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ABSTRACT
Popularity of data-driven software engineering has led to an increas-

ing demand on the infrastructures to support efficient execution of

tasks that require deeper source code analysis. While task optimiza-

tion and parallelization are the adopted solutions, other research

directions are less explored. We present collective program analysis
(CPA), a technique for scaling large scale source code analyses, es-
pecially those that make use of control and data flow analysis, by

leveraging analysis specific similarity. Analysis specific similarity

is about, whether two or more programs can be considered similar

for a given analysis. The key idea of collective program analysis

is to cluster programs based on analysis specific similarity, such

that running the analysis on one candidate in each cluster is suf-

ficient to produce the result for others. For determining analysis

specific similarity and clustering analysis-equivalent programs, we

use a sparse representation and a canonical labeling scheme. Our

evaluation shows that for a variety of source code analyses on a

large dataset of programs, substantial reduction in the analysis time

can be achieved; on average a 69% reduction when compared to a

baseline and on average a 36% reduction when compared to a prior

technique. We also found that a large amount of analysis-equivalent

programs exists in large datasets.
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1 INTRODUCTION
Data-driven software engineering technique has gained popularity

in solving variety of software engineering (SE) problems, such as
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defect prediction [9], bug fix suggestions [20, 21], programming

pattern discovery [34, 40], and specification inference [1, 23, 26, 44].

The solutions to these SE problems generally require expensive

source code analyses, such as data-flow analysis. Parallelization

and task optimizations are the two widely adopted techniques to

scale source code analyses to large code bases [5, 11, 18].

We propose collective program analysis (CPA), a complementary

technique that leverages analysis specific similarity to scale source

code analysis to large code bases. The key idea of CPA is to cluster

programs based on analysis specific similarity, such that running

the analysis on one candidate in each cluster is sufficient to produce

the result for others. For instance, if a user wants to run an analysis

to check for null dereference bugs in millions of programs, CPA
would run the analysis on only the unique programs and reuse the

results on others.

The three core concepts in CPA are the concept of analysis spe-
cific similarity, the technique of abstractly representing programs

to reveal analysis specific similarity, and the technique of storing

and reusing the analysis results between similar programs. Analysis

specific similarity (or analysis equivalence) is about, whether two

or more programs can be considered similar for a given analysis.

Programs can be considered similar if they execute the same set

of instructions in the analysis. For instance, if an analysis is about

counting the number of assert statements, irrespective of how dif-

ferent the two programs are, if they have the same number of assert

statements, they can be considered similar for the purpose of the

assert counting analysis.

Code clones are the popularway of representing similar code [28].

Syntactic clones represent code fragments that are look alike (at

token-level or AST-level), semantic clones represent code fragments

that have similar control and data flow, functional clones repre-

sent code fragments that have similar input and output behaviors,

and behavioral clones are the code fragments that perform similar

computation. We did not use syntactic clones, because the bene-

fits will be limited to copy-and-paste code. Semantic clones could

not be used, because of lack of guarantee that analysis output will

be similar. Moreover, semantically different code fragments may

produce similar output for a given analysis and we would miss

out on those. For the same reason, we also could not use the func-

tional and behavioral clones. For these reasons, we go beyond the

existing notion of similarity and define analysis specific similarity.

We show that for analysis expressed in the lattice-based data-flow

framework, we can use the transfer functions to identify analysis

specific similarity.

Programs may have statements that are irrelevant for the given

analysis. These are the statements that do not contributes to the

analysis output. For identifying the analysis specific similarity it

is necessary to remove the irrelevant statements and abstractly

https://doi.org/10.1145/3180155.3180252
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1public void writeObj( String filename) {
2 try {
3 FileWriter file = new FileWriter(filename) ;
4 for (..)
5 file . write (...) ;
6 ...
7 file . close () ;
8 } catch (IOException e) {
9 e . printStackTrace () ;
10 }
11 }

1public static void main(String[] args ) {
2 try {
3 ...
4 OutputStream out = new FileOutputStream(" ...

" ) ;
5 ...
6 out . close () ;
7 } catch (Exception e) {
8 e . printStackTrace () ;
9 }
10 }

1public void loadPropertyFile ( String file ,...) {
2 try {
3 try {
4 ...
5 } catch (Exception e) {}
6
7 BufferedInputStream bis = new Buffered ...
8 ...
9 bis . close () ;
10 } catch (Exception ex) {
11 throw new WrappedRuntimeException(ex);
12 }
13 }

Figure 1: The threemethods extracted from our SourceForge dataset that have different resource usage patterns, however there
exists a similarity that all of them may lead to a resource leak.

represent the reduced program. We use a sparse representation to

remove the irrelevant statements without sacrificing the precision

of the result [38]. Comparing sparse representations to determine

analysis equivalence becomes a graph isomorphism problem for

data-flow analysis that have sparse control flow graphs. We use a

canonical labeling scheme to make this comparison efficient [43].

Using the labeling scheme we can produce unique patterns to facil-

itate the comparison. For reusing the results between the analysis

equivalent programs, we store the results in an efficient key-value

store based pattern database [25].

We evaluate our approach by measuring the reduction in the

analysis time for 10 source code analysis tasks that involve data-flow

analysis. We use two large datasets of programs: a DaCapo dataset

containing DaCapo 9.12 benchmarks [6] and 287 thousand methods,

a SourceForge dataset containing 4,938 open-source SourceForge

projects and 6.8 million methods. When compared to a baseline

that runs the analysis on every program in the dataset, CPA reduces
the analysis time by 69% on average and when compared to another

technique that removes irrelevant program statements prior to

running the analysis, CPA reduces the analysis time by 36% on

average. We also see a large amount of reuse opportunities in our

datasets for almost all analyses.

