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Abstract

Writing correct and efficient concurrent programs still remains a
challenge. Explicit concurrency is difficult, error prone, and cre-
ates code which is hard to maintain and debug. This type of con-
currency also treats modular program design and concurrency as
separate goals, where modularity often suffers. To solve these prob-
lems, we are designing a new language that we call Panini. In this
paper, we focus on Panini’s asynchronous, typed events which rec-
oncile the modularity goal promoted by the implicit invocation de-
sign style with the concurrency goal of exposing potential concur-
rency between the execution of subjects and observers. Since mod-
ularity is improved and concurrency is implicit in Panini, programs
are easier to reason about and maintain. The language incorporates
a static analysis to determine potential conflicts between handlers
and a dynamic analysis which uses the conflict information to de-
termine a safe order for handler invocation. This mechanism avoids
races and deadlocks entirely, yielding programs with a guaranteed
deterministic semantics. To evaluate our language design and im-
plementation we show several examples of its usage as well as an
empirical study of program performance. We found that not only
is developing and understanding Pafini programs significantly eas-
ier compared to standard concurrent object-oriented programs, but
also performance of Panini programs is comparable to their equiva-
lent hand-tuned versions written using Java’s fork-join framework.

Categories and Subject Descriptors D.3.2 [Language Classifi-
cations]: Concurrent, distributed, and parallel languages; D.3.3
[Language Constructs and Features]: Concurrent programming
structures, Patterns

General Terms Languages, Design, Performance

Keywords Safe Implicit Concurrency, Modularity

1. Introduction

The idea behind Paiini’s design is that if programmers structure
their system to improve modularity in its design, they should get
concurrency for free.

1.1 Explicit Concurrency Features

It is widely accepted that multicore computing is becoming the
norm. However, writing correct and efficient concurrent programs
using concurrency-unsafe features remains a challenge [4}28|30L
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435]. A language feature is concurrency-unsafe if its usage may
give rise to program execution sequences containing two or more
memory accesses to the same location that are not ordered by a
happens-before relation [19]]. Several such language features ex-
ist in common language libraries. For example, threads, Futures,
and FutureTasks are all included in the Java programming lan-
guage’s standard library [30}/45]. Using such libraries has advan-
tages, e.g. they can encapsulate complex synchronization code and
allow its reuse. However, their main disadvantage is that today they
do not provide guarantees such as race freedom, deadlock free-
dom and sequential semantics. This makes it much harder and error
prone to write correct concurrent programs.

To illustrate, consider the implementation of a genetic algorithm
in Java presented in Figure[I] The idea behind a genetic algorithm
is to mimic the process of natural selection. Genetic algorithms
are computationally intensive and are useful for many optimization
problems [39]]. The main concept is that searching for a desirable
state is done by combining two parent states instead of modifying
a single state [39]. An initial generation with n members is given
to the algorithm. Next, a crossover function is used to combine
different members of the generation in order to develop the next
generation (lines 10-16 in Figure [I). Optionally, members of the
offspring may randomly be mutated slightly (lines 18-23 in Fig-
ure[I). Finally, members of the generation (or an entire generation)
are ranked using a fimess function (lines 25-29 in Figure/[T).

Multiple Concerns of the Genetic Algorithm. In the OO im-
plementation of the genetic algorithm in Figure |1} there are three
concerns standard to the genetic algorithm: crossover (creating a
new generation), mutation (random changes to children), and fit-
ness calculation (how good is the new generation). Logging of each
generation is another concern added here, since it may be desir-
able to observe the space searched by the algorithm (lines 17 and
24). The final concern in the example is concurrency (lines 4, 7-9,
and 30-33). In this example, production of a generation is run as a
FutureTask, but other solutions are also possible. The shading
represents different concerns as illustrated in the legend.

1.2 Problems with Explicit Concurrency Features

Explicit concurrency.  With explicit concurrency, program-
mers must divide the program into independent tasks. Next, they
must handle creating and managing threads. A problem with the
concurrency-unsafe language features described above and illus-
trated in Figure [1]is that correctness is difficult to ensure since it
relies on all objects obeying a usage policy [20]. Since such policies
cannot automatically be enforced by a library based approach [20],
the burden on the programmers is increased and errors arise (e.g.,
deadlock, races, etc.). Also, the non-determinism introduced by
such mechanisms makes debugging hard since errors are difficult
to reproduce [43]. Furthermore, this style of explicit parallelism
can hurt the design and maintainability of the resulting code [37].
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1 class GeneticAlgorithm {

2 float crossOverProbability, mutationProbability;
3 int max;

4 ExecutorService executor;

5 //Constructor elided (Initializes fields above).
6 public Generation compute (final Generation g) {

7 FutureTask<Generation> t = new FutureTask<Generation> (
8 new Callable<Generation> () {

9 Generation ecall() {

10 int genSize = g.size();

11 Generation gl = new Generation (g)

12 for (int i = 0; i1 < genSize; i += 2) {

13 Parents p = g.pickParents();

14 gl.add(p.tryCrossOver (crossOverProbability)) ;
15 }

16 if (gl.getDepth() < max) gl = compute (gl)

17 logGeneration (gl) ;

18 Generation g2 = new Generation(g);

19 for (int i = 0; i < genSize; 1 += 2) {

20 Parents p = g.pickParents();

21 g2.add (p.tryMutation (mutationProbability)) ;
22 }

23 if (g2.getDepth () < max) g2 = compute(g2);

24 logGeneration (g2) ;

25 Fitness fl = gl.getFitness();

26 Fitness f2 = g2.getFitness();

27 if (fl.average()>f2.average()) return gl;

28 else return g2;

29 1SN

30 executor.execute (t) ;

31 try { return t.get(); }

32 catch (InterruptedException e) { return g; }
33 catch (ExecutionException e) { return g; }

34 1}

Figure 1. Genetic algorithm with Java concurrency utilities

Separation of modular and concurrent design.  Another short-
coming of these language features, or perhaps the discipline that
they promote, is that they treat modular program design and con-
current program design as two separate and orthogonal goals.

