style eliminates this special case. The Eos-U InnerInvoke
method removes any such special cases from the language design.

A current limitation of our language implementation is that the
return type of the InnerInvoke method is object, precluding static
type checking. Method return values could be statically typed to
be the same as the surrounding around method using generics. We
plan to address this issue as soon as .NET supports generics.2

3.4 Additional Power of Overriding
In AspectJ-like languages, there are two different ways to override
a method: by object-oriented inheritance and by aspect-oriented
around advice. A consequence of replacing advice bodies with
methods is that methods that serve as advice can be overridden in
either of these ways.

It might appear that this redundancy compromises the conceptual
integrity of our design. The key insight is that these mechanisms
differ fundamentally, and in a way consistent with the nature of
aspect-oriented programming: not in their effect on runtime
behavior, but rather on the design structure.

Consider two analogies. In object-oriented systems that support
implicit invocation [9], there are two ways for an invoker to
invoke an invokee: explicit call or implicit invocation. The
runtime result is the same, but the design-time structures are
different. Having both mechanisms gives the designer the
flexibility to shape the static structure independently of the
runtime invocation structure. Inter-type declarations in AspectJ-
like languages provide a similar capability for class state and
behavior. They allow a third party aspect to change the members

2 As of this writing, Eos-U is build upon .NET Framework 1.1.

Generics are not supported in version 1.1. Full support for
generics is expected in .NET Framework 2.0.

1 void Cache (Eos.Runtime.AroundADP d){
2 if(/* need to invoke inner join point */)
3 d.InnerInvoke();
4 }
5 static void around execution(public void SomeClass.SomeMethod())
6 && aroundptr(d): call Cache(Eos.Runtime.AroundADP d);

Figure 3. A Method Bound Around

 1 Eos/AspectJ:
 2 int around():execution(public int *.Bar()){
 3 /* Foo code */
 4 }
 5
 6 Eos-U:
 7 int Foo(){
 8 /* Foo code */
 9 }
10 static int around execution(public int *.Bar()): call Foo();

Figure 2: An advice and equivalent binding

Figure 1. Syntax of the binding declaration

binding_declaration
 : opt_static after pointcuts : call method_bindings;
 | opt_static before pointcuts : call method_bindings;
 | opt_static type around pointcuts : call method_bindings;
 ;
method_bindings
 : method_binding , method binding
 | method_binding
 ;
method_binding
 : IDENTIFIER(opt_formal_parameter_list)
 ;
opt_static
 : Empty
 | static
 ;

of a class without the involvement of the class itself. The runtime
effects are again the same, but the resulting architectural
properties are different. Supporting inheritance and around
advising as two mechanisms for overriding methods that serve as
advice bodies provides just such architectural flexibility with
respect to advice overriding. Object-oriented overriding demands
an inheritance relation; aspect-oriented around advising does not.

3.5 New Pointcut Designators
To pass reflective information at a join point to a bound method, a
binding uses AspectJ-like pointcut designators such as args,
target and this. In AspectJ-like languages, three special variables
are visible within the bodies of advice: thisJoinPoint,
thisJoinPointStaticPart, and thisEnclosingJoinPointStaticPart.
These variables can be used to explicitly marshal reflective
information at a join point. For example, to access the return
value at a join point, one calls the method getReturnValue on the
variable thisJoinPoint.

Unifying advice and methods poses another question: whether to
allow these special variables in all methods. Allowing these
variables in methods that are bound before, after or around, but
not in other methods introduces a special case. Eos-U removes
this special case by binding method arguments to the required
reflective information in the crosscut specification construct using
pointcut designators.

The pointcut designators in the original Eos are incomplete for
this purpose, in that not all the information available at join points
is exposed. Other information, marshaled earlier from the three
special variables, might be needed. For example, to access the
return value at a join point, one calls the method getReturnValue
on the implicit argument. Eos-U adds new pointcut designators to
fill the gap. For example, the pointcut designator return exposes
the return value at the join point. The pointcut designator
joinpoint exposes all information about the join point by exposing
an object of type Eos.Runtime.JoinPoint. These designators
enhance readability by eliminating implicit arguments to advice.

Eos-U fulfills the requirements we laid out for a unified model.
There is one unit of modularity, class, and one mechanism for
procedural abstraction, method. All of the essential expressiveness
of AspectJ-like languages is present in Eos-U, along with the
extensions needed for aspects to work as first-class objects, as
they must in a unified model. In addition, join-point-to-method
bindings are separate, orthogonal, abstract interface elements in
Eos-U. Eos-U thus does appear to achieve a novel unity of design.

