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Abstract
Software repositories contain a vast wealth of information about
software development. Mining these repositories has proven useful
for detecting patterns in software development, testing hypotheses
for new software engineering approaches, etc. Specifically, mining
source code has yielded significant insights into software develop-
ment artifacts and processes. Unfortunately, mining source code at
a large-scale remains a difficult task. Previous approaches had to
either limit the scope of the projects studied, limit the scope of the
mining task to be more coarse-grained, or sacrifice studying the his-
tory of the code due to both human and computational scalability
issues. In this paper we address the substantial challenges of min-
ing source code: a) at a very large scale; b) at a fine-grained level
of detail; and c) with full history information.

To address these challenges, we present domain-specific lan-
guage features for source code mining. Our language features are
inspired by object-oriented visitors and provide a default depth-
first traversal strategy along with two expressions for defining cus-
tom traversals. We provide an implementation of these features in
the Boa infrastructure for software repository mining and describe
a code generation strategy into Java code. To show the usability
of our domain-specific language features, we reproduced over 40
source code mining tasks from two large-scale previous studies in
just 2 person-weeks. The resulting code for these tasks show be-
tween 2.0x–4.8x reduction in code size. Finally we perform a small
controlled experiment to gain insights into how easily mining tasks
written using our language features can be understood, with no
prior training. We show a substantial number of tasks (77%) were
understood by study participants, in about 3 minutes per task.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

Keywords visitor pattern; source code mining; Boa

1. Introduction
An extremely large wealth of information exists in software repos-
itories, such as open-source repositories like SourceForge which
contain over 250k projects, metadata about those projects, source
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code repositories for those projects including revision history, bug
artifacts, etc. Mining this wealth of information is important for
researchers in order to detect problems with existing development
practices or to use for quantifying proposed solutions to software
engineering problems. Many previous works mine these open-
source software projects and software repositories to support use
cases that include:

• guiding software evolution [23, 24, 35],
• discovering API usage [14, 21, 25, 33],
• fault prediction [10, 13, 17, 22],
• discovering code characteristics [8, 31],
• language feature usage [7, 11, 30], etc.

Source code mining is similar in nature to compilation and
program analysis techniques and such techniques often use the
visitor pattern [9]. This pattern allows easily traversing the structure
of the underlying source code, which is represented as a graph or
tree. For example, compilers represent source code as an abstract
syntax tree (AST) and typically have several visitors (e.g. for type
checking, semantic analysis, code generation). Many developers
are familiar with compilers and/or program analysis techniques and
have seen/used visitors before.

Despite this, existing approaches for mining source code typ-
ically use relational databases [4, 11, 19] and query with SQL.
Other approaches provide the ability to mine source code using
Datalog [12], Program Query Language (PQL) [20], JQuery [15],
or even natural language queries [18]. The motivating question for
this work is: can we present a more familiar interface to people
interested in mining source code data?

In this paper we present domain-specific language features for
mining source code. These features are inspired by the rich body
of literature on object-oriented visitor patterns [1, 9, 26, 27, 34].
A key difference from previous work is that we do not require the
host language to contain object-oriented features. Our visitor types
provide a default depth-first search (DFS) traversal strategy, while
still maintaining the flexibility to allow custom traversal strategies.
Visitor types allow specifying the behavior that executes for a given
node type, before or after visiting the node’s children. The language
also provides abstractions for dealing with mining of source code
history, such as the ability to retreive specific snapshots based on
date. We also show several useful patterns for source code mining
that utilize these domain specific language features.

We show the feasibility of supporting these domain-specific
features by realizing them in the Boa research infrastructure for
mining software repositories [6]. Boa provides support for running
mining tasks on a very large set of software repositores (699,332
projects from Sourceforge as of February 2013 [32]). As of May
2013, full support for the features described in this work is available



in the Boa research infrastructure and is being actively used by
ourselves and other researchers for various mining tasks.

To evaluate the language features proposed in this work, we
have reproduced two previous large-scale empirical studies using
these new features [7, 11]. Together these require writing over
40 software repository mining tasks as programs. Both of these
studies require fine-grained access to source code, e.g. Grechanik et
al. [11] accesses expressions in source code. The study by Dyer et
al. also requires access to full history information to examine usage
of Java language features over time [7]. Finally, both studies require
processing large data sets for higher confidence in the results. Using
our new language features, a single student was able to reproduce
both of these large-scale studies in 2 person-weeks.

Besides these studies, we have also written several other small
and medium size mining tasks that are available from the Boa
website [32]. These other use cases further increase our confidence
in the usefulness of the proposed language features.

We also show some initial insights into the ease of comprehen-
sion of mining tasks written in our framework, in which over 75%
of tasks were understood in about 3 minutes with no prior training
in our language.

In summary, this paper presents the following contributions:

• Domain-specific language abstractions for easily writing source
code mining tasks on billions of AST nodes.
• A data schema for representing source code in a language-

agnostic manner.
• An implementation of the language features in the Boa infras-

tructure for software repository mining [6, 32].
• A partial reproduction of a large-scale empirical study on the

Java language [11], with over 10 times more projects than the
initial study.
• Initial insights into the ease of comprehension of mining tasks

written in our framework, in which over 77% of tasks were
understood in about 3 minutes each, with no prior training in
the language. The same tasks written in Java had only 62%
comprehension.

In the next section we motivate the need for large-scale, fine-
grained source code mining via an example. We give necessary
background on the data representation in Section 3 and detail our
approach in Section 4. Our code generation strategy is described in
Section 5. We then evaluate our approach in Section 6. In Section 7
we discuss related works. Finally we conclude in Section 8.

