Boa: A Language and Infrastructure for Analyzing
Ultra-Large-Scale Software Repositories

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen
Towa State University, USA
{rdyer,hoan,hridesh,tien } @iastate.edu

Abstract—In today’s software-centric world, ultra-large-scale
software repositories, e.g. SourceForge (350,000+ projects),
GitHub (250,000+ projects), and Google Code (250,000+ projects)
are the new library of Alexandria. They contain an enormous
corpus of software and information about software. Scientists
and engineers alike are interested in analyzing this wealth of
information both for curiosity as well as for testing important
hypotheses. However, systematic extraction of relevant data
from these repositories and analysis of such data for testing
hypotheses is hard, and best left for mining software repository
(MSR) experts! The goal of Boa, a domain-specific language
and infrastructure described here, is to ease testing MSR-related
hypotheses. We have implemented Boa and provide a web-based
interface to Boa’s infrastructure. Our evaluation demonstrates
that Boa substantially reduces programming efforts, thus low-
ering the barrier to entry. We also see drastic improvements
in scalability. Last but not least, reproducing an experiment
conducted using Boa is just a matter of re-running small Boa
programs provided by previous researchers.

Index Terms—mining, software, repository, reproducible, scal-
able, ease of use, lower barrier to entry

I. INTRODUCTION

Ultra-large-scale software repositories, e.g. SourceForge
(350,000+ projects), GitHub (250,000+ projects), and Google
Code (250,000+ projects) contain an enormous collection
of software and information about software. Assuming only
a meagre 1K lines of code (LOC) per project, these big-
3 repositories amount to at least 8.61 billion LOC alone.
Scientists and engineers alike are interested in analyzing
this wealth of information both for curiosity as well as for
testing such important hypotheses as: “how people perceive
and consider the potential impacts of their own and others’
edits as they write together? [1]”; “what is the most widely
used open source license? [2]”; “how many projects continue
to use DES (considered insecure) encryption standards? [3]”;
“how many open source projects have a restricted export
control policy? [4]”; “how many projects on an average start
with an existing code base from another project instead of
scratch? [5]”; “how often do practitioners use dynamic features
of Javascript, e.g. eval? [6]; “What is the average time to
resolve a bug reported as critical? [7]”.

However, the current barrier to entry could be prohibitive.
For example, to answer the questions above, a research team
would need to (a) develop expertise in programmatically
accessing version control systems, (b) establish an infras-
tructure for downloading and storing the data from software
repositories since running experiments by directly accessing

978-1-4673-3076-3/13 © 2013 IEEE

422

this data is often time prohibitive, (c) program an infrastructure
in a full-fledged programming language like C++, Java, C#,
or Python to access this local data and answer the hypothesis,
and (d) improve the scalability of the analysis infrastructure to
be able to process ultra-large-scale data in a reasonable time.

These four requirements substantially increase the cost
of scientific research. There are four additional problems.
First, experiments are often unreproducible because replicating
an experimental setup requires a mammoth effort. Second,
reusability of experimental infrastructure is typically low be-
cause analysis infrastructure is not designed in a reusable
manner. After all, the focus of the original researcher is on
the result of the analysis and not on reusability of the analysis
infrastructure. Thus, researchers commonly have to replicate
each other’s efforts. Third, data associated and produced by
such experiments is often lost and becomes inaccessible and
obsolete, because there is no systematic curation. Last but not
least, building analysis infrastructure to process ultra-large-
scale data efficiently can be very hard [8]-[10].

To solve these problems, we have designed a domain-
specific programming language for analyzing ultra-large-scale
software repositories, which we call Boa. In a nutshell, Boa
aims to be for open source-related research what Mathematica
is to numerical computing, R is for statistical computing,
and Verilog and VHDL is for hardware description. We have
implemented Boa and provide a web-based interface to Boa’s
infrastructure [11].

To evaluate Boa’s design and effectiveness of its infrastruc-
ture we have written programs to answer 21 different research
questions in four different categories: questions related to the
use of programming languages, project management, legal,
and those that relate to platform/environment. Our results
show that Boa substantially decreases the efforts of researchers
analyzing human and technical aspects of open source soft-
ware development allowing them to focus on their essential
tasks. We also see ease of use, substantial improvements in
scalability, and lower complexity and size of analysis programs
(see Figure 4). Last but not least, reproducing an experiment
conducted using Boa is just a matter of re-running, often small,
Boa programs provided by previous researchers.

We now describe Boa and explore its advantages. First, we
present the language (Section II) and describe its infrastructure
(Sections III-IV). Section V presents studies of applicability,
scalability, and reproducibility. Section VI positions our work
in the broader research area and Section VII concludes.

ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Boa

rates: output mean[string] of int;

2 p: Project = input;

Java
1 ... // imports 1
9 public class GetChurnRates { 3
10 public static void main(String[] args) {
11 new GetChurnRates().getRates(args[0]); 4

12} 5
13 public void getRates(String cachePath) {
14 for (File file : (File []) FilelO.readObjectFromFile(cachePath)) {

N

foreach (i:

exists (j:
foreach (k: int; len(p.code_repositories]i]. revisions[k]. files) < 100)

int; p.code_repositories|i]. kind == RepositoryKind.SVN && len(p.
code_repositories|i].revisions) > 10)
int; match(‘*java$‘, lowercase(p.programming_languagesfj])))

rates[p.id] << len(p.code_repositories]i]. revisions [k]. files);

Boa’s Advantages

15 String url = getSVNUFrl(file);
16 it (url = null && lurl.isEmpty()) . .
17 System.out.printin(url +"," + getChurnRateForProject(url)); o Easy to use - simple programs, as small as 5-10 lines
iz } J « Better abstractions - hides specifics of mining software repositories
2 pr;vatebldouble %etchurnRateForProject(String url) { « Efficient and scalable - Results in as little as one minute
21 ouble rate = 0;
2 SVNHRL svnUrl; o Enhances reproducibility - Researchers can publish their small Boa
3 .. /I connect to SVN and compute churn rate programs and the dataset used so that others may reproduce the results
36 return rate;
T Performance Results
38 private String getSVNUrl(File file) { 100,000
39 String jsonTxt = ""; W Java M Boa
40 . /I read the file contents into jsonTxt 10,431
10,000 —

49 JSONObject json = null, jsonProj = null; 168x
50 ... [/l parse the text, get the project data speedup

5 1,000
56 if (!jsonProj.has("programming—languages")) return ""; k] /
57 if (!jsonProj.has("SVNRepository")) return "; 2 100 62
58 boolean hasJava = false; IS
59 .../l is the project a Java project?

