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ABSTRACT

Programming languages evolve over time, adding additional lan-
guage features to simplify common tasks and make the language
easier to use. For example, the Java Language Specification has
four editions and is currently drafting a fifth. While the addition of
language features is driven by an assumed need by the community
(often with direct requests for such features), there is little empiri-
cal evidence demonstrating how these new features are adopted by
developers once released. In this paper, we analyze over 31k open-
source Java projects representing over 9 million Java files, which
when parsed contain over 18 billion AST nodes. We analyze this
corpus to find uses of new Java language features over time. Our
study gives interesting insights, such as: there are millions of places
features could potentially be used but weren’t; developers convert
existing code to use new features; and we found thousands of in-
stances of potential resource handling bugs.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms
Languages; Human Factors

Keywords

Java; empirical study; language feature use; software mining

1. INTRODUCTION

The Java Language Specification (JLS) [17-20] is the official
specification for Java. New editions of the specification (JLS2—
JLS4) are released as the language evolves to add new features.
The official Java platforms (Java Runtime Environment (JRE) and
Java Development Kit (JDK); Standard (SE), Mobile (ME), and
Enterprise Editions (EE)) all implement the language based on this
official specification.

Changes to the specification are driven by needs from the com-
munity. This need often comes in the form of an official request (a
Java Specification Request (JSR)) using the Java Community Pro-
cess (JCP). The JSR formally defines what the need is, why the
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current specification is lacking, and proposes a solution. Each new
language feature has an accompanying JSR and each new edition
of the language has an umbrella JSR to identify the new features.

Currently however, there is little quantitative evidence demon-
strating how most of these new language features are used in prac-
tice. Previous studies have investigated the use of certain Java
language features, e.g. [21] investigated the use of several object-
oriented features in Java, such as class, interface, and method usage
and [27] investigated the use of generics in Java. Similarly, [24],
[9], and [10] investigated the use of non-language features such as
reflection (which in Java, is supported by the runtime and not the
language). However, these studies looked at a relatively small num-
ber of Java projects (around 20), investigated a very small subset of
features, or did not investigate their adoption over time.

In this paper, we utilize the Boa language and infrastructure [14,
15, 28] to study Java feature adoption over time for 18 language
features and on a large corpus of projects'. The dataset we query
is over 31k projects from SourceForge [12], representing over 9
million unique Java source files, with over 28 million snapshots of
those files, which when parsed contain over 18 billion AST nodes.

From this dataset we investigate if features were indeed antic-
ipated by the community, by looking for their uses before their
release dates. Our results show this is true: every feature is used
prior to release. We then investigate how those features are adopted
over time along three dimensions: projects, source code files, and
committers using the features. Our results show that while some
features are widely used, many see only limited use.

We then investigate if these features aren’t being used due to lack
of opportunity, by defining a set of mining tasks to locate source
code that could potentially use these new features. We find millions
of such cases, both in files existing before the feature’s release date
and in new files created after the feature’s release. This suggests
there is room for better tool support to recommend the use of these
new language features or to convert code to use these features. It
also suggests there may be a need for better training and advertise-
ment of new features. Some of our interesting results include:

e All language features were used prior to their official release,
indicating anticipation of such features.

o All studied features are used, however a few features
are clearly the most popular, including: annotation use,
enhanced-for loops, and variables with generic types. Sev-
eral features saw minimal use.

e Developers do convert existing code to utilize new language
features after their release. Thus, tool support for such con-

'Our queries and raw results are available online:
http://boa.cs.iastate.edu/java-features/



version operations and recommendation of code locations to
convert is important for the community.

e We found many instances where features could have been
used, but were not, indicating a need for better training or
IDE support. In fact, some missed opportunities could actu-
ally lead to erroneous behavior.

e Committers tend to adopt new features on an individual basis
rather than in a team. This result is consistent with a previous
study [27], but with 100 times more committers.

e Most committers use only a small number of new features. A
small number of committers account for the majority of new
language feature uses.

Next, we give background on each edition of the JLS and the
new language features. Then in Section 3 we pose the research
questions our study aims to answer. We describe the approach used
in our study in Section 4 and give the study itself in Section 5.
We give some discussion in Section 6. In Section 7 we describe
some previous studies regarding language feature use. Finally we
conclude with future work in Section 8.

2. JAVA
(JLS)

This section provides background on the Java Language Speci-
fication (JLS) [17-20]. Since the original edition of the Java Lan-
guage Specification, there have been three updates. In this section
we outline some of the changes to the language for each edition.
The full list of features is shown in Figure 1. Note that new lan-
guage features are purely additive - each edition is fully backwards
compatible with previous editions.

LANGUAGE SPECIFICATIONS

2.1 JLS2 New Language Features

The Java Language Specification, edition 2 (JLS2) [18] was a
relatively minor update in terms of new language features. This
edition added one new language feature: assert statements.