2. Motivation
Mining source code is extremely useful for researchers, allowing
them to investigate if potential problems exist in reality and test
their hypotheses on real-world software. For example, Okur and
Dig mine the source code to over 600 programs to see how pro-
grammers use parallel libraries and if they use those libraries cor-
rectly [25]. Pinto et al. mine source code to investigate how test
suites evolve over time [31]. Gabel and Su mine over 6k projects to
determine how unique source code is [8]. These are but a few ex-
ample use cases for mining source code. In this section we motivate
the need for a domain-specific language for source code mining via
a simple task.

Consider testing a simple hypothesis: a large number of bug
fixes add checks for null. Null-pointer exceptions are a common
source of bugs in object-oriented programs. A possible fix for some
of these bugs may be to simply guard access to the variable with a
check to ensure it is non-null. To investigate such a hypothesis, one
may perform the following tasks:

1. Download candidate source code repositories (for example,
from SourceForge [2]).

2. Write a program to scan all repositories and locate revisions that
potentially fixed bugs.

3. Check out source code snapshots from the identified revisions
and the previous snapshots (if any) of the code.

4. Write a program to compare each pair of files, and determine
if the number of null checks has increased since the previous
snapshot. If so, these files potentially represent a bug fix that
added a null check.

5. Parallelize the previous program to support mining tens or hun-
dreds of thousands of projects.

For the purposes of this paper, we assume step 1 has already
finished and the repositories are available in a format most suitable
for each query language used. This step by itself represents a
significant challenge, but for simplicity of this example we will not
go into detail on that step at the moment and just assume the data
is already available in a suitable format.

The remaining steps, while sounding relatively simple, are very
complex as well. For now, let’s focus on a small portion of just step
4: let’s write queries to find null comparisons in source code. Once
we have such a query, we can of course extend it to look for such
comparisons occurring inside an if-statement and apply that query
to different versions of files, completing step 4.

One possible implementation could be in Java, using
Hadoop [3] MapReduce [5] to parallelize the mining task. Such
a program is shown in Figure 1. As with most Hadoop programs,
there are three main sections: the job setup (lines 2–15), the map-
per class (lines 16–138), and the reducer class (lines 139–146). The
main portion of the mining task is inside the mapper’s map method
(lines 126–136).

This code is a mixture of several different features: the Hadoop
code for efficient data parallelization (lines 2–15 and 139–146),
code for traversing the structure of the source being mined (lines
17–124), and code for performing the mining (lines 126–136).
Even if you only focus on the mining portion of the code and ignore
the rest, this is a complex program.

Another possible implementation in Boa [6, 32] is shown in
Figure 2. This program takes a project as input (line 1). It then
declares a single visitor (lines 3–8) named nullCheck. When the
visitor reaches a node of type Expression (line 4), it checks if
that expression is a comparison operator (line 5) and if one of the
operands is null (line 6). If it is, then it increments a counter (line
7). This visitor is used by starting a visit on the project using the
declared visitor (line 9).

This code avoids the boilerplate code and complexity of the
Hadoop version by abstracting away the details of step 5 from the
user. Similar to the Hadoop version, it offers a visitor syntax which
is easy to understand (as shown in Section 6.2) and familiar to
developers. Expanding this query is straight-forward: simply add
additional visitors and/or add more clauses to the existing visitor.

3. Background: Representing Data in Boa
Our approach builds on top of Boa [6, 32], a domain-specific lan-
guage and research infrastructure for efficient, scalable software
repository mining. In Boa, users write simple queries in a language
that has abstracted away the details of how to write a MapReduce
program, thus allowing users to focus on the mining task and not
on how to parallelize their programs. Boa’s compiler automatically
generates a Hadoop [3] program from the source code. Users sub-
mit their program to Boa’s website via the web interface shown in
Figure 3, which compiles and executes it on a cluster. This cluster



1 class AddNullCheck {
2 static void main(String[] args) {
3 ... /* create and submit a Hadoop job */

15 }
16 static class AddNullCheckMapper extends

Mapper<Text, BytesWritable, Text, LongWritable> {
17 static class DefaultVisitor {
18 ... /* define default tree traversal */

124 }

125 void map(Text key, BytesWritable value,
Context context) {

126 final Project p = ... /* read from input */
127 new DefaultVisitor() {
128 boolean preVisit(Expression e) {
129 if (e.kind == ExpressionKind.EQ ||

e.kind == ExpressionKind.NEQ)
130 for (Expression exp : e.expressions)
131 if (exp.kind == ExpressionKind.LITERAL

&& exp.literal.equals("null")) {
132 context.write(new Text("count"),

new LongWritable(1));
133 break;
134 }
135 }
136 }.visit(p);
137 }
138 }
139 static class AddNullCheckReducer

extends Reducer<Text, LongWritable,
Text, LongWritable> {

140 void reduce(Text key, Iterable<LongWritable> vals,
Context context) {

141 int sum = 0;
142 for (LongWritable value : vals)
143 sum += value.get();
144 context.write(key, new LongWritable(sum));
145 }
146 }
147 }

Figure 1. Finding null checks in Java/Hadoop.

1 p: Project = input;
2 count: output sum of int;

3 nullCheck := visitor {
4 before e: Expression ->
5 if (e.kind == ExpressionKind.EQ

|| e.kind == ExpressionKind.NEQ)
6 exists (i: int; isliteral(e.expressions[i],

"null"))
7 count << 1;
8 };

9 visit(p, nullCheck);

Figure 2. Finding null checks in Boa.

already contains a cached copy of the software repositories to be
mined. Once finished, the website provides the output to the user.

Boa represents all input data using a tree structure. This tree is
rooted with the Project and contains information such as project
metadata, the source code repositories (SVN, CVS, etc), and the
actual source code data.

The types Boa provides for representing source code are:
Namespace, Declaration, Method, Variable, Type,
Statement, Expression, and Modifier. Several of
these are shown in Figure 4 1, along with the enumeration

1 For a full list of all data types and their attributes, please visit Boa’s online
documentation:
http://boa.cs.iastate.edu/docs/dsl-types.php

Figure 3. Boa’s interface. Zero installation cost. Accessible inter-
face to ease adoption in research, practice, and education.

