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Abstract. Verifying that a parameterized system satisfies certain desired proper-
ties amounts to verifying an infinite family of the system instances. This problem
is undecidable in general, and as such a number of sound and incomplete tech-
niques have been proposed to address it. Existing techniques typically focus on
parameterized systems with a single parameter, (i.e., on systems where the num-
ber of processes of exactly one type is dependent on the parameter); however,
many systems in practice are multi-parameterized, where multiple parameters
are used to specify the number of different types of processes in the system. In
this work, we present an automatic verification technique for multi-parameterized
systems, prove its soundness and show that it can be applied to systems irrespec-
tive of their communication topology. We present a prototype realization of our
technique in our tool Golok, and demonstrate its practical applicability using a
number of multi-parameterized systems.

1 Introduction

A large class of protocols described for concurrent systems, e.g., client-server proto-
cols and multi-threaded locking protocols, do not enforce any bound on the number of
processes that constitute the systems. Behavior of systems executing such protocols are
modeled as parameterized systems where the parameter specifies the number of homo-
geneous processes in the system [1]. Verification of a parameterized system, therefore,
amounts to verifying every instance of the system obtained by fixing the value of the
parameter. In short, if sys(n) is a parameterized system, where n specifies the num-
ber of homogeneous processes in the system, then verifying whether sys(n) satisfies a
certain desired property involves verifying that for all possible values of n, the system
satisfies the property. This problem is undecidable in general [2].

Driving Problem. There is a rich body of work on parameterized system verifica-
tion [3, 4, 5, 6] that focuses on providing sound and incomplete methods to verify a
singly-parameterized system. For a singly-parameterized system, the parameter speci-
fies the number of exactly one type of homogeneous processes. However, in practice,
there are many systems that are inherently multi-parameterized; examples include wire-
less sensor networks consisting of multiple types of nodes: sensors and aggregators [7]
and distributed producer-consumer based systems [8] involving multiple producers
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and consumers. On the one hand, in most cases, verification techniques for singly-
parameterized systems are either not applicable to multi-parameterized systems, or it
is not immediate how one can extend these techniques to analyze systems with mul-
tiple parameters. On the other hand, the few techniques that can indeed verify multi-
parameterized systems suffer from the drawback that they require non-trivial human
guidance to obtain the appropriate protocol specification (e.g. [9,10]) and/or work only
for systems with certain topologies (e.g. [11]).

Consider that a multi-parameterized system with t different types of processes is
described by sys(n̄t) where n̄t := n1, n2, . . . , nt and the parameter np denotes the
number of processes of type p. The objective is to verify whether the system satisfies
a given property for all possible valuations of each np in n̄t. This can be realized by
identifying a specific instance of the system: sys(k̄t) (where k̄t := k1, k2, . . . , kt) such
that sys(k̄t) satisfies the given property if and only if sys(n̄t) satisfies the same, for all
n̄t ≥ k̄t (i.e., ∀p : np ≥ kp). The parameter values in k̄t corresponding to the specific
instance of the system are referred to as the cut-off.

Our Solution. In this paper, we propose a technique, leveraging on our previous
work [12], for automatically identifying such a cut-off. The technique, unlike the ex-
isting ones, is independent of both the communication topology and the property to be
verified, and relies on simple input/output automata based representation of different
types of processes in the system.

We consider a set of behavioral automata (introduced in [12]) to describe the in-
put/output behavior of different types of processes in the system. The central theme of
our technique is to automatically

1. compute the set of maximal behavior of the system (in terms of input/output) that
can be induced by output action of each type of processes in the parameterized
system, and

2. identify the minimal instance of the parameterized system that includes all such
maximal behavior.

We prove that the parameter values corresponding to this minimal instance is the cut-
off; more precisely, for any LTL\X (Linear Temporal Logic without “next” operator)
properties which involve either actions of exactly one process or actions of two or more
directly communicating processes, the instance of the parameterized system with the
cut-off valuation for the parameters satisfies the property if and only if any other larger
(in terms of parameter values) instance satisfies the same property.

Significant extension of [12]. While the core of the technique described in this pa-
per is same as the one proposed and developed in [12], there are several important and
non-trivial issues that are addressed in the current paper. In [12], cut-off valuation is
computed for parameterized system where the parameter specifies the number of ex-
actly one type of homogeneous process. The computed maximal behavior, therefore,
is induced by one type of process. In the current paper, as there are multiple types of
processes whose number is parameterized, in Step 1, it is necessary to compute the
maximal behavior induced by all of them. We show that the collection containing the
induced maximal behavior by each type of process is equivalent to the induced maximal
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behavior by processes of all types. We further show that, it is sufficient to compute the
induced maximal behavior for only those types of processes that are capable of making
an autonomous move (without requiring external stimuli/input) from their initial states.
These two conditions reduce the complexity of identifying the induced maximal be-
havior in Step 1 and thereby, reduce the complexity of the overall technique. Finally,
for Step 2, we use a simple breadth-first strategy for incrementing parameter values to
identify system instances; such strategy was not needed in [12] as the system, under
consideration, was singly parameterized.

Contribution. The summary of contributions of our technique are:

� To the best of our knowledge, we present the first automatic technique for verifying
multi-parameterized systems that has the following features:
1. the technique is applicable for verifying LTL\X properties over arbitrary ho-

mogeneous processes (in contrast to [11] which focuses on resource allocation
systems);

2. the technique is automatic, requires no human intervention (unlike several
methods, e.g. [9], that rely on smart representation of the system being veri-
fied);

3. the technique is independent of the communication topology (unlike [11] that
works only for systems with ring topology), which, along with automation,
broadens the scope of its application in practical settings.