2 MOTIVATING EXAMPLE
Consider a Resource Leak analysis that identifies possible resource

leaks in the programs by tracking the resources that are acquired

and released throughout the program by performing a flow analy-

sis [37]. The analysis reports a problemwhen any acquired resource

is not released on every path in the program.
1
If a user wants to run

this analysis on a large code base that contains millions of methods,

he would end up running the analysis on every method in the code

base. An optimization can be performed to skip analyzing meth-

ods that do not contain resource related statements, however the

methods that have resource related statements must be analyzed.

To illustrate, consider the three methods writeObj, main, and
loadPropertyFile extracted from our SourceForge dataset shown
in Figure 1. These three methods differ by syntax, semantics, func-

tionality, and behaviorally, however for the resource leak analysis

1
There exists a finite number system resources, such as files, streams, sockets, database

connections, and user programs that acquire an instance of a resource must release

that instance by explicitly calling the release or close method. Failure to release the

resource could lead to resource leak or unavailability.

they all behave similar, because all of them acquire a resource and

release along one of the execution paths, leading to a resource leak

(In event of exception, the resource is not released). Although the

three methods were similar for the resource leak analysis, all of

them were analyzed to report leak. If there existed a technique that

could capture this similarity, it could perform the analysis on any

one of these three methods and simply return true for the other
two methods, indicating a resource leak.

When analyzing a small number of methods or a handful of

projects, there may not exist a lot of analysis specific similarity

between the source code elements, such as methods, however in

case of large code bases, a large amount of analysis equivalent meth-

ods exists. For instance, the resource usage pattern leading to a

leak shown in Figure 1 exists in 5151 methods in our SourceForge
dataset. This means that, we only need to run the resource leak

analysis on one method out of 5151 and reuse the result (in this

case whether a leak exists or not) for the remaining 5150 methods.

The SourceForge dataset contains a total of 82,900 methods that

have resource related code out of 6,741,465 methods in the dataset.

We were able to see 5689 unique patterns and the leak pattern dis-

cussed here appears in the top 3 patterns. Likewise, when analyzing

large code bases, there exists a large amount of analysis equivalent

codes and a large percentage of reuse opportunity to utilize for

accelerating the overall analysis of large code bases.

3 CPA: COLLECTIVE PROGRAM ANALYSIS
Figure 2 provides a high-level overview of collective program anal-

ysis (CPA). Given a source code analysis that needs to be run on a

large dataset of programs, we first run a light-weight pre-analysis

on each program that identifies and removes irrelevant parts of the

program, and labels the remaining statements (the analysis relevant

statements). This labeled compact program is called a sparse repre-

sentation. We then generate a pattern for the sparse representation

and check the pattern against a pattern database. If the pattern

is not found, the analysis is run on the sparse representation to

produce the result, whereas if the pattern already exists, then the

stored result is extracted and returned as the analysis output.

While our solution looks intuitive, there exists several challenges

in realizing CPA. For example, how to generate a sparse representa-

tion given an analysis and a program, how to generate a pattern for
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Figure 2: An overview of Collective Program Analysis (CPA)

sparse representation such that analysis equivalent sparse represen-

tations can be identified, and how to utilize the sparse representa-

tion to reuse the analysis results. We will describe these challenges

and our solutions in detail. But, first we describe the analysis model

under assumption.

3.1 The Analysis Model
A source code analysis can be performed either on the source code

text or on the intermediate representations like abstract syntax

trees (ASTs), control flow graphs (CFGs), etc. A control and data

flow analysis is performed on a CFG and is often expressed using

the lattice-based data-flow framework [24]. In this framework, a

data-flow analysis is described by defining a lattice, which describes

the set of values to be associated with program statements, and a set

of transfer functions that describes how each program statement

transforms the input values to output values.
2
Two sets of data-

flow values are maintained at each node: IN and OUT that describes

the input and output values at each node. The data-flow analysis

solves a set of flow equations involving the two sets IN and OUT,
and transfer functions. Based on the data-flow values computed at

the nodes, assertions can be made about the program behavior. For

example, the Resource Leak analysis described in the motivation

section maintains a set of variables representing the resources as

data-flow values and it has mainly three kinds of transfer functions

for handling resource acquire, resource release, and resource

copy/aliasing.3 From hereon, whenever we refer to analysis, we

mean the data-flow analysis expressed in this framework.

Definition 3.1. AControl FlowGraph of a program is a directed

graph CFG = (N ,E,n0,ne ), with a set of nodes N representing

program statements and a set of edges E representing the control

2
A merge operator that describes how two data-flow values can be combined, a partial

order that describes the relation between values, and top and bottom values are also

provided. However, for describing CPA, transfer functions are sufficient.

3
We ignore the method calls for simplifying the description, however in our imple-

mentation the method calls are over-approximated.

flow between statements. n0 and ne denote the entry and exit nodes
of the CFG.