StatementKind. The declaration, statement, and expression
types are discriminated types, meaning they actually represent the
union of many different record structures.

Figure 4. Discriminated types for representing source code.

For example, consider the type Statement shown in Fig-
ure 4. This type has an attribute kind, which is an enumerated
value. Based on the kind of statement, different attributes in the
record will be set. For example, if the kind is TYPEDECL then the
type_decl attribute is defined. However if the kind is CATCH
then the type_decl is undefined. Representing these types as
discriminated types allows Boa to keep the number of types as
small as possible. This makes supporting future languages easier
by only needing to provide a mapping from the new language to
the small set of types in Boa. Existing mining tasks would immedi-
ately be able to mine source code from these new languages.

While Boa keeps these types as simple as possible, they are still
flexible enough to support more complex language features. For
example, consider the enhanced-for loop in Java:

1 for (String s : iter)
2 body;

which says to iterate over the expression iter and for each string
value s, run the body. Boa’s types do not directly contain an
ENHANCEDFOR kind for this language feature.

Despite this design decision, an enhanced-for statement can
be easily represented in Boa’s schema without having to ex-
tend it. First, Boa generates a Statement of kind FOR. In-
side that statement, Boa sets expression to iter. Boa
also sets the variable_declaration for String s in
the statement. Thus, if a statement of kind FOR has its
variable_declaration attribute set it is a for-each state-
ment. If that attribute is not defined, then it is a standard for-loop.

Currently, we have fully mapped the Java language to Boa’s
schema, attempting to simplify the schema as much as possi-

http://boa.cs.iastate.edu/docs/dsl-types.php


ble. This gives a simple, yet flexible, schema capable of support-
ing the entire Java language (through Java 7). As additional sup-
port for other source languages is added, if the schema is not
capable of directly supporting a particular language feature the
StatementKind or ExpressionKind enumerations can be
easily extended.

4. Fine-grained Source Code Mining
Users must be able to easily express source code mining tasks. For
users who are intimately familiar with compilers and interpreters,
the visitor style is well understood. However, other users may find
two aspects of visitor-style traversals daunting. First, it generally
requires writing a significant amount of boiler-plate code whose
length is proportional to the complexity of the programming lan-
guage being visited. Second, this strategy requires intimate famil-
iarity with the structure of that programming language.

To make source code mining more accessible to all users, we in-
vestigated the design of more declarative features for mining source
code. In this section, we describe our proposed syntax for writing
source code mining tasks. The syntax was inspired by previous lan-
guage features, such as the before and after visit methods in DJ [27]
and case expressions in Haskell [16].

visitor ::= visitor { visitClause* }
visitClause ::= beforeClause | afterClause
beforeClause ::= before typeList -> beforeClauseStmt
afterClause ::= after typeList -> stmt
typeList ::= _ | identifier : type | type (, type)*
beforeClauseStmt ::= stmt | stopStmt | visit ( identifier ) ;
stopStmt ::= stop ;

Figure 5. Proposed syntax for easing source code mining.

The new syntax is shown in Figure 5. The top-level syntax for
a mining task is a visitor type. Visitor types take zero or more visit
clauses. A visit clause can be a before or an after clause. During
traversal of the tree, a before clause is executed when visiting a
node of the specified type. If the default traversal strategy is used,
then the node’s children will be visited. After all the children are
visited, any matching after clause executes.

Before and after clauses take a type list. A type list can be
a single type with an optional identifier, a list of types, or an
underscore wildcard. The underscore wildcard provides default
behavior for a visitor clause. This default executes for a node of
type T if no other clause specifies T in its type list. Thus, the
following code:

1 v := visitor {
2 before Project, CodeRepository, Revision -> { }
3 before _ -> counter++;
4 }

will execute the clause’s body on line 2 when traversing nodes
of type Project, CodeRepository, or Revision. When
traversing a node of any other type, the default clause’s body on
line 3 executes. The result of this code is thus a count of all nodes,
excluding those of the types listed. Thus we count only the source
code AST nodes for a project.

Note that unlike pattern matching and case expressions in func-
tional languages like Haskell, the order of the before and after
clauses do not matter. A type may appear in at most one before
clause and at most one after clause.

To begin a mining task, users write a visit statement:
visit(n, v);

that has two parts: the node to visit and a visitor. When this state-
ment executes, a traversal starts at the node represented by n using
visitor v.

4.1 Supporting Custom Traversals
To allow users the ability to override the default traversal strategy,
two additional statements are provided inside before clauses.
The first is the stop statement:
stop;

which when executed will stop the visitor from traversing the chil-
dren of the current node. This is useful in cases where the mining
task never needs to visit specific types further down the tree, allow-
ing to stop at a certain depth. Note that stop acts similar to a return,
so no statements after it are reachable.

If the default traversal is stopped, users may provide a custom
traversal of the children with a visit statement:
visit(child);

which says to visit the node’s child tree once. This statement can
be called on any subset of the children and in any order. This also
allows for visiting a child more than once, if needed.

Figure 6 illustrates a custom traversal strategy from one of our
case studies [7]. This program answers the question how many
fields that use a generic type parameter are declared in each
project? To answer this question, the program declares a single
visitor. This visitor looks for Type nodes where the name con-
tains a generic type parameter (line 5). This visit clause by itself
is not sufficient to answer the question, as generic type parameters
might occur in other locations, such as the declaration of a class/in-
terface, method parameters, locals, etc. Instead, a custom traversal
strategy (lines 10–34) is needed to ensure only field declarations
are included.

The traversal strategy first ensures all fields of Declaration
are visited (lines 12–13). Since declarations can be nested (e.g.
in Java, inside other types and in method declarations) we also
must manually traverse to find nested declarations (lines 15–32).
Finally, we don’t want to visit nodes of type Expression or
Modifier (line 34), as these node types can’t possibly contain
a field declaration but may contain a Type node.