2.2 JLS3 New Language Features

The Java Language Specification, edition 3 (JLS3) [19] added
several significant language features, including: annotation types,
enhanced-for loops, type-safe enumerations (enums), generic
types, and variable-argument methods (varargs).

2.3 JLS4 New Language Features

The Java Language Specification, Java SE 7 edition (JLS4) [20]
made several changes, including: binary literals, a diamond opera-
tor for generic type inference, allowing catching multiple exception
types, suppression of varargs warnings, automatic resource man-
agement, and underscores in literals. As these features are not as
widely known, we detail some of them in this section.

2.3.1 Type Inference for Generic Instance Creation
(Diamond)

As previously mentioned, the language allows generic types.
When declaring a variable of a generic type however, the generic
type arguments must be repeated. For example:

Map<K, V> m = new HashMap<K,V>();

declares a HashMap with keys of type K and values of type v. Note
that the generic type arguments were repeated in the variable decla-
ration (left) and the object instantiation (right). JLS4 allows omit-
ting the repeated generic type arguments in the instantiation (the so
called diamond operator), thus changing the previous example to:
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JLS2

Assert assert i > 0;
JLS3
Annotation Declaration ¢interface Test { }
Annotation Use @Test void m() { .. }
Enhanced-For Loop for (T val : items)
Enums enum E { N1, ..; }
Generic Variable List<T> 1;
Generic Method <T> void m(T a) { .. }
Generic Type interface List<T> { .. }
Extends Wildcard Class<? extends E> c;
Super Wildcard Class<? super S> c;
Other Wildcard Class<?> c;
Varargs void m(T... arg) { .. }
JLS4
Binary Literals int FIVE = 0bl01;
Diamond Map<K, V> m = new HashMap<>();
MultiCatch catch (E1 | E2 e) { .. }
Safe Varargs @safeVarargs
Try with Resources try (File £ = new ..) { .. }

Underscore Literals int MILLION

1_000_000;

Figure 1: Studied Java language features, with examples.

Map<K, V> m = new HashMap<>();

This new diamond operator can be used anywhere the compiler
is able to infer the generic type arguments.

2.3.2  Catching Multiple Exception Types (Multi-
Catch)

This edition allows specifying more than one exception type in-
side a catch clause. The catch clause’s body is then executed when
either exception type is caught. For example, the statement:

try { } catch (E1 | E2 e) { .. }

executes the catch statement’s body if the try statement throws an
exception of type E1 or type E2. This helps avoid code duplication.

2.3.3 Safe Varargs Warning Suppression

The variable number of arguments in methods feature added in
JLS2 can lead to a large number of compile-time warnings when
combined with generics. Often however the programmer knows
that these warnings can safely be ignored, so the ability to disable
those warnings was added:

@SafeVarargs
@SuppressWarnings ({"unchecked", "varargs"})
static <T> List<T> asList(T... elems) { .. }

The use of either of these annotations will suppress compiler
warnings at this location.

2.3.4  Try with Resources

Certain resources, such as files, require manually releasing them
when finished. This by itself is easy to forget, however even when
programmers remember to close the resource, errors can still creep
in [37]. To ease the management of these resources, a new state-
ment was introduced:

try (File £ = new ..) { .. }

This try statement declares a resource £ which is available within
the try statement’s body. Upon exiting the try statement (either
through normal or exceptional program flow) the resource is auto-
matically released.



3. RESEARCH QUESTIONS REGARDING
LANGUAGE FEATURE USE

The focus of our study is the usage of Java language features
by open-source developers. In this section, we outline the specific
research questions (RQ) we wish to answer.

RQ1: Do projects use new language features before their release?
Often, especially with Java, an implementation of a requested fea-
ture is available before its release. This can take the form of an
official beta/pre-release or an unofficial compiler.

We are interested in how often new language features are used
prior to their official release. Such data can give an indication if a
particular feature was anticipated and if providing implementations
prior to release may be useful to the community.

RQ2: How frequently is each language feature used? The next
question deals with feature usage. The addition of language fea-
tures is driven by needs from the community, yet to date there has
been no study to see how most of Java’s language features are being
adopted by developers.

This question examines language features introduced in JLS2—
JLS4. For each language feature, its use across our entire dataset is
tracked. This data gives insight into how each feature was, and is,
being used.

RQ3: How did committers adopt and use language features? Once
a new set of language features is available, it takes time for devel-
opers to learn how and where to use them. Some developers may be
excited and try using them as often as possible. Other developers
may be content with solving problems with the old set of features,
as that is what they are accustomed to. We wish to investigate to see
how language feature adoption occurs for individual developers.

RQ4: Were there missed opportunities to use language features?
Although a new language feature may be available, developers
might chose to not use it. We are interested in knowing how of-
ten such missed opportunities exist.

RQS: Was old code converted to use new language features? We
also wish to investigate to see if code using older language features
is ever updated to use the newer language features.