10

63 if (!hasJava) return "";
64 JSONObject svnRep = jsonProj.getdSONODbject("SVNRepository");
65 if (!svnRep.has("location")) return ""; 1
66 return svnRep.getString("location") ; 6,000 60,000 620,000
67 } Input Size (number of projects)
68 }

Fig. 1. Programs for answering “What are the churn rates for all Java projects that use SVN?” and performance results on three input sizes.

II. MOTIVATION

Creating experimental infrastructure to analyze the wealth
of information available in open source repositories is diffi-
cult [12]-[16]. Creating an infrastructure that scales well is
even harder [15], [16]. To illustrate, consider a question such
as “what are the average numbers of changed files per revision
(churn rates) for all Java projects that use SVN?” Answering
this question would require knowledge of (at a minimum):
reading project metadata and mining code repository locations,
how to access those code repositories, additional filtering code,
controller logic, etc. Writing such a program in Java for
example, would take upwards of 70 lines of code and require
knowledge of at least 2 complex libraries. A heavily elided
example of such a program is shown in Figure 1, left column.

This program assumes that the user has manually down-
loaded all project metadata, available as JSON files, and SVN
repositories from SourceForge. It then processes the data using
a JSON library and collects a list of Subversion URLs. A SVN
library is then used to connect to each cached repository in
that list and calculate the churn rate for the project. Notice
that this code required use of 2 complex, external libraries in
addition to standard Java classes and resulted in almost 70
lines of code. It is also sequential, so it will not scale as the
data size grows. One could write a concurrent version, but this
would add additional complexity.

A. Boa: Enabling Data Intensive Open Source Research

We designed and implemented a domain-specific program-
ming language that we call Boa to solve these problems. Boa
aims to lower the barrier to entry and thus enable a larger,
more ambitious line of data intensive scientific discovery in
open source software development-related research. The main
features of Boa are inspired from existing languages for data-
intensive computing [8], [9], [17], [18]. To these we add built-
in types that are specifically designed to ease analysis tasks
common in open source software mining research.

To illustrate the features of Boa, consider the same question
“what are the churn rates for all Java projects that use SVN?”.
A Boa program to answer this question is shown in Figure 1,
right column. On line 1, this program declares an output
called rates, which collects integer values and produces a
final result by aggregating the input values for each project
(indexed by a string) using the function mean. On line 2, it
declares that the input to this program will be a project, e.g.
Apache OpenOffice. Boa’s infrastructure manages the details
of downloading projects and their associated information. For
each project, the code on lines 3—-6 runs. If a repository
contains 600k projects, the code on lines 3—-6 runs for each.

On line 3, this program says to run code on lines 4-
6 for each of the input project’s code repositories that are
Subversion and contain more than 10 revisions (to filter out

423

SF.net
. #| Query Program *
7
'
i SVN

‘ (Pr

I

1

1\

1 —e
Query Result I B

| Boa's Data Infrastructure

Fig. 2. An Overview of Boa’s Infrastructure. New components are marked
with green boxes and bold text.

P
input reader

Runtime ‘

: i r----- §----- |

Domain-specific | | oo .o T4 Compile 1 1

Types T 1 ‘ Replicator 1

_— ' | 1

*provided by Sawzall -l 1 { I

e e 1l Query Plan 1 I

1 1 ‘ Caching Translator 1

1 | 1

Corscommr 7T ¥ . !
oa's Compiler

. ’ i Deploy PP A |

! " ": 1 1

I MapReduce* Quantifiers " * 1 N]

: User Functi ‘ : Execute on ! - :

| Domain-specifi ser runctions Hadoop Cluster Local Cache |

! Types P 1

! 1

! 1

! 1

! 1

new or abandoned projects). On line 4, this program says to
run code on lines 5-6, if and only if for the input project at
least one of the programming languages used is Java. Line 5
selects only revisions from such repositories that have less than
100 files changed (to filter out extremely large commits, such
as the first commit of a project). Finally, on line 6, this program
says to send the length of the array that contains the changed
files in the revision to the aggregator rates, indexed by the
project’s unique identifier string. This aggregator produces the
final answer to our question.

These 6 lines of code not only answer the question of
interest, but run on a distributed cluster potentially saving
hours of execution time. Note that writing this small program
required no intimate knowledge of how to find/access the
project metadata, how to access the repository information,
or any mention of parallelization. All of these concepts are
abstracted from the user, providing instead simple primitives
such as the Project type which contains attributes related to
software projects such as the name, programming languages
used, repository locations, etc. These abstractions substantially
ease common analysis tasks.

Since this program runs on a cluster, it also scales extremely
well compared to the (sequential) version written in Java.
The time taken to run this program on varying input sizes
is shown in the lower right of Figure 1. Note that the y-axis
is in logarithmic scale. The time to execute the Java program
increases roughly linearly with the size of the input while the
Boa program sees minimal increase in execution time.

We have built an infrastructure for the Boa programming
language. An overview of this infrastructure is presented in
Figure 2. Components are shown inside dotted boxes on the
left, the flow of a Boa program is shown in the middle, and
the input data sources are shown on the right.