Complex mining tasks can be simplified by using multiple visi-
tors. For example, perhaps we only want to look for certain expres-
sions inside of an if statement’s condition. We can write a visitor
to find if statements, and then use a second sub-visitor to look for
the specific expression by visiting the if statement’s children. We
could perform this mining task with one visitor, however then we
need to have flags set to track if we are in the tree underneath an
if statement. Using multiple visitors keeps these two mining tasks
separate and avoids using flags to keep it simple.

4.2 Mining Snapshots in Time
While our infrastructure contains data for the full revision history
of each file, some mining tasks may wish to operate on a single
snapshot. We provide several helper functions to ease this use case.
For example, the function:
getsnapshot(CodeRepository [, time] [, string...])

takes a CodeRepository as its first argument. It optionally takes
a time argument, specifying the time of the snapshot which defaults
to the last time in the repository. The function also optionally takes
a list of strings. If provided, these strings are used to filter files
while generating the snapshot. The file’s kind is checked to see if it
matches at least one of the patterns specified. For example:
getsnapshot(CodeRepository, "SOURCE_JAVA_JLS")

says to get the latest snapshot and filter any file that is not a valid
Java source file.

A useful pattern is to write a visitor with a before clause for
CodeRepository that gets a specific snapshot, visits the nodes
in the snapshot, and then stops the default traversal:



1 p: Project = input;
2 GenFields: output sum[string] of int;

3 genVisitor := visitor {
4 before t: Type ->
5 if (strfind("<", t.name) > -1)
6 GenFields[p.id] << 1;

7 # traversal strategy ensures we only reach Type
8 # if the parent is a Variable, and
9 # we only include Variable paths that are fields

10 before d: Declaration -> {
11 ######## check each field declaration ########
12 foreach (i: int; d.fields[i])
13 visit(d.fields[i]);

14 ########### look for nested types ############
15 foreach (i: int; d.methods[i])
16 visit(d.methods[i]);
17 foreach (i: int; d.nested_declarations[i])
18 visit(d.nested_declarations[i]);
19 stop;
20 }
21 before m: Method -> {
22 foreach (i: int; m.statements[i])
23 visit(m.statements[i]);
24 stop;
25 }
26 before s: Statement -> {
27 foreach (i: int; s.statements[i])
28 visit(s.statements[i]);
29 if (def(s.type_declaration))
30 visit(s.type_declaration);
31 stop;
32 }

33 ####### stop at expressions/modifiers ########
34 before Expression, Modifier -> stop;
35 };
36 visit(p, genVisitor);

Figure 6. Using a custom traversal strategy to find uses of generics
in field declarations.

1 visitor {
2 before n: CodeRepository -> {
3 snapshot := getsnapshot(n);
4 foreach (i: int; def(snapshot[i]))
5 visit(snapshot[i]);
6 stop;
7 }
8 ...
9 }

This visitor will visit all code repositories for a project, obtain
the last snapshot of the files in that repository, and then visit the
source code of those files. This pattern is useful for mining the
current version of a software repository.

4.3 Mining Revision Pairs
Often a mining task might want to locate certain revisions and
compare files at that revision to their previous state. For example,
our motivating example looks for revisions that fixed bugs and then
compares the files at that revision to their previous snapshot. To
accomplish this task, one can use the following pattern:

1 files: map[string] of ChangedFile;

2 v := visitor {
3 before f: ChangedFile -> {
4 if (def(files[f.name])) {
5 ... # task comparing f and files[f.name]
6 }
7 files[f.name] = f;
8 }
9 };

which declares a map of files, indexed by their path. The code on
line 4 checks if a previous version of the file was cached. If it was,
the code on line 5 executes where f refers to the current version of
the file being visited and the expression files[f.name] refers
to the previous version of the file. Finally, the code on line 7 updates
the map, storing the current version of the file.

4.4 Bringing It All Together: Motivating Example
Recall the hypothesis in Section 2: a large number of bug fixes
add checks for null. In that section, we focused on a very small
sub-task of step 4. In this section, we describe a solution that incor-
porates all five steps required to answer the proposed hypothesis.

1 # STEP 1 - candidate projects as input
2 p: Project = input;
3 results: output collection[string] of string;

4 fixing := false;
5 count := 0;
6 files: map[string] of ChangedFile;

7 nullCheckVisitor := visitor {
8 before e: Expression ->
9 if (e.kind == ExpressionKind.EQ

|| e.kind == ExpressionKind.NEQ)
10 exists (i: int; isliteral(e.expressions[i],

"null"))
11 count++;
12 };

13 visit(p, visitor {
14 before r: Revision ->
15 # STEP 2 - potential revisions that fix bugs
16 fixing = isfixingrevision(r.log);

17 before f: ChangedFile -> {
18 if (fixing && haskey(files, f.name)) {
19 count = 0;
20 # STEP 3a - check out source from revision
21 visit(getast(files[f.name]));
22 last := count;

23 count = 0;
24 # STEP 3b - source from previous revision
25 visit(getast(f));

26 # STEP 4 - determine if null checks increased
27 if (count > last)
28 results[p.id] << string(f);
29 }
30 files[f.name] = f;
31 stop;
32 }

33 before s: Statement ->
34 if (s.kind == StatementKind.IF)
35 visit(s.expression, nullCheckVisitor);
36 });

Figure 7. Finding in Boa fixing revisions that add null checks.

Consider the Boa program in Figure 7, which implements all
five steps of the entire mining task. This program takes a single
project as input. It then passes the program’s data tree to a visitor
(line 13). This visitor keeps track if the last Revision seen was a
fixing revision (line 16). When it sees a ChangedFile it looks at
the current revision’s log message and if it is a fixing revision (step
2) it will get snapshots of the current file and the previous version
of the file (step 3) and visit their AST nodes (lines 21 and 25).

