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Abstract—Despite1 their proven benefits, useful, comprehen-
sible, and efficiently checkable specifications are not widely
available. This is primarily because writing useful, non-trivial
specifications from scratch is too hard, time consuming, and
requires expertise that is not broadly available. Furthermore, the
lack of specifications for widely-used libraries and frameworks,
caused by the high cost of writing specifications, tends to have a
snowball effect. Core libraries lack specifications, which makes
specifying applications that use them expensive. To contain the
skyrocketing development and maintenance costs of high assur-
ance systems, this self-perpetuating cycle must be broken. The
labor cost of specifying programs can be significantly decreased
via advances in specification inference and synthesis, and this has
been attempted several times, but with limited success. We believe
that practical specification inference and synthesis is an idea
whose time has come. Fundamental breakthroughs in this area
can be achieved by leveraging the collective intelligence available
in software artifacts from millions of open source projects. Fine-
grained access to such data sets has been unprecedented, but is
now easily available. We identify research directions and report
our preliminary results on advances in specification inference
that can be had by using such data sets to infer specifications.

I. OVERVIEW

Specifications tell humans and tools about intended behavior
of software and make verification possible. Useful, compre-
hensible, and efficiently checkable formal specifications can
help contain the cost of developing high assurance, reliable,
and secure software systems [1]. Despite these benefits, formal
specifications are not widely available.

A. The Problem

Currently the effort needed for humans to formally specify
code is similar to that required to write the code itself [2].
Although the process of writing specifications can help clarify
a project’s requirements, which can help reduce costs [1], the
extra effort stops many developers.

There have been several practical successes in the use of
formal methods to ensure safety and security. A famous safety
example is the Paris Metro system, in which the safety of
automated trains was verified [3]. Another example is the
London air traffic control center’s central command function,
which, while increasing throughput, was also proved safe [4].
In the area of security, the verified operating system kernel
seL4 allows users to avoid security problems (including code

1The text of this paper is taken from a recent NSF proposal submitted by
the authors.

injection attacks and buffer overflows) and makes it clear how
to use the kernel properly [5]. In each case crucial tool support
was made possible by formal specifications.

Our focus is on behavioral interface specifications, which
are specifications of the behavior2 of methods (using pre- and
postconditions) and modules (e.g., using invariants in classes
and interfaces). Methods and modules together constitute
application programming interfaces (APIs).

Since existing APIs are very frequently used when writing
new software, projects that need to verify or analyze code are
hampered by the lack of formal specifications for APIs that
their code uses, e.g. only 7% of JDK APIs are currently spec-
ified. If a project needs to write its own formal specifications
for the JDK or other common APIs, then they will face a large
task that will overwhelm their resolve and budget.

B. Solution

We are attacking this longstanding challenge in software
engineering of high assurance systems. Building on our prior
success in establishing Boa [6]–[10], the first end-to-end
infrastructure for mining code and its evolution in open source
repositories at a large-scale, we are making advances in
specification inference and synthesis, and utilizing them to
specify the JDK and other common APIs that will drastically
reduce the cost of specifying programs. Such fundamental
breakthroughs can be achieved by leveraging the collective
intelligence available in software artifacts from millions of
open source projects. Henceforth, by big code we mean a
collection of over a million open source projects with their
software evolution history.3 In this work, we use the term
widely-used code to refer to types and methods that are used
hundreds of thousands of times.

In our view, the overall problem of inferring specifications
needs a three-pronged approach:

1) For widely-used code, create specifications by general-
izing from uses of the code (exploiting programmers’
knowledge). We will use these inferred specifications to

2For us, the term behavior is primarily the relation between the two states
of the program (e.g., the states before and after a method call). However, we
also intend “behavior” to encompass performance, such as constraints on time
and other resources, and properties that constrain sequences of states.

3Software evolution history consists of changes stored in the version control
system of each project, extracted from open source repositories such as the
Apache foundation, SourceForge, and GitHub.



build the largest, openly-available corpus of formally-
specified code that has ever existed.

2) For rarely-used code that is similar to already-specified
code, leverage (code, specification) pairs available in the
formally-specified corpus, and create specifications by
developing and exploiting code similarity and extrapo-
lation techniques.

3) For rarely-used code that is not similar to already-
specified code, develop techniques that use the code’s
revision history to decompose it into fragments, infer
the specifications of those fragments, and compose an
overall specification from those specifications.