4. APPROACH: TOOLS AND DATASET

In this section, we describe our approach for answering the
previously identified research questions. Our approach relies on
Boa [14, 15,28] and its dataset from SourceForge [12].

4.1 Background on Boa Language and Infras-
tructure

The Boa language and infrastructure was designed to abstract
away the details of software mining and provide a platform for eas-
ily writing queries that execute efficiently against a very large set
of software repository data. Boa contains data from SourceForge
projects and supports a wide range of queries on that data.

The Boa language abstracts away most of the details of software
mining. The Boa framework mines the software repositories (in
this case, SourceForge) and transforms the data into a custom set of
types. The language provides these domain-specific types, such as
Project, CodeRepository, and Revision that allow users
to perform queries against software repositories.

Boa currently processes CVS and Subversion repositories of
Java projects. When it finds a change to a Java source file,
it checks out the snapshot of that file at that revision and
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parses it using the Eclipse JDT parser [2]. The parsed data
is then translated into a custom representation, including types
such as Namespace, Declaration, Method, Variable,
Statement, and Expression. The statement and expression
types are union types, allowing each to represent multiple cases.

The Boa infrastructure generates a Hadoop [5] MapReduce [11]
program to efficiently execute queries. This is also abstracted away
and developers do not have to explicitly write any code to paral-
lelize their queries.

4.2 Dataset Used in Our Study

The dataset used for our study is the September 2013 dataset
from Boa. This dataset includes all Java projects on SourceForge
with at least one CVS or Subversion repository. The dataset does
not include Java projects with only Mercurial, Git, or Bazaar repos-
itories. The total number of Java projects is over 35k (see Figure 2).

Metric Count

All Projects 699,331

Java Projects 35,341

Studied Projects 31,432

Repositories 32,555

Revisions 9,557,448

Files 41,733,495

File Snapshots 86,411,272

Java Files 9,093,216

Java File Snapshots 28,747,948
| AST Nodes | 18,323,905,323 |

Figure 2: Metrics for the SourceForge-based dataset in Boa.

However, not all of these projects are useful. We identified al-
most 4k projects where all Java source files contained a parse er-
ror. We filtered those projects out, leaving over 31k projects in the
dataset for use in our study.

The dataset contains widely-used Java projects, including:
Azureus/Vuze, Weka, Hibernate, JHotDraw, JabRef, JUnit, iText,
FindBugs, JML, TightVNC, etc. This dataset represents over 9
million revisions by more than 50k developers. It contains over
9 million unique Java files and over 28 million snapshots of those
files. This represents (to the best of our knowledge) the largest
empirical dataset to date for Java projects that contains both full
history information of the source repositories with over a decade of
history and the full AST information from the Java source files.

For our research questions, the size of the Java projects (whether
1 or 1k files) is irrelevant, as we are interested in investigating
Java language features used by developers without constraining the
study to any specific kind of developer. Thus we include small
projects (perhaps written by novice developers) as well as large
projects (perhaps written by experts). However for RQ3, smaller
projects could affect our results and thus as we mention later, for
this research question, we filtered projects with few developers.

5. EMPIRICAL STUDY ON JAVA LAN-
GUAGE FEATURE ADOPTION

This section presents our study on Java language feature usage.

5.1 RQI1: Do Projects Use New Language
Features Before Their Release?

If a feature is requested by the community, then most likely peo-
ple will be excited to use it prior to its release. To see if this is true,



first we needed to know the release dates of official implementa-
tions for each language specification. We show these release dates,
based on each specification’s JSR, in Figure 3.

usage. For each file, we generate a mapping between features and
the total uses in the file.

We show the results in Figure 4, first by total number of uses
across the entire dataset, then by percentage of Java files using the
feature, and finally by percentage of projects using the feature. The
table clearly shows every feature is being used at least once. One
trend that becomes readily apparent is that JLS4 features are not
used very often, compared to JLS3 features. This is despite the fact
there were over a million revisions and 3k Java projects active since
the release of JLS4.

JLS2 (JSR 59) - Released 09 May 2002
Feature Earliest Use | Projects | Files
Assert 09 Feb 1998 114 | 1,068

JLS3 (JSR 176) - Released 30 Sep 2004
Feature Earliest Use | Projects | Files
Annotation Declaration | 11 Nov 2003 7 130
Annotation Use 05 Jan 2002 12 | 1,165
Enhanced For 20 Jan 2002 44 634
Enums 05 Jan 2002 20 173
Generic Variable 11 Jul 1998 59 | 2,311
Generic Method 04 May 1999 22 919
Generic Type 01 Jul 1998 31 | 2,047
Extends Wildcard 02 Jan 2002 18 587
Super Wildcard 24 Jul 2003 3 426
Other Wildcard 10 Feb 2002 23 649
Varargs 23 Jul 2003 10 76

