
IRepair: An Intent-Aware Approach to Repair Data-Driven
Errors in Large Language Models

SAYEM MOHAMMAD IMTIAZ, Iowa State University, USA
ASTHA SINGH, Iowa State University, USA
FRAOL BATOLE, Tulane University, USA
HRIDESH RAJAN, Tulane University, USA

Not a day goes by without hearing about the impressive feats of large language models (LLMs), and equally,

not a day passes without hearing about their challenges. LLMs are notoriously vulnerable to biases in their

dataset, leading to issues such as toxicity, harmful responses, and factual inaccuracies. While domain-adaptive

training has been employed to mitigate these issues, these techniques often address all model parameters

indiscriminately during the repair process, resulting in poor repair quality and reduced model versatility. In

this paper, drawing inspiration from fault localization via program slicing, we introduce a novel dynamic

slicing-based intent-aware LLM repair strategy, IRepair . This approach selectively targets the most error-prone

sections of the model for repair. Specifically, we propose dynamically slicing the model’s most sensitive layers

that require immediate attention, concentrating repair efforts on those areas. This method enables more

effective repairs with potentially less impact on the model’s overall versatility by altering a smaller portion of

the model. Furthermore, dynamic selection allows for a more nuanced and precise model repair compared to a

fixed selection strategy. We evaluated our technique on three models from the GPT2 and GPT-Neo families,

with parameters ranging from 800M to 1.6B, in a toxicity mitigation setup. Our results show that IRepair
repairs errors 43.6% more effectively while causing 46% less disruption to general performance compared to

the closest baseline, direct preference optimization. Our empirical analysis also reveals that errors are more

concentrated in a smaller section of the model, with the top 20% of layers exhibiting 773% more error density

than the remaining 80%. This highlights the need for selective repair. Additionally, we demonstrate that a

dynamic selection approach is essential for addressing errors dispersed throughout the model, ensuring a

robust and efficient repair.

CCS Concepts: • Software and its engineering→ Maintaining software; • Computing methodologies→
Natural language generation; Neural networks.

Additional Key Words and Phrases: SE4AI, Dynamic Program Slicing, Fault Localization, Program Repair,

Large Language Model, Data-driven Error

ACM Reference Format:
Sayem Mohammad Imtiaz, Astha Singh, Fraol Batole, and Hridesh Rajan. 2018. IRepair: An Intent-Aware

Approach to Repair Data-Driven Errors in Large Language Models. In Proceedings of The ACM International
Conference on the Foundations of Software Engineering (FSE) (FSE ’25). ACM, New York, NY, USA, 21 pages.

https://doi.org/XXXXXXX.XXXXXXX

Authors’ Contact Information: Sayem Mohammad Imtiaz, sayem@iastate.edu, Iowa State University, Ames, Iowa, USA;

Astha Singh, Iowa State University, Ames, Iowa, USA, asthas@iastate.edu; Fraol Batole, Tulane University, New Orleans,

Louisiana, USA, fbatole@tulane.edu; Hridesh Rajan, Tulane University, New Orleans, Louisiana, USA, hrajan@tulane.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

FSE ’25, June 23–27, 2025, Trondheim, Norway
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: January 2018.

HTTPS://ORCID.ORG/0000-0002-0357-0098
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-0357-0098
https://doi.org/XXXXXXX.XXXXXXX

2 Trovato et al.

1 Introduction
The recent advancement in large language model (LLM) capabilities marks a transformative moment

in natural language processing (NLP). Owing to the effectiveness of transformer in scaling efficiently

to the large corpus, LLMs now excel in tasks such as question-answering, text summarization, and

code generation [54]. However, despite their impressive capabilities, LLMs are not without their

shortcomings. Akin to traditional software, LLMs can exhibit bugs or generate unintended outputs,

manifesting as toxicity, harmful responses, factual errors, or hallucinations [15, 18]. The root cause

of these issues often lies in the training data itself [15]. LLMs are typically trained on vast, unfiltered

datasets, primarily sourced from the internet, using semi-supervised learning techniques [54]. It is

impractical to validate such a vast corpus, eliminating biases, factual inconsistencies, and other

issues [15]. As a result, LLMs inadvertently inherit and propagate these issues in their outputs.

Existing approaches tomitigate such issues in LLMs primarily fall into three categories [18, 32, 41]:

decoding-time methods [21, 30, 48, 49], pre-training-based methods [18], and domain-adaptive

training (DAT) [11, 19, 23, 35, 41]. Decoding-time methods intervene during inference to manipulate

the model’s output, often resulting in increased computational overhead [41]. However, these

methods do not fundamentally address the underlying issues within the model itself [41] and

cannot effectively eliminate these problems [18]. Pre-training-based approaches involve retraining

the model from scratch on a clean corpus [18]. While this can potentially address the root causes of

harmful outputs, it is computationally expensive and challenging to ensure the corpus is adequately

cleaned [41]. DAT methods, on the other hand, balance the simplicity of decoding-time approaches

with the effectiveness of pretraining-based techniques. These methods directly optimize pre-trained

models to mitigate underlying issues [41], offering an effective and efficient solution.

There are two main paradigms of DAT: fine-tuning the model with curated data and preference

optimization, such as reinforcement learning from human feedback (RLHF) [31]. However, both

approaches update model parameters indiscriminately without considering their relevance to the

problem at hand. This can decrease the effectiveness of the repair and increase the likelihood of

negatively impacting the model’s general performance (versatility) by altering unrelated parameters.

To address this, we introduce IRepair , a dynamic slicing-based technique for selectively repairing

only the intended part of the model.

Our motivation for targeted LLM repair is inspired by the successful application of the ‘fault

localization followed by program repair’ paradigm in traditional software engineering (SE). This

approach has demonstrated effectiveness in producing optimal repairs while preserving the pro-

gram’s original structure as much as possible [25, 29, 45]. For instance, Mechtaev et al. employ

partial MaxSAT constraint solving and component-based program synthesis to localize bugs and

generate repairs, focusing on minimizing alterations to the program’s structure [25]. Inspired by

these works, we adapt and evaluate this paradigm in the context of LLMs to address data-driven

errors. Specifically, we propose a method that first localizes the source of errors within the model

and then selectively repairs it. This approach aims to produce optimal repairs while preserving

model performance by targeting only the relevant parts of the model and leaving unrelated sections

unaffected.

To localize the source of errors within the model, we build upon the concept of relevant program

slicing in software engineering [44]. Relevant slicing identifies a subset of program statements that

could impact a specified slicing criterion [14, 53]. Similarly, we apply these principles to identify

and isolate the parts of the model that are most relevant to the errors being addressed.

Recently, slicing techniques have been adapted for deep learning models, offering advantages

such as model protection and simplification [52] and vulnerability mitigation during transfer

learning [53]. These approaches use a subset of data as the ‘slicing criteria’ and analyze the model’s

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 3

activations to identify relevant parts of the model. However, these techniques rely on activation

values to determine relevance, which is not directly applicable to the transformer architecture used

in LLMs (as discussed in § 3). Additionally, these methods are more akin to static slicing, where the

relevant sections of the model are selected after training. This results in a ’fixed selection,’ which

can be useful for various applications as demonstrated in previous works [52, 53]. In contrast, we

hypothesize that a dynamic selection technique, applied during the training process, will enable a

more nuanced and precise repair of LLMs through domain-adaptive training with curated data.

