

One More Step in the Direction of Modularized Integration Concerns

Hridesh Rajan
University of Virginia
hr2j@cs.virginia.edu

1. Research area

Component integration, ease of design and evolution of
integrated systems.

2. Problem statement

Component integration creates value by automating the
costly and error-prone task of imposing desired behavioral
relationships on components manually. Requirements for
component integration, however, complicate software
design and evolution in several ways: first, they lead to
coupling among components; second, the code that
implements various integration concerns in a system is
often scattered over and tangled with the code
implementing the component behaviors. Straightforward
software design techniques map integration requirements
to scattered and tangled code, compromising modularity
in ways that dramatically increase development and
maintenance costs.

3. Prior research

Designing integrated systems using simple object
oriented techniques requires components to refer to other
components with which they are integrated, resulting in a
names relationship with the other component.
Components to observe the desired behavior will need to
invoke each other, which will be achieved by calling each
other and thus there will a name dependence between
these components resulting in coupling and preventing
separate compilation, link, test, use, etc.. Integration
concern is scattered and tangled across the components
resulting in code complexity and non-modularity in
design.

Implicit invocation techniques [3], e.g. subject-
observer pattern, allow better management of names
relationship. In this design technique, observers register
with subjects that in turn implicitly invoke them without
naming them. Observer still names and invokes the
subject. In addition, the integration concern is still
scattered and tangled across the components.

The mediator-based design approach [12][13] was
developed to enable the modular representation of
behavioral relationships to ease component integration.
The Behavioral relationship is defined as a protocol for
coordinating the control, actions, and states of subsets of
system components to satisfy part of the integration
requirements for the system. Integration concern is largely
modularized and represented as object-oriented mediator
classes. Integration is achieved by declaring events as part
of the component's interface. Mediators then register with
these exposed events to receive notifications to create the
required invocation relations from components to
mediators without inducing names dependences, however,
the event declaration, announcement, and registration
code, which is related to the integration concern, is still
scattered across the component. Further, mediator
requirements dictate the need for events declared and
announced by a component.

4. Research hypothesis

Recent aspect-oriented [7] techniques seek modular
representation of requirements that otherwise map to
tangled and scattered code, and so to poorly modularized
and unnecessarily costly designs. An aspect in such
techniques is a modular representation of a crosscutting
concern, while a mediator is a modular representation of a
behavioral relationship (integration concern), which can
be seen as a particular kind of crosscutting concern.

AO methods thus suggest an improvement on the
existing state of the art in component integration. The
mediator approach demands explicit registration with
explicitly declared and announced events. AO languages,
by contrast, provide join points as implicit, language-
defined events, and pointcuts, which enable implicit
registration with quantified subsets of join points.

As described before mediators do not fully modularize
behavioral relationships, for two reasons. First, they
impose constraints on the components to be integrated—
that they must expose events matching the needs of
mediators—thus components classes might have to change
to accommodate new mediators. Second, a mediator
integrating a quantified set of components will have to be

changed to register with different events if that set
changes.

The research hypothesis is to use aspects as mediators,
with join points and pointcuts instead of explicit events.
Because AO components implicitly expose join points as
events, no explicit declarations are needed. Because
pointcuts are predicates on join points, changes in
registration can occur automatically.

5. Solution approach

To ease the design and evolution of integrated systems,
mapping of the mediator approach into the design space of
AspectJ [1] was attempted. The results [10][14] were
encouraging but mixed and revealed some shortcomings
of the AspectJ design with respect to its usability in this
context. The language does not provide first-class aspect
instances or instance-level advising, by which we mean
the instantiation of aspects using new, and selective
advising of the join points of individual object instances.
Rather, the model is one of aspects as constructs that
modify classes, thus all instances of a given class. Work-
arounds are possible, but incur unnecessary performance
and design costs.

Another disadvantage of AspectJ-like languages is that,
although its join point model is rich relative to many
languages said to be aspect-oriented, it is nevertheless
limited. A benefit of explicit events is that they can be
declared at will and can be given arbitrary semantics. For
example, a mediator might have to respond if one branch
of an if statement is taken but not the other (e.g.,
representing successful insertion of an element into a
collection). In Prism [15], an integrated environment for
radiation treatment planning—itself a major test of the
mediator approach, such events were routine. AspectJ-
like languages do not expose such events as join points.

In order to map mediators to aspects in a completely
satisfactory way, current language model of AspectJ-like
languages needs to be generalized in the following
dimensions: first, support for instance-level advising and
first class aspect instances needs to be added, and second
the join point model needs to be extended to expose a far
wider set of execution phenomena. In the extreme, every
significant event in the operational semantics of the
language becomes visible as a join point. A challenge will
be to find reasonable ways to name them using pointcuts.