4

3.2 Sparse Representation
Given an analysis and a large set of programs, we perform a pre-

analysis on each program to produce a sparse representation. A

sparse representation is a reduced program that contains only the

statements that are relevant for the analysis. Intuitively, a program

statement is relevant for an analysis, if it contributes to the analysis

output (or generates some information).With respect to the analysis

model under consideration, the relevancy is defined as follows:

Definition 3.2. A program statement is relevant for an analysis,

if there exists a non-identity transfer function for that statement in

the analysis. That is, if the analysis has defined a transfer function

f ki for statement i , where k represents the transfer function kind

and f k , ι, then i is relevant for the analysis. In the data-flow

analysis model there always exists an identity transfer function ι
along with the user defined transfer functions to represent those

statement that have no effect on the analysis output.

Definition 3.3. Given a program P with a set of statements S , a
sparse representation is a tuple, < P ′,M >, where P ′ contains a
subset of the statements S ′ ⊆ S , such that ∀i ∈ S ′, i is a relevant
statement. M : S → f k is a map that provides the information

about the kind of the transfer function that is applicable to each

relevant statement i in set S ′.

As CPA takes data-flow analysis and the control flow graphs

(CFGs) of programs, we have to generate the sparse representations

of CFGs. For this purpose, we utilize a prior work that proposes

reduced control flow graphs (RCFGs) [38]. In a nutshell, a RCFG is a

reduced CFG that contains only those nodes for which there exits a

non-identity transfer function in the analysis. RCFG is constructed

using a pre-analysis that takes an analysis specification and a CFG

4
A CFG may contain multiple exit points, however we connect them to a auxiliary

exit node.
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as input, extracts all the conditions for the analysis transfer func-

tions and checks the conditions against the CFG nodes to identify

analysis relevant nodes. We extended RCFG to also store the kind

of the transfer function that are applicable to CFG nodes as special

properties of nodes. This information is required in a later stage of

the CPA to generate patterns for CFGs.

0:START

1:C

2:acquire

4:END

3:release

Figure 3: Sparse representation of writeObj method shown
in Figure 1.

To provide a concrete example of a sparse representation, let us

revisit the Resource Leak analysis described in our motivation and

the writeObj method shown in Figure 1. The Resource Leak anal-
ysis contains three kinds of transfer functions: acquire, release,
and copy. Using the transfer functions, we can identify the rele-

vant statements in the writeObj method. The relevant statements

for this method are at line 3 and line 7, because line 3 creates a

FileWriter resource variable and it has an associated transfer func-
tion acquire, and line 7 releases the resource by invoking close
method and it has an associate transfer function release. All other
statements do not have an associated transfer function and hence

are considered irrelevant and removed except some special nodes,

such as START and END. RCFG also retains the branch nodes that

have at least one successor with a relevant statement. The resulting

sparse representation is as shown in Figure 3. This graph is a RCFG

of the writeObj method. It contains two nodes 3 and 7 that have

non-identity transfer functions acquire and release respectively

and a special branch node marked C.

3.3 Analysis Equivalence
Given the sparse representations of programs, our next problem

is to find similarities between them. In case of sparse representa-

tions of CFGs, finding similarities is a graph isomorphism problem

with respect to certain labeling scheme. A prior work gspan [43]

has proposed using a Depth-first search (DFS) code as the unique

canonical label for graphs to find isomorphism. We utilize the DFS

code technique for obtaining the canonical form of the sparse rep-

resentation.

Given a graph (directed or undirected) with nodes and edges, a

DFS Code is an edge sequence constructed based on a linear order,

≺T by following rules (assume e1 = (i1, j1), e2 = (i2, j2), where
e1, e2 are edges and i, j are node ids):

• if i1 = i2 and j1 < j2, e1 ≺T e2,
• if i1 < j1 and j1 = i2, e1 ≺T e2, and
• if e1 ≺T e2 and e2 ≺T e3, e1 ≺T e3.

Each edge in theDFS code is represented as a 5-tuple: <i,j,li ,l(i, j ) ,lj>
where i, j are node ids, li , lj are node labels, and l(i, j ) represents
the edge label of an edge (i, j ).

In the DFS code that we generate, we use only 4-tuple and ignore

the edge label l(i, j ) , because it is only required for multi-edge graphs

and CFGs are not multi-edge graphs. For node labels, we use the

transfer function kinds. For instance, for the Resource Leak analysis,
we use acquire, release and copy for node labels. Note that, every
node in the sparse representation of the CFG has an associated non-

identity transfer function. Figure 4 shows the DFS code constructed

for the sparse graph of writeObj method shown in Figure 1. As

shown in the figure, each edge is represented as a 4-tuple. For

instance, edge from node 2 to node 3 is represented as (2, 3, acquire,
release). By following the the ≺T order, we obtained the DFS code

shown in the figure.

Figure 4: DFS code for the sparse control flow graph of the
writeObjmethod shown in Figure 1.

An undirected graph could have several DFS codes (based on the

starting node) and the minimum DFS code provides the canonical

label, such that if two graphsG andG ′ that have the same minimum

DFS codes are isomorphic to each other [43].

Theorem 3.4 (Isomorphic graphs produce eqal DFS code).

Given two graphsG andG ′,G is isomorphic toG ′ iff, their minimum
DFS codes are equal.

Proof. The proof is based on [43].

Theorem 3.5 (A CFG has a uniqe, minimal DFS code). A CFG
always has a single DFS code that is minimum, because there exists a
single start node and the edges are directed.

Proof Sketch. The proof is by contradiction. Consider that a CFG
has two DFS codes C1 and C2. Both C1 and C2 must have the same
first edge because there exists only one start node for a CFG. From
the destination node of the first edge, C1 and C2 might have two
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different edges. However, this is not possible because the next edge is
picked by following the linear order ≺T , which is deterministic and it
always picks the same edge. If this process of picking the next edge is
continued to form the edge sequences in C1 and C2, we can see that
both C1 and C2 must have the same edges in the same order in the
sequences.