Inspired by these works, IRepair treats faulty data as a ‘slicing criterion’ to identify error-

prone sections of the model during each training pass. By analyzing the gradients of parameters

with respect to the negative log-likelihood (NLL) of the faulty data, we pinpoint the components

responsible for the unintended faulty responses. We then repair only the identified area while

freezing the rest of the model, subject to a Kullback-Leibler (KL) divergence constraint. This

approach allows for focused repair efforts on the most critical sections, minimizing disruption to

the existing knowledge stored in most model parameters. Moreover, IRepair employs a dynamic

slicing approach for repairing LLMs, enabling more nuanced and adaptive model repair compared

to existing slicing methods that pre-select a fixed area.

To evaluate the effectiveness of our proposed technique, we conducted a case study focused on

mitigating toxicity in LLMs. Given their pre-training on extensive corpora in a semi-supervised

manner, LLMs are known to perpetuate biases and toxicity present in the data [48]. To assess the

efficacy of our repair approach, we detoxified three models from the GPT-2 and GPT-Neo families,

ranging from 800M to 1.6B parameters, using IRepair . We compared our results against state-of-the-

art baselines, employing the pairwise detoxification dataset developed by Lee et al. [19]. Specifically,
our baselines include representative techniques from different paradigms within domain-adaptive

methods, such as Domain-Adaptive Pretraining (DAPT) [11, 13], DAPT with a regularization term

on the pre-training mixture to retain general performance during repair [23], and Direct Preference

Optimization (DPO) [35], an RL-based preference optimization technique.

We summarize the key contributions and findings of this paper as follows:

• We propose using sensitivity as a measure of relevance for slicing transformer-based language

models, addressing architectural challenges unique to these models.

• Our framework not only facilitates targeted repair of LLMs but also adapts dynamically

during training by slicing the model as needed.

• Unlike prior techniques, our method introduces a threshold-free slicing approach, eliminating

the need for costly tuning, which can be expensive for large models such as LLMs.

• Our analysis shows that the source of errors can be more pronounced in specific areas of the

model than in others, and targeted interventions can deliver more efficient repairs compared

to indiscriminate approaches.

• Our approach, IRepair , significantly outperforms state-of-the-art techniques, demonstrating

greater efficiency in error elimination while preserving model versatility. Specifically, IRe-
pair reduces toxicity by 43.6% more than the closest baseline, DPO, while causing 46% less

disruption to overall performance.

• We also demonstrate that a dynamic selection approach is essential for addressing errors

dispersed throughout the model, ensuring a robust and efficient repair.

2 Background
LLMs have revolutionized NLP and SE tasks due to their ability to capture complex patterns and

generate human-like text and code. In this section, we provide an overview of the GPT (Generative

, Vol. 1, No. 1, Article . Publication date: January 2018.

4 Trovato et al.

Pre-trained Transformer) architecture, which serves as a foundation for many modern LLMs [54],

including the models used in our study.

The GPT architecture, introduced by OpenAI [34], is based on the transformer model [40]. It

consists of multiple layers of transformer blocks, which are the fundamental units of computation

in the model. These blocks are also the primary focus of our slicing technique in IRepair . Each
block contains two main components:

• Multi-Head Attention: This mechanism allows the model to focus on different parts of the

input sequence simultaneously. Multi-head attention splits the input into multiple ‘heads,’

each learning to attend to different input aspects. The attention function is defined as:

Attention(𝑄,𝐾,𝑉) = softmax

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 (1)

where 𝑄 , 𝐾 , and 𝑉 are query, key, and value matrices, respectively, obtained from linear

projections of the input sequence. 𝑑𝑘 is the dimension of the key vectors. The attention output

is then passed through a feed-forward network (FFN).

• Feed-Forward Neural Network (FFN): This component processes the output of the atten-

tion mechanism. It is a neural network that operates on each position in the input sequence

independently. The FFN typically consists of two linear transformations with a non-linear

activation function in between:

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (2)

where𝑊1,𝑊2, 𝑏1, and 𝑏2 are learnable parameters.

Each transformer block applies layer normalization and residual connections around these

components.

3 Approach
Figure 1 presents a high-level overview of the approach used in IRepair , which aims to repair

data-driven errors in large language models. The approach consists of two primary components:

computing the relevant model slice and then repairing the identified slice selectively. In the first

stage, we apply the concept of program slicing to language models to identify the slice that requires

repair. In the second stage, we repair the identified slice selectively, focusing on the most error-prone

sections of the model while minimizing any impact on its general performance. The following

sections will explore the detailed steps involved in IRepair .

3.1 Problem Formulation
Let 𝜋𝜃 : 𝑋 → 𝑌 denote a pre-trained language model that maps input texts from 𝑋 and a set of

parameters, 𝜃 , to corresponding output texts in 𝑌 . Consider a bad demonstration dataset, denoted

as 𝐷𝐸 = (𝑋𝐸, 𝑌𝐸), where the response 𝑌𝐸
to a prompt 𝑋𝐸

is undesirable. The goal is to ensure

that the model 𝜋𝜃 does not produce responses similar to 𝑌𝐸
when given prompts similar to 𝑋𝐸

.

Additionally, consider a curated or refined dataset, denoted as 𝐷𝑅 = (𝑋𝐸, 𝑌𝑅), which demonstrates

the desirable response 𝑌𝑅
for those error-evoking prompts 𝑋𝐸

. In practice, these refined responses

can be obtained through various methods, such as human annotation or conditioning a language

model [19, 32, 39, 41]. Once the refined data is acquired, themodel 𝜋𝜃 is typically repaired via domain-

adaptive training either by directly optimizing the model with the curated dataset [11, 19, 41],

or the model is explicitly trained to prefer good demonstrations over bad ones via preference

optimization [35].

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 5

Slicing
Criteria

Sensitivity
Measures

Current Model
(𝜋𝜃)

Sliced Intent
(𝜃slice)Intent Slicing

DE
Analyze

Sensitivity

Reference Model
DN

DR

KL Loss

Repair Loss

Intent Repair

Current Model

Maintain
Versatility with

DN

Maintain
Versatility with

DN

Learn Curated
Examples from

DR

Select
Intent

Fig. 1. Overview of IRepair .

However, repairing the errors in LLMs often involves a trade-off between overall model per-

formance and repair quality [18, 41]. Higher repair quality tends to come at the cost of reduced

general performance [9]. Our experiments also observed this trade-off across various techniques.

Domain-adaptive repair methods are particularly susceptible to this issue because they update

model parameters indiscriminately without considering their relevance to specific errors. This indis-

criminate updating can lead to inefficient error repair, where the reduction in general performance

may not justify the extent of error correction achieved.

To address these challenges, we propose focusing repairs on the sections of the model with the

highest concentration of errors while leaving unrelated parameters unchanged. This approach aims

to enhance repair efficiency, potentially achieving greater repair quality with less disruption to

general performance compared to "intent-unaware" or indiscriminate techniques.

To that end, in this paper, we propose using examples from the bad demonstration dataset to

identify and slice the most relevant sections of the model, referred to as intent, for selective repair.

Specifically, we aim to pinpoint the most error-prone blocks within the transformer architecture for

targeted intervention. Additionally, we hypothesize that errors may not be confined to a single block.

To accommodate this, we introduce a dynamic slicing mechanism that allows for the selection of

the most error-prone sections during the course of training. This approach enables a more nuanced

and precise repair of errors throughout the model.