When visiting the AST nodes for these snapshots, if it encoun-
ters a Statement of kind IF (line 34), it then uses a sub-visitor to
check if the statement’s expression contains a null check (lines 35
and 7–12) and increments a counter (line 11). Thus we will know
the number of null checks in each snapshot and can compare (line



27) to see if there are more null checks (step 4). Note that this anal-
ysis is conservative and may not find all fixing revisions that add
null checks, as the revision may also remove a null check from an-
other location and thus give the same count.

This task illustrates several features mentioned earlier in this
section. First, the second visitor shows use of a custom traversal
strategy by utilizing a stop statement. Second, it makes use of a sub-
visitor (nullCheckVisitor). Third, it uses the revision pair
pattern to check several versions of a file.

Finally, writing this task required no explicit mention of paral-
lizing the query. Writing the same task in Hadoop would require a
lot of boilerplate code to manually parallelize the task, whereas the
Boa version is automatically parallelized.

5. Code Generation Strategy
As noted previously, each Boa program is translated by the Boa
compiler into a Map/Reduce program that runs using the Hadoop
framework. We extended this compiler to support visitor types. In
this section we outline the code generation strategy for supporting
visitor types. For ease of illustration, we omit all code related to
Map/Reduce to allow readers to focus on visitor types. The key to
our strategy involves a default visitor (Figure 8) that we added to
the Boa runtime.

1 public abstract class DeafultVisitor {
2 public final void visit(Project node) {
3 if (preVisit(node)) {
4 ... // call visit() on each of node’s children

8 postVisit(node);
9 }

10 }
11 ... // similar visit() for each node type

205 ////////////////////////////////////////
206 // methods for before clauses

207 protected boolean defaultPreVisit() {
208 return true;
209 }

210 protected boolean preVisit(Project node) {
211 return defaultPreVisit();
212 }
213 ... // similar preVisit() for each node type

250 ////////////////////////////////////////
251 // methods for after clauses

252 protected void defaultPostVisit() { }

253 protected void postVisit(Project node) {
254 defaultPostVisit();
255 }
256 ... // similar postVisit() for each node type

295 }

Figure 8. Outline of the abstract default visitor.

The DefaultVisitor class contains a public visit
method for each node type in the language. These methods con-
tain a single if-statement which calls a preVisit method in the
condition. If that method returns true, then the children of the
current node are each visited and a postVisit method is called.

A preVisit and postVisit method is also generated for
each node type in the language. The bodies of these methods sim-
ply call the defaultPreVisit/defaultPostVisit meth-
ods. These methods are virtual methods and are (possibly) overrid-
den by the concrete visitor sub-classes.

Generating Visitors All visitors in the language:
var := visit { .. };

inherit from the DefaultVisitor (Figure 8):
var = new DefaultVisitor() { .. };

This inheritance provides the visitor with a default depth-first
traversal strategy that will visit all nodes in the tree. The actions
taken when visiting specific nodes are specified via the before and
after visit clauses.

Generating Visit Clauses A before visit clause generates one or
more method overrides for the preVisit methods. There are
three possibilities for a before visit clause’s type list. First, it may
specify a specific type and an identifier:
before id: T -> body;

which is translated into:
1 protected boolean preVisit(T id) {
2 body;
3 [return true;] // if necessary
4 }

Since the method must return a value, the body is analyzed to
determine if a stop statement occurs on all exit paths. If it does
not, then a return statement is generated with a value of true.

The second form for a visit clause’s type list is a list of types:
before T1, T2, .. -> body;

which is translated similar to before, where each type has its own
preVisit method generated and the id is a fresh name.

The third form is an underscore wildcard:
before _ -> body;

which is translated into:
1 protected boolean defaultPreVisit() {
2 body;
3 [return true;] // if necessary
4 }

similar to the previous translation strategy.
Generation of after visit clauses is almost identical to before

clauses, with two slight differences. First, the name of the gener-
ated method is changed to postVisit/defaultPostVisit.
Second, since the method has a void return type no return state-
ments are generated.

Generating Stop Statements Before visit clauses return a boolean
value to indicate if the DefaultVisitor should visit the chil-
dren of the node. Since stop statements can only appear in before
visit clauses, they are transformed into:
return false;

which makes the if condition (Figure 8, line 3) false and stops the
default traversal of the node’s children. It also stops the execution
of the before visitor.

Generating Nested Visit Calls There is no need to transform a
nested visit call, as both the method name and arguments are
identical in the generated code.

Optimizing Traversals By default, the generated code visits every
node in the tree. For some visitors, this may not be optimal. By
analyzing the visit clauses, we can determine the lowest type being
visited and ensure the traversal stops at that point.

Stopping is accomplished by adding a stop statement to the
end of the before clause for that type. If the type only has an after
clause, then an empty before clause is first generated. If that type
also has an after clause, it is merged into the body of the before
clause, immediately before the stop statement.



6. Evaluation
We now evaluate the utility and comprehensibility of new features.

6.1 Utility of Declarative Visitors
To evaluate the language features proposed in this work, we re-
produced two previous large-scale empirical studies [7, 11] using
these new features. Together these require writing over 40 software
repository mining tasks as programs. Both of these studies require
fine-grained access to source code, e.g. Grechanik et al. [11] ac-
cess expressions in source code. The study by Dyer et al. also re-
quires access to full history information to examine usage of Java
language features over time [7]. Finally, both studies require pro-
cessing large data sets for higher confidence in the results.

Using our new language features, a single student was able
to reproduce both of these large-scale studies in 2 person-weeks.
Grechanik et al.’s study [11] took a bit over 1 person-week and
Dyer et al.’s study [7] took under 1 person-week. This included the
time to formulate, write, execute, debug, and analyze results.