4. INTEGRATION CONCERNS
The rest of this paper is concerned with supporting our claim that
the enhanced compositionality of classpects creates valuable new
possibilities for aspect-oriented program design. Our evaluation
rests on a comparative analysis of the abilities of AspectJ-like
languages and Eos-U to achieve a clean separation of integration
concerns in hierarchical or layered designs. We show that Eos-U
is significantly more expressive in this context.

By an integration concern we mean a requirement for the co-
ordination of the behaviors of a given subset of components in a
system. In general, different and potentially overlapping subsets
of objects are subject to different integration concerns. Sullivan
and Notkin [22][24][28] showed that integration is crosscutting in

the sense that integration code is generally scattered across the
classes of the objects to be integrated. They also showed that
integration concerns can be separated out as mediator classes that
use explicit and implicit invocation in a particular way.

The idea is to represent each kind of integration concern as a
corresponding mediator class, and to represent each instance of
such a concern, for a given subset of objects, as an instance of the
mediator class. Each mediator object observes events announced
by the objects it integrates, modifies its state, and calls their
methods to coordinate their states and behaviors. Objects can thus
be integrated without their classes being either coupled or
encapsulated; and the code for each integration concern is
separately modularized.

Sullivan and Notkin went on to show that complexly integrated
but still evolvable systems, such as integrated radiation treatment
planning systems, could be composed from decoupled objects in a
layered mediator style [29]. In this style, a mediator at one level
serves both to integrate its subjects and as a subject for a mediator
at the next level up.

The question we ask in this paper is whether aspects can be used
as mediators in this style, with advising replacing implicit
invocation. In earlier work [27], we showed that AspectJ aspects
cannot serve as mediators without costly workarounds, because
they cannot be instantiated or bound to selected object instances
under program control. We then showed that the instance-level
aspects of Eos enabled the use of aspects as mediators without
workarounds [23]. However, we did not address the question of
layered compositions. To use aspects as mediators in such a style
demands that aspects be able to advise other aspects in full
generality. Such a style is inconsistent with the properties and
accepted usage of AspectJ-like languages.

To support this point and to show that Eos-U solves the problem,
we compare AspectJ-like approaches and Eos-U against this style
with a small example. The example is artificial, but is derived
from and representative of structures used in real systems.

5. LAYERED INTEGRATED CONCERNS
Our example, presented in Figure 4, employs five basic classes.
An instance of the class VS manages a set of vertices; and ES, a
set of edges. An instance of PS manages a set of points displayed
on a user interface; and LS, a set of connecting lines. A vertex (V)
or point (P) stores a pair of coordinates and exports constructors
and methods for getting and setting coordinates and for testing
equality. An edge (E) or line (L) stores references to two vertices
or points, respectively, and provides constructor, accessor, and
equality methods. The set types export methods for creation,
element insertion, deletion, and membership testing, and for
getting an iterator that can return each element in turn. An
instance of UI presents a user interface, through which one can
create points and lines and insert them into, and delete them from,
given PS and LS objects, respectively. The idea is that instances of
the additional mediator constructs will keep systems of these
objects consistent as changes occur. For example, as points are
added to PS, corresponding vertices should be added to PS.

�����

������	
�
�
��
�
���

���������	
�
�
��
�
���

��

�����

������	
�
�
��
�
���

���������	
�
�
��
�
���

��

���
�
��

���
�
��

�

�������	������

�����

�����

�����

����

����������

��
�����

������	
�
�
��
�
���

���������	
�
�
��
�
���

��

�����

������	
�
�
��
�
���

���������	
�
�
��
�
���

��

���
�
��

���
�
��

��	��

���
�
��

���
�
��

��	����� ��
�
�����

��� ��
�
�����

�!�
�
"#

�$
�
�

�
��

Figure 4. Graph System

Our example already exhibits a separation of integration concerns.
VS-PS represents a class of relationships, an instance of which
satisfies a requirement for given objects of the vertex set and point
set classes to be kept consistent in a one-to-one relationship, as
either of the two objects is changed. ES-LS is a similar
relationship for objects of the LS and ES classes.

Our example also shows how objects can participate in several
relationships. G (for Graph) represents a class of relationships, an
instance of which ensures that a given edge set, es, remains
consistent with a vertex set, vs, in the sense that the sets continue
to represent a graph. An instance g of G could preserve this
invariant in the face of deletion of a vertex, v, from vs, by deleting
from es each edge incident on v, for example. The vertex set, vs,
could thus be related by g to the edge set, es, and by an instance
of VS-PS to ps. In this case, deleting a vertex would result in
updates to ps, to es, and indirectly to any line set, ls integrated
with es by an object of class ES-LS. Figure 5 presents a snippet of
code for an implementation of G using the original Eos language.