3.2 Slicing Intent
Drawing upon the concept of relevant program slicing [44], in this step, we aim to slice off the

most error-prone sections of the model for a selective repair. Such a focused repair approach is

, Vol. 1, No. 1, Article . Publication date: January 2018.

6 Trovato et al.

critical for LLMs, as updating all parameters using limited repair data may lead to overfitting and

knowledge degradation [9]. By selectively slicing the model based on bad data, our aim is to address

the root cause of errors in the model while preserving the model’s overall knowledge.

3.2.1 Challenges in slicing LLM. Existing slicing techniques for deep learning models are primarily

designed for networks using ReLU activations [52, 53]. These techniques rely on activation status

or their magnitudes to identify relevant parts of the model. However, transformer-based language

models employ an attention mechanism with linear transformations, making these methods inappli-

cable. In contrast to ReLU activations, the magnitude of a linear transformation in attention doesn’t

directly correspond to its importance due to subsequent matrix multiplications. As an illustration,

consider the following simplified example of attention scores for a sequence with three tokens,

𝑇1,𝑇2 and 𝑇3:

𝑄 =


3

−3
2

 and 𝐾 =


2

−5
1


Score = 𝜎

(
𝑄𝐾𝑇

√
𝑑𝑘

)
= 𝜎

©­«

6 −15 3

−6 15 −3
4 −10 2

ª®¬
=


0.95 0 0.05

0 1 0

0.88 0 0.12

 (simplified)

Here, we observe that in predicting the next token for 𝑇2, 𝑇2 itself is the most influential. Thus,

the multiplication of two negative values of Q and K, −3 × −5, yields the highest score for 𝑇2.

Unlike ReLU, where a node value less than zero might indicate irrelevance [53], in this context,

negative values do not reliably signify insignificance. Additionally, considering the magnitude of

the activation level is inapplicable [52], as the sign plays a crucial role in the score computation.

In addition, existing techniques require careful calibration of a threshold to select the slice [52, 53],

which is a challenging task for large-scale models with billions of parameters, such as LLMs. Tuning

for the optimal threshold can be very challenging and time-consuming for such models, highlighting

the need for a threshold-free slicing approach for LLMs.

3.2.2 Our approach. To address these challenges, we propose a gradient-based approach for de-

termining the relevance of model parameters to the slicing criterion, which does not rely on the

activation of neurons. Specifically, we identify the relevant transformer block, referred to as intent,
of the model by assessing the sensitivity of the blocks to the slicing criterion. The approach works

by treating a sample of bad data, (𝐷𝐸 = (𝑋𝐸, 𝑌𝐸)), as criteria for slicing the intent that requires

fixing. Figure 1 shows the overview of our proposed algorithm for slicing the LLM, which involves

two major steps: assessing the relevance of parameters to the slicing criteria and intent or slice

selection, which will be discussed below:

Computing sensitivity to slicing criteria. As previously discussed, activation-based approaches

are not applicable in the context of the transformer. Instead, we identify the intent by assessing the

sensitivity of blocks to slicing criteria. To that end, we propose leveraging negative log-likelihood
(NLL) of the model response to assess the relevance of blocks to the slicing criteria. Specifically, we

first measure the impact of all parameters on the model’s response by calculating the first-order

gradient of the NLL of the generated response. Then, we compute the sensitivity of the block by

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 7

Algorithm 1 Slicing Intent

1: function NLL(𝜋𝜃 , 𝑋 , 𝑌)

2: 𝑙𝑜𝑔𝑖𝑡𝑠 ← 𝜋𝜃 (𝑋) ⊲ Obtain last layer output

3: 𝑙𝑜𝑔𝑖𝑡𝑠 ← 𝑙𝑜𝑔𝑖𝑡𝑠 [:,−1, :] ⊲ Omit last token

4: 𝑃 ← 𝜎 (𝑙𝑜𝑔𝑖𝑡𝑠) ⊲ Perform softmax operation

5: 𝑚𝑎𝑠𝑘 ← 𝑌 ≠ 𝜋𝜃 .𝑝𝑎𝑑𝑑𝑖𝑛𝑔_𝑖𝑑

6: 𝑛1 ← −𝑌 × log(𝑃) ⊲ NLL for tokens

7: 𝑛2 ←
∑𝑇

𝑡 𝑛1 (𝑡) ×𝑚𝑎𝑠𝑘 ⊲ NLL for sequence

8: 𝑛𝑙𝑙 ← 𝑛2∑𝑇
𝑡 𝑚𝑎𝑠𝑘 (𝑡) ⊲ Mean NLL

9: return 𝑛𝑙𝑙 ⊲ Return NLL

10: end function
1: function Sensitivity(𝜋𝜃 , 𝑋 , 𝑌)

2: 𝑆 ← {}
3: 𝐿 ← NLL(𝜋𝜃 , 𝑋,𝑌) ⊲ Get Negative Log Likelihood

4: for every 𝑏𝑙𝑜𝑐𝑘 ∈ 𝜋𝜃 do

5: 𝑆{𝑏𝑙𝑜𝑐𝑘} ←
√︂∑𝜗∈𝜃𝑏𝑙𝑜𝑐𝑘

𝑖

(
𝜕L
𝜕𝑤𝑖

)
2

⊲ L2-norm

6: end for
7: return 𝑆
8: end function
1: function Slice(𝜋𝜃 , 𝑋 , 𝑌)

2: 𝑆 ← Sensitivity(𝜋𝜃 , 𝑋,𝑌) ⊲ Measure sensitivity

3: 𝐵 ← argmax𝑏𝑙𝑜𝑐𝑘∈𝜋𝜃 𝑆{𝑏𝑙𝑜𝑐𝑘} ⊲ Get most error-prone block

4: 𝜃slice ← {𝜗 |𝜗 ∈ 𝜃𝐵 ∧ 𝜃𝐵 ∈ 𝜃 } ⊲ Get slice

5: return 𝜃slice
6: end function

taking the L2-norm of the gradients of all parameters within the block. Without loss of generality,

the sensitivity of a block to a slicing criterion, 𝑥 , can be represented as:

𝑆{block} ≈

∇𝜃module

(
−

𝑇∑︁
𝑡=1

log𝑝𝜃 (𝑥𝑡 | 𝑥1:𝑡−1)
)

2

Here, 𝜃block represents the parameters within a specific block of the transformer, 𝑝𝜃 (𝑥𝑡 | 𝑥1:𝑡−1)
represents the probability of the token 𝑥𝑡 given the prior tokens 𝑥1:𝑡−1, 𝑇 denotes the total number

of tokens in 𝑥 , and 𝜃 refers to the overall parameter space. The notation ∥ · ∥2 denotes the L2 norm,

which is applied to the gradient of the NLL with respect to the block’s parameters.

The NLL reflects the model’s confidence in generating the target response. A lower NLL score

indicates higher confidence in accurately predicting the target response. Taking the gradients of

parameters with respect to the NLL provides a measure of their sensitivity to the inputs or criteria

provided. If a small increase or perturbation in a parameter leads to a noticeable impact on the

model output, that parameter is likely important or relevant to the criteria [17]. The greater the

magnitude or norm of the gradient for a parameter, the more relevant it is to the criteria.

The Sensitivity method (in Algorithm 1) provides our approach for computing sensitivity to

slicing criteria. The method takes an instance of the model (𝜋𝜃) and slicing criteria as 𝑋 and 𝑌 . It

first calculates the negative log-likelihood by invoking the NLL method in line 3.