� We present the implementation of our technique in a tool, Golok and discuss several
optimizations deployed to speedup the cut-off generation process. We demonstrate
the robustness and scalability of our technique and implementation using different
canonical multi-parameterized systems.

Organization. This paper is organized as follows. Section 2 discusses related work.
Section 3 describes our technique for specifying a system using a variant of the Dining
Philosophers protocol as an illustrative example. Section 4 describes how the maximal
behavior induced by a process of some type p in the context of any environment is
generated and shows the procedure for generating the cut-off. Proof of soundness of
our technique is presented in Section 5. Section 6 describes our tool. Section 7 presents
the different case studies we used to evaluate our technique and the obtained results
from our tool and Section 8 offers final remarks.

2 Related Work

There exists a large body of sound and incomplete techniques for verifying parameter-
ized systems. Solutions proposed in [3,14] reduce the problem of parameterized system
verification to verification of a corresponding property-preserving finite-state abstrac-
tion, where instead of the state of each process, constraints on the number of processes
at a each state are considered. Several other techniques rely on smart representation of
the behavior of parameterized systems using regular grammars [4], petri-nets and graph-
grammars [5]. Another class of techniques [9,10,15,16] involves identifying the invari-
ant of a parameterized system. The invariant captures the common behavior exhibited
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by all instances of the parameterized system. A property is satisfied by the parameter-
ized system if the invariant conforms to the property. While techniques proposed in [10]
apply induction to generate such invariant for singly-parameterized systems, [16] em-
ploy context-free grammars to generate the invariants for multi-parameterized systems.
Most of these techniques require user guidance to obtain the grammars and/or appro-
priate abstraction mapping [17].

Emerson and Kahlon [11] were the first to develop a verification technique for multi-
parameterized systems based on computing a cut-off. They propose solutions in the con-
text of resource allocation systems where each homogeneous process has a specific be-
havior (zero or more internal transitions followed by acquire followed by zero or more
internal transitions followed by release). They provide efficient methods for obtaining
cut-offs when the system under consideration has a ring communication topology and
the properties being considered are over adjacent processes (one process relaying a to-
ken to another).

Sun et al. [18] show that appropriate counter abstraction can be used to deal with
state-space explosion without compromising fairness in model checking. The technique
has been further applied in the context of parameterized systems by considering some
pre-specified cut-off of the parameter, and any counter valuations greater than the cut-
off are abstracted in the abstract model. Note that the cut-off valuation is not computed
based on the model and/or the property under consideration; instead cut-off valuation is
selected by the user.

Unlike these existing techniques, our technique does not rely on smart representa-
tions and/or abstractions that may require user-guidance. Our technique is fully auto-
matic, applicable to any communication topology and is not developed in the context of
any specific application domain (e.g., resource allocation).

3 Multi-parameterized System

Illustrative Example. The terminology used in this paper and the salient aspects of
the proposed technique are explained using a variant of the Dining Philosophers pro-
tocol [19] (a model illustrating a classic multi-process synchronization problem). We
use a variant of this protocol referred to as the Right-Left Dining Philosophers (RLDP)
algorithm [11], where there are two types of philosophers: “Left” philosophers grab the
left fork first and “Right” philosophers grab the right fork first. In this protocol, adja-
cent philosophers are of different types; therefore, the number of “Left” and “Right”
philosophers is equal. Our technique is based on the notion of behavioral automata
introduced in [12].

3.1 Processes as Behavioral Automata

Definition 1 (Behavioral Automaton). A behavioral automaton A is a tuple (qI , qF ,
Δ, E), where qI is the initial state, qF is the final state, Δ ⊆ {E × {qI}} ∪ {{qF} ×
E} ∪ {(qI , qF )} is the transition relation, and E is a nonempty set of events (including
the empty event ε). We write qI → qF if (qI , qF ) ∈ Δ, • e→ qI if (e, qI) ∈ Δ and
qF

e→ • if (qF , e) ∈ Δ.
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1 # This diner type picks up left fork first
2 process left-diner {
3 L-START: [init, epsilon] ->[neating, begin]
4 L-ASKL: [neating, begin]->[waitl, askl2]
5 L-REASKL: [waitl, ltaken] ->[waitl, askl2]
6 L-FREEL-NE:[neating, askl]->[neating, lfree2]
7 L-FREEL-WL:[waitl, askl] ->[waitl, lfree2]
8 L-BUSYL-WR:[waitr, askl] ->[waitr, ltaken2]
9 L-BUSYL-EAT:[eat, askl] ->[eat, ltaken2]

10 L-ASKR: [waitl, lfree] ->[waitr, askr2]
11 L-REASKR: [waitr, rtaken]->[waitr, askr2]
12 L-FREER-NE:[neating, askr]->[neating, rfree2]
13 L-FREER-WL: [waitl, askr] ->[ waitl, rfree2]
14 L-BUSYR-WR: [waitr, askr] ->[waitr, rtaken2]
15 L-BUSYR-EAT:[eat, askr] ->[eat, rtaken2]
16 L-EAT: [waitr, rfree] ->[eat, rel-forks]
17 L-EAT-DONE:[eat, rel-forks]->[neating, begin]
18 }

(a)

1 # This diner type picks up right fork first
2 process right-diner {
3 R-START: [init, epsilon] ->[neating, begin2]
4 R-ASKR: [neating, begin2] ->[waitr, askr]
5 R-REASKR: [waitr, rtaken2]->[waitr, askr]
6 R-FREER-NE:[neating, askr2]->[neating, rfree]
7 R-FREER-WR:[waitr, askr2] ->[waitr, rfree]
8 R-FREER-WL:[waitl, askr2] ->[waitl, rfree]
9 R-BUSYR-EAT:[eat, askr2] ->[eat, rtaken]