So far we have seen a design with a first layer of base components
(the sets), and a second layer of aspect-like mediators. The last
class in our example, Lazy, is really the key. It is a relationship-
maintaining object at the next level up. See Figure 4. Its purpose
is to coordinate the behaviors of the mediators at the first level. In
a system in which many updates will be made to a component in a
short time, it might be useful to temporarily turn off the updating
of related (e.g., user interface) objects, and to cache updates for
flushing at an appropriate time. Lazy serves this purpose in our
example. More importantly, it illustrates the idea of multi-layered,
aspect-like mediation.

The state of an object, l, of class Lazy dictates how l coordinates
the activities of associated mediators of classes VS-PS, ES-LS, and
Graph. When in eager mode, l allows the Graph, VS-PS and ES-
LS objects to operate as already described. However, when in lazy
mode, l prevents them from propagating effects immediately, and
instead caches the updates for later flushing. When toggling from
lazy to eager mode, l reestablishes the invariants by adding or
removing elements into or from the sets as necessary. Lazy thus
separately represents a performance-related caching concern.

The property that makes this example useful in this paper is that it
involves a layered separation of integration concerns. The next
section shows how our earlier work on Eos and instance-level
aspects [23] enables the effective use of aspect modules and
aspects instances to realize the first level of mediators. The section
after that shows why instance-level aspects alone are not enough,
and why we needed a deeper unification of classes and instances
for satisfactory composability of aspects in multi-layer structures.

6. MEDIATORS AS ASPECTS
Eos enabled an improved version of mediator-based design
[26][28] by separating integration concerns as instance level
aspects [23]. The basic idea is to use separate aspect instances as
mediators that selectively advise their subject instances, with
advising in place of scattered event (implicit invocation) code.
The relationship G is thus represented as an aspect module, an
instance of which integrates an instance of the vertex set VS and
an instance of edge set ES. VS-PS and ES-LS are represented as
aspects in the same way. The logic to enforce desired constraints
is represented as advice that is invoked when the subjects engage
in potentially invariant-violating action (e.g., vertex deletion).

Figure 5 presents source code for the G aspect. The constructor
(lines 3-5) stores reference to the edge set and the vertex set
objects to be integrated. The first advice in G (lines 6-12) is
invoked when the event “Edge addition” occurs during the
execution of edge set, and if an edge was successfully inserted it
adds corresponding vertices to the vertex set.

This advice thus selects the join point “execution of the method
ES.Add” using the pointcut expression execution(public bool
ES.Add(E)). The reflective information about the join point, the
return value and the argument of the method are passed to the
advice by binding the advice parameters ret and e to reflective
information using the pointcut expressions return(ret) and
args(e). The method ES.Add returns true in case of a successful
addition. The parameter ret, therefore represents successful
addition of an edge. When ret is true, the start and the end vertices
of second parameter edge e are added to the vertex set vs.

The second advice (lines 13-18) is invoked and operates
analogously when a “Vertex removal” event occurs on the vertex
set. If a vertex was successfully removed, the advice removes all
incident edges from the edge set.

1 public instancelevel aspect G {
2 ES es; VS vs;
3 public G(ES es, VS vs){
4 this.es = es; this.vs = vs; …
5 }
6 after(bool ret, E e):execution(public bool ES.Add(E))
7 && return(ret) && args(e){
8 if(ret){
9 vs.Add(e.GetStart());
10 vs.Add(e.GetEnd());
11 }
12 }
13 after(bool ret, V v): execution(public bool VS.Remove(V))
14 && return(ret) && args(v){
15 if(ret){
16 /* Remove all edges incident on v */
17 }
18 }
19 }

Figure 5. Implementation of Graph in Eos

Figure 6 presents source code (with details elided) for the aspect
VS_PS. The aspect represents the requirement “Consistency
between the Vertex set and Point set” (VS-PS). The first advice
(lines 6-11) executes when the event “Vertex Addition” occurs
during the execution of the vertex set; and on successful vertex
addition, adds the corresponding point to the point set. Similarly,
the second advice (lines 12-18) removes the corresponding point
after a successful vertex removal. The requirement “Consistency
between Edge and Point set” (ES-LS) is implemented similarly.

The Graph, VS-PS and ES-LS concerns are fully modularized as
aspects in the Eos program design. However, Lazy is still not
easily modularized. The next section analyzes the problem.

7. THE COMPOSITIONALITY PROBLEM
The Lazy concern constrains the behavior of Graph, VS-PS and
ES-LS. In our Eos implementation, these components are
represented as instance-level aspects that advice base objects.