, Vol. 1, No. 1, Article . Publication date: January 2018.

8 Trovato et al.

To achieve this, the NLL method first obtains the model logits (the output of the last layer) by

forward passing the input through the model (Line 2). The last generated token is then discarded,

as the corresponding token in the ground truth response does not exist (Line 3). Using the softmax
activation function, the probability distribution for all output tokens in the vocabulary is calculated

(Line 4). To compute the NLL, a loss mask is obtained where the special padding tokens are skipped

to eliminate their impact on the calculation (Line 5). The NLL for each token in the sequence is

calculated individually by multiplying the probability distribution of ground truth response (𝑌)

with the log-likelihood of the output (log(𝑃)) (Line 6). Next, the NLL for the entire sequence is

calculated by summing the individual NLLs for every token in the sequence, with padding tokens

eliminated by multiplying by the mask (Line 7). Finally, in Line 8, the mean NLL is computed by

dividing by the count of non-padding tokens in the sequence. The final averaged NLL approximates

the model’s confidence in generating the target responses, 𝑌 , for the given inputs, 𝑋 , and returned

from the method as the final outcome.

In the Sensitivity method, after obtaining the NLL for the given criteria, the magnitude of the

gradients for each transformer block is calculated by taking the L2 norms of all parameters within

the block with respect to the NLL (Lines 4–5). Specifically, the first-order gradients for all the

model parameters are computed with respect to the NLL (i.e., ∇𝜃 (𝐿)). For each parameter within a

transformer block (𝜗 ∈ 𝜃block ∧ 𝜃block ⊂ 𝜃), the gradients are squared, and the square root of their

summation is taken to yield the overall magnitude or sensitivity of the block (𝑆) (Line 4). This

measure indicates the relevance of the block to the given slicing criteria and is used in the Slice
method to identify and slice the most error-prone block.

Selecting Intent. The final method, Slice, in Algorithm 1, slices the most error-prone block of

the model for the provided criteria by leveraging the other two methods. The method takes as

input an instance of the model, denoted by 𝜋𝜃 , where 𝜃 represents the parameter space of the

model, and a set of slicing criteria, 𝑋 and 𝑌 . It first computes the sensitivity of every block in the

model by invoking the Sensitivity method (Line 2). Then, in Line 3, the block with the highest

sensitivity—deemed most relevant to the provided criteria—is selected. When the provided criteria

correspond to a sample from poor demonstration data 𝐷𝐸
, this block represents where the most

error is concentrated. This step effectively eliminates the need for thresholding to identify the slice.

Next, in Line 4, the parameters within the selected block are sliced off and returned by the method.

Algorithm 2 Repairing Intent

1: function Repair(𝜋𝜃 , 𝜋𝜃𝑟𝑒𝑓 , 𝐷
𝐸
, 𝐷𝑅

, 𝐷𝑁
, 𝛼)

2: repeat
3: 𝑋𝑅, 𝑌𝑅 ← batch(𝐷𝑅) ⊲ Get a good batch

4: 𝑋𝐸, 𝑌𝐸 ← batch(𝐷𝐸) ⊲ Get corresponding bad batch as slicing criteria

5: 𝑋𝑁 , 𝑌𝑁 ← batch(𝐷𝑁) ⊲ Get a normal batch

6: 𝜃slice ← Slice(𝜋𝜃 , 𝑋𝐸, 𝑌𝐸) ⊲ Sliced parameters

7: 𝐿1 ← NLL(𝑋𝑅, 𝑌𝑅, 𝜃slice) ⊲ Repair loss

8: 𝐿2 ← KL(𝑋𝑁 , 𝑌𝑁 , 𝜃slice, 𝜃ref) ⊲ KL loss

9: 𝐿 ← 𝛼 · 𝐿1 + 𝐿2 ⊲ Total loss

10: 𝐺 ← ∇(𝐿, 𝜃slice) ⊲ Gradients w.r.t slice

11: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝜃slice,𝐺) ⊲ Update parameters of𝑀

12: until convergence
13: return 𝜋𝜃 ⊲ Return repaired model

14: end function

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 9

3.3 Repairing Intent
In this step, the identified slice or intent, 𝜃slice, which is primarily responsible for undesirable

generation, is addressed through two optimization objectives, as shown in Figure 1. Specifically,

our loss function includes an NLL term as repair loss and a KL term to preserve the model’s normal

utility, as shown in Equation 3.

𝐿𝑜𝑠𝑠 =𝛼 · NLL
(
𝑝𝜃slice (· | 𝑋𝑅)

)
+ 𝐾𝐿

(
𝑝𝜃slice (· | 𝑋𝑁) ∥ 𝑝𝜃ref (· | 𝑋𝑁)

) (3)

Here, 𝛼 represents the strength of the repair or NLL loss, 𝜃slice denotes the set of sliced parameters

from the model 𝜋𝜃 , 𝜃ref represents the parameter space of the reference model 𝜋𝜃ref , and 𝑝𝜃slice denotes

the probability distribution of 𝜋𝜃 conditioned on the sliced parameters. The key components of the

repair process are briefly described below:

3.3.1 Repair Loss. We use the negative log-likelihood (NLL) as the repair loss for our technique.
This loss aims to maximize the log-likelihood of the curated responses (𝑌𝑅

) for fault-evoking

prompts (𝑋𝐸
). NLL is a commonly employed loss function for repairing models via continued

pre-training or supervised fine-tuning [11, 12, 19, 41]. However, unlike existing techniques, we

only optimize the sliced parameters (𝜃slice) of the patient model, 𝜋𝜃 . This selective approach allows

for more focused and aggressive updates of the error-prone parameters, potentially leading to

more effective repairs. Additionally, updating a smaller portion of the total parameters reduces

general performance degradation, as most of the model retains its original parameters. The relative

importance of this term is regulated by the 𝛼 coefficient.

3.3.2 KL Loss. KL loss is used to preserve the general performance of the model during the repair

process. Specifically, this term aims to minimize the divergence between a reference distribution

(the output of the reference model, 𝜋𝜃ref) and the target distribution (output of 𝜋𝜃 on the pre-training

corpus 𝐷𝑁
). This term essentially encourages the model to maintain similar generation capabilities

to the reference model on unrelated aspects.

3.3.3 Dynamic Slicing. Finally, we employ a dynamic slicing mechanism that selects the most

error-prone block of the model during the course of training for an adaptive repair. This design

decision is motivated by three key factors:

Error concentration. First, our threshold-free slicing technique selects only the most relevant or

error-prone block of the model based on the criteria. However, a single block may not be solely

responsible for undesirable responses to certain prompts. Other parts of the model might also

significantly contribute to erroneous outputs, as we empirically confirm in our analysis. We find

that errors can span multiple blocks, necessitating the repair of more than one block (details in

§ 4.4). In such cases, repairing only a predetermined fixed block may not be sufficient.

Error movement. Second, a fixed selection strategy, like those used in existing works [52, 53],

may fail to adapt to the effects of training dynamics on the model. While an area of the model

might appear most responsible for undesirable responses before repair, it may not remain the

most error-prone block throughout the course of training. Once training adequately addresses

the initially selected area, another unselected area may appear more problematic, deserving more

repair effort at that point. A dynamic slicing technique that accounts for the impact of training

dynamics can more effectively address such shifts in error concentration.

, Vol. 1, No. 1, Article . Publication date: January 2018.