JLS4 (JSR 366) - Released 20 Jul 2011
Feature Earliest Use | Projects | Files
Binary Literals 04 Nov 2010 2 4
Diamond 01 Aug 2010 12 399
MultiCatch 01 Aug 2010 9 95
SafeVarargs 30 Apr 2011 3 17
Try with Resources 04 Nov 2010 8 109
Underscore Literal 04 Nov 2010 2 2

Figure 3: Language features are used before their release.
(Note: cutoff times were midnight UTC on release date)

Using the release dates in this table, we then analyzed each valid
Java file to see if it used a particular feature. We filtered out any
Java file containing a parse error. Then we collected the timestamps
of each file using each language feature and then filtered based on
the particular language feature’s release date. The results are shown
in Figure 3 and include the list of features, the date of the first mined
use of the feature, the number of projects that used the feature prior
to its release, and the total number of files that used the feature prior
to its release.

For the earliest uses, we manually investigated to verify the iden-
tified files actually used the particular feature and that the com-
mit date matched our results. Based on this analysis we identified
one project with clearly erroneous commit dates* and we removed
that project from this analysis. Interestingly, for one project that
made heavy use of generics in 1998, the commit log referenced
“switch[ing] to GJ”, which is the language extension proposed by
Bracha et al. [8] that eventually became the basis of Java’s generics.

The results in the table clearly show that every language feature
was used prior to its official release date and adoption is most likely
driven by compiler support. Next we investigate how each language
feature was adopted over time.

5.2 RQ2: How Frequently Is Each Language
Feature Used?

The addition of language features is driven by needs from the
community. In this section, we quantitatively investigate how de-
velopers use these new features by looking at each unique Java
source-file path in the system and taking the last existing snapshot
of each. We then analyze that set of snapshots and count feature

http://goo.gl/14£8S9
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Figure 4: Java language feature usage by total number of uses,
by percent of all files, and by percent of all projects.

Also observe the trends for the ratios of uses to files. For exam-
ple, the Annotation Declaration feature has a ratio close to one?;
there is roughly one annotation declaration per file. This is simi-
lar for Enums and Generic Type. These features represent types in
Java and thus one generally expects to see one type per file. The
ratios for the other features are higher (2—6) since they are expres-
sions and statements. For example, the ratio of enhanced-for loops
is three* meaning files using the feature use it around three times.

To see how features were adopted over time, we plotted his-
tograms of each feature’s use, both by number of files and by num-
ber of projects. After examining these plots for each feature, we
noticed similar trends. They fell into two categories: JLS4 features
and non-JLS4 features. Since the trends are similar across features,
we picked representatives from each category.

The histograms contain bins with 30-day time ranges. The first
time a feature appears, it is added to the respective bin. See Fig-

3This feature appears in 0.28% of files, or around 25k files, and is
used around 29k times total.

*This feature appears in 8.4% of files, or around 763k files, and is
used around 2.6m times total.
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(a) First uses, by File (b) First uses, by Project
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Figure 5: Use of the Annotation Use language feature.

Projects

(a) First uses, by File (b) First uses, by Project

(c) Use Density, by File (d) Use Density, by Project

Figure 6: Use of the Diamond language feature.
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ures Sa—5b and Figures 6a—6b. The plots also contain marker lines
to indicate the release date of each JLS.

We also plotted densities of each feature’s use, both by number
of files and by number of projects. Points in these charts represent
the number of files/projects using a feature at that time, divided by
the total number of Java files/projects at that time, to account for
growing repositories. See Figures 5¢c—5d and Figures 6¢—6d.

For example, Figure 5 shows a non-JLS4 feature, Annotation
Use. The histograms all show increasing adoption of the features
after release with peaks around 2011. Then the number of files/pro-
jects adopting the feature for the first time starts decreasing. To
better understand this decrease, we investigate the density plots.

As can be expected, the files and projects in the system were in-
creasing over time. The density plots remove this variable from our
analysis, by computing the percent of feature use at each time. For
example, when we look at Figures S5c—5d we see that even as the
total number of files and projects in the system increases, the rela-
tive percent is increasing too. Thus we can see that over time, the
use of the feature is consistently increasing for all features studied.

Notice that Figure 6, a JLS4 feature, doesn’t show as strong of
trends as the previous two features discussed. In this chart, the his-
tograms have less of an obvious trend to them, due to the relatively
low number of total uses for this new feature. While the density
graphs still show the same general trend of increasing use, both by
files and by projects, there is less of a defined curve in these graphs.

Investigating Frequently Used Features.

As seen in Figure 4, most language features are used in a very
small number of files (2% or less). The exceptions are Annotation
Use, Enhanced For, and Generic Variable declarations. We further
investigate some of these popular language features.