A typical implementation of the Lazy requirement would add a
mode bit (lazy) to each of Graph, VS_PS and ES_LS, a method to
switch modes, and would modify the aspect advice to handle lazy
evaluation when the mode bit is set. This implementation scatters
code for the Lazy concern over and tangles it with code for the
Graph, VS-PS and ES-LS concerns. This scattering makes it
harder to design, understand, selectively deploy, reuse, and
change the Lazy concern.

An alternative would be to implement Lazy as a second-level
aspect, advising the first-level G, VS_PS and ES_LS aspects. In
particular, such a Lazy aspect could use around advice to override
advice execution in the first-level aspect. When in eager mode,
Lazy would just delegate back to the overridden advice. In lazy
mode, it would cache the required reflective information and skip
execution of the overridden method join point. The reflective
information would be stored in the order in which join point
executions occurred. When toggled from lazy to eager, the aspect
would use the saved information to re-establish the invariants.

This alternative would solve the problem of the first, non-modular
solution. The code for “lazy evaluation” would be in a separate,
modularized, and reusable aspect. To add or remove this feature
from the system, we would just add or remove an aspect instance.

Unfortunately, this approach cannot be realized satisfactorily
using the model of current AspectJ-like languages, including the
original Eos. The problem is in the asymmetric capabilities and
treatments of classes and aspects. In particular, in AspectJ-like
languages, including the original Eos, aspects can advise methods
selectively, but they can advise advice only in quite limited ways.

In the current model, individual advice bodies are anonymous,
and so they cannot be selected based on their names in pointcut
descriptors. The pointcut designator adviceexecution thus selects
all advice execution join points in the program. This selection can
be narrowed down to all advice in a given aspect by composing
this pointcut designator with the pointcut designator within. For
example, the pointcut expression adviceexecution() && within(G)
selects execution of every advice in the aspect G (Figure 5).

To implement a Lazy aspect, we would have to be able to address
each advice in G independently (Figure 5: lines 6-12 and 13-19).
The current languages do not support such fine-grained selection.
This restriction compromises the compositionality of aspects. One
of its effects is to constrain applications to the two-layered
structures that we have discussed, where object-oriented code is
advised by first-level aspects, but no higher-level advising occurs.

A workaround that springs to mind is to have advice delegate to
corresponding aspect methods and to advise these methods. There
are two problems with this idea. The first, and less important, is
that the need for such a hack is evidence that there is something
wrong in the current design. Second, the work-around is deeply
unsatisfactory, in general.

First, it requires either ubiquitous up-front use, or—contrary to
the central purpose of aspect-orientation—that scattered changes
be made to aspect modules whenever any of their advice bodies
become subject to advising. Both approaches require source code,
which is not always available. Second, delegating is not entirely
straightforward. Advice bodies have to be analyzed to determine
whether or not they use implicitly declared reflective information,
such as thisJoinPoint or implicit methods, namely proceed.

All such parameters have to be passed to the delegate methods,
incurring additional design- and run-time costs and risk of error.
The situation is even more complicated in cases of around advice
bodies, which execute instead of the original join point and which
can call the original join point using proceed. Figure 7 presents an
example (Lines 1-4): if ShallProceed is true, the original join
point is invoked. Applying the workaround results in the proceed
call being moved to a delegatee (Lines 9-11). Proceed is allowed
only in advice bodies, not in methods, in the current languages.
Proceed will thus have to be passed from the advice body to the
delegatee as a closure, perhaps using the worker object pattern of
Laddad [16]. The work-around is both complicated and incurs the
need for scattered changes, undermining the purpose of aspects.

The lack of full aspect-aspect compositionality complicates the
use of advising as a general mechanism in important architectural
styles, including layered systems. There is real value in being able
to structure systems in such ways. In particular, the layered
mediator style has been shown to be valuable in the design of
evolvable integrated systems [26][28]. The inability to support
such styles effectively appears unnecessarily to restrict the use of
aspect technology for separating concerns—and integration
concerns, in particular—in a natural, compositional style.

1 public instancelevel aspect VS_PS {
2 VS vs; PS vs;
3 public VS_PS(VS vs, PS ps){
4 this.vs = vs; this.ps = ps; …
5 }

6 after(bool ret, V v):execution(public bool VS.Add(V))
7 && return(ret) && args(v){
8 if(ret){
9 /* Add a point in ps corresponding to v */
10 }
11 }

12 after(bool ret, V v): execution(public bool VS.Remove(V))
13 && return(ret) && args(v){
14 if(ret){
15 /* Remove the corresponding point from ps */
16 }
17 }
18 /* Similar advice for PS.Add and PS.Remove events */
19 }

Figure 6. Implementation of VS-PS in Eos

8. MODULARIZING HIGHER-ORDER
CROSSCUTTING CONCERNS IN EOS-U
Eos-U provides a solution to these problems in the classpect, a
fully compositional basic building block for unified object- and
aspect-oriented program design. Eos-U supports advising as a
first-class, general alternative to explicit and implicit method
invocation and to overriding by way of inheritance. A classpect
combines the advising capabilities of aspects with the first-class
status and compositionality properties of class-based objects,
allowing for the design of arbitrary structures with the flexibility
to choose between object- and aspect-oriented mechanisms.