6.1.1 Java Language Feature Usage
Dyer et al.’s study [7] performed a large-scale study on the use
of Java language features. In that study, they wrote several mining
tasks to identify the use of Java language features over time. For
example, one such task mined source code to track the use of
assert statements over time. These tasks were written in Boa
without the syntax proposed in Section 4. For this paper, we rewrote
those tasks using the new syntax and then measured the lines of
code for both versions. The results are shown in Table 1.

Task LOC (visitor) LOC (old [7])
Annotations-define 17 63 (3.7x)
Annotations-use 17 80 (4.7x)
Assert 17 63 (3.7x)
Binary-lit 17 63 (3.7x)
Diamond 17 82 (4.8x)
EnhancedFor 17 63 (3.7x)
Enums 17 63 (3.7x)
Generics-define-field 39 77 (2.0x)
Generics-define-method 17 63 (3.7x)
Generics-define-type 17 63 (3.7x)
Generics-wildcard-extends 17 82 (4.8x)
Generics-wildcard-super 17 82 (4.8x)
Generics-wildcard 17 82 (4.8x)
Multicatch 17 63 (3.7x)
Safe-varargs 38 83 (2.2x)
Try-resources 17 63 (3.7x)
Underscore-lit 18 64 (3.6x)
Varargs 17 63 (3.7x)
Total 350 1,262 (3.6x)
Mean 19 70 (3.6x)

Table 1. Mining tasks on Java language feature usage.

The results clearly show that our proposed syntax improves
the writing of fine-grained source code mining tasks. On average,
the tasks required almost 73% fewer lines of code. Most of the
difference in lines came from the lack of needing to manually
specify the traversal strategy. These results give some insight into
the utility and potential ease of declarative visitors for mining tasks.

6.1.2 Reproducing the Treasure Study
Grechanik et al. performed a large-scale empirical study on Java
source code from 2,080 open-source projects [11]. The dataset used
in their study were randomly selected projects from SourceForge.
For their study they built an SQL database containing tables and
attributes for storing (non)terminals from Java’s grammar. They
posed 32 different research questions and queried their database

to answer those questions. To show the usefulness of our approach,
we reproduced a portion of this study using Boa.

As the actual queries used are not available, we had to make
a few assumptions about their study. First, we assumed that none
of the projects in their study were empty and all contained at least
one valid Java source file. This assumption was made on the basis
that their minimum value for number of classes per application is 1.
Thus, we filter our dataset to exclude any projects without at least
one valid Java source file. This left 23,510 projects in our study.

Second, although their paper only mentions parsing the source
code, we assume that since they were only working with releases of
each project that they also had type resolution and bindings. This
information is not yet available in Boa2, so we do not reproduce the
six tasks that rely on that information for accuracy.

Finally, we assume that the versions of each project used in their
study were the latest versions. As Boa contains all revisions for
projects but does not currently know what revision(s) map to spe-
cific releases, for our version of the study we simply take the latest
snapshot of each project. We also filter out any obvious branches (in
SVN, branches typically are rooted in the ’branches’ folder). This
gave a total of 8,360,673 changed files in this snapshot, or about
one third of the total dataset.

The results of our study, as well as the values from the previous
study, are shown in Table 2. The statistical values (mean, median,
max, and min) are computed using the most logical container for
each question. For example, the container for classes are projects,
the container for methods are classes, etc. As can be seen, most
values differ between the studies. This is to be expected, as there
are over 11 times more projects in our study. However, note that the
general trends are similar and in particular the order of magnitude
between rows is maintained.

For our version of the study, some of the values in the max
column seemed like they might be too high. We manually verified3

these values to be correct. Some interesting results:

• Despite the Java VM having a limit of 255 arguments for a
method, we located a class constructor with 262 arguments!
• We located a test class with over 32k (hopefully generated)
void methods in it to exhaustively test a method’s 16-bit in-
teger argument.
• A compiler-generated X10 file with over 7k local variables.
• A class with 10k static fields as constant strings.

The one task where we differ substantially is for nested classes.
Note the mean value is almost 1k times higher. We believe this is
because their study averages nested classes by number of methods.
However we disagree with this, as the most common container for
a nested class is another class. Thus we opted to compute this value
slightly different.

6.2 Comprehension of Mining Tasks
In this section, we outline a small controlled experiment to deter-
mine if our proposed framework and language extensions make it
easier to understand source code mining tasks. Each participant was
shown, one at a time, a set of 5 source code mining tasks written in
Boa. For each task, they were asked to describe in their own words
what the task does. They were given up to five minutes to study
each task and forced to move on if no answer was given after five
minutes. The five tasks were:

2 This is a limitation of the data and types available in Boa, and not of the
visitor syntax described in this paper.
3 http://goo.gl/bwGGC http://goo.gl/jf0Fy
http://goo.gl/zuYoh http://goo.gl/ZgamQ