10 R-ASKL: [waitr, rfree2] ->[waitl, askl]
11 R-REASKL:[waitl, ltaken2] ->[waitl, askl]
12 R-FREEL-NE:[neating, askl2]->[neating, lfree]
13 R-BUSYL-WL: [waitl, askl2] ->[waitl, ltaken]
14 R-BUSYL-WR: [waitr, askl2] ->[waitr, ltaken]
15 R-BUSYL-EAT:[eat, askl2] ->[eat, ltaken]
16 R-EAT: [waitl, lfree2] ->[eat, rel-forks2]
17 R-EAT-DONE:[eat, rel-forks2]->[neating, begin2]
18 }

(b)

Fig. 1. Behavioral Automata for (a) “Left” Philosophers (b) “Right” Philosophers

Figures 1(a), (b) display the behavioral automata for philosophers of both types
“Left” and “Right” of the RLDP protocol respectively. The statement of the form A:

[q,e]->[q’,e’] denotes an automaton with • e→ q, q
ε→ q′ and q′ e′

→ •.

A behavioral automaton describes the state in which a process can be, and what
action it can perform when it is in that state. Automaton L-ASKL in Figure 1(a) (Line 4)
presents the behavior of a philosopher of type “Left” who, while not eating (i.e. state
neating), receives event begin, changes its state to waitl (i.e. waiting for the left
fork) and sends the request for the left fork (event askl2). Since neighbor philosophers
are of different types, the request of the left fork requested by a “Left” philosopher
is received by a philosopher of type “Right”. Automaton R-FREEL-NE in Figure 1(b)
(Line 12) models the behavior of a “Right” philosopher who receives the request for
the left fork while not eating, and replies that the fork is free (event lfree) so that the
neighbor can take it.

An automaton with ε input event captures the behavior of a process where, if the
process is at the initial state of this automaton, it can make a move without any ex-
ternal stimuli. For instance, automaton L-START in Figure 1(a) (Line 3) states that if a
philosopher is in state init, she can generate the event beginwithout any input events.
She changes her state to neating after this action.

Definition 2 (Process and System Specification). A process specification for some
type p, denoted by Protp, is a set of behavioral automata that represents the possible
actions of a process of that type. A system specification, Prot, is the union of the process
specifications for all types present in the system. At least one automaton in at least one
process specification in Prot must have a transition of the form • ε→ q, which represents
an action without input event.

In our example, there are two process specifications; one for the “Left” philosophers
Protl defined by the automata in Figure 1(a), and the other for the “Right” philosophers
Protr defined by the automata in Figure 1(b), where the types “Left” and “Right” are
represented by the letters l and r respectively. Both types can initiate the protocol since
the specification of each one contains an automaton with transition of the form • ε→ q.
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Fig. 2. Part of sys(1r, 1l) for the RLDP Protocol

3.2 Behavior of Multi-parameterized System

Any system behavior is constrained by the topology that describes which processes in
the system can directly communicate with each other.

Definition 3 (Communication Topology). Given a system protocol specification
Prot =

⋃
1≤p≤t Protp, where t is the number of different types of processes and

Protp = {A1p , . . . , Alp}, a topology is a set of tuples, Topo ⊆ E× (I ×T )× (I ×T ),
where E =

⋃
1≤p≤t

⋃
1≤r≤lp

{Er : Er is set of events in Arp ∈ Protp}, I ∈ N is
the domain of number of processes of any type, and T is the domain of types. A tuple
(e, ip1, jp2) ∈ Topo implies that output e from i-th process of type p1 is consumed by
the j-th process of type p2.

For our example, we enforce two such constraints on communication patterns: first
that adjacent philosophers are of different types (therefore there is an equal number of
“Left” and “Right” philosophers), and second that it is a ring topology. For instance, the
topology for the system instance containing one “Left” and one “Right” philosophers is
Topo = {(begin, 1l, 1l), (begin2, 1r, 1r), (askl2, 1l, 1r), (lfree, 1r, 1l), . . .}.

Definition 4 (Multi-Parameterized System). Given a specification Prot with t dif-
ferent types of processes, a multi-parameterized system containing np number of
processes of type p (p ∈ [1, t]) is defined as sys(n̄t) = (S, SI , T, Topo), where
n̄t := n1, n2, . . . , nt, S is the set of states, SI ⊆ S is the set of initial states and
T ⊆ S × E × E × S is the transition relation. A state in S contains

∑t
p=1 np tuples

of the form (qip , Aip , Eip); the tuple represents the configuration of the i-th process of
type p such that qip is the state of the process in the behavioral automata Aip and Eip

denotes the set of output events from the process that have not been consumed yet.

We use s
e/e′
→ s′ to denote (s, e, e′, s′) ∈ T .

1. A transition of the form 〈(qip , Aip , Eip), C〉 ε/e→ 〈(q′ip
, Aip , E ′

ip
), C〉 ∈ T , if

{• ε→ qip , qip → q′ip
, q′ip

e→ •} = Δ ∈ Aip ∧ E ′
ip

= Eip ∪ {e}.
In the above C represents the configurations of the remaining processes in the state.