1) Consensus-based Inference: The first part of our ap-
proach is essential for bootstrapping the other parts. Fortu-
nately, our preliminary results [11] suggest that this hurdle
can be crossed by exploiting our insights that: (a) there are
many example clients for widely-used code in big code, (b)
most, but not all, such clients work, and (c) broken clients
tend to get fixed eventually. Using these insights we will infer
specifications for widely-used code. We call our technique that
uses these insights “consensus-based inference”. For example,
developers commonly check preconditions of methods before
calling them. This style of programming makes the software
more resilient to the unexpected inputs, thus, avoids unex-
pected program behaviors and bugs. Using consensus-based
inference we have begun to specify a large portion of widely-
used code (referred to as Boa’s knowledge-base), which (when
complete) in itself will be a major contribution.

2) Similarity and Differential-based Inference: The second
part of our approach is driven by our insight that: (a) pro-
grammers often reuse and clone good patterns of program
design, (b) programmers of widely-used code also clone and
use the same good patterns of program design, and (c) similar
code should have similar specifications. Our ongoing work is
developing two techniques that uses these insights: “similarity-
based inference” and “differential-based inference”. We expect
that code that is rarely-used but similar to widely-used code
will be the second most common class of code.

The general goal of this effort is to develop similarity-based
techniques to infer specifications for rarely-used source code.
Our key insight is that similar code would likely have similar
or the same specification.

First, using the specification mining techniques developed
in the previous steps, the idea is to perform mining for all
projects in the big code. The result is the collection of (code,
specification) pairs. Initially, the result only contains code
and specifications for widely-used code. Then these pairs
are fed into a clustering engine based on a chosen abstract
representation. We then produce clusters of similar (code,
specification) pairs. In particular, we will use the similarity
measures for finding similar code, code with similar usages,
and code with same/similar specifications. This process will
give us “similar” code with the same/similar specifications
from widely-used code. Such a result will be verified using
the techniques developed in the early phase. The verified
specifications and code will also be used to enhance (code,

specification) pairs contained in Boa’s knowledge-base. For
the given new code, we will compare it against our corpus of
(code, specification) pairs and use those similarity measures
to derive its specification.

3) Decomposition-based Inference: The third part of our
approach is driven by our insight that function signatures
in widely-used code, if treated as an alphabet, can help
quickly narrow down (code,specification) pairs that may be
composed to synthesize target code. Our technique that uses
these insights is called “decomposition-based inference”.

C. Context for Technical Development

All of the technical development in this project is being
carried out in the context of the Boa project (boa.cs.iastate.edu)
[6]–[10]. Since 2012, the Boa project has developed a domain-
specific language, also called Boa, an ultra-large corpus of
open source projects, and an infrastructure for mining and
understanding software repositories [7]. The Boa language
abstracts away details and simplifies mining tasks. The Boa
corpus contains about 700K open source projects with their
full evolutionary history, and will have a million+ open source
projects by the end of 2015. Boa has support for mining
source code [12] and this support has been utilized to conduct
large-scale studies, e.g. on the evolution and usage of Java
language features over the last decade [9]. Our work on Boa
has positioned us well for this project, but new components
are also being added to the infrastructure as needed.

II. POTENTIAL IMPACTS OF PROPOSED RESEARCH

By helping solve the problem of specification inference we
envision creating a world in which a programmer selects a
piece of code, pushes a button, and the integrated development
environment (IDE) connected to a specification inference
infrastructure synthesizes a specification for that code (see
Figure 1).

Boa Inference

The developer selects code for specification IDE plug-in sends request to Boa Inference Engine Boa Inference Engine responds with specification

Fig. 1. Overview of Envisioned Capabilities from a Developer’s View

In this world, the specification inference infrastructure
would synthesize new specifications for libraries and frame-
works while progressively improving existing specifications.
As a result, libraries and frameworks come pre-specified. In
this world, formal methods are widely applied because they
can rely upon broadly-available specifications. Most impor-
tantly, in this world, the costs of producing and maintaining
high assurance software systems that the nation can rely upon
are more predictable.