The three main components are: the Boa language, compiler
and runtime, and supporting data infrastructure. First, an
analysis task is phrased as a Boa program, e.g. that in Figure 1
(see Section III). This program is fed to our compiler (see

Section IV-A) via our web-based interface (see Section IV-C).
The Boa compiler produces a query plan. Our infrastructure
then deploys this query plan onto a Hadoop [19] cluster, where
it executes. The cluster makes use of a locally cached copy of
the source code repositories (see Section IV-B) and based on
the query plan creates tasks to produce the final query result.
This is the answer to the user’s analysis task. We now describe
these components in detail.

III. DESIGN OF THE Boa LANGUAGE

The top left portion of Figure 2 shows the main features
of the Boa language. We have four main kinds of features
at the moment: domain-specific types to ease analysis of open
source software repository mining, MapReduce [8] support for
scalable analysis of ultra-large-scale repositories, quantifiers
for easily expressing loops, and the ability to define functions.

A. Domain-Specific Types in Boa

The Boa language provides several domain-specific types
for mining software repositories. Figure 3 gives an overview
of these types. Each type provides several attributes that can
be thought of as read-only fields.

Type Attributes
Project id, name, created_date, code_repositories, ...
Repository | url, kind, revisions
Revision id, log, committer, commit_date, files
Person username, real_name, email
File name, kind

Fig. 3. Some of the domain-specific types provided in Boa.

The Project type provides metadata about an open source
project in the repository, including its name, url, some descrip-
tions, who maintains and develops it, and any code repository.
This type is used as input to programs in the Boa language.

The Repository type provides all of the Revisions
committed into that repository. A revision represents a group
of artifact changes and provides relevant information such
as the revision id, commit log and time, the Person who
committed the revision, and the Files committed.

B. MapReduce Support in Boa

In MapReduce [8] frameworks, computations are specified
via two user-defined functions: a mapper that takes key-value
pairs as input and produces key-value pairs as output, and a re-
ducer that consumes those key-value pairs and aggregates data
based on individual keys. Syntactically, Boa is reminiscent of
Sawzall [9], a language designed for analyzing log files. In
Boa, like Sawzall, users write the mapper functions directly
and use built-in aggregators as the reduce function. Users
declare output tables, process the input, and then send values
to the tables. Output declarations specify aggregation functions
and the language provides several built in aggregators, such
as summing, min/max, mean, etc.

For example, we could write an output declaration for the
table rates (as shown in Figure 1, line 1). For this table
we want to index it by strings and give it values of type
int. We would also like to use the aggregation function

424

mean, which produces the mean of each integer emitted to
the aggregator. Thus the final result of our output table is a
list of string keys, each of which has the mean of all integers
indexed by that key.

The plan generated from this code creates one logical
process for each project in the corpus. Each process then
analyzes a single project’s revisions, emitting to the project’s
table the number of changed files for each revision. The
aggregation process then reduces the values sent to it and
computes the means.

C. Quantifiers in Boa

Boa defines he quantifiers exists, foreach, and
ifall. Their semantics is the similar to when statements with
quantifiers as in Sawzall. Quantifiers represent an extremely
useful sugar that appears frequently in mining tasks. The
sugared form makes programs much easier to write and
comprehend.

For example, the foreach quantifier on line 3 of Figure 1,
is a syntactic sugar for a loop. The statement says each time,
when the boolean condition after the semicolon evaluates to
true, execute the code on lines 4-6. The exists quantifier
on line 4 is similar, however the code on lines 5-6 should ex-
ecute exactly once if there exists some (non-deterministically
selected) value of j where the boolean condition holds.

Not shown is the ifall quantifier. This quantifier states
the boolean condition must hold for all values. If this is the
case, then the associated code executes exactly once.

D. User-Defined Functions in Boa

The Boa language provides the ability for users to write
their own functions directly in the language. To ease certain
common mining tasks, we added built-in functions. Since we
can’t anticipate all needs of the users, or since our choice
of a particular algorithm may not match what the user needs,
having the ability to add user-defined functions was important.

The syntax, as inspired by Sawzall, requires declaring the
parameters for the function and return type and assigning it
to a variable. Functions can be passed as a parameter to other
functions or assigned to different variables (if the function
types are identical). A concrete example of a user-defined
function (HasJavaFile) is shown later in Figure 6.

IV. Boa’s SUPPORTING INFRASTRUCTURE

The bottom left portion of Figure 2 shows the various parts
of the Boa compiler and runtime.

A. Compiler and Runtime

For our initial implementation, we started with code for
the Sizzle [20] compiler and framework. Sizzle is an open-
source Java implementation of the Sawzall language. Unlike
the original Sawzall compiler, Sizzle provides support for
generating programs that run on the Hadoop [19] open-source
MapReduce framework.

Our main implementation efforts were in adding user-
defined functions in the Boa compiler, adding support for

quantifiers, and supporting the protocol buffer format as input.
These efforts were in addition to adding support for our
domain-specific types and custom runtime model.

1) User-Defined Functions: The initial code generation
strategy for user functions uses a pattern similar to the Java
Runnable interface. A generic interface is provided by the
runtime, which requires specifying the return type of the
function as a type argument. Each user-defined function then
has an anonymous class generated which implements this
interface and provides the body of the function as the body of
the interface’s invoke method. This strategy allows easily
modeling the semantics of user-defined functions, including
being able to pass them as arguments to other functions and
assigning them to (similarly typed) variables.

2) Quantifiers: We modified the compiler to desugar quan-
tifiers into for loops. This process requires the compiler to an-
alyze the boolean conditions to automatically infer valid ranges
for the loop. The range is determined based on the boolean
condition’s use of the declared quantifier variable. Currently,
quantifiers must be used as indexers to array attributes in our
custom types and the range of the loop is the length of the
array. We plan to extend support to any array variable in the
future.