From a quick glance at Figure [I] it is quite clear that the five
concerns are tangled. For example, the code for concurrency (lines
4, 7-9, and 30-33) is interleaved with the logic of the algorithm
(the other four concerns). Also, the code for logging occurs in two
separate places (lines 17 and 24). This arises from implementing
a standard well understood sequential approach and then afterward
attempting to expose concurrency rather than pursuing modularity
and concurrency simultaneously. Aside from this code having poor
modularity, it is not immediately clear if there is any potential
concurrency between the individual concerns (crossover, mutation,
logging, and fitness calculation).

1.3 Contributions

Our language, Panini, addresses these problems. The key idea be-
hind Panini’s design is to provide programmers with mechanisms
to utilize prevalent idioms in modular program design. These mech-
anisms for modularity in turn automatically provide concurrency in
a safe, predictable manner. This paper discusses the notion of asyn-
chronous, typed events in Panini. An asynchronous, typed event
exposes potential concurrency in programs which use behavioral
design patterns for object-oriented languages, e.g., the observer
pattern [14]. These patterns are widely adopted in software sys-
tems such as graphical user interface frameworks, middleware,
databases, and Internet-scale distribution frameworks.

In Panini, an event type is seen as a decoupling mechanism that
is used to interface two sets of modules, so that they can be inde-
pendent of each other. Below we briefly describe the syntax in the
context of the genetic algorithm implementation in Panini shown
in Figure 2] (a more detailed description appears in Section [2). In
the listing we have omitted initializations for brevity. In this listing

1 event GenAvailable {

2
3

Generation g; //Reflective information available at events

}

4 class CrossOver {

5
6
7

51

int probability; int max;
CrossOver (...) {
register (this);
// initialization elided (initializes fields above) .
}
when GenAvailable do cross;
void cross (Generation g) {
int gSize = g.size();
Generation gl = new Generation(g);
for(int i = 0; i< gSize; i+=2){
Parents p = g.pickParents();
gl.add(p.tryCrossOver (probability)) ;
}
if (gl.getDepth() < max) announce GenAvailable (gl);
b}
class Mutation {
int probability;
Mutation(...) {
register (this);
// initialization elided (initializes fields above).
}
when GenAvailable do mutate;
void mutate (Generation g) {
int gSize = g.size();
Generation g2 = new Generation(g);
for(int i = 0; i< gSize; i+=2){
Parents p = g.pickParents();
g2.add (p.tryMutation (probability));
}
if (g2.getDepth ()

int max;

< max) announce GenAvailable (g2);
b}
class Logger {

when GenAvailable do logit;

Logger () { register (this); }

void logit (Generation g) { logGeneration(g); }

}

class Fittest {

Generation last;

when GenAvailable do check;

Fittest () { register (this); }

void check (Generation g) {
if(last == null) last = g;
else {

Fitness fl = g.getFitness();
Fitness f2 = last.getFitness();
if (fl.average() > f2.average()) last = g;

P}

Figure 2. Paiini’s version of the Genetic algorithm

an example of an event type appears on lines 1-3, whose name is
GenAvailable and that declares one context variable g of type
Generation on line 2. Context variables define the reflective in-
formation available at events of that type.

Certain classes, which we refer to as subjects from here on-
ward, declaratively and explicitly announce events. The class
CrossOver (lines 4-19) is an example of such a subject. This
class contains a probability for the crossover operation and a
maximum depth at which the algorithm will quit producing off-
spring. The method cross for this class computes the new
generation based on the current generation (lines 11-19). Af-
ter the cross method creates a new generation, it announces
an event of type GenAvailable (line 18) denoted by code
announce GenAvailable(gl).

Another set of classes, which we refer to as observers from
here onward, can provide methods, called handlers that are in-
voked (implicitly and potentially concurrently) when events are
announced. The listing in Figure [2| has several examples of ob-
servers: CrossOver, Mutation, Logger and Fittest. A
class can act as both subject and observer. For example, the classes
CrossOver and Mutation are both subjects and observers for
events of type GenAvailable.

In Pafini classes statically express (potential) interest in an
event by providing a binding declaration. For example, the Mutate
concern (lines 20-35) wants to randomly change some of the



population after it is created. So in the implementation of class
Mutation there is a binding declaration (line 26) that says
to run the method mutate (lines 27-35) when events of type
GenAvailable are announced.

At runtime, these interests in events can be made concrete using
the register statements. The class Mutation has a constructor on
lines 22-25 that when called registers the current instance this
to listen for events. After registration, when any event of type
GenAvailable is announced the method mutate (lines 27-35)
is run with the registered instance this as the receiver object.

Concurrently, the method 1ogit (line 39) in class Logger
will log each generation and the method check inclass Fittest
(lines 41-51) will determine the better fitness between the an-
nounced generation and the previously optimal generation.

Benefits of Panini’s Implementation. At a quick glance, we
can see from the shading that the four remaining concerns are no
longer tangled and they are separated into individual modules. This
separation not only makes reasoning about their behavior simple
but also allows us to expose potential concurrency between them.

Furthermore, the concurrency concern has been removed en-
tirely since Panini’s implementation encapsulates concurrency
management code. By not requiring users to write this code, Panini
avoids any threat of incorrect or non-deterministic concurrency,
thus easing the burden on programmers. This allows them to focus
on creating a good, maintainable modular design.

Finally, additional concurrency between these four modules is
now automatically exposed. Thus, Paiini reconciles modular pro-
gram design and concurrent program design.

Advantages of Paiini’s Design over Related Ideas. Paiini is
most similar to our previous work on Ptolemy [33]], but Pafini’s
event types also have concurrency advantages. Compared to similar
ideas for aspect-oriented advice presented by Ansaloni et al. 2],
Panini only exposes concurrency safely.

It is also similar to implicit invocation (II) languages [8}/26] that
also see events as a decoupling mechanism. The advantage of using
Panini over an II language is that asynchronous, typed events in
Panini allow developers to take advantage of the decoupling of
subjects and observers to expose potential concurrency between
their execution. A detailed comparison is presented in Section[6}

Panini also relieves programmers from the burden of explicitly
creating and maintaining threads, managing locks and shared mem-
ory. Thus it avoids the burden of reasoning about the usage of locks,
which has several benefits. First, incorrect use of locks may have
safety problems. Second, locks may degrade performance since ac-
quiring and releasing a lock has overhead. Third, threads are coop-
eratively managed by Pafiini’s runtime, thus thrashing due to exces-
sive threading is avoided. These benefits make Panini an interesting
point in the design space of concurrent languages.