http://goo.gl/bwGGC
http://goo.gl/jf0Fy
http://goo.gl/zuYoh
http://goo.gl/ZgamQ


Total Mean Median Max Min
Question Boa Treasure Boa Treasure Boa Treasure Boa Treasure Boa Treasure
Classes 11,822,321 270,973 503.68 96.8 89 33 139,668 2,071 1 1
Static Classes 569,501 7,368 24.25 6.7 0 0 23,744 1,035 0 0
Anonymous Classes 3,772,130 29,237 0.05 0.04 0 0 724 136 0 0
Nested Classes 1,218,213 14,270 51.86 0.06 3 0 30,576 61 0 0
assert Statements 612,166 2,047 0.01 0 0 0 374 9 0 0
Methods 68,062,962 938,779 5.89 3.5 2 4 32,774 1,175 1 1
Static Methods 5,696,065 231,647 0.48 0.36 0 0 4,853 289 0 0
Methods (interfaces) 4,712,116 84,130 6.13 3.4 3 3 10,000 558 1 1
Method Arities 66,778,747 544,324 1.59 1.5 1 1 262 30 1 1
void return Methods 35,988,971 414,953 3.54 5.1 2 3 32,772 1,172 1 1
Methods Returning Arrays 1,334,259 24,744 1.87 2 1 1 383 137 1 1
non-void return Methods 32,073,991 523,826 4.93 5.8 2 3 4,854 888 1 1
Fields 31,682,721 448,898 2.68 1.9 0 0 10,000 1,457 0 0
this Expressions 51,933,214 840,937 0.72 2.2 0 1 6,294 785 0 0
Static Fields 10,949,191 154,067 0.93 0.7 0 0 10,000 1,457 0 0
Volatile Fields 48,471 492 0 0 0 0 97 9 0 0
Conditional Statements 118,557,128 620,419 1.63 0.76 0 0 5,294 750 0 0
String Fields 6,425,161 231,647 0.54 0.3 0 0 3,473 432 0 0
try Statements 14,080,420 93,714 0.19 0.11 0 0 1,722 90 0 0
Exceptions Thrown From catch 4,559,274 110,740 0.3 0.26 0 0 34 5 0 0
Exceptions 12,631,996 818,358 0.17 0.9 0 0 1,086 40 0 0
Local Variables 79,057,404 818,358 1.09 0.87 0 0 7,005 1,055 0 0

Table 2. Reproducing a portion of the Treasure study [11], at a much larger scale.

Q1 Count AST nodes (Section 4)

Q2 Assert use over time (Table 1, Assert)

Q3 Annotation use, by name (Table 1, Annotations-use)

Q4 Type name collector, by project and file (not shown)

Q5 Null check (Section 2, motivating example)

These answers were graded on a fixed set of criteria. For each
question, we determined a list of criteria that must all be mentioned
in order for the answer to be marked correct. For example, for Q1
they had to mention counting only AST nodes (not all nodes) and
grouping the count by project.

Then they were shown the same set of 5 tasks again in a random
order, only this time instead of a free-form entry they were given
a choice of four descriptions and asked to choose the one that best
fit. Only one of the four descriptions was accurate while the other
four varied slightly (to make them inaccurate). For example, for Q1
only half the responses mention grouping by project. Also only two
responses mention counting only AST nodes.

The results are shown in Table 3. A ’Y’ indicates the partic-
ipant answered correctly, both in the free-form and the multiple
choice. Similarly a ’N’ indicates they answered incorrectly in both.
An entry marked ’-Y’ indicates their free-form answer was incor-
rect while their multiple choice was correct. Conversely, a ’+N’
indicates their free-form answer was correct and multiple choice
answer incorrect. For the multiple choice, they were also given a
choice of ’I am not sure what this task does’ which is indicated in
the table as ’?’. We count this as an incorrect answer.

On average it took 16 minutes to study these five tasks, or
around 3 minutes to comprehend a mining task in Boa. The accu-
racy of the comprehension was at 77.5% on average. Note however
that one of the tasks in particular (Q1) seemed to give difficulty.
Feedback suggested they failed to understand the semantics of the
wildcard. Excluding that task, the accuracy jumps to over 90%.

We repeated this experiment with the same participants six
months later. In the repeated experiment, the same five mining tasks
were used as in the previous experiment, but this time the source
code implementing the tasks was Java+Hadoop code (similar to

Q1 Q2 Q3 Q4 Q5 Total Time
N Y Y Y Y 80% 12m32s
-Y Y Y Y Y 100% 11m22s
? Y Y Y Y 80% 19m22s

-Y Y Y Y Y 100% 18m21s
? +N Y Y N 40% 11m40s
N Y Y Y -Y 80% 23m01s
N -Y Y Y Y 80% 16m10s
N +N -Y -Y Y 60% 14m50s

Mean 77.5% 15m55s

Table 3. Controlled experiment on comprehensibility of source
code mining tasks in Boa.

Q1 Q2 Q3 Q4 Q5 Total Time
-Y -Y N -Y -Y 80% 23m44s
? -Y -Y -Y N 60% 10m50s

-Y Y +N Y -Y 80% 23m48s
N Y N -Y N 40% 12m07s
N -Y N N N 20% 12m08s
-Y Y Y Y Y 100% 15m52s
N N Y -Y -Y 60% 18m14s
-Y +N Y N Y 60% 11m17s

Mean 62.5% 16m

Table 4. Controlled experiment on comprehensibility of source
code mining tasks in Java+Hadoop.

Figure 1). The results are shown in Table 4. Note that all results
were anonymized so rows do not correlate to rows in Figure 3.

Again, participants spent 16 minutes on average to study these
tasks. This time however, the accuracy of comprehension was lower
at 62.5%, almost 15% lower than the Boa survey! Another interest-
ing result was the number of ’-Y’ responses. There were 15 such
responses in the second survey compared to only 6 in the Boa sur-
vey. This may indicate more guessing or possibly a memory ef-
fect where they recalled the answer from taking the Boa survey six
months earlier.

The results from these studies are extremely promising for two
reasons. First, it gives insight that in only a few minutes most peo-



ple can comprehend a source code mining task using our approach.
Second, this comprehension comes with no training at all in the
new language features! Based on the feedback, we believe that even
a short training session on Boa’s language features would have
helped the participants understand Q1 better.

6.3 Threats to Validity
For our usability evaluation in Section 6.1.1, there is potential
construct bias as all of the code for our lines of code comparison in
Table 1 was written by us. This was unavoidable as at the time no
other researchers had access to our infrastructure.

The results of our reproduction of the Treasure study in Sec-
tion 6.1.2 may not generalize to Java development practices in in-
dustry, as all of the code in our study comes from open-source. This
same threat applies to the original study [11]. We avoid generaliz-
ing our results and instead focus on if the trends we observe are
similar to the trends the previous study observed.