Expanding the join point model beyond join points
anchored to the interface elements raises some issues [9]
regarding the stability of the reference to the join points
and the degree of unpredictability that will result from
incorporating a wider set of execution phenomenon as join
points. There are similar concerns for reasoning about
implicit invocation and there has been some work in this
direction [2], [4], [5], and [6]. We aim to exploit the

mapping from implicit invocation space to aspect-oriented
space and existing body of knowledge on reasoning about
implicit invocation to enable reasoning about aspect-
oriented programming in general and the fine-grained join
point model provided by our work in particular.

6. Contributions

This research will make the following contributions:
I. Language model of the AspectJ-like languages will

be extended with first-class aspect instances,
instance-level advising and finer-grained join point
model,

II. Proof of concept that the resulting model supports a
full fledged, aspect-oriented variant of mediator-
based design that relieves developers of the need for
explicit event declaration, announcement, and
registration,

III. Mapping from implicit invocation space to aspect-
oriented programming space and utilization of the
existing body of knowledge in reasoning about the
implicit invocation will enable reasoning about
aspect-oriented programming,

IV. Further modularization of integration concerns by
enabling component integration without requiring
any change in components.

7. Evaluation

To evaluate the claims we are implementing an
AspectJ-like extension to C# [8] language called Eos [11].
The Eos compiler supports the complete C# language as
well as AspectJ-like constructs, instance-level aspects. We
are currently analyzing the tradeoffs associated with
expanding the join point model and defining appropriate
pointcut expressions to be used for selecting these new
join points.

To test the hypothesis that Eos supports the design of
realistic systems using aspect instances as mediators, we
have already implemented, in Eos, key mediator structures
used in the design of Prism. This initial implementation of
these mediator structures revealed shortcomings of the
join point model and the need for exposing more type of
events as join points. We will be revisiting these structures
once Eos is equipped with a fine-grained join point model.

In addition to Prism, we are also experiencing real
needs for component integration in the Eos compiler itself
and we will use it as a second case study of our approach.
We are also exploring the open source projects available
for potential case studies. Eos compiler is available for
research and teaching purposes. The use of compiler for
experimental and real world projects might lead to more
case studies.

8. References

[1] AspectJ: www.eclipse.org/AspectJ

[2] Bradbury, J., and Dingel, J., "Evaluating and Improving the
Automatic Analysis of Implicit Invocation Systems".
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE'03). Helsinki, Finland. September
2003.

[3] Garlan, D., and Notkin, D., “Formalizing Design Spaces:
Implicit Invocation Mechanisms”. VDM '91: Formal
Software Development Methods, pp. 31--44 (October
1991).

[4] Dingel, J., Garlan, D., Jha, S., and Notkin, D., "Reasoning
about Implicit Invocation", Proceedings of the Sixth
International Symposium on the Foundations of Software
Engineering (FSE-6), Lake Buena Vista, FL, November
1998.

[5] Garlan, D., and Khersonsky, S., "Model checking implicit-
invocation systems.", In Proc. of the 10th Int’l Workshop
on Software Specification and Design, Nov 2000.

[6] Garlan, D., Khersonsky, S., and Kim, J. S., "Model
checking publish-subscribe systems." In Proc. of the 10th
Int’l SPIN Workshop on Model Checking of Software,
May 2003.

[7] Kiczales, G.., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J. and Irwin, J., “Aspect-oriented
programming,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Springer-
Verlang, Lecture Notes on Computer Science 1241, June
1997.

[8] Microsoft. C# Specification Homepage.
http://msdn.microsoft.com/net/ecma/.

[9] Ossher, H., and Tarr, P., “Operation-Level Composition: A
Case in (Join) Point”, Workshop on aspect-oriented
programming, ECOOP 1998.

[10] Rajan, H., and Sullivan, K., "Need for Instance Level
Aspects with Rich Pointcut Language", In the proceedings
of the Workshop on Software Engineering Properties of
Languages for Aspect Technologies (SPLAT) held in
conjunction with AOSD 2003, Boston, MA, USA, Mar
2003.

[11] Rajan, H., and Sullivan, K., “Eos: Instance-Level Aspects
for Integrated System Design”, 2003 Joint European
Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering
(ESEC/FSE 03), Helsinki, Finland, Sept 2003.

[12] Sullivan, K., “Mediators: Easing the Design and Evolution
of Integrated Systems”, Ph.D. dissertation, University of
Washington, 1994.

[13] Sullivan, K. and Notkin, D., “Reconciling environment
integration and software evolution,” ACM Transactions on
Software Engineering and Methodology 1, 3, July 1992,
pp. 229–268 (short form: Proceedings of the 4th SIGSOFT
Symposium on Software Development Environments,
1990, pp. 22–33).

[14] Sullivan, K., Gu, L., Cai, Y., “Non-modularity in Aspect-
Oriented Languages: Integration as a Crosscutting Concern
for AspectJ,” Proceedings of Aspect-Oriented Software
Design, 2002

[15] Sullivan, K., Kalet, I., Notkin, D., “ Evaluating the
mediator method: Prism as a case study,” IEEE
Transactions on Software Engineering, Vol. 22, No. 8,
August 1996.

