
Building Scalable Software Systems in the Multicore Era

Hridesh Rajan
Iowa State University,
226 Atanasoff Hall,

Ames, IA, USA
hridesh@iastate.edu

ABSTRACT
Software systems must face two challenges today: growing com-
plexity and increasing parallelism in the underlying computational
models. The problem of increased complexity is often solved by
dividing systems into modules in a way that permits analysis of
these modules in isolation. The problem of lack of concurrency is
often tackled by dividing system execution into tasks that permits
execution of these tasks in isolation. The key challenge in software
design is to manage the explicit and implicit dependence between
modules that decreases modularity. The key challenge for concur-
rency is to manage the explicit and implicit dependence between
tasks that decreases parallelism. Even though these challenges ap-
pear to be strikingly similar, current software design practices and
languages do not take advantage of this similarity. The net effect is
that the modularity and concurrency goals are often tackled mutu-
ally exclusively. Making progress towards one goal does not natu-
rally contribute towards the other. My position is that for program-
mers that are not formally and rigorously trained in the concurrency
discipline the safest and most productive way to get scalability in
their software is by improving modularity of their software using
programming language features and design practices that reconcile
modularity and concurrency goals. I briefly discuss preliminary ef-
forts of my group, but we have only touched the tip of the iceberg.

1. PROBLEMS AND THEIR IMPORTANCE
Scalability of software in the next decade crucially depends on its

ability to effectively utilize multicore platforms [5]. For scientific
applications such scalability generally comes from invention and
refinement of better algorithms and data structures, but that is not
the case for non-scientific software that often exhibit irregular fine-
grained parallelism. However, scalability of these applications is an
equally important concern for society, defense, and the individual.

Scalability of these applications faces two major hurdles. A
first and well-known hurdle is that writing correct and efficient
concurrent software using concurrency-unsafe programming lan-
guage features has remained a challenge [10]. A language feature
is concurrency-unsafe if its usage may give rise to program execu-
tion sequences that contains two or more memory accesses to the

To appear as: Hridesh Rajan, “Building Scalable Software Systems in the
Multicore Era”, In the proceedings of the 2010 FSE/SDP Workshop on Fu-
ture of Software Engineering, Santa Fe, New Mexico, November 2010.

same location that are not ordered by a happens-before relation and
at least one is a write to the memory [7]. Threads and processes are
examples of such features as are Future and FutureTask as
embodied in the 1.5 edition of the Java programming language [11,
21]. Without strict design and implementation disciplines they are
concurrency-unsafe. Many of the features planned for 1.7 edition of
the Java programming language are similarly concurrency-unsafe.

A second and less explored hurdle is that unlike in scientific ap-
plications, in general-purpose programs potential concurrency isn’t
always obvious. A typical scientific application is generally data-
parallel, whereas general-purpose programs typically exhibit irreg-
ular parallelism. As a result, techniques that have been remarkably
successful in scientific domains have only seen modest success for
general-purpose programs [6].

I believe that both these hurdles persist, in part, because of a
significant shortcoming of current software design practices. The
basic problem is that modularity and concurrency are treated as
two separate and orthogonal goals. As a result, concurrency goals
are often tackled at a level of abstraction lower than modularity
goals. Synchronization defects arise when developers work at low
abstraction levels and are not aware of the behavior at a higher level
of abstraction. This lack of awareness also limits the discovery of
potentially available concurrency in the resulting systems.

All of this is complicated by the fact that our current software
development workforce is vastly under-prepared to develop correct,
efficient and fair software systems for the emerging multicore hard-
ware platforms using concurrency-unsafe features that are currently
available in languages and libraries.

In the rest of this paper I explain my position. Section 2 briefly
describes key insights and discusses preliminary efforts of my re-
search group towards enabling scalable software and scalable soft-
ware engineering for emerging multicore platforms. In Section 3 I
discuss implications of our observations and Section 4 concludes.

2. HOW TO SOLVE IT?

Look at the unknown! And try to think of a familiar problem
having the same or a similar unknown. — George Pólya, 1945.

Are better software designs inherently more concurrent? In the
following I will argue and present some evidence to my hypothe-
sis that modularity and concurrency goals are intertwined and that
by advances in programming language design and software design
practices, it may be possible to achieve mutualism between them!