As a proof-of-concept test of this idea, we re-implemented our
example system using Eos-U classpects. Figure 8 presents the
classpect for the graph-maintaining mediator, G. The constructor
(lines 3-5) stores references to the ES and VS objects to be
integrated. A combination of join-point-to-method binding and
methods replaces traditional, AspectJ-like advising. Compare this
code with that in Figure 5. The first advice in Figure 5 (lines 6-
12) is replaced in Figure 8 by a binding (lines 17-18) and the
method AddEnds (lines 6-11). The second advice in Figure 5
(lines 13-18) is replaced by a binding (line 19-20) and the method
RemoveIncident (lines 12-16). The first binding (lines 17-18)
binds the execution join point of public bool ES.Add(E e) to the
method AddEnds (lines 6-11), which adds the start and the end
vertices to the vertex set if an edge was successfully added to the
edge set. The second binding (lines 19-20) binds the execution
join point of public bool VS.Remove(V v) to RemoveIncident (12-
16).

Figure 9 presents the corresponding Eos-U code for VS-PS. The
implementation of ES-LS is similar.

The real advantages of our approach emerge in relation to the
implementation of Lazy, presented in Figure 10. The constructor
(lines 4-7) stores references to the instances being integrated: in
this case, aspect-oriented mediators. The Lazy class now simply
overrides the advice-like methods of G, VS_PS and ES_LS with
implementations that cache their invocations based on the state of
the given Lazy object. We present two examples: RecordAddEnds
and RecordRemIncident (lines 8-17 in Figure 10). The mode is
determined by the Boolean lazy. If true, these methods record
necessary information to re-establish the invariants of integration
requirements; otherwise they invoke the inner delegate in the
around delegate chain (lines 9 and 14).

The join-point-to-method bindings (lines 18-24) bind these
methods around the corresponding join points. The bindings also
provide the arguments at the join points to the bound methods
using the pointcut expressions args(ret), args(v) and args(e), and
the pointer to the around delegate chain using arountptr(p). The
pointer to the around delegate chain is supplied to the methods so
that they can invoke the join point if needed. Eos-U has no
proceed. The rest of the code (lines 25-32) keeps the instance
variable lazy consistent with the state in the component UI.

The Lazy concern, which cuts across the lower-level crosscutting
integration concerns, is now modularized as the classpect Lazy, at
a second level in the advising hierarchy. To add or remove the
feature from a set of objects, one just needs to add or remove an
instance of this class.

9. DISCUSSION
We have claimed that a unification of object- and aspect-oriented
constructs is possible and have developed a unified design with
improved compositionality properties. We have tested these
claims and found them supported by exhibiting a language design
and compiler, and by a comparative analysis of the ability of
AspectJ-like and Eos-U-like languages to preserve, at the code
level, the modular structure of a specification that featured multi-
level integration concerns.

1 public class G {
2 ES es; VS vs;
3 public G(ES es, VS vs){
4 this.es = es; this.vs = vs; …
5 }
6 public void AddEnds(bool ret, E e) {
7 if(ret){
8 vs.Add(e.GetStart());
9 vs.Add(e.GetEnd());
10 }
11 }
12 public void RemoveIncident (bool ret, V v) {
13 if(ret){
14 /* Remove all edges incident on v */
15 }
16 }
17 after execution(public bool ES.Add(E)) && return(ret)
18 && args(e): call AddEnds (bool ret, E e);
19 after execution(public bool VS.Remove(V)) && return(ret)
20 && args(v): call RemoveIncident(bool ret, V v);
21 }

Figure 8. Implementation of Graph in Eos-U

1 public class VS_PS {
2 VS vs; PS vs;
3 public VS_PS(VS vs, PS ps){
4 this.vs = vs; this.ps = ps; …
5 }
6 public void AddPoint(bool ret, V v) {
7 if(ret){
8 /* Add a point in ps corresponding to v */
9 }
10 }
11 public void RemovePoint(bool ret, V v){
12 if(ret){
13 /* Remove the corresponding point from ps */
14 }
15 }
16 /* Similar methods AddVertex and RemoveVertex */
17 after execution(public bool VS.Add(V)) && return(ret)
18 && args(v): call AddPoint (bool ret, V v);
19 after execution(public bool VS.Remove(V)) && return (ret)
20 && args(v): call RemovePoint(bool ret, V v);
21 /* Similar bindings for PS.Add and PS.Remove events */
22 }