2. A transition of the form

〈 (qip1 , Aip1 , Eip1)
(qjp2 , Ajp2 , Ejp2)

C

〉
e/e′
→

〈 (q′ip1
, A′

ip1
, E ′

ip1
)

(qjp2 , Ajp2 , E ′
jp2

)
C

〉

∈ T , if

{• e→ qip1 , qip1 → q′ip1
, q′ip1

e′
→ •} = Δ ∈ Aip1 ∧

E ′
ip1

= Eip1 ∪ {e′} ∧ Ejp2 = E ′
jp2

∪ {e} ∧ (e, jp2, ip1) ∈ Topo
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Figure 2 shows part of the system instance with one philosopher of type “Right” and
one of type “Left”, sys(1r, 1l). Each state (system configuration) contains two process
configurations for processes 1l, 1r, respectively. Two possible transitions (see Rule 1
in Definition 4) can happen from the initial configuration: the transition on ε/begin2
belongs to move done by philosopher 1r and the transition on ε/begin belongs to the
one by philosopher 1l. As these moves require no external stimuli (no input event),
we call these moves autonomous moves. The second state in the figure shows the ef-
fect of the autonomous move done by philosopher 1r on her configuration, where her
state changes and her set of output events has the produced event. The transition on
begin/askl2 in the figure illustrates a non-autonomous move (see Rule 2 in Defini-
tion 4) with intra-process communication, where the philosopher 1l consumes the event
begin that she has produced from her own previous autonomous move, and produces
the event askl2 as a result (to ask the left fork). In the figure, the last transition on
askl2/lfree illustrates a non-autonomous move with inter-process communication,
where the request ask12 for the right fork produced by philosopher 1l is received by
philosopher 1r (according to Topo). Philosopher 1r tells her neighbor that she can take
the fork by sending the event lfree.

4 Cut-off Computation for Multiple Parameters

In this section, we describe our technique for computing the cut-off value for a multi-
parameterized system. Given the specification for all process types in the system as
behavioral automata and the topology as input, our technique consists of two steps.
First, it computes the maximal behavior a process of each type can induce when it
autonomously produces an event to be consumed by the environment. Second, it finds a
multi-parameterized system instance whose behavior exhibits all the maximal behaviors
that can be induced by processes of different types (if such an instance exists). We prove
that the size of this system instance is the cut-off for the multi-parameterized system.
We proceed with the computation of the maximal behavior induced by a process.

4.1 Maximal Behavior Induced by a Process

Intuitively, the maximal behavior of a system induced by a process of type p is all
possible sequences of input/output events that can be caused by an autonomous move
done by the process. We will use π (with appropriate subscripts) to denote sequence of
input/output events.

Definition 5 (Maximal Behavior induced by type p process). Given a multi-
parameterized system sys(k̄t), the maximal behavior induced by a process of type
p ∈ [1, t], denoted by MAXp(sys(k̄t)), is

MAXp(sys(k̄t)) = {πp | ∀i ≥ 0 : πp[i] = π[hπ
p (i)] ∧ η0 ∈ S0 ∧ ∀j ≥ 0 : ηj

π[j]→ ηj+1}

In the above, hπ
p (i) = k such that
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1. π[k] = ε/e, ηk
π[k]→ ηk+1 is an autonomous move of type p process and

∀j ∈ [hπ
p (0), hπ

p (i − 1)] : π[hπ
p (j)] �= ε/e′.

2. π[k] = e1/e2, π[hπ
p (i − 1)] = e/e1 and ∀j ∈ [hπ

p (i − 1), k − 1] : π[j] �= e1/e′.

For instance, for the system sys(1r, 1l) displayed in Figure 2, the set of maximal behav-
ior that can be induced by a philosopher of type “Left”, denoted as MAXl(sys(1r, 1l)),
is composed of all possible sequences of input/output events that can occur as a result
of a “Left” philosopher that autonomously makes a move. Let πl ∈ MAXl(sys(1r, 1l)).
The first input/output event in such a sequence πl belongs to a “Left” philosopher mak-
ing an autonomous move to initiate the protocol by sending event begin (i.e. πl[0] =
ε/begin). The second input/output event of is of the same philosopher receiving this
event and sending the request for left fork (i.e. πl[1] = begin/askl2). The third in-
put/output event belongs to a philosopher of type “Right” that responds to the request
of the left fork (i.e. πl[2] = askl2/lfree), and so on. Since the event ε/begin2

which belongs to the move done by a “Right” philosopher is not induced by the au-
tonomous move of the “Left” philosopher, this event does not belong to any sequence
in MAXl(sys(1r, 1l)).

Computing the Induced Maximal Behavior. The computation proceeds by chaining
of output from one behavior automata (present in the system specification) with the
input (having the same name as the output) to another behavioral automata. For com-
puting sequences in MAXp(sys(k̄t)), the first automata used in this chaining contains
the initial state of the process of type p from where the process can make an autonomous
move. We refer the result of such chaining as 1Ep and we show that 1Ep includes all
possible behavior induced by the process of type p.

Definition 6 (1Ep). Given a specification Prot = {A1, A2, . . . , Am} with t dif-
ferent types of processes, 1Ep of the process type p is defined as a tuple
(Q1Ep , QI1Ep , Δ1Ep), where Q1Ep = {(qI , A), (qF , A) | A = (qI , qF , Δ, E)},

QI1Ep = {(qI , A) | A = (qI , qF , Δ, E) ∧ • ε→ qI ∈ Δ}, and

Δ1Ep =
{

(qI , A)
e1/e2→ (qF , A) | A = (qI , qF , Δ, {e1, e2}), {•

e1→ qI , q2
e2→ •} ⊆ Δ

}

⋃
{

(qF , A) τ→ (q′I , A
′) | A = (qI , qF , Δ, E), A′ = (q′I , q

′
F , Δ′, E′),

qF
e→ • ∈ Δ, • e→ q′I ∈ Δ′

}

Figure 3 presents a partial view of 1El for the “Left” philosopher processes. Automa-
ton L-START is chained to automaton L-ASKL as their corresponding output and in-
put events match (begin). Similarly, automaton L-ASKL is chained with automata
R-FREEL-NE and R-BUSYL-WR (defined in Figure 1(b), Lines 6 and 7 respectively)
due to matching output and input events (askl2).