In summary, this work makes the following contributions:

1. Panini’s language design that reconciles implicit-invocation de-
sign style and implicit concurrency and provides a simple and
flexible concurrency model such that Panini programs are

o free of data races,

o free of deadlocks, and

e have a guaranteed deterministic semantics(a given input is
always expected to produce the same output. [31]);

2. an efficient implementation of Paiiini’s design as an extension
of the JastAdd compiler [9] that relies on:

e an algorithm for finding inter-handler dependence at regis-
tration time to maximize concurrency,

e a simple and efficient algorithm for scheduling concurrent
tasks that builds on the fork/join framework [21]];

3. adetailed analysis of Panini and closely related ideas;

4. and, an empirical performance analysis using canonical concur-
rency examples implemented using Pafiini and using standard
techniques which shows that the performance and scalability of
the implementations are comparable.

Overview. Next we describe Pafiini’s design. Section[3|describes
Paiiini’s compiler and runtime system. Section [4] describes our
performance evaluation and experimental results. Section [3] gives
more examples in Paiiini. Finally, Section [6] surveys related work,
and Section[7ldescribes future directions and concludes.

2. Paiiini’s Design
Panini, fl. ¢.400 BC,

Indian grammarian, known for his formulation of the Sanskrit
grammar rules, the earliest work on linguistics.

In this section, we describe Pafini’s design. Panini’s design
builds on our previous work on the Ptolemy [33] and Eos [35}
36] languages as well as implicitly parallel languages such as
Jade [37]]. Panini achieves concurrent speedup by executing handler
methods concurrently. The novel features of Painini are found in
its concurrency model and conflict-detection scheme. We do not
present a formal semantics of Pafini in this work, but interested
readers may find it in our technical report [24].

2.1 Panini’s Syntax

Panini extends Java [[16] with new mechanisms for declaring events
and for announcing these events. These features are inspired by im-
plicit invocation (II) languages such as Rapide [§]] and our previous
work on Ptolemy [33]]. These syntax extensions are shown in Fig-
ure 3] In this figure, productions of the form “...” represent all
existing rules for Java [|16] plus rules on the right.

<TypeDecl>
<EventDecl>
<ContextVariable>
<ClassBodyDecl>
<BindingDecl>
<Stmt>
<RegisterStmt>
<AnnounceStmt> =

... | <EventDecl>

event <Identifier> { <ContextVariable>* }
<Type> <ldentifier> ;

... | <BindingDecl>

when <Type> do <Identifier>

... | <AnnounceStmt> | <RegisterStmt>
register (<Expr>) ;

announce <Type> ( <Expr>*) ;

Figure 3. Panini’s syntax extensions to Java.

In this syntax, the novel features are: event type declarations
(event), event announcement statements (announce), and han-
dler registration statements (register). Since Paiiini is an im-
plicitly concurrent language, it does not feature any construct
for spawning threads or for mutually exclusive access to shared
memory. Rather, concurrent execution is facilitated by announcing
events, using the announce statement, which may cause handlers
to run concurrently. Examples of the syntax can be seen in Figure2]
This example is described thoroughly in Section[I.3]

Top-level Declarations. Class, interface and enum declarations
are the same as in Java and not shown. We add a new declara-
tion for events. An event type declaration (<EventDecl>) has a
name (<Identifier>), and zero or more context variable declara-
tions (<ContextVariable>*). These context declarations specify the
types and names of reflective information exposed by conforming
events. An example is given in Figure[2]on lines 1-3 where event
GenAvailable has one context variable Generation g that
denotes the generation which is now available. The intention of this
event type declaration is to provide a named abstraction for a set of
events that result from a generation being ready.



Like Eos [34,136], classes in Paiini may also contain binding
declarations. A binding declaration (<BindingDecl>) mainly con-
sists of two parts: an event type name (<7ype>) and a method
name (<Identifier>). For example, in Figure 2] on line 10 the class
CrossOver declares a binding such that the cross method is
invoked whenever an event of type GenAvailable is an-
nounced. We call such methods handler methods and they may
run concurrently with other handler methods for the same event.

Panini’s New Statements. Paiini has all the standard object-
oriented expressions and statements as in Java. New to Paiini is the
registration statement (<RegisterStmt>) and (<AnnounceStmt>).
Like II languages and Ptolemy [33]], a module in Panini can ex-
press interest in events, e.g., to implement the observer design
pattern [14]. Just like II languages, where one has to write an state-
ment for registering a handler with each event in a set, and similar
to Ptolemy [33]], such modules run registration statements. Exam-
ples are shown on lines 7, 23, 38 and 44 in Figure 2] The example
on line 7 registers the this object to receive notification when
events of type GenAvailable are signaled.

2.2 Concurrency in Paiini

The announce statement enables concurrency in Pafini. The
statement announce p ( <Expr>* ) ; signals an event of type
p, which may run any handler methods that are applicable to p
asynchronously, and waits for the handlers to finish. In Figure [2]
the body of the cross method contains an announce statement
on line 18. On evaluation of the announce statement, Panini first
looks for any applicable handlers. Here, the handlers CrossOver,
Mutation, Logger, and Fittest, are declared to handle the
events of type GenAvailable. Such handlers may run concur-
rently, depending on whether they interfere with each other.

The evaluation of the announce statement then continues with
evaluating the sequence on line 18, which returns from the method.
The announcement of the event allows for potential concurrent
execution of the bodies of the cross (lines 11-19), mutate
(lines 27-35), Logit (line 38), and check (lines 45-51) methods.

The announce statement also binds values to the event type dec-
laration’s context variables. For example, when announcing event
GenAvailable online 18, g1 is bound to the context variable g
on line 2. This binding makes the new generation available in the
context variable g, which is needed by the context declared for the
event type GenAvailable.

2.3 Panini’s Handler Conflict Detection Scheme

Panini uses static effect computation [44]] and a dynamic conflict
detection scheme to compute a schedule for execution of handlers
that maximizes concurrency while ensuring a deterministic seman-
tics of programs. This is similar to Jade [37]], where the implemen-
tation tries to discover concurrency. But unlike Jade, we do not re-
quire effect annotations. Pafini’s compiler generates code to com-
pute the potential effect of all handlers. At runtime, when a handler
registers with an event, Panini’s runtime uses these statically com-
puted effects to decide the execution schedule of handlers.