10 Trovato et al.

Local error correction. As demonstrated in our algorithm for repairing intent (Algorithm 2), we use

corresponding bad examples for each batch of good examples (Line 3) from the bad demonstration

dataset, 𝐷𝐸
, as criteria to slice the most relevant block of the model (Line 4). This approach ensures

that repair efforts focus on the block that most amplifies errors for the current batch of data. In

contrast to pre-selection strategies, which often use all or a sample of data to determine which

part to slice [52, 53], our method enables a more nuanced repair by allowing for localized error

correction.

3.3.4 Algorithm Overview. The Repair method in Algorithm 2 outlines the procedure for repairing

the intent using our proposed optimization objectives. The method takes as input the affected

or to-be-repaired model 𝜋𝜃 , a reference model 𝜋𝜃ref , which is the same model as initial 𝜋𝜃 and is

used to maintain similar performance on unrelated aspects post-correction, and references to bad

examples (𝐷𝐸
), good examples (𝐷𝑅

), and normal examples (𝐷𝑁
). Additionally, a hyper-parameter 𝛼

is provided, which is used as a measure of the strength of the repair loss.

The repair process begins by sampling a batch of good examples in Line 3 during each training

iteration. It then constructs a batch of corresponding bad examples to use as slicing criteria for the

current iteration (Line 4). Additionally, a random batch from the normal examples is obtained to

compute a KL term (Line 5). Next, the Slice method is invoked to extract the most error-inducing

block of the current model, 𝜋𝜃 (Line 6). The NLL loss for the sliced parameters, 𝜃slice, is computed

using the good batch in Line 7. Similarly, a KL term is calculated for both the currently repaired

model and the reference model using the batch of normal examples (Line 8). In Line 9, the combined

loss is obtained, with the NLL term regulated by a user-defined coefficient (𝛼). After computing

the loss, gradients with respect to the sliced parameters are computed in Line 10 and updated in

Line 11. The repair process continues until convergence or early stopping is triggered and the

repaired model is returned.

4 Evaluation
In this section, we introduce our evaluation setup, outline our research questions, and discuss the

experimental results in detail. As previously mentioned, we evaluate our technique within a model

detoxification framework, where our goal is to repair toxic models using the principles outlined in

IRepair . To this end, we examine our framework across three research questions:

• RQ1: How effectively can IRepair repair or detoxify the model? This research question evaluates
IRepair’s effectiveness in eliminating toxicity from models and compares it against several

state-of-the-art baseline techniques.

• RQ2:What is the computational overhead of IRepair? This research question measures the

computational overhead of IRepair by assessing total floating point operations (FLOPS),

peak memory usage, and convergence duration and compares these metrics against baseline

techniques.

• RQ3: Does the dynamic selection employed by IRepair offer any advantage? In this research,

we conduct ablation studies and empirical analyses of error concentration in the model to

assess the impact and necessity of selective and dynamic repair.

4.1 Experimental setup
4.1.1 Model. We evaluate IRepair across three models from the GPT family, namely GPT-2 Large

(812M parameters), GPT-2 XL (1.61B parameters), and GPT-Neo (1.3B parameters). The GPT-2

models, developed by OpenAI, were trained on 8 million web pages from the WebText dataset [34].
The GPT-Neo model, developed by EleutherAI, was trained on the PILE dataset [1]. We load these

pre-trained models from the official Hugging Face repositories of OpenAI and EleutherAI [2, 3].

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 11

4.1.2 Dataset. To evaluate IRepair , we use a detoxification dataset developed by Lee et al. [19].
Specifically, they leverage PPLM [8] to create a pairwise detoxification dataset using sentences from

Wikitext-2 [27] as prompts. For each prompt sampled fromWikitext-2, they generate a non-toxic

continuation using the GPT-2 model [34] and a toxic continuation using PPLM. The resulting

detoxification dataset contains 24,576 pairs of toxic and non-toxic continuations for the sampled

prompts. In our experimental setup, we treat the toxic continuations as a bad demonstration dataset,

𝐷𝐸
, and the non-toxic continuations as a good dataset, 𝐷𝑅

.

Additionally, we construct an individual normal dataset, 𝐷𝑁
, for each model in our experiment

using the unconditional generation technique [41]. Specifically, starting with the special start-of-

sequence token (GPT models use ‘<|endoftext|>‘ as the start-of-sequence token [41]), we generate

approximately 15,000 texts for each model using different random seeds. Following prior work,

we employ nucleus sampling with a temperature of 1 and 𝑝 = 0.9 during generation [41]. The

unconditionally generated text corpus is considered a good representative of the model’s training

corpus [41]. By minimizing the KL divergence on these examples, we aim to preserve the model’s

ability to generate random text similarly to its pre-repair state, thereby reducing the impact on its

general performance.

4.1.3 Baseline. We compare the performance of two variants of IRepair: the standard IRepair ,
which does not enforce a KL constraint, and IRepair + KL, which does, against several representative

state-of-the-art baselines within domain-adaptive training, as introduced below:

Domain-Adaptive Pretraining (DAPT). DAPT is a framework introduced by Gururangan et al. [13],
which involves continuing the pretraining of a model on domain-specific texts. Gehman et al. [11]
applied the DAPT framework to further train GPT-2 models on nontoxic texts to detoxify them.

In our setup, we evaluate the effectiveness of DAPT in detoxifying models and compare it with

IRepair .

Direct Preference Optimization (DPO). DPO is a cutting-edge algorithm designed to replace RLHF

(Reinforcement Learning from Human Feedback [31]) due to its complex and unstable training

process. It directly steers the model towards desirable generations over undesirable ones [35]. The

DPO algorithm has been shown to effectively eliminate toxicity from models, as demonstrated by

Lee et al. [19]. We also compare our method against DPO.

Domain-Adaptive Pretraining with KL Constraint (DAPT+KL). We also compare IRepair against a
variant of the DAPT method that includes a KL constraint to preserve the general model perfor-

mance [23]. While DAPT alone may cause the model to deviate when training on a domain-specific

corpus, adding a KL term helps evaluate the repair quality of this approach by ensuring that the

model maintains its general performance while focusing on domain-specific adjustments.

Additionally, in RQ3, we compare IRepair against two of its variants to assess the effectiveness

of the components employed by IRepair , as described below:

IRepair (Min). In this variant of IRepair , during each training iteration, instead of selecting

the block with the highest error concentration, the block with the least concentration is chosen.

Comparing IRepair against this variant allows us to assess the impact of selective repair.

IRepair (Fixed). In this variant of IRepair , a fixed slice of the model is pre-selected for repair.

Specifically, using a substantial random sample of bad data (𝐷𝐸
) consisting of 2000 examples,

average sensitivities for all parameters are computed. Then, using the same technique described in

Algorithm 1, block sensitivity is computed, and the block with the highest sensitivity is selected for

repair. Comparing IRepair against this variant allows us to assess the impact of dynamic selection.

, Vol. 1, No. 1, Article . Publication date: January 2018.

12 Trovato et al.

4.1.4 Metric. Following the prior works [11, 12, 19], we use the following two metrics to evaluate

the toxicity and general performance of the model after detoxification.