Note that not all the behavioral automata of the philosophers of type “Left” in
Figure 1(a) will be included in 1El. For instance, automaton L-FREEL-NE (Figure 1(a),
Line 12) models the behavior of the philosopher of type “Left” that replies to a re-
quest for the left fork that comes from its neighbor (i.e., a “Right” philosopher). This
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Fig. 3. Part of 1El

automaton will be present in the automata chain used in the construction of 1Er (all
possible behavior induced by the autonomous output from a “Right” philosopher).

We prove that every sequence in MAXp(sys(k̄t)) is present as a path in 1Ep. Note
that, paths in 1Ep contains τs obtained due to chaining of automata (over same output-
input event pairs). We discard these events as they are connectors between the automata
that do not contribute to any action. Given a sequence of events (say π) obtained from
a path in 1Ep, the corresponding sequence π−τ is obtained by removing τ events from
π as follows: ∀i ≥ 0,

π−τ [i] = π[g(i)] where g(i) =
{

0 if i < 0
k otherwise; g(i − 1)≤j < k : π[j]=τ ∧ π[k] �= τ

(1)
Proceeding further, we define the set of sequences of input/output events in 1Ep =
(Q1Ep , QI1Ep , Δ1Ep) as

PATH(1Ep) = {π−τ | ζ0 = (q, Ax) ∈ QI1Ep ∧ ∀i ≥ 0 : ζi
π[i]→ ζi+1 ∈ ΔQ1Ep

}

Theorem 1. Given a protocol specification Prot with t different types of processes,
∀k̄t, ∀p ∈ [1, t] : MAXp(sys(k̄t)) ⊆ PATH(1Ep).

For ease of explanation and brevity of the proof, we introduce the following functions.

F1(π, Π) = {π′ | π′ ∈ Π ∧ π′ � π ∧ �∃ π′′ ∈ Π : (π′ � π′′ � π) ∨ (π′′ = π)} (2)

where � denotes the strict substring relationship, i.e., π′ � π implies π′ is a substring
of π and π′ �= π. The above function computes a set of substrings π′ of π such that
there are no other substrings of π in Π that are longer than the elements in the resultant
set. We define the following function over sequences of events.

F2(π, π′) = e1/e0 such that π′ � π ∧ π[|π′|] = e1/e0 (3)

The above function identifies the event on which the sequence π diverges from π′.

Proof. Assume that ∃k̄t, ∃p ∈ [1, t] : MAXp(sys(k̄t)) �⊆ PATH(1Ep). In other words,
there exists a π such that π ∈ MAXp(sys(k̄t)) and π �∈ PATH(1Ep). From Equations 2
and 3, F1(π, PATH(1Ep)) = χ and ∀π′ ∈ χ : ∃e1/e0 : F2(π, π′) = e1/e0.
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There are two possible cases.

Case 1. e1 = ε. According Definition 5, the event e1/e0 is an an autonomous move of a
process of type p in sys(k̄t). Since the first transition of 1Ep models with an autonomous
move of type p process (Definition 6), this case is not possible, i.e., our assumption that
π �∈ PATH(1Ep) is false.

Case 2. e1 �= ε. The event e1/e0 must be preceded by an input/output event of the
form e2/e1 in order to allow for the event to happen in the first place (Definition 5).
I.e., if π[i] = e1/e0, π[i − 1] = e2/e1. From Equation 3, F2(π, π′) = e1/e0 and
therefore, π′[i − 1] = e2/e1 and π′[i] �= e1/e0. In order for this to be possible, we
need to conclude that there exists no behavioral automata that can consume e1 and
produce e0, as construction of 1Ep proceeds by chaining the output (e1 in this case)
of one automata with the matching input of another. If no automata can take as input
e1 and produce e0, then it is not possible to have any sequence π in MAXp(sys(k̄t))
that has π[i − 1] = e2/e1 and π[i] = e1/e0. This contradicts our assumption that
π ∈ MAXp(sys(k̄t)).

4.2 Finding the Cut-Off Value

The cut-off of parameter values for a parameterized system is such that the instance of
the parameterized system at the cut-off (cut-off instance) satisfies a property if and only
if all instances of the parameterized system larger than the cut-off instance satisfies the
same property. We will consider two types of properties in the logic of LTL\X:

� TYPE I PROPERTY: Property that involves the states of exactly one process. For
example, if a philosopher tries to pick the left fork, she is eventually in a state where
she can eat.

� TYPE II PROPERTY: Property involving two adjacent processes that directly com-
municate via input/output events. For example, two adjacent philosophers do not
eat at the same point of time.

We will use the standard notation [[ϕ]] to denote the semantics of an LTL\X property
ϕ; it represents the set of sequence of states that satisfy ϕ. A system sys satisfies ϕ,
denoted by sys |= ϕ, if and only if all paths starting from all start states of the system
result in a set of sequence of states such that this set is a subset of [[ϕ]]. For details of
semantics of LTL, please refer to [13].

Definition 7 (Cut-off). Given a protocol specification Prot for t different types of pro-
cesses and a topology Topo, for any LTL \X properties of Type I and Type II, de-
noted by ϕ, k̄t := k1, k2, . . . , kt is said to be cut-off if and only if the following holds:
sys(k̄t) |= ϕ ⇔ ∀n̄t ≥ k̄t : sys(n̄t) |= ϕ where n̄t ≥ k̄t ⇐ ∀p ∈ [1, t] : np ≥ kp.