First let’s look into the use of annotations, by collecting the
annotation types named at each use. Figure 7 shows the top-
ten frequently used annotation types and the number of uses for
each. As can be seen, almost half of the annotation uses were the
@Override annotation. Such widespread use of this annotation
makes sense as IDEs such as Eclipse typically automatically add
this annotation. This still counts as adoption however, as devel-
opers accept and commit these automatically added annotations.
The second most used annotation, @Test, is used by unit testing
frameworks. In fact, other than @Test and @SublL, the annota-
tions listed are all JDK or J2EE provided annotations. We antici-
pated high use of JDK annotations, as the Annotation Declaration
language feature has less than 0.3% use across all Java files, but the
clear domination of those annotations was surprising.

Annotation Name Uses Percent
@Override 5,534,089 | 47.33%
@Test 981,737 8.40%

@ SuppressWarnings 634,697 5.43%
@Column 246,467 2.11%
@XmlElement 140,754 1.20%
@SubL 134,990 1.15%
@Generated 131,759 1.13%
@XmlAttribute 101,156 0.87%
@XmlAccessorType 81,140 0.69%
@Deprecated 80,217 0.69%

Figure 7: Annotation uses. Percent is out of all annotation uses.

Next let’s look into the generic variable declarations, by collect-
ing the counts of each declared generic variable’s type. Figure 8
shows the top-ten frequent generic types used (top) and the top-ten
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Generic Type Uses Percent
List 3,628,998 | 32.31%
ArrayList 2,145,612 | 19.10%
Map 1,156,480 | 10.30%
HashMap 842,934 7.50%
Set 811,990 7.23%
Collection 643,047 5.73%
Vector 570,016 5.07%
Class 547,628 4.88%
Iterator 500,887 4.46%
HashSet 384,408 3.42%
Generic Type Uses Percent
List<String> 514,339 | 22.68%
ArrayList<String> 416,306 | 18.35%
Class<?> 295,554 | 13.03%
Map<String, String> 208,195 9.18%
Map<String, Object> 177,048 7.81%
Set<String> 170,727 7.53%
HashMap<String, String> | 148,861 6.56%
Vector<String> 137,706 6.07%
HashSet<String> 110,424 4.87%
HashMap<String, Object> 89,088 3.93%

Figure 8: Variables declared with generic types.

parameterized types (bottom). The results clearly show that the ma-
jority of generics are from collection types, the most common being
List<String>. These results are consistent with the previously
published study on generics use by Parnin et al. [27], although our
study was on a thousand times more projects.

5.3 RQ3: How Did Committers Adopt and
Use Language Features?

While in RQ1 we showed that all features are adopted before
their release, and in RQ2 we showed how features are adopted over
time, so far we have only evaluated feature adoption in terms of
files and projects. In this section, we wish to evaluate if similar
adoption trends also apply in terms of committers. Specifically, we
also wish to study the adoption behavior of individual committers.

To do that, for each changed or added file that was recognized as
containing a feature, we collected its commit time and author. For
each commit that has changed files containing the use of a feature
for the first time, the corresponding author is counted as one com-
mitter using that feature. The number of committed files containing
the new features are also recorded and counted toward the number
of uses for the corresponding committer. The threat to this method
of counting is that if a committer uses a feature in a file which has
already contained that feature (introduced by some other commit-
ter), they would not be counted. However, this threat is minimized
because in this dataset a file is usually owned and edited by one or
a few committers (as shown in Figure 9b).

5.3.1 RQ3.1: How Many Committers Adopted and
Used New Features over Time?

Figures 10 and 11 show the result for the number of committers
using two different features over time. Each bar shows the number
of users in the corresponding month. Even though the features ap-
peared at different times, both show the same trend of adoption: a
few committers used the feature before its release, then the number
of users increases to a peak, and finally decreases. This is consis-
tent with the adoption trend for projects and files seen in RQ2.

Among the committers using a feature, we counted the ones who
used that feature for the first time (the lower area, in red) and the
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ones who had used that feature before (the upper area, in blue). As
seen in the figures, after the release date more committers adopted
the new features. Once a feature is used for the first time, many
committers kept using it in later commits (in blue). After a while,
the number of first-time users (in red) decreases. This trend is the
same for all the features in our study. Comparing the charts, the
number of committers using Annotations is much higher than that
for Diamond. This result is expected and is consistent with RQ2.

5.3.2 RQ3.2: How Much Did Committers Use Each
Feature?

To answer this question, we count the number of uses of each
feature for each committer. Since different features are used at dif-
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ferent levels of granularity in the source code, e.g. generic fields
can only be declared at the type level while enhanced-for loops can
be used multiple times in the body of the method, we used the gran-
ularity of files to compute the number of uses. That is, the number
of uses for a committer is the number of files to which that com-
mitter was the first one introducing that particular feature.

Figure 12 shows the result for two features: Annotation Use
(12a) and Diamond (12b). In each chart, the x-axis represents the
committers ranked by their number of uses and the y-axis (in loga-
rithmic scale) is the number of uses. Each bar represents the num-
ber of uses for a single committer. Notice that a small number of
committers accounts for a large number of feature uses. About half
of the number of committers introduced a feature to less than 10
files, while a few committers used the feature in tens, hundreds, to
thousands files. This trend holds for all features.