Toxicity. Gehman et al. developed a dataset called REALTOXICITYPROMPTS to evaluate toxicity

in LLMs [11]. This dataset consists of sentence-level prompts that are provided to LLMs to generate

continuations, which are likely to elicit toxic responses from the models. They also created a

challenge subset of this dataset, which includes 1,199 prompts that consistently caused all models in

their experiments to generate toxic responses [11]. This challenge subset has been used in previous

studies to evaluate the effectiveness of detoxification methods [12, 19]. Similarly, we leverage this

subset to assess the detoxification quality of our repaired models. Additionally, following prior

works [11, 12, 19], we use the widely adopted toxicity detection tool, PERSPECTIVE API [5], to assign
a toxicity score to each generation. The score ranges from 0 to 1, with higher scores indicating

more toxic responses.

Perplexity. Perplexity is a widely used metric to evaluate the generation quality of language

models. It has been employed to assess degradation in model generation after the repair process [11,

12, 19, 41]. Perplexity measures how uncertain or "perplexed" the model is in predicting the next

word. Higher perplexity indicates that the model is worse at predicting the next word, meaning

its generation quality is lower. When evaluated on a test corpus, it reflects how well the model’s

generated text aligns with the test data. Following prior works on GPT models [12, 19], we compute

the perplexity of the model before and after repair using the test split of Wikitext-2 [27], which

contains 4,358 rows with approximately 241K words.

Additionally, we evaluate the computational overhead of the techniques using the following

three metrics, as described in the literature [16, 20, 37]:

TFLOPs. TFLOPs (Tera Floating-Point Operations per Second) represents the total number of

floating-point operations performed in the trillions during the course of training or inference [16].

This metric is commonly used to gauge the computational demand of a method. To compute the

TFLOPs, we utilize an open-source tool [7] that applies the formula derived by Kaplan et al. for GPT
models [16].

Peak Memory Usage. Memory consumption is a critical factor when developing techniques for

large language models (LLMs)[37]. To evaluate this, we measure the peak memory usage of all

techniques during training. We employ the method used by Lee et al. [20], where an independent

process queries the GPU using the nvidia-smi command at 1-second intervals to record the highest

memory usage observed.

GPU Time. We report the total GPU time required for training each technique until convergence.

This measurement is obtained using PyTorch’s CUDA API [6], which tracks the time spent on the

GPU throughout the training process.

Total Iteration. Additionally, we report the total iteration needed until the model converges or

early stopping is triggered.

4.1.5 Training Details. As discussed in § 4.1.1, we used pre-trained models from the officialHugging
Face repositories of OpenAI and EleutherAI [2, 3]. We leveraged Python’s deep learning library

PyTorch [33] for further training these models across all techniques. All hyperparameters in our

study were fine-tuned using a small development dataset produced by Lee et al. [19]. For DPO,
DAPT, and DAPT + KL, we used the implementation provided by Lee et al. [19] as a reference.
Similarly, we fine-tuned the hyperparameters for all techniques using the development set.

Specifically, the final tuned learning rates for standard IRepair , IRepair + KL, DPO, DAPT, and

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 13

Model Metric Vanilla DAPT DAPT+KL DPO IRepair IRepair + KL
Toxicity 41.53 11.99 13.93 14.97 7.74 5.11

GPT2 812M

Perplexity 19.44 26.95 22.96 24.10 20.93 22.35

Toxicity 48.22 39.74 5.21 22.71 10.67 4.68
GPT2 1.61B

Perplexity 17.40 22.96 20.13 21.02 18.16 18.15
Toxicity 40.89 31.57 37.93 12.26 5.69 4.94

GPT Neo 1.3B

Perplexity 14.56 17.00 16.17 16.70 16.56 16.52

Toxicity 43.6±2.3 27.8±8.2 19±9.8 16.7±3.1 8±1.4 4.9±0.1Overall
Perplexity 17.1±1.4 22.3±2.9 19.8±2.0 20.6±2.1 18.6±1.3 19±1.7

Table 1. Comparative Overview of IRepair’s Performance. (Toxicity scores are scaled from 0 to 100. The best
performance is highlighted in bold, and the second-best is underlined for each model.

DAPT+KL are 2𝑒−5, 5𝑒−5, 1𝑒−6, 1𝑒−6, and 5𝑒−6, respectively. Through trial and error, we found that

a higher learning rate tends to achieve better repair quality at the expense of general performance

and vice versa. Since IRepair only modifies a small portion of the model, it can accommodate a larger

learning rate with less adverse impact on general performance compared to other indiscriminate

techniques. Similarly, DAPT+KL allows a slightly higher learning rate than DPO and DAPT as it

explicitly aims to maintain general performance during repair. We also set the value of 𝛼 to 0.5 for

both IRepair and DAPT+KL after tuning.

For training models using all techniques, we used the memory-efficient RMSProp optimizer

with 150 warmup steps and a linear learning rate scheduler. A batch size of four was used for the

techniques, with a validation split of eight batches, each with a batch size of eight. Models were

trained with a validation loss patience of 30 iterations. All models were trained on an NVIDIA A100
GPU with 40GB of memory. We conducted all the training using the same random seed to ensure

reproducibility and enable a fairer comparison.

4.2 RQ1: How effectively can IRepair repair the model?
In this research question, we evaluate the repair effectiveness of IRepair and compare it against

several baselines. Table 1 provides a comparative overview of IRepair’s performance across all

models. The results show that both variants of IRepair consistently outperform all other techniques

on every model tested, achieving a higher repair score with better general performance stability.

Specifically, standard IRepair achieves an average 81.6% reduction in toxicity with an 8.3% increase

in perplexity across all models. The IRepair + KL variant reduces toxicity by 88.7% with an 11%

increase in perplexity.

In contrast,DPO,DAPT+KL, andDAPT reduce toxicity by 61.8%, 56.3%, and 36.2%, while increasing

perplexity by 20.3%, 15.3%, and 30.2%, respectively. Thus, both IRepair variants clearly outperform

all baseline techniques in both metrics. For example, compared to DPO, standard IRepair and IRepair
+ KL are 32% and 43.6% more effective in reducing toxicity while incurring 59.2% and 46% less

increase in perplexity. Similarly, against DAPT+KL, standard IRepair and IRepair + KL are 44.8% and

57.5% more effective in reducing toxicity while showing 45.8% and 28.2% less increase in perplexity.

Additionally, we find that all techniques, including IRepair , significantly outperform DAPT.
Understandably, the ability of DAPT to repair the model is limited by its tendency to lose general

performance more rapidly. Overall, its perplexity increases by 30.2%, compared to increases of

15.3%, 20.3%, 8.3%, and 11% for DAPT+KL, DPO, IRepair ,and IRepair + KL, respectively. This clearly
shows that adding a KL term to the DAPT loss for self-generated random data helps better preserve

unrelated model knowledge. Furthermore, the results demonstrate that compared to DAPT+KL,
which operates on all parameters indiscriminately, IRepair’s selective approach is more effective at

, Vol. 1, No. 1, Article . Publication date: January 2018.