To automatically identify the cut-off, we iteratively compute specific instances of
the system under consideration and compute all possible sequences of input/output
events in the system-instance. Such a set of sequence in a system-instance sys(k̄t) =
(S, SI , T, Topo) is defined as PATH(sys(k̄t), S) = {π−τ | η0 = s ∈ S ∧ ∀i ≥
0 : ηi

π[i]→ ηi+1 ∈ T }. We prove that k̄t is the cut-off if ∀p ∈ [1, t] : PATH(1Ep) ⊆
PATH(sys(k̄t), Sk̄t) where Sk̄t denotes the set of states in sys(k̄t). Procedure CutOff
presents our automatic method for obtaining the cut-off.
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Procedure CutOff (Prot, t, Topo, initial system config)
Construct initial sys(k̄t) from initial system config and Topo
for all p ∈ [1, t] Compute 1Ep from Prot do

while PATH(1Ep) �⊆ PATH(sys(k̄t), S
k̄t) Increase k̄t in a breadth-first manner

end while
end for
return k̄t;

5 Proof of Soundness

We proceed by introducing definitions and propositions that will be used to prove the
soundness of Procedure CutOff.

Definition 8 (Projection on processes). Given a multi-parameterized system
sys(k̄t) = (S, SI , T, Topo) with t different types of processes and a set R ⊆ {ip | i ∈
[1, kp] ∧ p ∈ [1, t]}, the projected behavior w.r.t. R is denoted by sys(k̄t)↓R = (S,
SI , T↓R, Topo), such that labels of all transitions that do not directly involve moves of
process i′p′ ∈ R are renamed to τ . We will use π↓R to denote projection of a sequence
of events on R.

For the example of the RLDP protocol, in the projected system sys(1r, 1l)↓{1l}, both
the transitions labeled as ε/begin and the transition labeled as begin/askl2 remain
the same while all other transitions in the Figure 2 are substituted with τ transitions.

Proposition 1. For any multi-parameterized system sys(k̄t) with t different types of
processes, the following holds for all properties ϕ (in the logic of LTL\X) defined
over states of processes whose indices belong to R = {ip | i ∈ [1, kp] ∧ p ∈ [1, t]}:
sys(k̄t) |= ϕ ⇔ sys(k̄t)↓R |= ϕ.

Proposition 2. Let Φ be the set of all properties (in the logic of LTL\X) defined over
states of processes whose indices belong to R = {ip | i ∈ [1, kp] ∧ p ∈ [1, t]}. The
following holds for any two instances of multi-parameterized systems, sys(k̄t) and
sys(k̄′

t).

∀ϕ ∈ Φ :
(
sys(k̄t) |= ϕ ⇔ sys(k̄′

t) |= ϕ
)
⇒

PATH(sys(k̄t)↓R, Sk̄t

I ) = PATH(sys(k̄′
t)↓R, S

k̄′
t

I )

In the above, Sk̄t

I and S
k̄′

t

I are the initial state-sets of sys(k̄t) and sys(k̄′
t), respectively.

Proof. From Proposition 1, we conclude

∀ϕ ∈ Φ :
(
sys(k̄t) |= ϕ ⇔ sys(k̄′

t) |= ϕ
)
⇒

(
sys(k̄t)↓R |= ϕ ⇔ sys(k̄′

t)↓R |= ϕ
)

If π denotes a path in a system over sequence of input/output actions, we denote the
corresponding sequence of states in the path by seq(π). Therefore,
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∀ϕ ∈ Φ :
(
sys(k̄t)↓R |= ϕ ⇔ sys(k̄′

t)↓R |= ϕ
)
⇒

∀π∈PATH(sys(k̄t)↓R, Sk̄t

I ) : ∃π′∈PATH(sys(k̄′
t)↓R, S

k̄′
t

I ) : seq(π)=seq(π′)∧

∀π′∈PATH(sys(k̄′
t)↓R, S

k̄′
t

I ) : ∃π∈PATH(sys(k̄t)↓R, Sk̄t

I ) : seq(π′)=seq(π)

⇒ PATH(sys(k̄t)↓R, Sk̄t

I ) = PATH(sys(k̄′
t)↓R, S

k̄′
t

I )

Proposition 3. For any parameterized system with t types of processes,

∀n̄t ≥ k̄t : PATH(sys(k̄t), Sk̄t

I ) ⊆ PATH(sys(n̄t), Sn̄t

I )
∀p ∈ [1, t] : PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t) ⇒ PATH(1Ep)⊆PATH(sys(n̄t), Sn̄t)

where Sk̄t , Sk̄t

I and Sn̄t , Sn̄t

I are the sets of states and initial states of sys(k̄t) and
sys(n̄t) respectively.

Theorem 2. Given a parameterized system with t different types of processes each de-
fined using a set of behavioral automata Prot, the following holds for all Type I and II
properties ϕ in the logic of LTL\X

∀p ∈ [1, t] : PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t) ⇒
(
sys(k̄t) |= ϕ ⇔ sys(n̄t) |= ϕ

)

where n̄t = n1, n2, . . . , nt, k̄t = k1, k2, . . . , kt, Sk̄t is the set of states in sys(k̄t), and

Sk̄t

I and Sn̄t

I are initial state-sets of sys(k̄t) and sys(n̄t) respectively.

Proof. Due to space constraints, we provide a proof sketch for the theorem. The full
proof is available at http://www.cs.iastate.edu/∼slede/golok/.