Comparing the charts, we can see that the number of commit-
ters are quite different: about 24,000 for Annotation Use (12a) and
about 150 for Diamond (12b). In addition, the number of com-
mitters with the same number of uses varies among features. For
example, at 10 uses, there are about 17,000 and 90 committers, re-
spectively. This suggests that there are some feature(s) which are
more popular and widely-used (e.g. Annotation).

5.3.3 RQ3.3: Did Committers Adopt Features on an
Individual Basis or As a Team?

To answer this question, we investigated how many team mem-
bers adopted features in each project. We first collected the set
of committers for each project, identified how many times each
committer used a feature, and ranked the committers per-project
based on their number of uses. Then, for the top-k committers (for
k=1,2,3), we computed the proportion of the top-k committers’s
uses over the total number of uses in the whole project.

In Figure 9a, we can see that the distribution of the number of
committers in a project is right-skewed. That is, many projects
have only a few committers. In those projects, only one or two
committers contribute almost 100% of the uses. To avoid that bias
and to study the team culture, we filtered out all projects having less
than six committers [34]. After filtering there were 1,429 projects
remaining, which we used for this study.

The result is shown in Figure 13. Each chart shows the histogram
of the proportion of feature usage in projects. The bins are the
ranges 1-10%, 11-20%, ..., and 91-100%. Figure 13a shows the
result for the top-1 user. A single committer contributes 100% of
uses in over 150 projects and 90% of uses in almost 300 projects. In
Figure 13c, when considering the top-3 users, the number of 90%
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uses increases to almost 900 projects, which are the majority of the
1,121 projects that use that feature. The other features (not shown)
follow similar trends.

This result indicates that a feature is not widely adopted by all
members of the team, but instead are mainly championed by a
small number of members. This is also consistent with a previ-
ous study [27] even though they studied only 20 projects while we
studied 1,429 projects (with at least six committers each).

5.3.4 RQ3.4: Did Committers Use All Features?

For this question, we track the feature uses of a group of “active”
committers, who routinely committed code over a long enough pe-
riod. Since JLS3 had the most new features, we used the set of com-
mitters at the release time of JLS3. We kept all committers that had
routinely committed code at least every 6 months in the time be-
tween releases of JLS3 and JLS4. Filtering for committers that used
at least one language feature in our study, the remaining set con-
tained 61 committers. The scatter graph in Figure 14 shows their
uses over time. For better visualization, we group related features
from the same edition, i.e., Annotation Declaration/Use into Anno-
tation, generics features into Generics, Binary/Underscore Literals
into Literal, and Try with Resources and MultiCatch into TryCatch.
A horizontal line shows the use over time for a single committer.

As seen from the graph, among the 61 committers only commit-
ter #24 adopted features from all three editions. Most committers
used features from JLS2 and JLS3. JLS4 was only used by commit-
ters 42 and 24. Most of the committers used Assert, the only new
feature in JLS2, however, they started late after its release. Mean-
while, the committers adopted JLS3 quite early and most of them
used several different features. In terms of individual feature uses,
up to now, no committer has used all studied features. Committers
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Figure 14: Tracking features used by committers.

have used at most 7 out of 10 different grouped features.

5.4 RQ4: Were There Missed Opportunities
to Use Language Features?

In this section we investigate missed opportunities to use new
language features, by mining the latest snapshot of source code to
find locations where new language features could potentially be
used. For example, we mined to find integer literals with 7 or more
characters that did not use underscores. We also mined methods
that have as their first statement an if condition that if true throws
an IllegalArgumentException (which could potentially be
turned into an assert statement), methods that take an array as last
argument instead of a varargs argument, expressions where the lit-
eral ’1” was shifted left (which could use binary literals), generic in-
stantiations that don’t use the diamond pattern, try statements with



more than one catch block having the same body, and try statements
with a call to a c1lose () method in the finally block.

The results are shown in Figure 15. In the first row, we list the
number of mined potential uses in files that existed prior to the
feature’s release. These represent places where a maintainer could
convert code to use the new language feature. We found tens of
thousands (to millions) of potential uses in old files.
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Old 89K| 612K| 56K| 3.3M| 341K| 489K| 22.2M
New 291K| 1.6M| SK| 414K| 24K| 33K| 2.3M
All 380K| 2.2M| 61K| 3.7M| 365K| 522K| 24.5M
Files | 1.39%|12.74%|0.11%|12.25%| 2.28%| 1.85%|20.17%
Projects|18.18%|88.78%| 5.9%|59.08%|49.75%|37.27%|88.86%

Figure 15: Potential language feature uses, in old files (before
feature release) and new files (after feature release).

The second line of the table shows potential uses in files that
were added after the release of the feature. These are locations that
developers had the option to use a language feature, but did not.
Again, we found thousands of potential uses for each feature and
even millions of potential uses for two features.