Figure 9. Implementation of VS-PS in Eos-U

Figure 7. Workaround applied to an around advice

1 // Original advice
2 void around(): <pointcut> {
3 If(ShallProceed)proceed();
4 }
5 // Workaround applied to advice above
6 void around():<pointcut> {
7 OriginalAdviceCodeInMethod();
8 }
9 void OriginalAdviceCodeInMethod() {
10 If(ShallProceed) proceed();
11 }

One way to try to account for these improvements is by appeal to
the idea of conceptual integrity in design. Brooks wrote,

...that conceptual integrity is the most important
consideration in system design. It is better to have a system
omit certain anomalous features and improvements, but to
reflect one set of design ideas, then to have one that contains
many good but independent and uncoordinated ideas. …
Simplicity and straightforwardness proceed from conceptual
integrity. Every part must reflect the same philosophies and
the same balancing of desiderata. Every part must even use
the same techniques in syntax and analogous notions in
semantics. Ease of use, then, dictates unity of design,
conceptual integrity." [6](pp 42-44).

The additional expressive and compositional power of classpects
emerged when we enforced the kind of design unity that Brooks
advocates. It forced aspect-like constructs to support all of the
capabilities of classes—notably new. It forced classes to support
aspect-oriented advising as a generalized alternative to traditional
invocation and overriding. By driving out anonymous advice in
favor of methods as the sole mechanism for procedural
abstraction, it also pushed a previously submerged but important
abstraction to the fore: the join-point-method binding.

We hypothesize that, to the extent that aspect-oriented methods
turn out to be beneficial, a unified model is likely to be even more
so. First, we hypothesize that the unified model will improve the
ease-of-learning and ease-of-use of aspect-oriented methods.
From an understanding point of view, most of the code in Figure
8, lines 1-16, looks and works like a traditional object-oriented
program, for example. We believe that this symmetry could well
make the transition from object-oriented to aspect-oriented design
easier.

Second, we hypothesize that a unified model can further improve
our ability to modularize systems, with benefits in evolvability,
understandability, communication overheads in development, and
parallel development. In particular, abstracting from the example
of the last section, we see that the unified design supports, as a
practical possibility, what we might call modularization of higher-
order crosscutting concerns. Whereas the first-level mediators
modularized integration concerns that cut across the base objects,
the Lazy mediator modularized a concern that cut across the first-
level integration concerns. The AspectJ de facto commitment to a
two-level structure with one base level and one aspect level makes
it hard to cleanly modularize such towers. In effect, higher-order
concerns are all squashed down into—and consequently scattered
across and tangled into—the single available aspect layer.

We finish this section by returning to the AspectJ rationale for
separating classes and aspects. The goal was adoptability. Users
asked for the separation because they wanted to be able to see and
control a risky new construct in their systems. The non-integration
of classes and aspects was thus an early tradeoff against unity for
a better chance at adoption. Current AspectJ-like language designs
thus still reflect that evolutionary path. Now that these languages
are achieving significant adoption, with concomitant reductions in
perceived risk, designers should revisit deep tradeoffs made to
surmount early adoptability barriers. Ideally, reconsideration
would occur before strong adoption creates irreversible lock-in.
Our work thus presents a timely analysis of a potentially important
alternative language design and program structuring philosophy.

10. RELATED WORK
AspectJ [1], AspectWerkz [4], and Caesar [19] are all related to
our work. Kiczales reports [13] that in at least one early version of
AspectJ, there was no separate aspect construct. Rather, the class
was extended to support advice. No evidence indicates, however,
that those early designs achieved the synthesis of OO and AO
techniques of Eos-U. Advice bodies and methods were still
separate; it is unclear to what extent advice could be advised at
all; and there was no support for flexible aspect instantiation.

AspectWerkz [4] is the design most closely related to our work.
The aim of this project was to provide the expressiveness of
AspectJ [1] without sacrificing pure Java and all the surrounding
tools. The solution is to use normal Java classes to represent both
classes and AspectJ-like aspects, with advice represented in
normal methods, and to separate all join-point-advice bindings
either into annotations in the form of comments, or into separate
XML binding files. AspectWerkz provides a proven solution to
the problem of AspectJ-like programming in pure Java, but it does
not achieve the unification that we have pursued.