To motivate consider a simple example shown in Figure 1, which
shows three versions of the parts of a telecommunication software.
The class Call shown in this figure models a typical connection
in such setting. It models the state of a phone call using enumer-
ation State and the caller and the receiver with fields caller



Non-Modular Version
class Call {
enum State { PENDING,

COMPLETE, DROPPED }
Customer caller, receiver;
State state = PENDING;
Call(Customer a, Customer b) {

caller = a; receiver = b;
}
void complete() {
state = COMPLETE;
timer.start();
}
void drop() {
state = DROPPED;
timer.stop();
long time = timer.getTime();
long cost = 0.07 * time;
caller.addCharge(cost);
}
Timer timer = new Timer();

}

Modular Version
interface CallEndObserver {
void notify (Customer c, Timer t);

}
class Call {
/*Omitted fields and methods

same as the code on left.*/
void drop() {
state = DROPPED;
timer.stop();
for(CallEndObserver o : observers)
o.notify(caller,timer);

}
List<CallEndObserver> observers;
void addObserver(CallEndObserver o){
observers.add(o);
}
void removeObserver(CallEndObserver o){
observers.remove(o);
}
}
class Billing implements CallEndObserver {
void notify (Customer c, Timer t) {
long time = timer.getTime();
long cost = 0.07 * time;
caller.addCharge(cost);
}
}

Modular + Concurrent Version
in Pān̄ini [8].

event CallEnd {
Customer c; Timer t;

}
class Call {
/*Omitted fields and methods

same as the code on left.*/
void drop() {
state = DROPPED;
timer.stop();
announce CallEnd(caller,timer);

}
}
class Billing {
when CallEnd do notify;
void update (Customer c, Timer t) {
long time = timer.getTime();
long cost = 0.07 * time;
caller.addCharge(cost);

}
}

Figure 1: Modularization of the billing requirement (left→ middle) makes concurrent solution (right) evident.

and receiver respectively. It also contains a timer object to
monitor the duration of a call. This class provides two methods
complete and drop that serve to connect and disconnect a call
respectively.

An example requirement for such application would be to bill
customers for the duration of the conversation. A simple imple-
mentation of such requirement could be done by adding its logic
to the code for drop method (shown in the left listing as the high-
lighted code).

This solution works, however, it has several software engineering
problems. For example, since the code for billing is mixed with the
code for call logic, it would be harder to implement any changes to
either requirement. This is primarily because the developer making
changes to either requirement would have to understand the other
requirement as well to ensure correctness. In addition, implemen-
tation of neither requirements is reusable. Last but not least, under-
standing billing and call logic in isolation is not possible because
their implementations are mixed.

This example demonstrates, at a small scale, the modularity prob-
lems faced by developers in building large software systems. To
modularize the implementation of the billing requirements, a good
software engineer would separate its implementation out in a new
module, while ensuring that this new module communicates to the
class Call via a well-defined interface (and vice-versa). The mid-
dle column shows the modularized version, where the implementa-
tion of the billing requirement is separated out as the class Billing
using the Observer design pattern [3].

The solution in the middle is modular and solves all the prob-
lems pointed out previously with the solution in the left column.
In this version, the code for billing and call logic are separated via
well-defined interface in the form of event type CallEnd. This
makes it easier to change these independently, reuse them, and un-
derstand them. This design thus breaks the dependencies between
the implementation of these two requirements.

Quite interestingly, this design can facilitate the concurrent exe-
cution of the billing logic. For example, we could encapsulate the
shaded area in the middle column to run as a concurrent task. In
other words, the modularization transformation from the left to the
middle could also serve as an effective parallelization transforma-

tion. The key research question is whether the observation made in
the context of this example holds for a large class of requirements.

This question rests on the observation that from the point of
view of both concurrency and modularity, challenges are similar.
For example, in order for the modular reasoning about the class
Billing to succeed, it is important to understand the explicit and
implicit dependencies of the billing concern. Similarly, in order for
concurrent processing of billing to succeed one must also under-
stand these dependencies to avoid data races and deadlocks in the
solution that can potentially decrease parallelism. It is thus intu-
itive that the lack of modularity in design has direct ramifications
on the available concurrency. However, it is not clear at this mo-
ment, whether improved modularity in a software design helps with
concurrency in general. We now briefly discuss our preliminary ef-
forts to further understand this duality. A detailed description of
these ideas appears in the following papers [8, 13].