Given that we have a mechanism to encode the sparse graphs as

DFS codes, we define analysis equivalence of sparse representations

of CFGs as graphs with same DFS code.

Definition 3.6. (Analysis Equivalence) Two CFGs G1 and G2

are equivalent for a given analysis or analysis equivalent if the DFS
codes of the corresponding sparse graphs are same.

To provide a concrete example, consider the Resource Leak analy-
sis and the three methods writeObj, main, and loadPropertyFile
shown in Figure 1. Although the CFGs of these three methods are

different, after removing all the irrelevant nodes, the sparse graphs

obtained are same, as shown in Figure 3. For this sparse graph, the

DFS code constructed is shown in Figure 4. As these three methods

have the same DFS code, their sparse representations are analysis

equivalent.

An important property of the analysis equivalent sparse repre-

sentations is that the analysis output for these graphs are similar.

When we say similar, we mean that the analysis executes exactly

same set of instructions to compute results for nodes in the two

sparse representations. We formulate this property as a theorem

and provide proof sketch.

Theorem 3.7 (Analysis eqivalence implies result similar-

ity). Two analysis equivalent sparse representations produces similar
results.

Proof Sketch. Two analysis equivalent sparse representations will
have same number of nodes and each node is associated with the same
kind of transfer function, which means that the result produced at
nodes are similar (by the application of the transfer functions). The
flow of results between the nodes in two sparse representations is
also similar because the edges between the nodes in the two sparse
representations are also similar. This means that, if the two sparse
representations starts off with an initial state (often top element of
the data-flow analysis), they must produce similar results.

3.4 Leveraging Analysis Specific Similarity
In the previous section, we described a technique for identifying

the analysis specific similarity between programs, the final step

of CPA is to cluster programs and reuse the analysis results. We

use a pattern database [25] to store the DFS codes of the sparse

representations as keys and analysis results as values. As described

in our overview diagram shown in Figure 2, after producing the

DFS codes for sparse representations, our approach first checks

whether a result is already present in the database. We define the

presence of the DFS code as a hit and the absence as miss. In case

of a hit, we simply return the stored result. In case of a miss, we

run the analysis on the sparse representations to produce the result

and store the result along with the DFS code into the database for

future use.

We require that analysis results of sparse representations cannot

contain any concrete program data, for instance, variable names.

While the analysis can compute any concrete result for each pro-

gram statement, the analysis results for the sparse representation

must be free from the concrete program data. For example, Re-
source Leak analysis collects and propagates the variable names of

resource variables, however at the end it produces a boolean asser-

tion indicating “whether a resource leak exists in the program?”.

This is not a severe restriction for CPA to be applicable, because the

analyses can still compute program specific outputs, however the

final output has to be an assertion or any result that is free from

program specific data.

4 EVALUATION
The main goal of our approach is to accelerate large scale source

code analysis that involves control and data-flow analysis, hence

we mainly evaluate the performance. However, we also present

our correctness evaluation along with some interesting results of

applying CPA. Below are the research questions answered in this

section.

• RQ1. Howmuch can our approach (CPA) speed up the source
code analyses that involves analyzing thousands andmillions

of control flow graphs?

• RQ2. Howmuch reuse opportunity exists when performing

collective program analysis?

• RQ3. What is the impact of the abstraction (in the form of

sparse representation) on the correctness and precision of

the analysis results?

4.1 Performance
4.1.1 Methodology. We compare our approach against a base-

line that runs the analysis on all programs in the dataset with-

out any optimization or reuse. We also compare against a prior

work [38, 39] that identifies and removes irrelevant statements

prior to analyzing programs. We measure the analysis time for all

three approaches (CFG, RCFG, and CPA) and compute the percentage

reduction in the analysis time of CPA over CFG (denoted as R) and

RCFG (denoted as R’) respectively. The analysis times were aver-

aged over the last three runs, when the variability across these

measurements is minimal (under 2%) by following the methodology

proposed by Georges et al. [16]. Note that, the cache (or pattern
database) is cleared after every run to ensure same setting for each

run. Our experiments were run on a machine with 24 GB of memory

and 24-cores, running on Linux 3.5.6-1.fc17 kernel.

4.1.2 Analyses. We have used 10 source code analyses to eval-

uate our approach as listed in Table 1. We used several criteria to

select the candidate analyses. We have included analyses to ob-

tain maximum coverage over the flow analysis properties, such

as analysis direction (forward, backward), merge operation (union,
intersection), complexity of the analysis, and complexity of the data-

structures used to store the analysis results at nodes. The analyses

are written using Boa [11–13], a domain specific language (DSL)

for ultra-large-scale mining and we have used Boa compiler and

runtime for executing the analyses. Next, we briefly describe each

analysis used in our evaluation.
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Table 1: Analyses used in our evaluation.

# Analysis Description

1 Avail Expression optimization opportunities

2 Dom Control flow dominators

3 Escape Escape analysis

4 Leak Resource leaks

5 Live Liveness of statements

6 MayAlias Local alias relations

7 Null Null check after dereference

8 Pointer Points-to relations

9 Safe Unsafe synchronizations

10 Taint Vulnerability detections

Avail. [24] Available expression analysis tries to find optimiza-

tion opportunities in the source code, such as value of a binop ex-

pression computed once can be reused in the later program points,

if the variables in the expression are not re-defined. This is a stan-

dard compiler optimization drawn from the textbook. We included

this analysis to represent how an optimization problem can ben-

efit from CPA. The analysis will report if there exists one or more

optimization opportunities.