3) Protocol Buffers: Protocol buffers are a data description
format developed by Google that are stored as binary mes-
sages. This format was designed to be compact and relatively
fast to parse, compared to other formats such as XML.
Messages are defined using a struct-like syntax and a compiler
is provided which generates Java classes to read and write
messages in that format. The Boa compiler was modified to
use these generated classes when generating code, by mapping
them to the domain-specific types provided.

The Boa compiler accepts Hadoop SequenceFiles as
input, which is a special file format similar to a map. It stores
key/value pairs, where the key is the project and the value
is the binary representation of the protocol buffer message
containing that project’s data. This format was chosen due to
its ease in splitting the input across map tasks.

B. Data Infrastructure

While the semantic model we provide with the Boa lan-
guage and infrastructure states that queries are performed
against the source repository in its current state, actually
performing such queries over the internet on the live dataset
would be prohibitive. Instead, we locally cache the repository
information on our cluster and provide monthly snapshots of
the data. The right portion of Figure 2 shows the components
and steps required for this caching.

The first step is to locally replicate the data. For Source-
Forge, there are 2 public APIs we make use of. The first is a
JSON API that provides information about projects, including
various metadata on the project and information about which
repositories the project contains. We simply download and
cache the JSON objects for each project. The second API is the
public Subversion (SVN) urls for code repositories. We make
use of a Java SVN library to locally clone these repositories.

425

LOC RTime (sec)
Task [| Java | Boa | Diff Java | Boa [Speedup
A. Programming Languages
1. What are the ten most used programming languages? 61 4 15x 602 59 10x
2. How many projects use more than one programming language? 32 4 8x 603 54 11x
3. In which year was Java added to SVN projects the most? 89 10 9x 6,998 41 171x
B. Project Management
1. How many projects are created each year? 43 3 14x 651 42 16x
2. How many projects self-classify into each topic provided by SourceForge? 45 4 11x 556 46 12x
3. How many Java projects using SVN were active in 2011? 66 6 11x 5,053 56 90x
4. In which year was SVN added to Java projects the most? 107 6 18x 4,880 48 13x
5. How many revisions are there in all Java projects using SVN? 60 5 12x 4,636 59 79x
6. How many revisions fix bugs in all Java projects using SVN? 76 6 13x 10,750 45 239x
7. How many committers are there for each Java project using SVN? 69 6 12x 10,821 50 216x
8. How many Java projects using SVN does each committer work on? 72 4 18x 10,435 58 180x
9. What are the churn rates for all Java projects that use SVN? 68 5 14x 10,431 62 168x
10. How did the no. of commits for Java projects using SVN change over years? 79 6 13x 10,489 43 244x
11. For all Java projects using SVN, what is the distribution of commit log length? 82 6 14x 10,518 44 239x
C. Legal
1. What are the five most used licenses? 63 4 16x 474 44 11x
2. How many projects use more than one license? 32 4 8x 522 57 9x
D. Platform/Environment

1. What are the five most supported operating systems? 61 4 15x 469 57 8x
2. What are the projects that support multiple operating systems? 33 4 8x 597 41 15x
3. What are the five most popular databases? 61 4 15x 498 47 11x
4. What are the projects that support multiple databases? 32 4 8x 558 64 9x
5. How often is each database used in each programming language? 71 5 14x 598 49 12x

Fig. 4. Several example mining tasks, with lines of code and execution times (in seconds) for both Java and Boa programs solving the tasks.

Once the information is stored locally on our cluster, we
run our caching translator to convert the data into the format
required by our framework. The input to the translator is the
JSON files and SVN repositories and the output is a Hadoop
SequenceFile containing protocol buffer messages which
store all the relevant data.

C. Web-Based Interface

We provide a web-based interface for submitting Boa pro-
grams, compiling and running those programs on our cluster,
and obtaining the output from those programs. Users submit
programs to the interface using our syntax-highlighting text
editor. Each submission creates a job in the system, so the user
can see the status of the compilation and execution, request
the results (if available), and resubmit or delete the job.

A daemon running on the cluster identifies jobs needing
compiled and submits the code to the compiler framework. If
the source compiles successfully, then the resulting JAR file
is deployed on our Hadoop cluster and the program executes.
If the program finishes without error, the resulting output is
made available to the user to download (as a text file).

V. EVALUATION

This section presents our empirical evaluation on the scal-
ability and the usefulness of our language and infrastructure.
The dataset used in this section contains all metadata about
all SourceForge projects (620k+') and Subversion repository
metadata for only the Java projects that use Subversion (23k+).
Programs were executed on a standard Hadoop [19] 1.0.3
install with 1 name node, 1 job tracker node, and 6 compute

I'This includes “user” projects, which aren’t listed.

nodes. The cluster was not tuned for performance, except for
setting the maximum number of map tasks for each compute
node equal to the number of cores on that node and increasing
the VM heap size to use the available memory on each node.

A. Applicability

Our main claim is that Boa is applicable for researchers
wishing to analyze ultra-large-scale software repositories. In
this section we investigate this claim.

Research Question 1: Does Boa help researchers analyze
ultra-large-scale software repositories?

To answer this question, we examined a set of tasks (see
Figure 4) that cover a range of different categories. For each
task, we implemented a Boa program to solve the task. We also
implemented small Java programs to solve the same tasks. The
Java programs were written by an expert in mining software
repositories and then reviewed by a second person who is
an expert in programming languages. The second person
performed a code review and also simplified and condensed
the programs to decrease the total lines of code as much
as reasonably possible without impacting performance. This
process substantially reduced (almost by half) the lines of code
for the Java versions.

The Java programs were not written as Hadoop programs.
Writing the programs in Hadoop would have added substantial
additional complexity and lines of code to these programs.