2.1 Asynchronous, Typed Events
Along one direction, we have developed the notion of asynchronous,

typed events [8] in our language Pān̄ini that reconciles the modu-
larity goal promoted by the implicit invocation design style [4, 20]
with concurrency goals. Pān̄ini’s design is inspired from my previ-
ous work on Ptolemy [14] and Eos languages [12, 15–17].

In implicit invocation design style, some modules (called sub-
jects or publishers) signal events, e.g. reaching a program point,
a condition becoming true, etc. Other modules (called observers
or subscribers) express interest in receiving notifications when an
event is signaled. The key advantage is that subjects can notify such
observers without knowing about them (implicitly). Thus, implicit
invocation design style decouples subjects and observers.

Asynchronous, typed events provide implicit concurrency in pro-
gram designs when events are signaled and consumed without the
need for explicit locking of shared states. The semantics is simi-
lar to other proposals based on message-based communication be-
tween concurrent tasks such as in Erlang [1], however, unlike these
actor-based/message-based languages, Pān̄ini does not require com-
plete isolation of such tasks. Furthermore, the communication be-
tween implicitly concurrent tasks is not limited to value types or
record of value types.



The implementation in Figure 1, right uses the features of the
Pān̄ini language [8]. The method drop in this implementation
announces an event of type CallEnd. The declaration of the
type of this event is shown at the top of the middle column. The
class Billing features a new construct in Pān̄ini called binding
(when CallEnd do ...). This construct says to run the method
update whenever any event of type CallEnd is announced in
any class (for instance such event is announced in the class Call).
As a result, whenever a call ends, the billing information is com-
puted and updated concurrently. Pān̄ini provides race and deadlock
freedom and a sequential semantics [8].

We have implemented a compiler and runtime system for Pān̄ini
that is available for general distribution from the URL: http:
//paninij.org . We have tried out several programs, where
asynchronous, typed events improve both modularity in program
design and potentially available concurrency. Our performance re-
sults show that the generated code for Pān̄ini programs perform as
well as their hand-tuned concurrent implementation [8].

2.2 GOF Object-oriented Design Patterns
Along another direction, we are developing a concurrent design

pattern framework [13] that is attempting to reconcile modularity
and concurrency goals by enhancing Gang-of-Four (GOF) object-
oriented design patterns [3]. GOF patterns are commonly used to
improve the modularity of object-oriented software. These pat-
terns describe strategies to decouple components in design space
and specify how these components should interact.

We have enhanced these patterns to also decouple components
in execution space, so applying them concomitantly improves the
design and potentially available concurrency in software systems.

For 18 out of the 23 GOF patterns, we have determined that, sub-
ject to appropriate usage, our hypothesis is true. For each of these
18 patterns we have created an enhanced version of the pattern in
which use of the pattern increases potential concurrency without
additional, explicit effort on the part of the developer to do so.
In every case but one, the concurrency-related concerns (such as
thread creation and synchronization) are fully encapsulated in a li-
brary that we provide, and in no case is the developer ever required
to explicitly create a thread or acquire a synchronization lock.

A preliminary release of our framework is available for general
distribution from the URL: http://paninij.org/patterns/.

2.3 Summary of Preliminary Efforts
The preliminary efforts of my group towards the design of the

Pān̄ini language and the Pān̄ini concurrent pattern framework shows
the feasibility of my hypothesis that by advances in programming
language design and software design practices, it may be possible
to achieve mutualism between modularity and concurrency goals.

3. IMPLICATIONS
Encouraged by these preliminary results my students and I seek

generalization of our observations: what properties does a modu-
larization transformation need to have to also make it an effective
parallelization transformation? To what extent can we adapt/use
traditional modularization techniques from software engineering to
achieve modularization and concurrency at the same time? If not,
is there a mismatch between current modularization techniques and
the concurrency models? What advances in modularization tech-
niques and language designs are necessary to address this mis-
match? How can one capitalize on design benefits to yield con-
currency? Are there any helpful design disciplines?