While some of this unused potential has small impact, such as
underscore and binary literals making code more readable, other
missed opportunities could actually lead to erroneous behavior.
Specifically, we investigate regarding the try with resources lan-
guage feature which aims to properly close resources. As Weimer
and Necula [37] point out, this is a common source of bugs in pro-
grams. For example, the code:

BufferedReader br = ...;
String s br.readLine () ;
br.close();

wouldn’t call close if the call to readLine throws an exception.
While we found over 500k potential uses for this language fea-
ture, we were interested in how many of those might lead to buggy
behavior. We narrowed the results of the algorithm to only include
methods that throw IOException, do not catch that exception
anywhere in the body, and contain a call to a close () method.
We found 193,768 instances of potential® resource handling bugs!

5.5 RQ5: Was Old Code Converted to Use
New Language Features?

As we showed in the last section, when new language features
are released there is potentially a lot of existing code that could
have used the new feature. In this section we investigate if devel-
opers convert old code to update it to the new language features.

Unlike the last section where we used only the latest snapshot, in
this analysis we mine each version of a file and compute the number
of potential and actual uses of a language feature. We then com-
pute those values on the previous version of the file. If the number
of potential uses decreases by exactly the amount the actual uses
increased, we consider it a potential conversion. This analysis is
extremely conservative and may miss a lot of conversions, but it
should give a low number of false positives and make verification
easier, and allows us to confirm the existence of conversion activi-
ties to use new features. We show the results in Figure 16.

SManual verification of 30 random samples showed 50% accuracy.
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Figure 16: Detected conversions to use new features.

We verified the results by manually checking (up to) 30 detected
files from each feature, grouping the results by project and system-
atically sampling from a random starting point in the list. When
verifying a file, if other files from the same revision were in the
dataset we also verified those. In total we verified 2,598 out of
5,694 files as direct conversions, 13 as not conversions, and 4 as
more complex conversions that also added the new feature.

During this process we found several commit logs mentioning
conversions to JDK7 or specifically for one feature (e.g. Diamond,
MultiCatch, Assert). One even stated “reviewing locations where
*throw” appears and substituting by *assert’ when convenient.”®

As we showed, developers do convert existing code to utilize new
language features after their release. Thus, tool support for convert-
ing operations to use new language features and recommendation
of code locations to convert is important for developers.

5.6 Threats

We identified a threat regarding who commits code versus who
actually wrote it. Someone may commit a file they did not write,
perhaps adding a file from another library so it is local in their own
repository. Our analysis would attribute the source of that file to the
person who committed it which is why we focused on committers,
not developers. Similarly, multiple committers may actually be the
same person but count separately in our analysis.

A similar threat relates to the timestamps of committed code. If
someone commits a file they did not write, the timestamp of the
commit may be wrong. It is possible that features were actually
used earlier than identified in RQ1.

We identified an external threat to our study regarding the gener-
alizability of our results. Since we only studied open-source soft-
ware, the results may not necessarily represent Java language fea-
ture usage by non-open source developers, such as those in indus-
try. We also do not know the experience level of committers, which
may vary greatly and limits our ability to generalize. We avoid gen-
eralizing our results and instead focus on if the trends we observed
are similar to the trends the previous study [27] observed.

6. DISCUSSION

While we do not know why in general people seem to avoid using
new language features, we did see a lot of unrealized potential to
use these features. It may be the case there should be more or bet-
ter training of developers, or perhaps better advertisement of new
features. Or it may simply be user/project preference or the feature
isn’t viewed as useful by the broader community.

What was clear from our study however was two facts. First,
there is indeed a lot of code that could use these new features, but
currently does not. This seems to indicate a need for recommen-
dation systems [13, 30, 33] to suggest using the newer language
features. The second fact was that people do tend to convert code
to use these newer language features. Conversions and recommen-
dation systems go hand in hand.

*http://goo.gl/5pyROT



For example, if a user wrote “int i 3000000;” an IDE
could show a suggestion to convert this code to use underscores,
for better readability. Similarly if a literal value of 1 is shifted left,
it could recommend using binary literal notation.

Currently, Netbeans [3] has an Inspect and Transform [4] fea-
ture that converts to use diamond, underscore literals, try with re-
sources, and multicatch. Eclipse [1] will show a warning if you
don’t use the diamond operator (this behavior is disabled by de-
fault”) and provides a quick fix to remove the redundant type argu-
ments. They also provide content assist for features such as Dia-
mond and MultiCatch.

There is also room for improvement in IDEs. Not all features
are enabled out of the box, some features may be slightly confus-
ing (such as Eclipse giving a quick fix of ’surround with try/catch’
and a second choice of ’surround with try/multicatch’), and not all
features have conversions or recommendations.