We were interested in investigating how Boa helps re-
searchers along three directions: 1) are programs easier to
write, 2) do those programs take (substantially) less time to
collect the data, and 3) is the language expressive enough to
solve such tasks. For each task, we collected two metrics:

426

o Lines of code (LOC)?: the amount of code written
o Running time (RTime): the time to collect the data

All results are shown in Figure 4. The lines of code give an
indication of how much effort was required to solve the tasks
using each approach. For Java, the tasks required writing 32—
107 lines of code and on average required 62 lines of code.
Performing the same tasks in Boa required at most 10 lines
of code and on average less than 5 lines of code. Thus there
were 8—18 times fewer lines of code when using Boa.

Not shown in the table was the fact the Java programs also
required using several libraries (for accessing SVN, parsing
JSON data, etc). The Boa programs abstracted away the details
of how to mine the data and thus the user was not required to
use these additional, complex libraries.

The table also lists the time required to run each program
and collect the desired data for the tasks. Note the Java
programs accessed all JSON and SVN data from a local cache
and the times do not include any network access. For the Java
programs, there are three distinct groups of running times. The
smallest times (A.1, A.2, B.1, B.2, and all of C and D) are
tasks that only require parsing the project metadata and did not
access any SVN data. The medium times (A.3, B.3, B.4, and
B.5) accessed the SVN repositories but only required mining
one (or very few) revisions. The largest times (B.6-B.11) all
accessed the SVN repositories and mined most of the revisions
to answer the task and thus required substantially more time.
Note that for the Boa programs, all tasks finish on average in
50 seconds, regardless of the type of task. We see minimum
speedups of 8 times but in the best case the Boa program
solves the task almost 250 times faster!

Task Java (cached) Java (remote SVNs) | Boa | Speedup
A3 6,998 45,793 41 1,117x
B.3 5,053 25,690 56 459x
B.4 4,880 18,700 43 390x
B.5 4,636 17,888 59 303x
B.6 10,750 95,404 45 2,120x
B.7 10,821 85,265 50 1,705x
B.8 10,435 95,755 58 1,651x
B.9 10,431 88,440 62 1,426x
B.10 10,489 100,883 43 2,346x
B.11 10,518 88,279 44 2,006x

Fig. 5. Time (in seconds) if Java tasks do not cache SVN repositories first.

While the times in Figure 4 utilize local caches for all data,
including SVN repositories, researchers implementing such
tasks might not first cache the SVN data. As such, we again
present the times for all tasks that access SVN in Figure 5
with the difference being the Java programs now access the
SVN repositories remotely. Compared to this strategy, Boa
programs run over 2,000 times faster!

1) Detailed Examples: Figures 6-9 show four interesting
Boa programs used to solve some of the tasks. These programs
highlight several useful features of the language.

Figure 6 answers task A.3 and demonstrates the use of a
user-defined functions. The function HasJavaFile (line 4)
takes a single Revision as argument and determines if it

2Ignores comments and blank lines. http://reasoning.com/downloads.html

1 counts: output sum[int] of int;
2 p: Project = input;

4 HasJavaFile := function(rev: Revision): bool {

s exists (i: int; match(.java$’, rev. files [i]. name))
6 return true;

7 return false;

8}

10 foreach (i: int; def(p.code_repositories[i]))
11 exists (j: int; HasJavaFile(p.code_repositories[i]. revisions[j]))
12 counts[yearof(p.code_repositories|i]. revisions[j]. commit_date)] << 1;

Fig. 6. Task A.3: Querying years when Java files were first added the most.

3

contains any files with the extension “java”. If the revision
contains at least one such file it returns t rue. This function is
used in the when statement (line 11) as the boolean condition.

1 counts: output sum of int;
2 p: Project = input;

4 exists (i: int; match(‘\java$‘, lowercase(p.programming_languagesli])))

5 foreach (j: int; p.code_repositories[j]. url .kind == RepositoryKind.SVN)

6 foreach (k: int; isfixingrevision (p.code_repositories[j]. revisions[k].log))
7 counts << 1;

Fig. 7. Task B.6: Querying number of bug-fixing revisions in Java projects
using SVN.

Figure 7 answers task B.6 and makes use of the built-in
function isfixingrevision (line 6). The function uses a
list of regular expressions to match against the revision’s log.
If there is a match, then the function returns true indicating
the log most likely was for a revision fixing a bug.

1 counts: output top(5) of string weight int;
2 p: Project = input;

4 foreach (i: int; def(p.licenses[i]))
5 counts << p.licenses[i] weight 1;

Fig. 8. Task C.1: Querying the five most used licenses.

Figure 8 answers task C.1 and makes use of a top aggregator
(line 1). The emit statement (line 5) now takes additional
arguments giving a weight for the value being emitted. The top
aggregator then selects the top N results that have the highest
total weight and gives those as output.

1 counts: output sum[string][string] of int;
2 p: Project = input;

4 foreach (i: int; def(p.programming_languagesi]))
5 foreach (j: int; def(p.databasesl[j]))
6 counts[p.programming_languagesli]][p.databases][j]] << 1;

Fig. 9. Task D.5: Querying pairs of how often each database is used in each
programming language.

Figure 9 answers task D.5 and makes use of a multi-
dimensional aggregator (line 1) to output pairs of results.
Again, the emit statement (line 6) is modified. This time, the
statement requires providing multiple indexes for the table.

427

60,000

50,136
50,000

40,375

40,000
30,000
20,000
10,000
0

cH+

java

32,378

php

Fig. 10. Task A.1: Popularity of programming languages on SourceForge.

30,308

15,117 15,034
12,569
9,740

c python c# java- perl unix delphi/
script shell kylix

Number of Projects

2) Results Analysis: We also show some interesting and
potentially useful results from four of the tasks. For example,
Figure 10 shows the results of Task A.l and charts the ten
most used programming languages on SourceForge. 9 of the
10 languages appear in the top-12 of the TIOBE Index [21].
Languages such as Visual Basic did not appear in our results
despite being #6 on the TIOBE index. This demonstrates that
while the language is popular in general, it is not popular
in open source. Similarly Objective-C did not appear in our
results, as most programs written in Objective-C are for i0S
and are (most likely) commercial, closed-source programs, or
not typically hosted on SourceForge.