3.1 Maintenance and Reuse of Software

Mainstream programmers have just started to develop software
that aims to effectively utilize multicore and manycore CPUs. One
of the challenges that we have yet to face is maintenance of such
software. I fully expect concurrent software to suffer from ver-
sion maintenance nightmare in a manner similar to those typically
seen in unmanaged languages (C, C++, etc). This is because, com-
puter architecture variations are abound. One vendor (Intel) alone
has shipped around 10 different multicore processors between 2004
- 2010 with substantially different characteristics (e.g. L1 cache
sizes ranging from 16KB - 12MB). Writing explicitly concurrent
software for these platforms generally requires careful calibration.
For example, to match the number of threads to available cores, to
match the data locality to cache sizes, etc. Since there are often
significant performance gains to be had, it is natural to start seeing
different versions fine-tuned to specific multicore CPUs [18, 19].

Achieving synergy between modularity and concurrency goals
can potentially help with this problem. This synergy exposes im-
plicit potential concurrency in program design creating candidates
with richer information that can potentially be analyzed by under-
lying runtime environment. Take our concurrent design pattern
framework as an example. Each GOF design pattern implementa-
tion in this framework helps expose potential concurrency between
pattern participants but doesn’t dictate concrete mapping to thread-
s/locks, etc. So given the potential concurrency in program and the
actual concurrency provided by the platform, the runtime environ-
ment is free to choose most appropriate mapping between the two.

3.2 Testing, Formal Verification, and Analysis
Along another dimensions, synergy between modularity and con-

currency in this manner can have significant implications on scala-
bility of software verification processes. Verifying sequential pro-
grams is still difficult. Verifying concurrent programs can be a
nightmare. Generally a programmer is concerned about three po-
tential problems.

1. Data races: Is there an interleaving in this program that can
lead to data races on certain variables?

2. Deadlocks: Can concurrent tasks in this program deadlock
under certain circumstances?

3. Non-deterministic Semantics: Can this program behave dif-
ferently under distinct interleavings of tasks?

An approach using implicit concurrency must ensure that pro-
grams do not have these problems. The fundamental challenge with
static verification of these conditions is that existing algorithms are
imprecise and don’t scale [2]. The precision and scalability issues
in these techniques arise due to the unmanageable scope of analy-
sis in large programs. This is because the analysis must consider
all possible interleavings in the program and either prove that they
satisfy the desired properties or declare certain interleavings as un-
safe. Dynamic verification approaches have also been proposed,
e.g. FastTrack [2], but the value of their output depends on the
quality of the test cases. They are also not sound.

A research question then is that if (a) implicit concurrency is in-
troduced using well-defined language features and design patterns
and (b) implemented using a well-specified library such as the one
we are proposing to develop, can analysis tools exploit the knowl-
edge of the design pattern and specification of the language fea-
ture to narrow the scope of the analysis? To illustrate consider the
observer design pattern. Participants in this pattern are subjects
and observers. Let us assume that the specification of the inter-
action patterns among subjects and observers in the concurrency-
enhanced observer pattern states that after announcing an event,



the subject must block until all observers have finished their tasks.
This specification immediately narrows down the scope of the static
analysis to interleavings between observers for a given event. If
these observers do not have data races, do not deadlock, and have
deterministic semantics then that particular application of the con-
currency enhanced observer pattern will also have these properties.

The fundamental challenge then is in specifying the patterns, li-
braries, and language features in a manner that allows the use of
this specification to narrow the scope of program analysis for scal-
ability and precision of verification techniques.

3.3 Software Engineering Education
Implication on software engineering education are also notewor-

thy. Methods to educate application programmers in concurrency
disciplines has recently attracted significant attention (See: First
Workshop on Curricula in Concurrency and Parallelism, co-located
with OOPSLA 2009 and similar first workshop on multicore edu-
cation co-located with ASPLOS 2009). There is a sense of urgency
towards incorporating similar topics into undergraduate curriculum
around the world. A recent survey [9] by the Working Group on
Software Engineering for parallel Systems found that 46 univer-
sities worldwide offered courses that discusses aspects of parallel
programming. US ranked second in number of lectures after Ger-
man universities. Furthermore, most offered material targeted grad-
uate students. Worldwide, it was found that 26% of lectures were
related to undergraduate courses, while the ratio drops to 23% in
US universities.