14 Trovato et al.

Model Metric DAPT DAPT+KL DPO IRepair IRepair + KL
TFLOPs/Token 4.92 8.19 9.83 6.89 10.17

TFLOPs 12.32 24.82 18.47 45.97 63.19

GPU Time (sec) 1,994 1,411 733 2032 1,933

Peak Memory Usage (MiB) 13175 16547 18677 13990 17071

GPT2 812M

Total Iteration 6200 3750 2325 8250 5125

TFLOPs/Token 9.80 16.33 19.60 13.52 20.05

TFLOPs 46.63 65.34 35.24 51.34 121.53

GPU Time (sec) 7,398 3,438 1,304 2010 2,769

Peak Memory Usage (MiB) 27664 32411 35659 25042 29333

GPT2 1.61B

Total Iteration 11775 4950 2225 4700 5000

TFLOPs/Token 8.47 14.12 16.94 11.92 17.57

TFLOPs 10.26 19.39 27.37 19.03 64.41

GPU Time (sec) 1,416 747 1,013 545 1,193

Peak Memory Usage 22842 26233 25853 20356 23179

GPT Neo 1.3B

Total Iteration 3000 1700 2000 1975 3025

TFLOPs/Token 7.73 12.88 15.46 10.78 15.93

TFLOPs 23.07 36.52 27.03 38.78 83.04

GPU Time (sec) 3,603 1,865 1,017 1529 1,965

Peak Memory Usage (MiB) 21,227 25,064 26,730 19796 23,194

Overall

Total Iteration 6,992 3,467 2,183 4975 4,383

Table 2. The Computational Overhead of the IRepair compared with Baseline Techniques.

controlling performance degradation (with 45.8% and 28.2% less perplexity increase than DAPT+KL),
despite using a higher learning rate. This can be attributed to the fact that IRepair only adjusts

a fraction of the parameters, leaving most untouched during each training pass, which better

preserves overall model performance.

The results also demonstrate that KL-enabled techniques achieve better repair or toxicity scores,

as they allow for more aggressive model repair at higher learning rates. For instance, DAPT+KL
reduces the toxicity score by 55% compared to its non-KL counterpart, DAPT. Similarly, IRepair +
KL achieves a 9% greater reduction in toxicity and exhibits 93% lower standard error, indicating

greater stability compared to standard IRepair . Even with KL-enabled DAPT, both IRepair variants
significantly outperform it by 44.8% and 57.5% in toxicity reduction while also resulting in 59.2% and

46% less increase in perplexity. IRepair’s ability to support higher learning rates is a crucial factor

in its effectiveness. However, this added efficiency is also largely driven by IRepair’s focused repair

approach, as demonstrated in § 4.4. IRepair’s selective strategy not only enables aggressive model

repair with minimal loss in general performance but also targets the most relevant or error-prone

sections of the model, leading to the observed high repair efficiency.

4.3 RQ2: What is the computational overhead of IRepair?
In this research question, we evaluate the computational overhead of IRepair and compare it against

baseline techniques. Table 2 presents the overhead of various techniques across four metrics. Among

the two IRepair variants, the overhead of standard IRepair is more amenable to the other three

baseline techniques across all metrics. For example, it ranks first in memory consumption and

second in GPU time, despite incurring higher TFLOPs and requiring more iterations to converge.

The additional compute units (TFLOPs) consumed by IRepair variants are due to the extra forward
pass and a higher number of iterations required for convergence. IRepair + KL involves four forward
passes: one for a toxic batch of data to assess the sensitivity (𝐷𝐸

), one for a non-toxic batch (𝐷𝑅
), and

for normal data, one pass through the model under repair (𝜋𝜃) and another through the reference

model (𝜋𝜃ref). In contrast, standard IRepair does not compute the KL term, thereby eliminating two

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 15

IRepair IRepair + KLModel Metric Fixed Min Max Fixed Min Max
Toxicity 45.53 36.84 7.74 39.04 42.08 5.11

GPT2 812M

Perplexity 20.78 21.59 20.93 22.88 24.77 22.35

Toxicity 37.36 47.63 10.67 4.32 47.25 4.68

GPT2 1.61B

Perplexity 18.50 20.95 18.16 18.80 18.01 18.15

Toxicity 39.71 38.79 5.69 40.57 40.86 4.94

GPT Neo 1.3B

Perplexity 14.85 14.98 16.56 14.86 15.01 16.52

Toxicity 40.87 41.08 8.03 27.98 43.40 4.91Overall
Perplexity 18.04 19.18 18.55 18.85 19.26 19.01

Table 3. Impact of Dynamic Slicing on Repair Efficacy

forward passes for normal data, which results in significantly lower TFLOPs overall—53% less than

IRepair + KL. DPO also requires four forward passes; however, it converges in fewer iterations,

leading to lower total TFLOPs.

On a per-token basis, the TFLOPs required for IRepair are comparable to other baselines (with

standard IRepair ranking second and IRepair + KL requiring the most, though comparable to DPO).
However, due to the higher number of iterations needed for convergence to address a smaller part

of the model, total TFLOPs are higher. Despite this, IRepair ’s GPU time remains proportionally

lower, and it trains faster or comparably to some baseline techniques, such as DAPT and DAPT+KL.
This could be attributed to better GPU utilization in IRepair variants, which process more TFLOPs

per iteration, while DAPT takes longer to converge, spreading out its TFLOPs and leading to lower

overall GPU utilization.

In terms of memory consumption, we find that standard IRepair uses the least memory, while

IRepair + KL ranks third. This is because the backward pass in IRepair is more constrained than

in other techniques. First, to calculate sensitivity, it only computes gradients for the transformer

blocks, excluding the embedding and final output layers. After slicing the layer, it zeroes out the

gradients, freeing memory. In the second backward pass, it only computes gradients for the required

smaller slice, resulting in lower peak memory consumption compared to other techniques. IRepair
+ KL requires slightly more memory than DAPT due to storing extra logits for normal data from

two forward passes.

Overall, while IRepair incurs higher TFLOPs due to longer iterations, it remains memory-efficient

and trains reasonably faster by fully utilizing available GPU power. In exchange for additional

compute units, IRepair offers better repair efficiency than the other techniques. Between IRepair
and IRepair + KL, although the latter is more computationally intensive, it provides greater stability

in model repair, as observed in § 4.2.

4.4 RQ3: Does the dynamic selection employed by IRepair offer any advantage?
In the final research question, we investigate the effectiveness of dynamic slicing in delivering

focused model repair. As described in § 4.1.3, we evaluated two additional variants of both the

standard IRepair and IRepair + KL: IRepair + Min and IRepair + Fixed. The IRepair + Min variant

selects the transformer block with the lowest error concentration, as opposed to the highest in the

regular IRepair . This baseline allows us to assess the impact of selection on repair efficacy. Similarly,

IRepair + Fixed disables dynamic slicing and instead pre-selects the block with the highest error

concentration for repair. This variant enables us to assess the impact of dynamic selection on repair

effectiveness.

, Vol. 1, No. 1, Article . Publication date: January 2018.

16 Trovato et al.

(a) GPT Neo 1.3B (b) GPT2 812M

(c) GPT2 1.61B

Fig. 2. Relative Toxicity Levels of Transformer Blocks Across Different Models

Table 3 presents the comparative results of these variants against the regular IRepair . It demon-

strates that both regular IRepair variants significantly outperform theirMin and Fixed counterparts.

For instance, standard IRepair and IRepair + KL reduce toxicity by 80.5% and 88.6% more than their

Min variants while maintaining a similar level of perplexity (with regular IRepairs showing 3.3%
and 1.3% more reduction, respectively). It clearly shows the impact of selection made by regular

IRepair in repairing the model.

Similarly, both regular IRepairs outperform their Fixed counterparts by a clear margin. Standard

IRepair and IRepair + KL reduce toxicity by 80.4% and 82.5%more than their Fixed counterparts while
achieving slightly lower perplexity (with Fixed variants scoring 2.7% and 0.8% less in perplexity).

Additionally, pre-selecting the most error-prone blocks and focusing repair efforts on them slightly

outperforms the dynamic Min variants, with the difference being more noticeable in the Fixed + KL
variant (scoring 35% less in toxicity than Min).