Effective specification inference capabilities will have sev-
eral substantial benefits. First, having formal specifications for



widely-used APIs will allow critical code that uses these APIs
to be formally analyzed (or verified) to establish important
properties in a modular fashion. Modularity will be enabled
as the specification of an API’s method can be used whenever
that method is called. Modularity is the key to scalability of
such an effort and thus permits the analysis (or verification) of
very large code bases. Second, newly inferred specifications
will enable a new kind of software infrastructure that can be
used to maintain, optimize, and synthesize programs. This will
greatly increase programmer productivity. In particular:

• Maintenance of code will be easier, because engineers
will not need to spend time reverse engineering code. The
use of specifications will reduce the amount of code that
an engineer needs to look at to understand any given piece
of code, since specifications can be consulted instead of
trying to understand the code of APIs that are used. This
will result in a lower total lifecycle cost.

• Optimization of code will be greatly facilitated, because
programmers will know what behavior they must imple-
ment when changing data structures and algorithms.

• The introduction of new bugs during maintenance and
optimization can be prevented by checking that the refac-
tored code meets the original specification.

• Retrieval of code using specifications as queries will
promote software reuse [13].

• Synthesis of code will become practical by combining
modules and calls to different methods to achieve a given
specification. This will lead to enormous productivity
gains.

More broadly, because specifications will enable modular
analysis and verification, modular and (thus) scalable tools
that ensure safety and security of critical systems code will
become practical.

III. RELATED WORK

In general, other efforts to automatically create specifica-
tions have not used the large body of code and associated in-
formation in open source repositories that our project will ex-
ploit [11]. Existing approaches can be broadly classified into:
program analysis-based and data mining-based approaches.
We discuss these approaches, which compliment each other,
in turn below.
Program Analysis Approaches. Several authors have pro-
posed approaches based on dynamic analysis [14]–[18]. These
dynamic approaches all run a large number of test cases on a
program and then mine the resulting execution traces for data
and temporal invariants (which can include pre- and postcon-
ditions). However, their results may be incomplete, since they
depend on the existence of a test suite that adequately explores
the program’s state space.

On the other hand, static analysis approaches [19]–[25]
do not require dynamic instrumentation but often will create
behavioral specifications that are only true for that particular
program (and are thus not general enough to permit intended
evolution or maintenance). Such approaches are most success-
ful with small programs as Wei et al. [25] show, however,

their focus has been on inferring program-specific invariants
till date.

All the program analysis techniques mentioned above have
only been used on individual programs or projects, and thus
they only deal with a small number of call sites for a small
number of APIs. These techniques are not designed to combine
analysis results from many projects.
Software Repository Mining Approaches. In contrast to
program analysis-based approaches, other techniques in the
mining software repositories (MSR) area have applied data
mining techniques to derive API specifications from existing
code repositories [27]–[34]. The key difference between MSR
approaches and program-analysis based approaches is that
MSR approaches consider the usage of the APIs at the call
sites in the client programs of the APIs to derive the conditions
regarding only the usage and temporal order among the API
calls.

While some approaches detect such orders as pairs of
method calls [29], [32], [35] (e.g., p must be called before q),
other approaches mine the sequences of calls [30], [36] or even
a graph or finite state diagram of method calls [31], [34], [37],
[38]. Other MSR approaches focus on associations of API
entities [27], [28]. However, those MSR approaches do not
aim to recover behavioral interface specifications. Moreover,
except for a few methods [24], they mainly rely on mining
techniques without in-depth program analysis of data and
control properties in the mined code.

There is also some work going on software repository
mining under the DARPA MUSE program, but those projects
are focussing on program synthesis (whereas we focus on
specification inference), and do not consider evolution history.
As of this writing, ours is the first result in this area [11].

IV. CONCLUSION

We have set out to address the challenge that useful,
comprehensible, and efficiently checkable specifications are
not widely available. To that end, we are creating novel techn-
niques for inference and synthesis of behavioral specifications.
Our work deviates from commonly held belief in the area of
behavioral specification inference by making use of an ultra-
large corpus of software repositories as a central piece of our
solution. We are first targeting widely-used code, i.e. libraries
and frameworks, both to bootstrap our inference engine as well
as to leverage the collective intelligence available in millions
of SLOC available in open source repositories. From the usage
of the widely-used code, i.e. by program analysis of millions
of call sites, we are deriving the behavioral specifications of
widely-used code. Our ongoing work plan is to exploit these
inferred specifications for widely-used code as a basis to apply
similarity, differential and decomposition-based techniques.
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