On the other hand, topics on modularity and techniques to cre-
ate modular software designs are an integral part of the graduate
and undergraduate computer science curriculum for the last sev-
eral decades. The key question then is whether achieving synergy
between modularity and concurrency goals helps capitalize on ex-
isting expertise in teaching modularity-related topics to train next
generation of software engineers in development of correct and ef-
ficient software for the multicore era.

4. CONCLUSION
Introducing concurrency has become important for the scalabil-

ity of today’s software systems, however, writing correct, efficient,
and fair concurrent programs remains hard. In this work, I have
taken the position that building programming language features and
design practices that reconcile concurrency and modularity has the
potential to solve this problem. Our initial work on the Pān̄ini lan-
guage [8] and the concurrent design pattern framework [13] has
demonstrated the feasibility of basic ideas, however much work re-
mains to be done. We hope that the discussion at the 2010 FSE/SDP
workshop on the Future of Software Engineering Research will
help shed further light on these problems that have become im-
portant for the scalability of software systems in the multicore era.

Acknowledgments
This work was supported in part by the NSF under grant CCF-08-
46059. Discussions with Steven M. Kautz, Yuheng Long, Sean
Mooney, Tyler N. Sondag, Robert E. Dyer, and Wayne Rowcliffe
was instrumental in developing and evolving these ideas.

5. REFERENCES
[1] J. Armstrong, R. Williams, M. Virding, and C. Wikstroem.

Concurrent Programming in ERLANG. Prentice-Hal, 1996.
[2] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient

and precise dynamic race detection. In PLDI, pages
121–133, 2009.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[4] David Garlan and David Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In the 4th Symposium of
VDM Europe, pages 31–44, 1991.

[5] David Geer. For Programmers, Multicore Chips Mean
Multiple Challenges. Computer, 40(9):17–19, 2007.

[6] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh
Ramanarayanan, Kavita Bala, and L. Paul Chew. Optimistic
parallelism requires abstractions. In PLDI, pages 211–222,
2007.

[7] Leslie Lamport. Time, Clocks, and the Ordering of Events in
a Distributed System. Commun. ACM, 21(7):558–565, 1978.

[8] Yuheng Long, Sean L. Mooney, Tyler Sondag, and Hridesh
Rajan. Implicit invocation meets safe, implicit concurrency.
In Ninth International Conference on Generative
Programming and Component Engineering, Oct 2010.

[9] D. Meder, V. Pankratius, and W. F. Tichy. Parallelism in
curricula an international survey. Technical report,
University of Karlsruhe, 2008.

[10] J. Ousterhout. Why threads are a bad idea (for most
purposes). In ATEC, January 1996.

[11] Polyvios Pratikakis, Jaime Spacco, and Michael Hicks.
Transparent Proxies for Java Futures. In OOPSLA, pages
206–223, 2004.

[12] Hridesh Rajan. Design patterns in Eos. In PLoP, Sep 2007.
[13] Hridesh Rajan, Steven M. Kautz, and Wayne Rowcliffe.

Concurrency by modularity: Design patterns, a case in point.
In Onward! Conference, October 2010.

[14] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language
with quantified, typed events. In ECOOP, pages 155–179,
2008.

[15] Hridesh Rajan and Kevin Sullivan. Eos: instance-level
aspects for integrated system design. In the European
software engineering conference and international
symposium on Foundations of software engineering
(ESEC/FSE), pages 297–306, 2003.

[16] Hridesh Rajan and Kevin J. Sullivan. Classpects: unifying
aspect- and object-oriented language design. In the
international conference on Software engineering (ICSE),
pages 59–68, 2005.

[17] Hridesh Rajan and Kevin J. Sullivan. Unifying aspect- and
object-oriented design. ACM Transactions on Software
Engineering and Methodology (TOSEM), 19(1), August
2009.

[18] Tyler Sondag, Viswanath Krishnamurthy, and Hridesh Rajan.
Predictive thread-to-core assignment on a heterogeneous
multi-core processor. In PLOS, Oct 2007.

[19] Tyler Sondag and Hridesh Rajan. Phase-guided
thread-to-core assignment for improved utilization of
performance-asymmetric multi-core processors. In IWMSE,
May 2009.

[20] Kevin J. Sullivan and David Notkin. Reconciling
environment integration and software evolution. ACM
Transactions on Software Engineering and Methodology,
1(3):229–68, July 1992.

[21] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe
Futures for Java. In OOPSLA, pages 439–453, 2005.