Effects of a Method. The effects of a method are modeled as
a set that may contain four kinds of effects: 1) read effect: a class
and its field that may be read; 2) write effect, a class and its field
that may be written; 3) announce effect: an event that may be
announced by the method; 4) register effect: whether this method
may evaluate a register statement. These sets are generated for
each method in the program and inserted in the generated code as
synthetic methods. For library methods, their effects are computed
by analyzing their bytecode and inserted directly at call-sites.

Detecting Dependencies between Handlers. Whenaregister

statement is run with a handler as argument, dependence between

this handler and already registered handlers for that event is com-
puted by comparing their effects. Two handlers may have read-
write, write-write or register-announce dependencies.

Suppose the currently registering handler is h, and h; is in the
sequence of already registered handlers. Handlers h, and h; may
be register-announce dependent if h; announces an event for which
h, registers a handler or vice versa. The handler A, is read-write
dependent on h; if h,’s reads conflict with h;’s writes, or h;,’s
writes conflict with h;’s reads or writes. Two effect sets conflict,
if they share an element. That is because, in the deterministic
semantics, h, should view the changes by h;, while h,’s changes
are invisible to h;, neither should the changes of h, be overwritten
by the changes of h;. We illustrate via an example in Figures [4}j6]

Handlers Reads Writes Registers Announces
A {Account.balance} [1] [ {Ev})
B {Account.id} [1] [
C 0 { Account.balance} [ [

Figure 4. Assume there are three handlers for the event type
Ev in the program. At this point, none have registered yet. The
registration order of handlers is A followed by B followed by C.
All four kinds of effects are shown for each handler.

In Figure 4] handler A reads the field balance of the class
Account and handler C' may write to the field balance. Since
handler A registers earlier than handler C, handler C’s writes
conflict with handler A’s reads, as discussed above.

Notice that a handler h could also announce an event, say p.
Then the read/write set of h could be enlarged over time, because
new handlers for p may register later and the effects of these
new handlers should propagate to h. Panini does these updates
automatically when new handlers register for a certain event. To
enable this, subjects are formed into a list for an event. Thus, when
a handler registers, its changes are passed to these subjects, and
these subjects merge the changes and recursively pass changes
to other events when necessary. This continues until a fixpoint is
reached (no more effects are added to the subjects). For example,
in Figure f] notice that handler A may announce events of type Ev.
Thus after handler B registers, the effect set of handler A becomes
the union of effect sets of handlers A and B.

Handlers Reads Writes Registers Announces
A { Account.balance, 0 4 {Ev}
Account.id}
B {Account.id} ] [ [
C ] {Account.balance 0 [

Figure 5. Effects after handler A and handler B have registered.

Finally, in Figure [] the effect set of handler A becomes the
union of effect sets of all the three handlers.

Handlers Reads Writes Registers Announces
A { Account.balance, [] (Ev}
Account.id} { Account.balance }
B {Account.id} [ 0 [
C [] { Account.balance} 0 [

Figure 6. Effects after all three handlers have registered.

Handlers’ Hierarchy. Paiini groups handlers into hierarchies,
based on handler dependencies. In the first level of the hierarchy,
none of the handlers have a dependency on any other handlers,
while any handler in the second level depends on a subset of the
handlers in the first level and no other handlers. For example, han-
dler C conflicts with handler A (discussed previously). Similarly,
handlers in the third level may depend on handlers in the first two
levels, but no handlers in any other level. It is possible that the
effects of one handler will become larger (mentioned above) and



in response to this, Panini will reorder the hierarchy dynamically.
Thus, the example above will have a two level hierarchy, with han-
dlers A and B in the first level, while, handler C' in the second.

Event Registration. When a handler, say h, registers with event
p, we first propagate its effects to the subjects of p, then the depen-
dencies between h and the previous registered handlers are com-
puted based on the effect set. After dependencies are calculated,
the handler is put into a proper level of the hierarchy. In Figure [3]
and Figure [f] since, handler A may announce event type Ev, the
effect sets of handler B and handler C' are propagated to handler
A (as a subject). Because handler B does not depend on handler A
(notice that read effects of the same field have no conflict), it is put
in the first level. Since handler C’s writes conflict with handler A’s
reads, it is put in the second level.

Event Announcement and Task Scheduling Algorithm. When
a subject signals an event, Panini executes the handlers in the first
level concurrently (the subject itself blocks until all handlers are
finished). After all the handlers in this level are done, handlers in
the next level are released and run in parallel until all the handlers
are finished. For example, since handlers A and B are both in
the first level, they will run in parallel. Once they are completed,
handler C' will run. If any of the handlers also announce an event,
the handlers for that event will be scheduled, according to their
conflict sets. Announce statements do not return until after all the
handlers associated with the event are finished. This ensures correct
synchronization for any state changes made by the handlers.

The computation of the dependency and the effect propagation
is done when handlers register, based on the assumption that in
a program, the number of announcements considerably outweighs
the number of registrations. Therefore, the overhead of effect anal-
ysis is amortized over event announcements.

2.4 Properties of Paiini’s Design

Panini does not have locks so it is deadlock free. It uses automatic
conflict detection that ensures race freedom and guaranteed deter-
ministic semantics. Our report has formal details and proofs of
these properties [24]]. Its design, does not offer these guarantees
if programmers use explicit locking and threads in the underlying
Java language in a manner that creates deadlocks and data races.

3. Paiiini’s Compiler and Runtime System

To a certain extent, implementing Panini as a library is feasi-
ble [32]. However, to get deadlock and race freedom and a de-
terministic semantics, which is crucial for writing correct and ef-
ficient concurrent programs, programmers will need to write ex-
tensive effect annotations (like Jade [37]). This could be tedious
and error prone so we implemented a compiler for Panini us-
ing the JastAddJ extensible compiler system [9]. This compiler
and associated examples are available for download from http:
//paninij.orgl

As its backend, Panini’s runtime system uses the fork/join
framework [21]. This framework uses the work stealing algo-
rithm [|6] and works well for recursive algorithms. We observed
that handlers usually also act as subjects and recursively announce
events, thus Panini was built based on this framework. When an
event is announced by a publisher, all handlers that are applicable
are wrapped and put into the framework and may execute concur-
rently. Below we describe key parts of our implementation strategy.