100,000

17,781

10,000
2,292
2
1,000 926 503
287
211
137 123 187
70
100 Sl 44 44 54
21 26 27 17
I I I I I 1
1 I I

YT % A9 6 T % 9 40 AL 42 4D Ak 45 40 AT AR A9 ¢

Number of Projects
o

=
o

Number of Committers

Fig. 11. Task B.7: number of committers in each Java project using SVN.
NOTE: y-axis is in logarithmic scale.

The results of Task B.7 are shown in Figure 11. Note that the
y-axis is in logarithmic scale. These results show that a large
number of open-source projects have only a single committer.
Generally, open-source projects are small and have very few
committers and thus problems affecting large development
teams may not show when analyzing open-source software.

Task B.8 looks at this data from the other angle. Figure 12
shows the number of projects each unique committer works
on. Again, the vast majority of open-source developers only
work on a single project. Only about 1% of committers work
on more than three projects!

100,000
25,474

10,000
2,621
1,000 582
190
100 82
35
18
5
43 3
Hin & 1
1
1 2 3 4 5 6 7 8 9 10 11 12 13

14 15

Number of Committers

=
o

Number of Projects

Fig. 12. Task B.8: no. of Java projects each SVN committer works on. NOTE:
y-axis is in logarithmic scale.

% 1%
79 SPL 14

Y]
m1-15
16-25
m 26-50
W 51 or more

75%

Fig. 13. Task B.11: no. of words in SVN commit logs for Java projects.

Another interesting result came from Task B.11 and is
shown in Figure 13. This task examines how many words
appear in log messages. First, around 14% of all log messages
were completely empty. We do not investigate the reason
for this phenomenom but simply point out how prevalent it
is. Second, over two thirds of the messages contained 1-15
words, which is less than the average length of a sentence in
English. A normal length sentence in English is 15-20 words
(according to various results in Google) and thus we see that
very few logs (10%) contained descriptive messages.

B. Scalability

One of our claims is that our approach is scalable. We
investigate this claim in terms of scaling the size of the cluster
and scaling the size of the input.

Research Question 2: Does our approach scale to the size
of the cluster?

To answer this question, we run each of the sample pro-
grams listed in Figures 6-9 using our SourceForge.net dataset.
We fix the size of the input to 620k projects and vary the
number of available map slots in the system from 1-32.
Figure 14 shows the results of this analysis where each group
represents one of the sample programs, the y-axis is the total
time taken in seconds to run the program, and the x-axis is
the number of available map slots in the cluster. Each value
is the average of 10 executions.

428

100,000

10,000
0
g 1,000
Q
(1)
A
()
£ 100
8
]
|_
10
H Java
H Boa

AY A2 p2 el 82 82 oh 85 g0 gl @83 29 g0 gAr ¢t c? oY 02 03 oA 0B

Number of Projects (6k, 60k, 620k)

Fig. 15. Scalability of input. Y-axis is total time taken. X-axis is the size of the input in number of projects. NOTE: y-axis is in logarithmic scale.

160

139 143 142 140
140
120
100
83 82 82 82

80

" 58 58 58 58

46 46 6 47
4039 3940 4140 4140

40
20
0

Task A.3 Task B.6 Task C.1 Task D.5

Execution time (seconds)

H1map M2 maps ' 4 maps M8 maps M 16 maps " 32 maps

Fig. 14. Scalability of sample programs. Y-axis is total time taken. X-axis is
the number of available map slots in the cluster.

As one might expect, the Hadoop framework works well
with this large dataset. As the maximum number of map slots
increases, we see substantial decreases in execution time as
more parallel map slots are being utilized.

Note that with our current input size of 620k projects,
the maximum number of map slots needed is 10. Thus we
don’t generally see any benefit when increasing the maximum
map slots past that. As we increase the size of our input
however, we would expect to see differences in these data
points indicating scaling past 10 map slots.

Research Question 3: Does our approach scale with the
size of the input?

To answer this question, we fix the number of compute
nodes to 6 (with a total of 44 map slots available) and then
vary the size of the input (6k, 60k, and 620k projects). The
results for all tasks in Figure 4 are shown in Figure 15. We

compare against the programs written in Java to answer the
same questions. All programs access only locally cached data.
Note that the y-axis is in logarithmic scale.

For the smallest input size (6k) on certain tasks, the Java
program runs in around 10 seconds while the Boa program
runs in 30 seconds. At this size Boa only uses one map task
and thus the overhead of Hadoop dominates the execution
time. For the larger input sizes, Boa always runs in (substan-
tially) less time than the Java version.

The results also show that the hand written Java programs
do not scale based on input size. As the input size increases,
the running time for the Java programs also increases (roughly
linearly). The Boa programs however demonstrate scalability.
For the two smallest input sizes, the Boa programs take
roughly the same amount of time. For the largest input size the
Boa programs, despite having to process an input 100 times
larger than the smallest input size, only take around twice as
long. This shows that the Boa infrastructure scales well as the
input size increases. Note that with our current maximum input
size, Boa only utilizes 10 (out of 44) map slots and thus we
expect more scalability should the input size increase further.

C. Reproducibility

One important claim we make is that if researchers publish
results obtained from our infrastructure other researchers can
easily reproduce the same results.

Research Question 4: Using our infrastructure, can re-
searchers easily reproduce previously published results?

To answer this question, we performed a small controlled
experiment. We selected a group of 8 researchers: 1 graduate
student and 1 post-doc who are experts in software mining and
5 graduate and 1 undergraduate students who are not experts.
Each student was given a short tutorial on how to use our
infrastructure as well as the location of Boa source code for

429

18 tasks.® This source code represents what a researcher would
publish in their paper, along with the dataset they used.