Using Propositions 1, 2 and 3, it is required to prove that ∀p ∈ [1, t], ∀i ≤ np, ∃j ≤
kp, PATH(sys(n̄t)↓{ip}, Sn̄t

I ) = PATH(sys(k̄t)↓{jp}, Sk̄t

I ).
Assume that there exists a sequence π in PATH(sys(n̄t)↓{ip}, Sn̄t

I ) that is not present

in PATH(sys(k̄t) ↓ {jp}, Sk̄t

I ). This implies that for every path π′ in PATH(sys(k̄t) ↓
{jp}, Sk̄t

I ), there exists an input/output event (e1/e0) such that e1/e0 is present in π and
absent in π′. If e1 is equal to ε, then it can be immediately shown that PATH(sys(k̄t)↓
{jp}, Sk̄t

I ) �⊆ PATH(1Ep) as ε/e0 is an autonomous move. This forms the base case
of the proof (contradiction of our assumption above). If e1 is not equal to ε then there
must be some event e2/e1 preceding e1/e0 in the path π and such ordering of events
is absent in π′. In this case, it can be shown that π′ diverges from π on event e2/e1.
The proof of the theorem (i.e., contradiction of our assumption) can be realized by
proceeding inductively (on the length of the diverging point between π and π′) and
eventually reaching the base case.

Theorem 3 (Soundness). If Procedure CutOff terminates, the return k̄t is the cut-off
as per the Definition 7.

Proof. Follows from Theorem 2.
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1 process left-diner { ... }
2 process right-diner { ... }
3
4 topology {
5
6 connectivity {
7 left-diner 0 -- right-diner 0
8 }
9

10 additionrule add-two {
11 create: left-diner x
12 create: right-diner y
13 require: right-diner z -- left-diner 0

14 remove: var z -- left-diner 0
15 add: var z -- var x
16 add: var x -- var y
17 add: var y -- left-diner 0
18 }
19 msgs {
20 (left-diner, begin, self)
21 (left-diner, askl, rpeer)
22 (right-diner, askr2, lpeer) ...
23 }
24 }
25
26 initialconfig { }

Fig. 4. Input file for the RLDP protocol

6 Golok: A Tool to Find Cut-off

We have implemented our technique in a tool, Golok1. It is written in Scheme [20]
in ∼4K lines of code. We now describe the input language to Golok using the RLDP
example and describe the several optimizations we implemented in our tool.

6.1 Front End: Input Language of Golok

The input file containing the specification for the RLDP protocol is displayed in Fig-
ure 4. The specification has three main components: (a) the process specification, (b)
the topology specification and (c) the initial configuration specification.

Process Specification. The process specifications (lines 1, 2) contain the behavioral
automata for every process type as described in Section 3 (Figures 1(a) and (b)).

Topology Specification. The topology specification serves to restrict communication
patterns between processes. It is defined using the keyword topology (lines 4 - 25)
and is composed of three parts. The first part of the topology specification (lines 6-8)
specifies the topology of the initial system instance. In RLDP, the initial system instance
has one philosopher of each type (processes are zero-indexed). The second part of the
topology specification (additionrule lines 10-18) is the addition rules that ensure
that newly generated system instances follow the communication topology of the pro-
tocol. For RLDP, the addition rule add-two (lines 10-18) states that any new system
instances will create two new philosophers of different types (lines 11-12) and that they
linked to other processes to preserve that neighbors are of different types (lines 13-17).
The final part of the topology specification (lines 19-23) is responsible for specifying
the direction of the flow of events between processes, where every tuple (d, e, s) de-
scribes the event to be received e, the type of the recipient process d and the index of
the sender process s. There are four choices for s: self (message sent and received by
the same process), rpeer (message sent by the right neighbor of d) lpeer (message
sent by the left neighbor of d) and peer (message sent by a neighbor of d)2.

Initial Configuration Specification. The initial configuration is explicitly specified if
any process needs to start from a different automaton other than the first automaton in
its process specification.

1 A cutting tool typically used in Indonesia and the Philippines.
2 lpeer, rpeer used for ring topology, peer for other topologies.
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6.2 System Instance Generator/Checker

The System Instance Generator/Checker (SIGC) is the main module of Golok. The
goal of SIGC is to construct a system instance sys(k̄t) (see Procedure CutOff) and
check whether for all p ∈ [1, t], PATH(1Ep) ⊆ PATH(sys(k̄t), Sk̄t). The main challenge
in implementing SIGC is to reduce the computational cost involved in checking for
path inclusion by considering all possible paths from all states. We describe several
optimizations we have implemented in Golok to help reduce the computational cost.

Simulation-base cut-off computation. Simulation relation [21] identifies pairs of
states in a transition system such that one element of the pair simulates all possible
behavior (in terms of sequence and branching of transitions) of the other. It is a stronger
relation than language inclusion. Furthermore, computing simulation relation is linear
to the state-space of the transition system as opposed to computing language inclusion
which is exponential to the state-space. As a result, it is computationally efficient to use
simulation rather than language inclusion. The results of Theorem 3 still holds. Given
a protocol specification Prot and a multi-parameterized system sys(k̄t) with t different
types of processes, a state r in sys(k̄t) is said to simulate a state s in 1Ep, denoted as
s ≺ r, if the following holds:

∀e/e′, s′ : s
τ∗e/e′
→ s′ ∈ 1Ep ⇒ ∃r′ : r

τ∗e/e′
→ r′ ∈ sys(k̄t) ∧ s′ ≺ r′

In the above, τ∗e/e′ represents zero or more τ transitions followed by an e/e′ transition.
We say that 1Ep is simulated by sys(k̄t) if and only if there exists a state r in sys(k̄t)
such that for all start states s in 1Ep, s ≺ r.