Event type. An event type declaration is transformed into an in-
terface (an example is shown in Figure[7). A getter method is gener-
ated for each context variable of the event (Generation g () on
line 2 in Figure[7) so that the handlers can use this method to access
the context variables. Two interfaces, namely EventHandler

21
22

public interface GenAvailable {
public Generation g(); //An accessor for each context variable
public interface EventHandler extends IEventHandler({
public void ChangedHandle (Generation g)
}
public interface EventPublisher extends IEventPublisher{ }
public class EventFrame implements GenAvailable {
public static void register (IEventHandler handler) {
//1. check whether this handler has registered before,
// if yes return ( no duplicate registration
//2. analyze the effects of the handler
//3. insert it into the handler hierarchy
}
public static void announce (GenAvailable ev) {
GenAvailableTask [] tasks = ...
//Iterate over registered handlers for the event wrapping
//them inside instances of tasks for concurrent execution.
PaniniTask.coInvoke (tasks);
}
} //other helper methods elided
public static class GenAvailableTask extends PaniniTask { .. }

}

Figure 7. An event type is translated into an interface. Snippets
from translation of event GenAvailable in Figure[2]

(lines 3-5) and EventPublisher (line 6), are to be used by an
inner class EventFrame (lines 7-20), which hosts the register
and announce methods for that event. Any class that has a bind-
ing declaration is instrumented to implement the EventHandler
interface, while any class that may announce is instrumented to im-
plement the EventPublisher interface.

Event Announcement. When a subject signals an event, the an-
nounce method (line 14 in Figure[7) is called. This method iterates
over the handlers and executes all non-conflicting handlers as dis-
cussed in Section[2.3] The class EventFrame uses a helper class
(here GenAvailableTask on line 21), to wrap the handlers (if
any) before submitting them for execution.

Handler Registration. A register method is added to every class
that has event bindings. First this method computes the effects of
the handler. Next, this method registers to the named events in the
class by calling the register method (lines 8—13 in Figure[7). This
method will first check whether the current registering handler is
already in the handler hierarchy to ensure no duplicate registra-
tion. Then the effects of the newly registered handler are compared
against other previously registered handlers to calculate the depen-
dence set of this handler (as discussed in Section [2.3). Finally, the
handler is put into a proper level in the hierarchy.

4. Evaluation

We now evaluate the design and performance benefits of Paiini.
All experiments were run on a system with a total of 12 cores (two
6-core AMD Opteron 2431 chips) running Fedora GNU/Linux.

4.1 Analysis of Modularity and Concurrency Synergy

Our goal is to analyze “if a program is modularized using Panini
does that also expose potential concurrency in its execution?”

We have already presented one such case in Section |1} where
modularization of various concerns in the implementation of a
genetic algorithm exposed potential concurrency between these
concerns. We now analyze the speedup of the genetic algorithm
implementations presented in Figure[T]and Figure[2] Recall that the
first version is implemented by taking the sequential version and
retrofitting it with thread and synchronization primitives, whereas
the second version is implemented by modularizing the code. We
first compared these implementations head-to-head. The results for
this comparison are shown as black bars in Figure[§]

In this experiment, the average speedup over ten runs was taken
with a generation (or population) size of 3000 and a depth (number
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Figure 8. Performance: Black bars show average speedup of
Paiiini’s code (in Figure[2) over concurrent OO code (in Figure/[T).
Gray bars show speedup of “expert version” created by a concur-
rency expert using Fork/join framework over that in Figure [T]

of generations) of 10. For a variety of generation sizes (1000-3000)
and depths (8-11), speedups were similar.

The results show that Panini’s implementation achieved be-
tween 1 and 4x speedup for varying number of threads. This was
quite surprising as we expected the concurrent version in Figure ]|
to match or exceed the performance of Panini’s version since the
0O version does not incur the overhead of implicit concurrency.

A careful analysis by a seasoned concurrent programmer re-
vealed two problems with this seemingly straightforward concur-
rent code in Figure[T} Our expert pointed that: “the entire genetic al-
gorithm code is wrapped in a future task. The method then submits
the future task on line 30 and immediately invokes the method get,
which limits concurrency. Furthermore, the compute() method calls
(on line 16 and 23) are synchronous method calls, and thus, the two
subtasks could not be run concurrently. As a result, the algorithm
execution proceeds as a depth-first search tree (the right subtree
will not be executed until the left subtree is done) but the intention
is to execute the branches of the search tree concurrently.”

This analysis was both shocking and pleasant. Shocking in the
sense that even with a relatively simple piece of concurrent code,
correctness and efficiency was hard to get. Pleasant in the sense that
the Paiiini code automatically dealt with these problems.

Following our concurrency expert’s advice, we created a second
version of the object-oriented genetic algorithm using the fork/join
framework [21]]. The performance results of this “expert version”
is shown in Figure [§] as gray bars. This figure shows that the
speedups between the “expert version" and the Panini versions for
this genetic algorithm are comparable.

In summary, our performance evaluation revealed correctness
and efficiency problems with a relatively straightforward OO par-
allelization of the genetic algorithm, whereas Paiini’s implemen-
tation didn’t have these problems. Fixing the problems with OO
implementation by an expert led to comparable performance be-
tween implicit concurrency exposed by Paiini and explicitly tuned
concurrency exposed using the fork/join framework [21]].

4.2 Performance Evaluation

The goal of this section is to analyze “how well do the Pafini pro-
grams perform compared to a hand-tuned concurrent implementa-
tion of equivalent functionality?” We first describe our experimen-
tal setup and then analyze speedup realized by Panini’s implemen-
tation as well as the overheads.

4.2.1 Concurrency Benchmark Selection

To avoid bias and subtle concurrency problems similar to Sec-
tion we picked already implemented concurrent solutions of
five computationally intensive kernels: Euler number, FFT, Fi-

bonacci, integrate, and merge sort. Hand-tuned implementations
of these kernels were already available [21]).

Each program takes an input to vary the size of the workload
(Euler: number of rows, FFT: size of matrix 2%, Fibonacci: zth
Fibonacci number, integrate: number of exponents, and merge sort:
array size 2 ) For each example program, a sequential version was
tested as well as concurrent versions ranging from 1 to 14 threads.
Furthermore, three concurrent versions were tested:

1. an implementation using the fork/join framework [21],
2. a Panini version with no conflict between handlers, and

3. a second Pafini’s implementation that was intentionally de-
signed to have conflicts between handlers.