For each of the 18 tasks, results files were provided. This
represents the data the previous researchers produced. Each
student chose 3 tasks they were interested in reproducing and
were given a maximum of 1 hour per task. We measured the
length of time required to reproduce each task as well as the
number of tries (in case they failed to reproduce the results).

Intro Task 1 Task 2 Task 3
Expert | Education || Time | Task | Time | Task | Time | Task | Time

Yes Post-doc 6 B.1 1 B.6 4 B.9 3
Yes PhD 5 Al 3 B.6 2 B.7 6
No PhD 4 B.6 1 B.10| 4 B.9 4
No PhD 4 A2 2 B.6 2 D5 4
No MS 4 Al 4 B.6 1 D3 2
No MS 3 B.6 2 C.1 2 D4 10
No MS 6 Al 2 B.7 3 |B10| 3
No BS 2 A2 2 D.1 2 D.3 2

Fig. 16. Study results. All times given in minutes.

The results are given in Figure 16 and clearly show that
all students were able to reproduce the previously published
results in (substantially) less than one hour. Note that all
students were also able to reproduce the results on their first
try. Thus we assert that using only previously published source
code and which dataset was used, other researchers are able
to easily reproduce the results.

VI. RELATED WORK

Despite the popularity of Mining Software Repositories
(MSR), only a few research groups have attempted to address
the problem of mining large-scale software repositories. In this
section we discuss some of these efforts and programming
languages similar to Boa.

A. Mining Software Repositories

Bevan et al. [12] proposed a centralized approach in which
they define database schemas for metadata and source code
in software repositories and such data is downloaded into a
centralized database, called Kenyon. The data can be accessed
from Kenyon via SQL commands with their predefined data
schemas. Unlike our infrastructure, which is aimed to sup-
port ultra large data in software repositories, Kenyon was
not designed for ultra large data with hundred thousands of
projects and billions lines of code. Additionally, our language
and infrastructure can easily support new metadata from
repositories as a newly defined type in the language.

In 2007, Boetticher, Menzies and Ostrand introduced the
PROMISE Repository [13], an online data repository for em-
pirical software engineering data, mainly for defect prediction
research. They make the repository publicly available and
encourage the authors of research papers on defect prediction
to upload data. The data in PROMISE are the post-processed
data, i.e. the data that were already processed to be suited
with each individual research problem in each research paper.

3 At the start of the study we only had 18 tasks (A.3, B.8, and B.11 missing).
For consistency, all participants used the same set of tasks.

For example, the authors of a new bug prediction model
using Weka as their machine learning tool would upload the
data files in Weka format. This hinders the applicability and
usability of the data if other researchers would like to use the
original data for a different tool set, a different approach, or
even a different problem. PROMISE data is also limited to
defect prediction. Additionally, since the data is uploaded for
individual research PROMISE potentially contains duplicate
data and inconsistencies.

Sourcerer [22] provides an SQL database of metadata and
source code on over 18k projects. Queries are performed using
standard SQL statements. Thus their approach easily supports
joins on the data, where ours does not. However, being built on
MapReduce allows easier scalability for our approach. Their
approach also does not contain history information (revisions).

Supporting for the reproducibility of research papers pub-
lished in the MSR area, Gregorio Robles [14] and his team
advocated for the construction of open-access data repositories
for MSR research. Their goal was to build “a web page with
the additional information, most desirably a Sourceforge-like
site that acts as a repository for this type of data and tools,
and that frees researchers from maintaining infrastructure and
links”. Their vision is similar to PROMISE but with more
general types of data. We focus more on the raw data of open-
source projects that can be utilized in any MSR research.

Aiming to improve the scalability and speed of MSR
tasks, Hassan er al. [15] and Gabel ef al. [16] use parallel
algorithms and infrastructures. They have shown that using
map-reduce and other parallel computing infrastructure could
achieve that goal. In comparison, they focus only on specific
mining tasks (e.g. finding uniqueness and cloned code), while
our infrastructure supports a wide range of mining tasks.
Additionally, the details of using map-reduce are not exposed
to the programmers when using Boa.

B. Programming Languages

Martin et al. define a program query language (PQL) [23]
to allow easily analyzing source code. Their language models
programs as certain events, such as the call or return of a
method or reading/writing a field, and allow users to write
query patterns to match sub-sequences of these events. To
match, PQL performs a static analysis that is flow-sensitive and
performs a pointer analysis to determine all possible matches
to the query. It also provides an online checker that instruments
the program and dynamically matches. Each instance of PQL
however is limited to matching against a single program and
has a limited set of events provided by the language. Our
approach is designed to perform queries efficiently against a
large corpus of data instead of single programs.

Dean and Ghemawat proposed a computing paradigm called
MapReduce [8] in which users easily process large amounts
of data in a highly parallel fashion by providing functions
for filtering and grouping data, called mappers, and additional
functions for aggregating the output, called reducers. Programs
that are heavily data-parallel and written in MapReduce can
be executed in parallel on large clusters, without the user

430

worrying about explicitly writing parallel code. Over the years,
a large number of languages that directly or indirectly support
MapReduce or MapReduce-like paradigms were proposed.
Here we discuss some of these languages.

Sawzall [9] is a language developed at Google to ease
processing of large datasets, particularly logfiles. The language
is intended to run on top of Google’s distributed filesystem and
map-reduce framework, allowing users to write queries against
or process large amounts of log data. Our framework, while
syntactically similar to Sawzall, provides several key benefits.
First, we provide domain-specific types to ease the writing of
software mining tasks. These types represent a lot of cached
data and provide convenient ways to access this data, without
having to know specifics about how to access code repositories
or parse the data contained in them. Second, our framework
runs on Hadoop clusters whereas Sawzall only runs on a single
machine or on Google’s proprietary map-reduce framework.