Dom. [2] Control flow dominators are useful in many analyses

that requires control dependence, for instance in computing the

program dependence graph (PDG), however computing the domi-

nators is expensive, hence we included this in our list of analyses

to demonstrate how our technique can accelerate computing domi-

nators. This is also a special kind of analysis, where all nodes are

relevant for the analysis and the sparse representation constitutes

the whole CFG. The analysis will report a map containing a list of

dominators for each CFG node.

Escape. [42] Escape analysis computes whether the objects allo-

cated inside methods stay within the method (captured) or escapes

to another methods. This information is useful to decide whether to

allocate memory for such objects in the stack instead of heap. The

analysis outputs true, if there exists any captured objects, otherwise
false.

Leak. [37] This is a resource leak checker that captures the re-

source usage in programs to identify possible leaks. The analysis

tracks all 106 JDK resource related API usages in programs. If any

resource acquired is not released at the exit node, it outputs that

leak may exist.

Live. [24] This analysis tracks the liveness of local variables

used in the program. There exists many client applications of this

analysis such as identifying and removing the dead code, register al-

location, etc. This analysis simply reports all the variable definition

and use sites along with their control flow dependencies.

MayAlias. [30] Precisely computing the alias information is ex-

pensive and sometimes may not be possible. In such situations,

computing the may alias information by following the direct as-

signments can be handy. This may alias analysis computes the alias

information and reports the alias sets.

Null. [7] This analysis checks if there exists a dereference that
is post-dominated by a null check. Such a pattern indicates that

the dereference may cause null pointer exception, because it can

be null. The analysis reports if there exists such problems in the

program.

Pointer. [31] Pointer or points-to analysis implemented here

is a flow-sensitive and context-insensitive points-to analysis. It

computes the points-to graph. A points-to graph provides the infor-

mation whether the variables in the program may point to the same

memory location. This analysis outputs the points-to graph with

abstract variables and nodes (meaning concrete variable names are

mapped to symbols).

Safe. [37] The safe synchronization checker looks for the lock

acquire/release patterns to identify bugs. Acquiring locks and not

releasing them may cause deadlock and starvation in the program.

The analysis tracks all the variables on which the lock is acquired

and checks if the locks on these variables are released on every

program path. If not, it reports that the problem exists.

Taint. [15] Taint analysis detects and reports possible vulnera-

bilities by performing a taint analysis. The analysis identifies the

variables that read data from external inputs like console, tracks

their dataflow, and checks if the data from these variables are writ-

ten to output.

4.1.3 Datasets. We have used two datasets for evaluating CPA.
The first dataset consists of all projects included in the DaCapo

benchmark [6], a well-established benchmark of Java programs.

This dataset contains 45,054 classes and 286,888 non-empty meth-

ods. The DaCapo dataset is prepared using the GitHub project links

of the 10 DaCapo projects. The second dataset consists of 4,938

open source SourceForge projects. This dataset consists of 191,945

classes, and 6,741,465 non-empty method. Note that, the order of

methods in our datasets is random and it is determined by the

dataset creators [11]. As such, the order does not influence CPA,
while prior caching does.

4.1.4 Results and Analysis. Table 2 compares our approach (CPA)
against the baseline (CFG) and the prior work (RCFG). The analysis
time in case of CFG is the actual analysis time, whereas, in case of

RCFG, it includes the two overheads (to identify and remove the

irrelevant nodes) and in case of CPA, it includes several overheads
(to produce the sparse graph, to generate pattern, to check the

pattern database, and retrieve the result in case of hit, and to persist

the results in case of miss). The analysis times are reported in

milliseconds. For some analysis, the analysis times are low, for

instance Safe. This is mainly because we have optimized all our

analyses to skip through the irrelevant methods (methods that do

not contain the information the analysis is looking for). Finding

and skipping through the irrelevant methods is done at a low cost.

Table 2 shows our results. The two columns R and R’ shows the

percentage reduction in the analysis time of CPA over CFG and RCFG
respectively. On average CPAwas able to reduce the analysis time by

69% over CFG and 36% over RCFG (averaged over both DaCapo and
SourceForge datasets, which are individually 34% and 39%). Note

that, for Dom, the CFG and RCFG times are exactly same, because for

this analysis all nodes are relevant, hence RCFG is simply CFG. For
Leak analysis on DaCapo dataset, CPA shows negative gain when

compared to RCFG. This happens mainly because of the low number

of instances on which the analysis is run. As shown in Table 4,

under DaCapo, the Leak analysis is run on only 220 unique methods
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Table 2: Reduction in the analysis time of CPA.