To introduce conflicts, we add another handler that aggregates
the results of concurrently executing handlers. Thus, the third han-
dler must wait for the other handlers to complete since it depends
on them. For example, calculating a Fibonacci number, fib(n), is
done by recursively calculating two subproblems, fib(n — 1) and
fib(n — 2). With the fork/join framework, each of these subprob-
lems is done by a separate task. When both of these tasks are com-
pleted, the spawning task adds them together. For Paiini, each of
these subproblems is handled in separate handlers. In the case with
no conflicts, these are the only two handlers. In the case with con-
flicts, a third handler takes the result of the two handlers for the
subproblems and adds them together.

4.2.2 Speedup over Sequential Implementation

Figure [0] shows a summary comparison of speedup between the
three versions. In this figure, the average speedup across all five
benchmarks was taken. For each program, large input sets were
used (Euler: 39, FFT: 24, Fibonacci: 55, integrate: 7, and merge
sort: 25 ). The line in the figure represents optimal speedup.
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Figure 9. Average speedup compared to sequential version across
all benchmarks for varying number of threads. The line represents
perfect scaling. This shows that Panini’s implementation scales
similarly to hand-written fork/join implementation.

This figure shows that the speedups between the three styles
are comparable. Speedups for fork/join and Panini without con-
flicts are nearly the same. A statistical analysis showed that for
all benchmarks, we do not see a statistically significant difference
(p < 0.05) between fork/join and Panini with no conflicts.

From the figure, we can also see that Panini with conflicts
has slightly lower speedup than both fork/join and Pafini without
conflicts, however, this decrease is rather small (average 6.5%
decrease from fork/join).Note that since we are using a machine
with 12 cores, performance levels drop off at 12 threads.

4.2.3 Overhead over the Sequential Implementation

We also measured the overhead involved with Paiini as compared
to the standard fork/join model. We first consider the average over-
head across all benchmarks as shown in Figure [[0} Overhead is



computed by determining the increase in runtime from the sequen-
tial version to the concurrent version with a single thread. For this
experiment, we used large input sizes.

Panini with conflicts| |

Panini with no conflicts| |
Forkijoin| |

0 10 20 30 40 50
Percentage overhead over sequential

Figure 10. Average overhead compared to sequential version
across all benchmarks for each technique.

This figure shows us that while Panini increases the overhead
over fork/join, it is not a prohibitive amount. For example, for
Panini with no conflicts, we only see a 7.7% increase in overhead.
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Figure 11. Average overhead for Fibonacci benchmark for varying
input size and each scheduling strategy.

Figure[IT|shows a summary comparison of overhead as program
input size changes. In this figure, the overhead for the Fibonacci
program is shown with a variety of input sizes. Again, overhead is
calculated by determining the increase in runtime from the sequen-
tial version to the concurrent version with a single thread.

This figure shows that as input size increases, overhead de-
creases. Here, overhead decreases to as low as 5.5% additional
overhead for Panini with no conflicts. Panini with conflicts only
incurs an additional 1.2% overhead for larger input sizes. Each of
the differences in overhead (fork/join vs Panini without conflicts,
fork/join vs Panini with conflicts, and Panini with vs Panini with-
out conflicts) was always statistically significant (p < 0.05).

4.3 Summary of Results

In summary, Pafini shows speedups which scale as well as expert
code in the standard fork/join model. Even though Pafini has a
higher overhead than fork/join, Panini performs nearly as well as
the fork/join model in terms of speedup for nearly all cases. This
is all achieved without requiring explicit concurrency and while
encouraging good modular design and ensuring that programs are
free of deadlocks and have deterministic semantics.

5. Other Examples in Panini

To further assess Panini’s ability to achieve a synergy between
modularity and concurrency goals, we have implemented several
representative examples and they worked out beautifully. In the rest
of this section, we present three examples.

Concurrency in Compiler Implementations. In the art of writ-
ing compilers, performance often has higher priority than modu-
larity. Compiler designers employ all kinds of techniques to opti-
mize their compilers. For example, merging transformation passes
which perform different transformation tasks in the same traversal,
is a common practice in writing multi-pass compilers. However,
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the implementation of this technique usually suffers from the prob-
lem of code-tangling: implementations of different concerns (i.e.,
transformation tasks) are all mixed together.

class MethodDecl extends ASTNode {
Expression body; // the expression body of the method
/* other fields and method elided x/
Effect computeEffect () {
return body.computeEffect (); }

class Expression extends ASTNode {
Effect computeEffect ( ) e
class Sequence extends Expression({
Expression left; Expression right;
Effect computeEffect () {
Effect effect = left.computeEffect ();
effect.add( right.getEffect() );
return effect; }
}
class FieldGet extends Expression({
Expression left; /+ other fields elided =/
Effect computeEffect () {
Effect effect = left.computeEffect ();
effect.add( new ReadField() );
return effect;}

Figure 12. Snippets of an AST with an Effects System

Figure |12] illustrates this via snippets from an abstract syntax
tree (AST). It shows concerns for method declarations, expressions,
and two concrete expressions: a sequence expression (e; e) and a
field get expression (e.f). As an example compiler pass, we show
computation of effects for these AST nodes. The effect computa-
tion concern is scattered and tangled with the AST nodes. This is
a common problem in compiler design where the abstract syntax
tree hierarchy imposes a modularization based on language fea-
tures whereas compiler developers may also want another modular-
ization based on passes, e.g., type checking, error reporting, code
generation, etc [9]]. The visitor design pattern solves this problem
to a certain extent but it has other problems [9].

event MethodVisited { MethodDecl md; }
event SequenceVisited { Sequence seq; }
event FieldGetVisited { FieldGet fg; }
class MethodDecl extends ASTNode{
Expression body; // the expression body of the method
/* other fields and method elided */
void visit () {
announce MethodVisited (this)
body.visit (); }
}
class Expression extends ASTNode { void visit () { } }
class Sequence extends Expression({
Expression left; Expression right;
/+ other fields and method elided */
void visit () {
announce SequenceVisited (this)
left.visit(); right.visit(); }
}
class FieldGet extends Expression({
Expression left; /+ other fields and method elided =/
void visit () {
announce FieldGetVisited (this)
left.visit (); }
}
class ComputeEffect {
ComputeEffect () { register (this);
MethodDecl m; HashTable h;
when MethodVisited do start;
void start ( MethodDecl md ) {
this.m = md;
h.add( m, new EffectSet () );
}
when FieldGetVisited do add;
void add( FieldGet fg ) {
h.get (m) .add( new ReadField() );

h = new HashTable(); }

3]

Figure 13. Panini’s version of visiting an abstract syntax tree.
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Panini handles this modularization problem readily as shown in
Figure [[3] In this implementation, we introduce a method visit
in each AST node. This method recursively visits the children of
the node. At the same time, it announces events corresponding to
the AST node. For example, a method declaration announces an
event of type MethodVisited declared on line 1 and announced
on line 8. Similarly, the AST node sequence expression and field
get expression announce events of type SequenceVisited and
FieldGetVisited on lines 16 and 22 respectively.