Apache Pig Latin [17] aims to provide both a procedural
style map-reduce framework as well as a more higher-level,
declarative style language somewhat similar to standard SQL.
Unlike pure map-reduce frameworks or implementations such
as Sawzall, Pig Latin provides the ability to easily perform
joins on large datasets. The language was also designed to
ease the framework’s ability to optimize queries. Since our
approach is based on Sawzall, we do not directly provide
support for joins. Unlike Boa however, Pig Latin does not
directly provide support for software mining tasks.

Dryad [18] is a framework to allow parallel processing of
large-scale data. Dryad programs are expressed as directed,
acyclic graphs and thus are more general than standard map-
reduce. A high-level procedural language, DryadLINQ [24], is
provided that compiles down to Dryad. This language is based
on .Net’s language integrated query (LINQ) and provides a
syntax somewhat similar to a procedural version of SQL and
thus is relatively similar to Pig Latin. Also similar to Pig Latin,
Dryad does not directly aim to support easing software mining
tasks. Microsoft no longer supports Dryad/DryadLINQ.

VII. FUTURE WORK AND CONCLUSION

Ultra-large-scale software repositories contain an enormous
corpus of software and information about that software. Scien-
tists and engineers alike are interested in analyzing this wealth
of information, however systematic extraction of relevant data
from these repositories and analysis of such data for testing
hypotheses is difficult. In this work, we present Boa, a domain-
specific language and infrastructure to ease testing MSR-
related hypotheses. We implemented Boa and provide a web-
based interface to Boa’s infrastructure. Our evaluation demon-
strated that Boa substantially reduces programming efforts,
thus lowering the barrier to entry. Boa also shows drastic
improvements in scalability without requiring programmers to
explicitly parallelize code. We also demonstrate that experi-
ments conducted using Boa are easily reproduced simply by
re-running Boa programs provided by the previous researchers.

In the future, we plan to support additional version control
systems and source repositories. A key challenge in this

process will be to reconcile terminological differences between
these systems to be able to provide a unified interface.

ACKNOWLEDGMENT

This work was supported in part by NSF grants CCF-11-
17937, CCF-10-17334, CCF-10-18600, and CNS-12-23828.

REFERENCES

[1]1 P. Dourish and V. Bellotti, “Awareness and coordination in shared
workspaces,” in CSCW, 1992, pp. 107-114.

[2] J. Lerner and J. Tirole, “Some simple economics of open source,” The
Journal of Industrial Economics, vol. 50, pp. 197-234, 2002.

[3] S. Landau, “Standing the test of time: The data encryption standard,”
Notices of the American Mathematical Society, vol. 47, no. 3, p. 341,
March 2000.

[4] S. Goodman, P. Wolcott, and G. Burkhart, Building on the Basics: An
Examination of High-Performance Computing Export Control Policy in
the 1990s. Center for International Security & Cooperation, 1995.

[5] E. Raymond, “The cathedral and the bazaar,” Knowledge, Technology &
Policy, vol. 12, pp. 23-49, 1999.

[6] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men
do: A large-scale study of the use of eval in javascript applications,” in
ECOOP, 2011, pp. 52-78.

[7]1 C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in MSR, 2007.

[8] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in OSDI, 2004.

[9] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the

data: Parallel analysis with Sawzall,” Sci. Program., vol. 13, no. 4, pp.

277-298, 2005.

C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-

shaw, and N. Weizenbaum, “FlumeJava: easy, efficient data-parallel

pipelines,” in PLDI, 2010, pp. 363-375.

H. Rajan, T. N. Nguyen, R. Dyer, and H. A. Nguyen, “Boa website,”

http://boa.cs.iastate.edu/, 2012.

J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, “Facilitating

software evolution research with Kenyon,” in ESEC/FSE, 2005, pp. 177—

186.

“Promise 2009,” http://promisedata.org/2009/datasets.html.

J. M. Gonzilez-Barahona and G. Robles, “On the reproducibility of

empirical software engineering studies based on data retrieved from

development repositories,” Empirical Software Engineering, vol. 17, no.

1-2, pp. 75-89, 2012.

W. Shang, B. Adams, and A. E. Hassan, “An experience report on scaling

tools for mining software repositories using mapreduce,” in ASE, 2010,

pp- 275-284.

M. Gabel and Z. Su, “A study of the uniqueness of source code,” in

FSE, 2010, pp. 147-156.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:

a not-so-foreign language for data processing,” in the ACM SIGMOD

international conference on Management of data, 2008, pp. 1099-1110.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,” in

the ACM SIGOPS/EuroSys European Conference on Computer Systems,

2007, pp. 59-72.

Apache Software Foundation, “Hadoop: Open source implementation of

MapReduce,” http://hadoop.apache.org/, 2012.

A. Urso, “Sizzle: A compiler and runtime for Sawzall, optimized for

Hadoop,” https://github.com/anthonyu/Sizzle, 2012.

“TIOBE Programming Community Index for July 2012,” TIOBE

Software BV, Tech. Rep., 2012. [Online]. Available: http://www.tiobe.

com/tpci.htm

E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,

“Sourcerer: mining and searching internet-scale software repositories,”

Data Mining and Knowledge Discovery, vol. 18, pp. 300-336, April

20009.

M. Martin, B. Livshits, and M. S. Lam, “Finding application errors

and security flaws using PQL: a program query language,” in OOPSLA,

2005, pp. 365-383.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, i. Erlingsson, P. K. Gunda, and

J. Currey, “Dryadling: A system for general-purpose distributed data-

parallel computing using a high-level language.” in OSDI, 2008, pp.

1-14.

(10]

(11]
[12]

[13]
(14]

[15]

[16]

(171

(18]

(19]

[20]

(21]

(22]

[23]

[24]

431

