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1 Fix on Figure 3 in the Paper
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Fig. 1: Part of 1El

2 Proof for Theorem 2 in the Paper
Theorem 1. Given a parameterized system with t different types of processes each de-
fined using a set of behavioral automata Prot, the following holds for all Type I and II
properties ϕ in the logic of LTL\X

∀p ∈ [1, t] : PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t)⇒
(
sys(k̄t) |= ϕ⇔ sys(n̄t) |= ϕ

)
where n̄t = n1, n2, . . . , nt, k̄t = k1, k2, . . . , kt, Sk̄t is the set of states in sys(k̄t).

Proof. We first prove the theorem for Type II properties. Recall from Section 4.2 that
Type II property specification is concerned with actions of two processes directly com-
municating with each other (i.e. adjacent processes). Therefore, using Propositions 1, 2
and 3, it is required to prove that ∀p1, p2 ∈ [1, t],∀i1 ≤ n1,∀i2 ≤ n2,∃j1 ≤ k1, j2 ≤
k2,

PATH(sys(n̄t)↓{i1, i2}, Sn̄t

I ) = PATH(sys(k̄t)↓{j1, j2}, Sk̄t

I )

such that i1, i2 and j1, j2 are adjacent processes in sys(n̄t) and sys(k̄t), respectively,
and Sn̄t

I and Sk̄t

I are initial state-sets of sys(n̄t) and sys(k̄t) respectively.
Assume that there exists a sequence π of events in PATH(sys(n̄t), Sn̄t

I ) such that
π ↓{i1, i2} is not present in PATH(sys(k̄t)↓{j1, j2}, Sk̄t

I ) for any j1 ≤ k1 or j2 ≤
k2. I.e., ∃i1 ≤ n1, i2 ≤ n2,∀j1 ≤ k1, j2 ≤ k2 : PATH(sys(n̄t)↓{i1, i2}, Sn̄t

I ) 6=
PATH(sys(k̄t)↓{j1, j2}, Sk̄t

I ). This assumption implies that (using Equations 1 and 2)

F1(π↓{i1, i2},
⋃

j1,j2
PATH(sys(k̄t)↓{j1, j2}, Sk̄t

I )) = χ1 6= ∅

⇒ ∀π′
1 ∈ χ1 : ∃e1/e0 : F2(π↓{i1, i2}, π′

1) = e1/e0

(1)

This, in turn, implies two possibilities as explained below:
Case 1. e1 = ε. In this case, e1/e0 is an autonomous move of process of type p1

or p2. As such a move is absent in all paths in sys(k̄t), we can conclude that either
PATH(1Ep1) 6⊆ PATH(sys(k̄t), Sk̄t) or PATH(1Ep2) 6⊆ PATH(sys(k̄t), Sk̄t).
Case 2. In the sequence π, process i1 of type p1 provides e2/e1 that resulted in e1/e0

in process i2 of type p.
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If e2/e1 followed by e1/e0 is absent in all paths in PATH(sys(k̄t), Sk̄t

I ), we can
immediately conclude that ∃p′ ∈ [1, t] : PATH(1Ep′) 6⊆ PATH(sys(k̄t), Sk̄t).

On the other hand, if e2/e1 followed by e1/e0 is present in some paths in
PATH(sys(k̄t), Sk̄t

I ), we can conclude that these do not appear (in projected form) in
χ1 (Equation 1). The projection of these paths mimic shorter prefixes of π↓{i1, i2} (see
Definition of F1 in Equation 2). If such a path (shorter than π′) fails to match π on some
e′

1/e
′
0 of the j′-th process of type p′, the above arguments can be repeated for such a

mismatch. I.e., if e′
1 = ε, PATH(1Ep′) 6⊆ PATH(sys(k̄t), Sk̄t); otherwise, even shorter

paths that mismatches π can be obtained by applying the arguments in Case 2 until only
Case 1 is applicable and it follows that ∃p ∈ [1, t] : PATH(1Ep) 6⊆ PATH(sys(k̄t), Sk̄t).
This concludes the proof for Type II properties.

TYPE I PROPERTY. The proof for type I properties follows similar arguments as pro-
vided above.

We now proved that

∀p ∈ [1, t] : PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t)⇒
PATH(sys(n̄t)↓R,Sn̄t

I ) = PATH(sys(k̄t)↓R,Sk̄t

I )

where R is either one process (for type I properties) or two adjacent processes (for
type II properties). Therefore, as shown in Proposition 2, all possible sequence of states
of adjacent processes are identical in sys(k̄t) and sys(n̄t), therefore PATH(sys(n̄t)↓
R,Sn̄t

I ) = PATH(sys(k̄t)↓R,Sk̄t

I ) ⇒ sys(k̄t) |= ϕ ⇔ sys(n̄t) |= ϕ for all properties
ϕ defined over actions of processes in R.