Our comprehension study in Section 6.2 suffers from selection
bias as all participants were graduate students. We try to offset this
bias by selecting participants from several sub-fields of SE/PL. The
study also suffers from testing effects, since each task is given to the
participants twice. We offset this effect by randomizing the presen-
tation order the second time tasks were shown. There is also possi-
ble construct bias as we chose which tasks to present and might in-
advertently select only simple tasks. To counter this, we chose what
we considered to be a range from easy to difficult tasks. Finally,
there are additional testing effects since the Java+Hadoop portion
of the survey was performed after the Boa portion. This could ac-
tually bias the results in favor of the Java+Hadoop approach.

7. Related Works
Source code analysis is often performed using a visitor-style pat-
tern [9]. The visitor pattern is intended to allow easily adding addi-
tional functionality to a hierarchy of types, without having to mod-
ify each type. This is typically accomplished via a double-dispatch
where each type to be traversed contains an accept method and
the new analysis contains visit methods. By default visitors per-
form a depth-first traversal of the tree. There are other forms of the
pattern, such as hierarchical visitors [1] which allow controlling
the traversal and visitor combinators [34] to compose more com-
plex visitors. There are also reusable visitor pattern libraries [26].
Other approaches make use of visitors, such as Ovlinger and Wand
who define a language for recursive traversals [29].

Our language is similar to many of these approaches, however
while these approaches are typically for object-oriented languages
our host language has no notion of object (only simple record
types). Visitors make use of dynamic dispatch in the underlying
language, which is not available in procedural languages like Boa.
Also, since there is no notion of inheritance, the number of types
in the language are fixed, making the analysis in our compiler
implementation much simpler and allowed for the optimization
mentioned in Section 5.

Orleans and Lieberherr provide the language DJ [27], a purely
Java-based library implementation of Demeter/Java [28]. In DJ,
users provide a traversal strategy and declare visitors with before
and after visit methods, similar to our approach. DJ’s implemen-
tation uses reflection to implement the traversals, while our imple-
mentation uses the DefaultVisitor and has no reflection in
the source or generated code.

Both the work on DJ [27] and recursive traversals [29] provide
syntax for specifying traversals separate from the visitor code. Our
approach provides a default depth-first traversal and if users need a
custom traversal strategy they must specify it intermixed with the
visitor code by using stop statements and visit calls. In the

future we may investigate syntax for separating custom traversal
strategies from the visitor syntax.

Martin et al. describe a program query language (PQL) [20] for
easily analyzing source code. They provide a fixed set of events
in the language, such as method call or field access and allow
queries on those events. They provide static and dynamic matching
algorithms. The query language lacks a visitor syntax.

There are also interactive tools for querying source code us-
ing natural language queries [18] and custom languages such as
JQuery [15]. Since these tools are interactive, they are designed for
searching a single codebase and not for mining source code across
a large number of projects.

The Sourcerer project [19] provides project metadata source
code for over 18k Java projects. Their data is stored in a SQL
database, allowing for standard SQL queries on that data. They
provide data on single snapshots of projects, including source code
information which is represented in the database as entities and re-
lationships. Entities include declarations, type references, and lo-
cal variables. Relationships include full type resolution and bind-
ing of the entities, which our approach does not currently support.
The Treasure study [11] built a database containing source code
for over 2k projects. They take source code from releases of each
project, and map it into their database schema. This schema is ca-
pable of representing the entire source code, down to the expres-
sion level. Bevan et al. proposed a centralized database and data
schema called Kenyon [4] for storing mined software repository in-
formation. They provide an SQL interface for querying this dataset.
All three of these approaches use SQL for mining source code,
which gives the benefit of easily performing joins. However source
code queries often require recursion (over the graph structure of the
data), which is cumbersome to express in SQL [12].

Hajiyev et al. describe CodeQuest [12], which uses safe Datalog
to query source code information. They map the Datalog queries to
standard SQL and query a relational database containing source
code information. Unlike SQL, Datalog allows easily specifying
recursive style queries but lacks the visitor pattern that is familiar
to researchers who have worked on or studied compilers and source
code analysis previously.

Our previous work on the Boa language and infrastructure [6]
provided a domain specific language for querying metadata on over
600k projects and an efficient infrastructure for executing those
queries. The language abstracted away details of the underlying
infrastructure such that users did not need to be aware of how to
parallelize their queries. It also provided a set of domain-specific
types for mining software repositories. Boa was extended to sup-
port source code mining on millions of Java files, however the lan-
guage lacked the simple abstractions for easily traversing the struc-
ture of the data to perform source code mining tasks. This work has
nicely filled that research gap.

8. Conclusion
Mining source code in large-scale software repositories should be
easier! It is important for answering a large number of research
questions [7, 8, 10, 11, 13, 17, 21, 23–25, 31]. In particular, having
full history information for source code is necessary for research
on fault prediction [10, 13, 17, 23], change dependency and change
coupling analyses [14, 35], and temporal analysis on API and
object usage [22, 33] among others.

This work described new domain-specific features to help with
mining source code. Although host languages for mining source
code may not always be object-oriented, we show how to build
support for abstract syntax tree traversal in a style reminiscent of
the familiar visitor design pattern. These features have a familiar
look and semantics, but are flexible enough to support over 40
different mining tasks from two previous studies. We also give



insights into the ease of comprehending tasks written using these
domain-specific language features, which showed that over 77%
of tasks can be understood in about 3 minutes even with no prior
training in the new language features.

To date, previous works offer only a sub-set of: full source code
history, enough data for mining down to the expression level, and
being capable of scaling to a large number of projects. No previous
work offers all of these features. The implementation presented
in this work supports all of these features. We provide a flexible
data schema for representing source code, including full history
information and entities down to the expression level.

Since these features are now available in the Boa research in-
frastructure, and are actively being used on a daily basis, in the next
few years we anticipate having hundreds more example uses. Feed-
back from this use would help drive their evolution and provide a
larger validation of their design in practice.
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