First, and crucially, the system does not support the concept of
aspects as objects under program control. Instead, the use of Java
classes as aspects is highly constrained so that the runtime system
can maintain control. A class representing an aspect must have
either no constructor or one with one of two predefined
signatures, and a method representing an advice body has one

1 using Eos.Runtime;
2 public class Lazy {
3 VS_PS vs_ps; ES_LS es_ls; G g; UI ui; bool lazy = false;
4 public Lazy(VS_PS vs_ps, ES_LS es_ls, G g, UI ui){
5 this.vs_ps = vs_ps; this.es_ls = es_ls;
6 this.g = g; this.ui = ui; …
7 }

8 public void RecordAddEnds(bool ret, E e, AroundADP p) {
9 if(!lazy) p.InnerInvoke();
10 else { /* Record invocation of G.AddEnds */ }
11 }

12 public void RecordRemIncident(bool ret, V v, AroundADP p){
13 if(!lazy) p.InnerInvoke();
14 else { /* Record invocation of G.RemoveIncident */}
15 }
16 /* Similar methods to record method invocations of
17 VS_PS and ES_LS */

18 void around execution(public void G.AddEnds(bool, E))
19 && args(ret) && args(e) && aroundptr(p):
20 call RecordAddEnds (bool ret, E e, AroundADP p);

21 void around execution(public void G.RemoveIncident(bool, v))
22 && args(ret) && args(v) && aroundptr(p):
23 call RecordRemIncident (bool ret, V v, AroundADP p);
24 /* Similar bindings for methods in VS_PS and ES_LS */

25 void SetLazy() { lazy = true; }

26 after execution(public void UI.SetLazy()):call SetLazy();

27 void ResetLazy(){
28 /* For each recorded invocation of AddEnds invoke
29 the method AddEnds on g. Similarly invoke other
30 appropriate methods for other recorded invocations*/
31 }

32 after execution(public void UI.ResetLazy()): call ResetLazy();
33 }

Figure 10. The Requirement Lazy in Eos-U

argument of type JoinPoint. AspectWerkz uses this interface to
manage aspect creation and advice invocation. AspectWerkz also
lacks a single-language design, in that it uses both Java and XML
binding files, albeit with significant adoptability benefits. Third,
AspectWerkz lacks static type checking of advice parameters.
Rather, reflective information is marshaled from the JoinPoint
arguments to advice methods.

The design of Caesar [19] is also closely related to our approach.
The aim of Caesar was to decouple aspect implementation and the
aspect binding with a new feature called an aspect collaboration
interface (ACI). By separating these concepts from aspect
abstraction, Caesar enables reuse and componentization of
aspects. This approach is similar to ours and to AspectWerkz in
that it uses plain Java to represent both classes and aspects;
however, it represents advice using AspectJ like syntax. Methods
and advices are still separate constructs, and advice constructs
couples crosscut specifications with advice bodies. Consequently,
as in AspectJ, advice bodies are still not addressable as individual
entities. They can be advised as a group using an advice-execution
pointcut. In Caesar, as in Eos-U, advice can be bound statically or
dynamically; however, aspects in Caesar cannot directly advise
individual objects on a selective basis. Both first class aspect
instances and instance-level advising are essential for expressing
integration concerns as aspects [24][27].

Aspect languages such as HyperJ [30][31] have one unit of
modularity, classes, with a separate notation for expressing
bindings. However, they do not support program control over
aspects as first-class objects, and to date the join point models that
they have implemented have been limited mainly to methods [11].

11. CONCLUSION
The main contribution of this work is a novel synthesis of object-
and aspect-oriented programming language constructs and design
methods, including the Eos-U language, a compiler able to handle
production code, and evidence that suggests that this synthesis has
potentially significant benefits in aspect-oriented program design.
In particular, we showed that the classpects provides a new level
of support for modularizing what we identified and characterized
as higher-order crosscutting concerns. This work creates a timely
opportunity to rethink the two-level ontology for aspect-oriented
programs that the original separation of aspects and objects
entailed.

12. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grants ITR-0086003 and CCF-0429786. We
thank the anonymous reviewers for their helpful comments and
Gregor Kiczales for recounting the origin of aspects as separate
from objects.

13. REFERENCES
[1] AspectJ : http://eclipse.org/aspectj

[2] AspectC++, http://www.aspectc.org.

[3] AspectR: “Simple Aspect Oriented Programming in Ruby,”
http://aspectr.sourceforge.net/.

[4] AspectWerkz: http://aspectwerkz.codehaus.org/

[5] Aldrich, J., "Open Modules: A Proposal for Modular
Reasoning in Aspect-Oriented Programming.", In the Proceedings
of the Workshop on Foundations of Aspect Languages (FOAL
’04), March 2004.