Simulation based cut-off computation may lead to additional challenges. For cer-
tain systems where there exists a cut-off that can be identified using path inclusion, a
stronger requirement for cut-off based on simulation may fail to obtain such a cut-off.
From our experimental results, we have realized that such a problem exists when in ad-
dition to parameterized components, the system also contains non-parameterized com-
ponents (ones whose number is pre-specified and fixed). For instance, in the bounded-
buffer protocol, there exists only one buffer for all instances of the systems. Similarly,
for the singly-parameterized spin lock, there is only one object in any system instance.
The problem of using simulation for such systems can be alleviated by projecting out
any actions that result from the non-parameterized components.

Reducing the number of Simulation Checks. As the size of a system instance could
be prohibitively large, performing a simulation check on every state to verify if it sim-
ulates 1Ep can still be expensive. To reduce the number of simulation checks, we con-
struct the system instances on-the-fly (i.e. states are generated when needed), perform
partial-order reduction ( [22]) to ensure re-use of intermediate simulation checking re-
sults. Furthermore, for every system configuration s in sys(k̄t), the following constant-
time check is done before performing a simulation check. If the system configuration
s does not have any process that is able to make an autonomous move (a move that
does not require any external stimuli), this system configuration s is never expanded.
The reason is that, since the first transition in any 1Ep must come from an autonomous
move, then it is not possible that a system configuration s where no process is able to
make an autonomous move is the configuration that simulates 1Ep for any type p.
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Table 1. Experimental results of our tool Golok compared to existing techniques

Protocol Topology
Process Types EXISTING WORK OUR TECHNIQUE

# of # of References Known Computed Time Explored States in %gain
types Params Cut-off Cut-off (k̄t) (sec) States sys(k̄t)

Dining Philosophers
Ring

1 1 [11] 4 3 0.54 33 510 93.53
[11, 19] 2 (r, l) 2 [11] 2r, 2l 3r , 3l 4.84 7,524 268,536 97.20

Bounded-Buffer [23] Star 3 (p, c) 2 X† X 2p, 1c 1.10 37 269 86.25

Spin Lock [24]
Star 2 (t) 1 [26] 3 2t 0.62 13 84 84.50

Multi-star* 2 (t, o) 2 X X 2t, 2o‡ 0.52 15 243 93.80

DME [25] Ring
1 (fc) 1 [27] 4 2fc 0.51 5 7 28.58
2 (f, c) 2 X X 1f , 1c 0.51 4 7 42.86

*Multi-star: All processes of different types are connected; †: To the best of our knowledge, no known results exist.
‡: Golok produced same cut-off value for different sizes of the buffer, displayed performance results are for the system with
buffer of size 1.
r: right philosopher, l: left philosopher; p: producer, c: consumer; t: thread, o: object; fc: dme node, f: forward dme node,
c: critical dme node.

7 Case Studies

Besides the RLDP protocol, we ran Golok on three other multi-parameterized systems
with different communication topologies to validate our technique: the Bounded Buffer
protocol [23], a variant of the Spin Lock protocol [24] and a variant of the Distributed
Mutual Exclusion Protocol [25]. All examples along with the tool, Golok, are available
at http://www.cs.iastate.edu/∼slede/golok/. All experiments were run on a
single core Pentium 4, 2.53 Ghz with 2 GB of RAM. Table 1 summarizes the experi-
mental results. First four columns presents the parameterized systems and their various
features: topology, number of process types in the system and number of types of the
process that are parameterized. The rest of the table provides typical solutions obtained
for some of the examples from the most relevant existing work and compared it with
the results obtained from our tool, Golok. To the best of our knowledge, none of the
existing techniques provide with a viable tool that can be used in practice. As a result,
we only provide execution time information for our technique.

The table shows that while parameterized systems with different communication
topology are handled by different techniques (developed primarily for the topology
under consideration), our technique is applicable uniformly to all parameterized sys-
tems (both singly- and multi-parameterized) with different communication topologies.
Note that, in some cases, Golok has identified a smaller cut-off value compared to the
ones known in the existing work (shown in bold font). This can be attributed primar-
ily to the fact that existing techniques for cut-off identification are independent of the
system behavior (only topology dependent, e.g., [27]) or rely on abstractions that are
sufficient but not necessary (e.g., [26]). As our technique is system dependent, Golok
may compute different cut-off values for different systems with the same topology.

The table also shows impact of the optimizations in our technique. For instance, the
last column shows the proportion of states that are not explored in the cut-off instance
of the parameterized system while verifying that the instance simulates the 1E for all
types of processes that are parameterized.
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8 Summary and Conclusion

We have presented a technique for generating cut-off values for each of the parameters
of a multi-parameterized system, proved its soundness, implemented the technique in
a tool, and demonstrated its applicability to a number of canonical case studies. As
Golok provides an automated realization of our method, the tool can be effectively used
even for cases where the system is non-parameterized. For example, consider that the
objective is to verify RLDP protocol with N pairs of “Left” and “Right” philosophers
such that N is prohibitively large and as a result, standard model checking tools fail to
provide any result due to state-space explosion. In such cases, a parameterized version
of the system can be considered in Golok and if a cut-off is returned (e.g., 3r, 3l for
RLDP protocol) then model checking the system instance with this cut-off is equivalent
to model checking the much larger system instance contains N pairs of philosophers.

Future work includes extending the expressive power of behavioral automata rep-
resentation, associated formalisms, techniques and Golok to allow for specification of
parameterized system whose behavior is constrained by the valuations of messages be-
ing exchanged and to allow broadcast.
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