7. RELATED STUDIES

Grechanik et al. [21] performed a large-scale study on Java fea-
tures on 2k projects from SourceForge. They provided a relational
database and studied features such as: classes (abstract, nested,
etc), methods (arities, return types, etc), fields, conditional state-
ments, etc. The majority of the features studied are object-oriented
language features available since JLS1. They did not study newer
language features in JLS3 or JLS4. Their study also focused on
releases of projects and not the full history of the repositories.

Parnin et al. [27] mined the history of 20 open-source Java
projects to evaluate how Java generics were integrated and adopted
into open source software. As we already showed, our finding on
the most popular generic types is consistent with their empirical re-
sult. It is also true for the finding that generics are usually adopted
by individuals championing for the features, rather than all com-
mitters in the team. Hoppe and Hanenberg [22] performed a small
empirical study to determine if generic types in Java provide ben-
efit to developers. Basit et al. [7] performed an empirical study on
two projects regarding how Java generics and C++ templates can
help in code refactoring.

Livshits er al. [24] focused on the reflection feature in Java. They
introduced a static-analysis based reflection resolution algorithm
that uses points-to analysis to approximate the targets of reflective
calls as part of the call graph. Callau et al. [9] studied the reflection
feature in Smalltalk. They reported that such a feature is mostly
used in specific kinds of projects: core system libraries, develop-
ment tools, and tests, rather than in regular applications.

Richards et al. [31] performed a large-scale study on the use of
eval in JavaScript applications. eval is used to transform text
into executable code, allowing programmers the ability to dynami-
cally extend applications. They studied large-scale execution traces
with 550k calls to the eval function exercised in over 10k web-
sites. They found that it is often misused and many uses were un-
necessary and could be replaced with equivalent and safer code.
Earlier, Richards et al. [32] analyzed a smaller set of JavaScript
programs and concluded the popular usage of eval and reported
the degree of dynamism in those programs. Ratanaworabhan et
al. [29] reported on an existing benchmark for JavaScript and fo-
cused on two aspects of JavaScript runtime behavior 1) functions
and code and 2) events and handlers. Yue and Wang [38] performed
an empirical study on almost 7k websites regarding insecure prac-
tices of JavaScript inclusion and dynamic generation. They re-
ported that over 40% of the websites dangerously use eval.

Gorschek et al. [16] performed a large-scale study on how de-

"http://goo.gl/EDvzOl
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velopers use object-oriented concepts. Tempero [35] studied how
fields are used in Java and reported that it is common for devel-
opers to declare non-private fields, but then not take advantage of
that access. Tempero et al. [36] found higher use of inheritance
than expected and variation in the use of inheritance between inter-
faces and classes. Muschevici et al. [26] studied multiple dispatch
in several languages and compared its uses.

Meyerovich and Rabkin [25] studied how programming lan-
guages are adopted by users, via several large surveys. Their study
was focused on which languages were adopted and did not go into
detail of specific language features.

The Sourcerer project [23] provides a relational database of
mined software artifacts. Their dataset contains over 18k Java
projects from SourceForge and Apache. The data is modeled as en-
tities, such as classes, methods, or fields, and relationships among
those entities. The dataset contains the source code from the latest
snapshot of each project. Baldi et al. use the Sourcerer project and
topic modeling to empirically validate the theory that aspects are
latent topics with a high scattering entropy [6].

While these previous studies have looked at various language
features, most are limited to studying a few features, looked at a
relatively small number of projects, or did not look at the full his-
tory of the software studied. Our study looks at most of Java’s new
language features, studies over 31k Java projects, and uses each
file’s full history.

While Grechanik et al. [21] and Sourcerer provided potential
datasets to use in this study, we chose to use the Boa infrastruc-
ture [14, 15, 28] with over 31k Java projects due to having full ac-
cess to it as well as our intimiate familiarity with the infrastructure.

8. FUTURE WORK AND CONCLUSION

Programming languages evolve over time to meet the needs of
developers. What was needed was a study to see how those fea-
tures are actually used by developers. In this paper we investigated
language feature usage for Java’s three newest editions.

Our analysis revealed that some developers were eager to use
these features, even using them as far as six years before their re-
lease. Our results showed that every feature is indeed used over
time. The most-used features we studied were the enhanced-for
loops, declaring variables of generic type, and using pre-defined
annotations. The first two features are related and our analysis
indicated their heavy use is influenced by the Collections classes
provided by Java’s runtime. The heavy use of annotations, but rel-
ative lack of custom annotations, indicated the use was mostly by
automated tools such as IDEs or code generators.

Most features saw limited use, but our further investigation
showed millions of additional places features could have been used
but were not. This included old files that could be converted, as
well as new code. We detected thousands of potential bugs in code
that could be fixed by converting to use new features. We also de-
tected many places where developers had actually converted exist-
ing code to use new features, indicating a need for tools to suggest
and convert code to use new features.

In the future it would be interesting to perform a survey of the
developers that appeared in this study to see why they chose to start
using features when they did. Perhaps there is a need for better
education/outreach to inform developers of these new features.
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