Time (in ms)

DaCapo SourceForge

Analysis CFG RCFG CPA CPA-UB CPA-CR R R’ CFG RCFG CPA CPA-UB R R’

Avail 3274 1822 1368 872 1039 58% 25% 63971 35087 24688 16593 61% 30%

Dom 247855 247855 75559 1898 3778 70% 70% 6439232 6439232 3614844 32664 44% 44%

Escape 12624 8707 3588 902 2153 72% 59% 250697 160654 71086 21454 72% 56%

Leak 227 35 39 32 37 83% -9% 5947 830 458 348 92% 45%

Live 5470 4329 2628 820 1866 52% 39% 138929 111027 65369 17953 53% 41%

MayAlias 7823 4137 2238 870 1544 71% 46% 168542 85204 43657 16292 74% 49%

Null 3841 2254 1365 257 683 64% 39% 104838 65551 36885 5108 65% 44%

Pointer 6246 3367 2019 888 1716 68% 40% 109031 62279 40446 17223 63% 35%

Safe 9 2 2 2 2 75% 0% 70 17 16 14 77% 4%

Taint 499 172 123 55 62 75% 28% 15981 3886 2266 800 86% 42%

Average 69% 34% 69% 39%

Figure 5: % benefit of the upper bound achieved by CFG, RCFG,
CPA. Higher bars are better.

and the cost of CPA overheads may exceed the benefit, hence we

do not expect CPA to improve the performance. Similar situation

can be also be seen for Safe analysis.
CPA uses an online strategy of caching the analysis results at the

same time as running the analysis on millions of programs. CPA can
also be used with prior caching, hence we compute the ideal gain

(or an upper-bound) by re-running the experiments on the same

dataset after caching the results in the first run. The analysis times

are reported in Table 2 under CPA-UB column. Figure 5 helps to

understand how far CFG, RCFG, and CPA are from the ideal speedup

(CPA-UB). As it can be seen in Figure 5, for most analysis, CPA is the
closest to 100%, when compared to others (CFG and RCFG), except
for Leak and Safe. The reason is as explained earlier, the number of

methods on which the analysis is run is small, hence the overheads

of CPA exceeds its benefits. Another interesting observation that

can be made is that except for Leak and Safe, for all other analysis,
there exists substantial opportunities to improve the performance

of CPA to get it closer to CPA-UB. This can be performed by training

CPA on some representative projects, caching the results, and using

them on the test projects.

4.1.5 Cross Project. We also performed a cross-validation ex-

periment, where we excluded one project at a time from the DaCapo
dataset that contains a total of 10 projects, ran the analysis, cached

the results, and measured the analysis time for the excluded project.

We repeated this experiment and aggregated the analysis times

for all 10 projects. We reported the analysis times under CPA-CR
column in Table 2. As seen in the CPA-CR column, CPA-CR analysis

time lies between CPA and CPA-UB. For some analyses CPA-CR is

able to nearly meet the upper-bound. For example, Dom. For Leak
and Taint, prior caching had less effect on the analysis time, mainly

because the number of instances on which the analysis is run was

small. For other analyses, a consistent speedup is seen over CPA.
This suggests that, CPA with some prior caching can improve the

performance over the online-strategy.

4.1.6 CPA Components. For every CFG of the method to be an-

alyzed, CPA produces a sparse representation of the CFG, generates

a pattern that represents the sparse graph, and checks the pattern

database for a result. The overhead for this stage is represented as

pattern in Table 3. When there is a miss, i.e., the result does not

exists for a pattern, then CPA runs the analysis to produce a result

(analysis stage) and cache the result (persist stage). When there

is a hit, i.e., a result is found, nothing else needs to be done. It is in-

teresting to see how the overall CPA time is distributed across these

components. The component results are shown in Table 3, where

pattern, analysis, and persist are the three components. The

absolute times are in milliseconds and we also show the contribu-

tions of each of the three components towards CPA time (numbers

inside parentheses).

It can be seen that, persist time is almost always negligible.

The pattern time, which is the time to construct the sparse graph,

generate pattern, and check the database sometimes exceeds the

actual analysis time. For example, Avail, Leak, and Safe. This is
mainly because in these analyses, the amount of relevant nodes

are very small. Thus, the time for removing the irrelevant nodes to

construct the sparse graph becomes substantial.

4.1.7 Reuse Opportunity. Table 2 shows that our approach was

able to substantially reduce the analysis time across 10 analyses and

two datasets. The reduction mainly stems from the amount of reuse

opportunity that exists in large datasets of programs. We measured

the total number of unique graphs to compute the reuse percentage.

The results are shown in Table 4. For all the analyses, CPA was
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Table 3: CPA time distribution across four components. The absolute times are in milliseconds and the values inside “()” are
the contribution of the component towards CPA time.

DaCapo SourceForge

Analysis CPA pattern analysis persist CPA pattern analysis persist

Avail 1368 863 (63%) 496 (36%) 8 (1%) 24688 16454 (67%) 8095 (33%) 138 (%1)

Dom 75559 1875 (02%) 73661 (97%) 23 (0%) 3614844 32437 (01%) 3582180 (99%) 225 (0%)

Escape 3588 892 (25%) 2686 (75%) 10 (0%) 71086 21206 (30%) 49632 (70%) 247 (0%)

Leak 39 30 (77%) 7 (18%) 1 (3%) 458 342 (75%) 110 (24%) 5 (1%)

Live 2628 811 (31%) 1807 (69%) 8 (0%) 65369 17776 (27%) 47416 (73%) 176 (0%)

MayAlias 2238 862 (39%) 1368 (61%) 7 (0%) 43657 16167 (37%) 27364 (63%) 125 (0%)

Null 1365 252 (18%) 1108 (81%) 4 (0%) 36885 5027 (14%) 31777 (86%) 80 (0%)

Pointer 2019 879 (44%) 1130 (56%) 8 (0%) 40446 17056 (42%) 23223 (57%) 166 (0%)

Safe 2 2 (71%) 0 (00%) 0 (0%) 16 13 (81%) 2 (13%) 0 (0%)

Taint 123 52 (43%) 68 (55%) 2 (1%) 2266 784 (35%) 1466 (65%) 15 (1%)

Table 4: Amount of reuse opportunity available in various
analysis.