The implementation of the effect concern is modularized as the
class ComputeEffect. This class has two bindings that say to
run the method start when an event of type MethodVisited
is announced and add when an event of type FieldGetVisited
is announced. The constructor for this class registers itself to re-
ceive event announcements and initializes a hashtable to store ef-
fects per method. The method add inserts a read effect in this
hashtable corresponding to the entry of the current method.

This Panini program manifests a few design advantages. First,
the AST implementation is completely separated from effect anal-
ysis. Also, unlike the visitor pattern, the ComputeEffect class
need not implement a default functionality for all AST nodes. Fur-
thermore, other passes such as type checking, error reporting, code
generation, etc can also reuse the AST events.

Last but not least, in Panini, the effect computation (by the
class ComputeEffect) could be processed in parallel with other
compiler passes, like type checking. In case a compiler pass does
transformation of AST nodes, Paiini’s type system will detect this
as interference and automatically generate an schedule of their
execution that would be equivalent to sequential execution. Thus,
for this example Panini shows that it can reconcile the modularity
and concurrency goals such that modular design of compilers also
improves their performance on multi-core processors.

Modular and Concurrent Image Processing.  This example
is adapted from and inspired by the Image] image processing
toolkit [[17]. For simplicity, assume that this library uses a class
List and Hashtable similar to the classes in the java.util
package. We have also omitted the irrelevant initializations of these
classes. The class Image (lines 24-29) maintains a list of pixels.
The method set for this class (lines 27-29) sets the value of a
pixel at a given location to the specified integer value.

event Changed{ Image pic; }
class Percentile {
Hashtable h; int p /* Percentile value */
Percentile (int percentile) {
register (this); h = new Hashtable(); this.p =
}
when Changed do compute;
void compute (Image pic) {
/* threshold is the intensity value for which cumulative
sum of pixel intensities is closest to the percentile p.x*/
h.add(pic, threshold);

percentile;

b}
class GlasbeyThreshold {
Hashtable h;
GlasbeyThreshold () {
register (this); h =
}
when Changed do compute;
void compute (Image pic) {
/* threshold is the intensity value for which cumulative
sum of pixel intensities has the most dominant value. x/
values.put (pic, threshold);

new Hashtable();

31}

class Image {

List pixels;

Image set (Integer i,
pixels.setAt (i,v);
announce Changed (this);

H}

Integer v) {

Figure 14. An Image and Threshold Computation in Pafini.

An example requirement for such a collection could be to sig-
nal changes of elements as an event. Other components may be
interested in such events, e.g., for implementing incremental func-
tionalities which rely on analyzing the increments. One such re-
quirement for a list of pixels is to incrementally compute the Non-
parametric Histogram-Base Thresholding [15]]. Thresholding is a
method for image segmentation that is typically used to identify
objects in an image. The threshold functionality may not be use-
ful for all applications that use the image class, thus it would be
sensible to keep its implementation separate from the image class
to maximize reuse of the image class. Figure |14]shows the imple-
mentation of two thresholding methods in classes Percentile
and GlasbeyThreshold. Paiini’s implementation allows the
threshold computation concerns to remain independent of the im-
age concerns, while allowing their concurrent execution.

Overlapping Communication with Computation via Modular-
ization of Concerns.  Our next example presents a simple appli-
cation for planning a trip. Planning requires finding available flights
on the departure and return dates as well as a hotel and rental car
for the duration of the trip. To find each of these items the program
must communicate with services provided by other providers and
each computation can be run independently.

l event PlanTrip{ TripData d; } //Event Type

2 class CheckAirline { //Searches for available flights.

3 List<Airline> alist;

4 CheckAirline (List<Airline> 1) {register (this); this.alist =
5 when PlanTrip do checkFlights;

6 //Find all the available flights during the trip

7 void checkFlights (TripData d) {

8 for (Airline a : alist) {

9 Flight flight = a.getFlights(d.from(),d.to());

10 //add the results to the tripData

11 d.setFlight (flight);

12} }}

13 class CheckHotel { //Searches for available hotels.

14 List<Provider> hlist;

15 CheckHotel (List<Provider> 1) {register (this); this.hlist =
16 when PlanTrip do checkHotels;

17 woid checkHotels (TripData d) {

18 for (Provider h: hlist) {

19 Hotels hotels = h.search(d.from(),d.to(),d.pricePref());
20 d.setHotels (hotels) ;

21 }}}

22 class CheckRentalCar { //Searches for available cars.

23 List<Agency> clist;

24 CheckRentalCar (List<Agency> 1) {register (this); this.clist =
25 when PlanTrip do checkCarRentals;

26 void checkCarRentals (TripData d) {

27 for (Agency c: clist){

28 Cars cars = c.getRentals(d.from(),d.to(),d.carPref());

29 d.addRentalChoices (cars);

30 31}

1}

1i}

1;}

Figure 15. Accessing service providers in handlers.

In this example the context variable t ripData is used to both
provide the handlers with information and to give the handlers a
place to store their results. For example, class CheckAirline
extracts source and destination information from the trip data and
stores the flight results by calling the method setF1light. Sim-
ilarly, the class CheckF1light computes and stores the hotel re-
sults and CheckRentalCar computes and stores the car rental
search results. In this example as well Panini’s design shows the
potential of reconciling modularity goals with concurrency goals.
When an event of type P1lanTrip is announced each of the three
handler methods can execute concurrently.