[6] Brooks, F. P. Jr., "The Mythical Man-Month: Essays on
Software Engineering", Addison-Wesley, 1975.

[7] Dijkstra, E. W., "The Humble Programmer",
Communications of the ACM, Vol 15, No: 10, pp. 859-866, 1972.

[8] Eos: http://www.cs.virginia.edu/~eos

[9] Garlan, D., and Notkin, D., “Formalizing Design Spaces:
Implicit Invocation Mechanisms”. VDM '91: Formal Software
Development Methods, Oct. 1991.

[10] Filman, R. E., and Friedman. D. P., "Aspect oriented
programming is quantification and obliviousness", In OOPSLA
2000 Workshop on Advanced Separation of Concerns,
Minneapolis, MN, Oct. 2000.

[11] Harrison W., Ossher H., and Tarr P., “Asymmetrically vs.
Symmetrically Organized Paradigms for Software Composition”,
IBM Research Report RC22685 (W0212-147) December 30,
2002.

[12] Hirschfeld, R., "AspectS -- Aspects in Squeak",
ECOOP'2002 Workshop on Generative Programming, Jun 2002.

[13] Kiczales, G., “Personal Communication with Kevin
Sullivan”, Jan 2005.

[14] Kiczales, G., “The fun has just begun”, Key note address of
2nd International Conference on Aspect-Oriented Software
Development, Boston, MA, 2003.

[15] Kiczales, G.., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J., “Aspect-oriented
programming,” Proceedings of the European conference on
object-oriented programming (ECOOP), Springer-Verlang,
Lecture Notes on Computer Science 1241, June 1997.

[16] Laddad, R., “AspectJ in Action: Practical Aspect-Oriented
Programming”, Manning publications, 2004.

[17] Lamping, J., “The role of the base in aspect-oriented
programming”, First Workshop on Multi-dimensional separation
of concerns in object-oriented systems (at OOPSLA '99).

[18] MacLennan, B. J., “Principles of Programming Languages:
Design, Evaluation, and Implementation”, 3rd Edition, Oxford
University Press, 1999.

[19] Mezini, M., and Ostermann, K., “Conquering Aspects with
Caesar”, Proceedings of the 2nd international conference on
Aspect-oriented software development (AOSD 03), Mar 2003,
Boston, MA, USA, pp. 90-100.

[20] C#: http://msdn.microsoft.com/net/ecma/.

[21] .Net Framework: http://msdn.microsoft.com

[22] Parnas, D. L., "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM,
15(12):1053–1058, Dec 1972.

[23] Rajan, H. and Sullivan, K., “Eos: Instance-Level Aspects for
Integrated System Design”, Proceedings of the 9th European
software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software

engineering (ESEC/FSE 03), Helsinki, Finland, Sep 2003, pp
291-306.

[24] Rajan, H. and Sullivan, K., "Need for Instance Level Aspects
with Rich Pointcut Language", Workshop on Software
Engineering Properties of Languages for Aspect Technologies
(SPLAT) held in conjunction with 2nd international conference on
Aspect-oriented software development, Boston, MA, USA, Mar
2003.

[25] Sakurai, K., Masuhara H., Ubayashi N., Matsuura, S.,
Komiya S., "Association Aspects", Proceedings of the 3rd
international conference on Aspect-oriented software
development (AOSD 04), Lancaster, UK, Mar 2004, pp. 16-25.

[26] Sullivan, K., “Mediators: Easing the Design and Evolution of
Integrated Systems”, Ph.D. dissertation, University of
Washington, 1994.

[27] Sullivan, K., Gu, L., Cai, Y., “Non-modularity in Aspect-
Oriented Languages: Integration as a Crosscutting Concern for

AspectJ”, Proceedings of the 1st international conference on
Aspect-oriented software development (AOSD 02), Enschede, The
Netherlands, Apr 2002, pp. 19-26.

[28] Sullivan, K. and Notkin, D., “Reconciling environment
integration and software evolution”, ACM Transactions on
Software Engineering and Methodology 1, 3, July 1992, pp. 229–
268.

[29] Sullivan, K., Kalet, I., Notkin, D., "Evaluating the mediator
method: Prism as a case study", IEEE Transactions on Software
Engineering, Vol. 22, No. 8, August 1996. pp. 563-579.

[30] Tarr, P. and Ossher, H., "Multi Dimensional Separation of
Concerns using Hyperspaces", IBM Research Report 21452,
April, 1999.

[31] Tarr, P. and Ossher, H., “Hyper/J™ User and Installation
Manual”, IBM Corporation.