DaCapo SourceForge

Analysis Total Unique Reuse Total Unique Reuse

Avail 286888 15402 95% 6741465 266081 96%

Dom 286888 20737 93% 6741465 345715 95%

Escape 286888 23347 92% 6741465 430978 94%

Leak 3087 220 93% 71231 2741 96%

Live 286888 19417 93% 6741465 366315 95%

MayAlias 286888 12652 96% 6741465 211010 97%

Null 49036 7857 84% 746539 148671 80%

Pointer 286888 16150 94% 6741465 313337 95%

Safe 77 14 82% 1310 89 93%

Taint 6169 1208 80% 147446 22664 85%

able to reuse the analysis results over 80% of the time. A very high

percentage of reuse clearly suggests why our approach was able to

achieve substantial reduction in the analysis time. Further, it also

supports the fact that source code is repetitive.

Table 5 lists the transfer functions for all our 10 analyses. The

names of these transfer functions provides information about the

kind of statements that are relevant for the analyses. For instance,

def(v) transfer function applies to all statements that have variable

definitions. As we use transfer function names to label the nodes

and produce the pattern, these names are used in the top patterns

discussed next.

In case of Taint analysis, we had a total of 6169 methods in

the DaCapo dataset that were analyzed (other methods didn’t had

relevant code) and they formed 1208 unique sparse graphs. The

analysis reported possibility of vulnerabilities for 101 sparse graphs.

Figure 6 shows the top 3 patterns along with their frequencies ((a),

(b), and (c)). Our analysis did not report any vulnerabilities for any

methods that have the sparse graphs shown in (a), (b), (c), because all

these three sparse graphs only have either input or output nodes.

For vulnerability to occur, both must exists. Consider (d) which

has both input and output was one of the frequent vulnerability

Figure 6: Top patterns seen in case of taint analysis that de-
tects vulnerabilities

pattern in the DaCapo dataset. We manually verified 20 out of 101

reported instances for the existence of possible vulnerabilities.

Figure 7: The most frequent lock/unlock pattern and the
code example of the pattern.

In case of Safe analysis that checks for the correct use of lock/un-
lock primitives using JDK concurrent libraries, we had 76 instances

reported correct and 1 reported as having a problem. Out of the

76, 50 of them followed a single pattern that is shown in Figure 7.

This is a correct usage pattern for lock/unlock. The one instance
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Table 5: Transfer functions to identify relevant nodes.

Analysis Relevant Nodes

Avail def(v), binop(v1, v2)

Dom all

Escape
copy(v1, v2), load(v1, v2.f), store(v1. f , v2), gload(v1, cl . f )
gstore(cl . f , v2), call(v, m, v0,...,vk), new(v, cl), return(v)

Leak open(v), close(v), copy(v1, v2)

Live def(v), use(v)

MayAlias def(v1, c), def(v1, v2)

Null deref(v), copy(v1, v2), nullcheck(v)

Pointer
copy(v1, v2), new(v, cl), load(v1, v2.f)
store(v1. f , v2), return(v), call(v, m, v0,...,vk)

Safe lock(v), unlock(v)

Taint input(v), output(v), copy(v1, v2)

that was reported problematic was a false positive and it requires

inter-procedural analysis to eliminate it.

Figure 8: Most frequent buggy resource leak pattern.

Leak analysis results were most surprising for us. There existed

3087 usages of JDK resource related APIs (JDK has 106 resource

related APIs) and our analysis reported 2277 possible leaks. Out

of these 336 were definitely leaks and others were possible leaks

and confirming them would require inter-procedural analysis. Out

of the 336 definite leaks, the top pattern appeared in 32 methods.

Figure 8 shows this pattern.

4.2 Correctness and Precision
In §3.3 we provided a proof sketch as to why the analysis results

of CPA must match with that of CFG. To empirically evaluate the

correctness of the results, we conducted two experiments using all

10 analysis and DaCapo dataset. In the first experiment, we com-

pared the analysis result of CFG and CPA for every method that is

analyzed. Table 6 provides information about the results computed

for each analysis. We were able to match the two results perfectly.

As for most of the analysis in Table 6 the computed results are

just boolean values, we double-check the results by profiling the

transfer functions executed for CFG and the sparse graph of CPA, and
compare the sequence of transfer functions. We skip through the

identity transfer functions in case of CFG, as the CFG may contain

many irrelevant nodes. As the order of nodes visited in both CFG
and sparse graph of CPA are same, we were able to see a 100% match.

Table 6: Analysis results computed for various analysis.

Analysis Computed Result

Avail true or false
Dom list of dominators for each node

Escape points-to escape graph with abstract variables

Leak true or false
Live definitions and uses of abstract variables

MayAlias alias sets of abstract variables

Null true or false
Pointer points-to graph with abstract variables

Safe true or false
Taint true or false

4.3 Limitations
In this work we have applied CPA to accelerate analyses at method-

level, where results for each method is computed independently

without using the results at themethod call sites. Instead of applying

the results of methods at their call sites we have adopted an over-

approximation strategy. As such, there are no theoretical limitations

preventing the use of our technique in a compositional whole-

program analysis setting, where the results of the called methods

can be used at their call sites, if available. This design choice was

mainly due to the analysis framework used in our evaluation, which

does not support whole-program analysis as of this writing.