Performance Results. Modularization of the effects analysis
and image analysis resulted in speedup of roughly 2x, whereas
modularization of service requests gave speedups around 3x. These
values were as expected based on the available concurrency in the
problems. Moreover, this scalability is obtained without requiring
programmers to write a single line of explicitly concurrent code.



6. Related Work

Events have a long history in both the software design [/7,{13}|23}|26),
42| and distributed systems communities [[12]]. Pafiini’s notion of
asynchronous, typed events build on these notions, in particular re-
cent work in programming languages focusing on event-driven de-
sign [[10411}33]]. In software design, events and implicit-invocation
have been seen as a decoupling mechanism for modules [26}42],
whereas in distributed systems, events are seen as a mechanism of
decoupling component execution for location transparent deploy-
ment and extensibility [27,/40].

A key difference between the programming models developed
for event-based systems/message-passing systems/actor-based lan-
guages and that of Pafini is that the former assume that components
in the system do not share state and only communicate by passing
value types or record of value types [3/|12}|18|/27]], whereas the lat-
ter allows shared states (similar to mainstream languages like Java,
C#) that is useful for many computation patterns. This means that
if features from the former are adopted to mainstream languages
as it is to decouple execution of components participating in an
implicit-invocation design style, programmers will be directly re-
sponsible for ensuring that concurrent components do not have data
races and deadlocks. Furthermore, reasoning about such systems
will also be difficult due to concurrency [4}28]]. In Panini, program-
mers get concurrency benefits as a direct result of good design. Pre-
vious work on message-passing, publish/subscribe and actor-based
languages either require programmers to manually account for data
races, or have a sequential model or assume disjoint address space
between concurrent processes [3,40].

Like Jade [37]], Panini is an implicit concurrency language. Pro-
grammers in Jade supply information about the effect of tasks so
that the compiler may discover concurrency. Paiini is different in
that it automates the process and removes the burden on the pro-
grammer to supply these effects by hand. Panini also removes any
errors which could be introduced by incorrect specification of ef-
fects. This is different from Grace [S]] which is an explicit threading
language. Grace executes threads speculatively. If a conflict is de-
tected, it rolls back the changes. Otherwise it commits the changes.
Panini detects conflict when handlers register.

Like X10 [29]], Panini does not feature any construct for explicit
locking. However, X10 is an explicit concurrency language and
it uses atomic blocks for lock-free synchronization and uses the
concept clocks as synchronization between activities. The Task
Parallel Library (TPL) [22]], wraps computation into tasks and uses
thread stealing as the underlying implementation. This is similar
to Pafini’s runtime, but programmers in TPL have to explicitly
account for races, whereas Pafiini automatically avoids all races.

Similar to the effect sets of Paiini, deterministic parallel Java
(DPJ/DPlJizer) [25,|31] uses effect sets to provide deterministic
semantics for programs. For DPJ/DPJizer, programmers explicitly
write annotations on object fields, which ensures that fields are in
separate regions. Then the tool infers summary for methods. Paiini
does not require any specification. DPJ provides programmers with
two concurrent constructs to parallelize their programs. This is
unlike Pafini, which does not require programmers to construct
explicitly parallel programs. Instead, Pafiini promotes the goal of
writing programs with good modular designs.

Panini’s design is also not the first to promote implicit con-
currency. For example, in POOL [1]], ABCL [46], Concurrent
Smalltalk [47] and BETA [41]], objects implicitly execute in the
context of a local process. This is different from Panini where
only handler instances are run implicitly and concurrently. This
allows smoother integration with mainstream programming lan-
guages such as Java. This also permits an easier integration of
our event-based model with the thread-based explicit concurrency

models as promoted by Li and Zdancewic [23]]. In this work, we do
not discuss the semantic issues with this integration, however.

Other recent work such as TaskJava [13]] and Tame [18]], have
promoted similar integration with existing languages. For TaskJava,
an asynchronous method is marked with async, indicating
that it could block. This method may use a primitive wait to ex-
press its interests in a set of events and this expression will block
until one of them fires. Similarly, Tame uses a primitive twait to
block on events. In both these approaches, running of the concur-
rent task is explicitly managed by the programmer. In Pafini, how-
ever, handlers are implicitly spawned and managed by the language
runtime. As a result, programmers are relieved of reasoning about
locking and data race problems. Such software engineering prop-
erties are becoming very important with the increasing presence of
concurrent software, increasing interleaving of threads in concur-
rent software, and increasing number of under-prepared software
developers writing code using concurrency unsafe features.

Unlike Multilisp [38]], which has the future construct, Panini
uses different expressions as synchronization points. Moreover, un-
like Java’s current adoption of Futures, which is unsafe [45]], heap
access expressions in Pafini are safe. Furthermore, unlike previous
work [[30,/45], Panini doesn’t modify to the virtual machine.

7. Conclusion and Future Work

Language features that promote concurrency in program design
have become important [4]. Explicit concurrency features such as
threads are hard to reason about and building correct software sys-
tems in their presence is difficult [28]]. There have been several pro-
posals for concurrent language features, but none unifies program
design for modularity with program design for concurrency. In the
design of Painini, we pursue this goal. In an effort to do so, we
have developed the notion of asynchronous, typed events that are
especially helpful for programs where modules are decoupled using
implicit-invocation design style [8,[26,/42]. Event announcements
provide implicit concurrency in program designs when events are
signaled and consumed. We have tried out several examples, where
Panini improves both program design and potential available con-
currency. Unlike message-passing languages such as Erlang [3] the
communication between implicitly concurrent handlers is not lim-
ited to value types or record of value types.

An important property of Paiini’s design is that, for systems
utilizing implicit-invocation design style, it makes scalability a
by-product of modularity. For example, observe that in genetic
algorithm, AST analysis, image analysis, and trip planning addition
of new modules in a non-conflicting manner doesn’t affect the
scalability of existing modules. For example, a new observer for
PlanTrip event (say sight seeing) would run concurrently with other
observers. Similarly, a new thresholding observer could also run
concurrently with other observers for Changed event.

Future work includes extending Paiini’s design, semantics and
implementation in several dimensions. We have presented a con-
servative mechanism for detecting conflict between handlers, so it
would be good to study and improve its precision. Furthermore, it
would be sensible to investigate whether constructs similar to asyn-
chronous, typed events can be developed for explicit invocation.
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