Another limitation that currently exists in CPA is that it can only

store abstract analysis results. For instance, boolean value to indi-

cate the existence of certain kinds of bug. CPA also allows using

abstract variables and location names in the analysis as results. For

instance, variable v0 points to the first variable encountered while

analyzing the method statements. Similarly, the location loc0 points
to the first relevant statement that exists in the sparse represen-

tation of the method. The abstract variables and location names

helped us to model many important analyses, such as Live, Escape,
Pointer, etc. In future, we plan to support better output types.
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5 RELATEDWORKS
Our work on CPA is related to the prior work on both improving

the efficiency of software analysis and finding software clones.

5.1 Improving the efficiency of source code
analysis

There exists a trade off between improving the efficiency of the

analysis and improving the accuracy of the analysis results. Re-

moving the unimportant parts of the code before analyzing it has

been a popular choice [3, 8, 29, 36, 38]. For instance, Upadhyaya

and Rajan [38] proposed RCFG a reduced control flow graph that

contains only statements that are related to analysis. Our work on

CPA has adopted the RCFG work to produce the sparse graph. CPA
uses RCFG as its sparse representation to cluster similar graphs

and reuse the analysis results to further accelerate analyses. As we

have shown in our evaluation, CPA was able to achieve on average

a 36% speedup over RCFG. There also exists other sparse represen-

tations such as sparse evaluation graph (SEG) [8] that are more

suitable for def-use style data-flow analysis. There exists works

that eliminates unnecessary computations in the traversal of the

program statements to improve the efficiency of analysis [4, 36].

These techniques remove the unnecessary iterations to improve the

efficiency, whereas our work removes the unnecessary statements

to produce sparse graphs and also reuses the results by clustering

sparse graphs.

Allen et al. [3] and Smaragdakis et al. [29] have proposed a pre-

analysis stage prior to actual analysis to scale points-to analysis

to large code bases. They perform static analysis and program

compaction to remove statements that do not contribute to the

points-to results. Their work is specialized for scaling points-to

analysis, whereas CPA is more general, in that it can accelerate

analysis that use data-flow analysis and expressed using the lattice

framework.

Program slicing is a fundamental technique to produce a com-

pilable and runnable program that contains statements of interest

specified by a slicing criteria [41]. Many slicing techniques have

been proposed [35]. Our pruning technique is similar to slicing, in

that we also remove the irrelevant statements, however our pruning

technique is a pre-processing step rather than a transformation and

it does not produce a compilable and runnable code like slicing.

Slicing cannot be used for our purpose, because the program state-

ments of interest are not known. Even if the statements of interest

are known, slicing may includes statements (affecting the values of

variables at program points of interest) that may not contribute to

the analysis output. Our technique only includes statements that

contributes to the analysis output.

Reusing the analysis results is another way to improve the effi-

ciency of program analysis [17, 19, 27]. Kulkarni et al. [19] proposed
a technique to accelerate program analysis in Datalog. The idea of

their technique is to run an offline analysis on a corpus of training

programs to learn the analysis facts and then reuses the learnt facts

to accelerate the analysis of other programs that share some code

with the training corpus. Inter-procedural analysis are often accel-

erated by reusing the analysis results in the form of partial [17] and

complete [27] procedure summaries, where the analysis results of

procedures can be reused at their call sites. Our technique does not

require that programs share code, it only requires that programs

executed same set of analysis instructions to produce results.

5.2 Finding software clones
Our technique is also related to code clones [28], as CPA also clusters
sparse representations of programs to reuse the analysis results.

There exists different types of clones. Syntactic clones are look alike

code fragments, semantic clones share common expressions and

they have similar control flows, and functional clones are similar

in terms of the inputs and outputs. There are also other approaches

that goes beyond structural similarity, like code fingerprints[22], be-

havioral clones [14, 32, 33], and run-time behavioral similarity [10].

We did not use syntactic clones (token-based or AST-based), be-

cause the benefits will be limited to copy-and-paste code. Semantic

clones (code fragments with similar control and data flow) could not

be used, because of lack of guarantee that analysis output will be

similar. Moreover, semantically different code fragments may pro-

duce similar output for a given analysis and we would miss out on

those. We cannot use functional clones (code fragments with similar

input/output), because they may not produce similar analysis out-

put. We also could not use behavioral clones (code fragments that

perform similar computation captured using dynamic dependence

graphs), because they cannot guarantee similar analysis output.

An analysis may produce similar output for code fragments that

are not behavioral clones. Further, in our setting, while analyzing

thousands of projects, it is not feasible to instrument the code, run

them, collect traces, and build dynamic dependence graphs to detect

behavioral clones.

6 CONCLUSION AND FUTUREWORK
We proposed collective program analysis (CPA), a technique for

accelerating large scale source code analysis by leveraging analysis

specific similarity. The key idea of CPA is clustering programs that

are similar for the purpose of the analysis, such that it is sufficient to

run the analysis on one program from each cluster to produce result

for others. To find analysis specific similarity between programs, a

sparse representation and a canonical labeling scheme was used.

The technique is applied to source code analysis problems that

requires data-flow analysis. When compared to the state-of-the-art,

where the analysis is directly performed on the CFGs, CPA was

able to reduce the analysis time by 69%. When compared to an

optimization technique that removes the irrelevant parts of the

program before running the analysis, CPA was able to reduce the

analysis time by 36%. Both of these results were consistent across

two datasets that contained several hundred thousand methods to

over 7 million methods. The sparse representation used in the CPA
was able to create a high percentage of reuse opportunity (more

than 80%). In future, we plan to extend CPA to whole-program

analysis and extend CPA to support more output types.
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