We particularly observed that the Fixed + KL approach performs comparably to the IRepair + KL
method on the GPT2 1.61B model. To understand why fixed selection was effective for this model,

we analyzed the toxicity levels of all transformer blocks across different models. We calculated

toxicity by randomly sampling 2000 examples and computing the average sensitivity for each block.

Figure 2 displays the distribution of relative toxicity across all blocks for the models studied.

For the GPT2 1.61B model, the most toxic block is about 28% more toxic than the second most

toxic block. In contrast, for the GPT2 812Mmodel, the difference between the most and second most

toxic blocks is only 8% and 9.5% with the third most toxic blocks. Similarly, for the GPT Neo 1.3B

model, the difference between the most and second most toxic blocks is just 6.5%. This indicates

that the GPT2 1.61B model has a higher concentration of toxicity in the top block, making fixed

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 17

targeted repair of this block more effective. In other models, errors are more evenly distributed

among the top few blocks, reducing the effectiveness of a top-block-only repair.

This suggests that errors can be dispersed throughout the model, and a fixed selection technique

may require costly tuning to determine the optimal selection threshold. In contrast, our dynamic

slicing approach avoids this need for tuning and allows for model-wide repair by dynamically

focusing on the most error-prone areas during training.

Figure 2 also shows that GPT-2 1.61B, GPT-2 812M, and GPT-Neo 1.3B have 245.3%, 120.8%, and

1137.7% higher average error density in the top 20% of blocks compared to the remaining 80% of

blocks. Error density was measured by dividing the total toxicity within 𝑁 blocks by 𝑁 . This clearly

indicates that the repair process should give more priority to these highly error-inducing regions

than to others, which may lead to superior outcomes, as observed in our results.

5 Related work
Software engineering research has proposed various techniques to repair bugs in deep neural

networks (DNNs) that arise during training or within the network structure itself [24, 43, 50, 51].

Examples include Zhang et al. ’s method for monitoring DNN training and suggesting corrective

actions for anomalies [51], and Wardat et al. ’s work on identifying and fixing structural bugs in

DNNs [43]. However, these techniques primarily address issues stemming from the DNN itself.

In contrast, data-driven errors in LLMs, such as toxicity or hallucinations, can stem from biases

and inconsistencies within the training data itself [15], requiring solutions beyond structural or

training bug fixes.

On the other hand, machine learning research offers several strategies to mitigate such errors,

broadly categorized into three approaches [18, 32, 41]: inference or decoding-time methods [8, 21,

22, 30, 36, 41, 46, 48, 49], pretraining-based methods [18], and domain-adaptive training methods [11,

19, 23, 35, 41]. Decoding-timemethods aim to circumvent problematic responses during inference by

techniques such as vocabulary shifting, word banning, or response filtering [8, 41]. However, they do

not address the root causes of errors within the model and often fail to consider the sequence-level

semantics of generated text [41]. There are also prompt-based techniques that resemble decoding-

time methods, relying on prompt engineering to avoid undesirable responses [10, 47]. However,

these techniques do not address the underlying errors within the model and are particularly suited

for dialogue systems.

In contrast to decoding-time methods, pretraining-based approaches suggest removing prob-

lematic data from the training corpus. While effective, this can be prohibitively expensive [41].

The domain-adaptive model adjustment, on the other hand, has emerged as a promising strat-

egy, offering a balance between the simplicity of decoding-time methods and the effectiveness of

pretraining-based approaches [19, 41].

Domain-adaptive methods aim to continue pretraining or fine-tuning models on domain-specific

texts [11, 19]. For instance, Gehman et al. [11] applied a framework called Domain-Adaptive

Pretraining (DAPT) [13] to further pretrain GPT-2 on curated non-toxic data, reducing its toxicity.

Similarly, Wang et al. [41] used the DAPT framework with self-generated data to detoxify models.

However, their technique is model-dependent and relies on self-generated data, which may not

be applicable in all error scenarios, such as factual inaccuracies or hallucinations. Solaiman and

Dennison [39] proposed a general framework for aligning language models to specific target values,

but it involves expensive iterative training [38]. These methods aim to optimize pre-trained model

parameters using domain-specific texts, mitigating errors while minimizing the impact on overall

performance.

Reinforcement learning (RL) from human feedback (RLHF) is another domain-adaptive method

that relies on human demonstration datasets to align language models, and it has been shown

, Vol. 1, No. 1, Article . Publication date: January 2018.

18 Trovato et al.

to mitigate errors in LMs [31]. The recently proposed Direct Preference Optimization (DPO) is

a cutting-edge RL-inspired algorithm designed to overcome the instability and complexity of

RLHF [35]. In recent work, Lee et al. [19] demonstrated the effectiveness of the DPO framework in

detoxifying the GPT-2 model using paired datasets of toxic and non-toxic examples.

However, these existing domain-adaptive techniques treat all model parameters uniformly during

repair. This indiscriminate approach increases the risk of altering parameters unrelated to the

specific errors being addressed, which can disrupt the general knowledge stored in those parameters.

Such an intent-unaware" approach not only risks harming overall performance but is also limited in

effectively targeting the error-prone parts of the model. A more focused strategy could address these

issues more efficiently by concentrating the repair effort where it is most needed. Our proposed

technique, IRepair , addresses these concerns by enabling a selective repair strategy.

Knowledge editing (KE) is a related area within machine learning that focuses on updating a

model’s factual knowledge, allowing developers and end-users to modify the model beyond the

training setup [26, 28, 42]. These techniques complement training-time methods by enabling model

fixes during test time [28]. While training-time methods aim for global correction, KE techniques

provide localized fixes by updating the model’s knowledge with a single instance [26, 28, 42].

6 Threats To Validity and Limitations
An internal threat to the study is the quality of the detoxification and evaluation datasets. To address

this, we utilize both the training dataset and evaluation setup from a recent reputable work on

LLM detoxification [19]. Additionally, we employ the implementations provided in the same study

to address concerns about the construct validity of baseline techniques. Another internal threat

arises from the reliability of the evaluation metrics. To mitigate this concern, we measure repair or

toxicity scores using the widely used Perspective API [5] and evaluate model quality post-repair

using perplexity, as employed in many prior works [11, 19, 41]. Similarly, our evaluation metrics for

measuring computational overheads are based on well-established metrics in the literature [16, 20].

An external threat is the relevance of the models used. To address this, we have selected three

models from the GPT and GPT-Neo families with billions of parameters, all of which have previously

been employed for evaluating detoxification techniques [11, 18, 19, 21, 48, 49].

While the case study performed in this paper shows that IRepair can effectively address the data-

driven errors in large languagemodels (LLMs), it is demonstratedwithin the context of detoxification.

Further research is encouraged to explore its effectiveness and generalizability to other data-driven

error scenarios, which will enhance the understanding and potential applications of this approach.

Furthermore, although we evaluated IRepair on models with billions of parameters—similar to

those frequently used in evaluating prior repair techniques—its performance in ultra-large-scale

LLMs remains an area for further investigation.

7 Conclusion
In this paper, we introduce IRepair , an intent-aware technique for selectively repairing data-driven

errors in LLMs through dynamic model slicing. While domain-adaptive training with curated

data has shown promise, it tends to optimize model parameters indiscriminately, which can limit

repair efficacy and increase the risk of negatively affecting general model performance by altering

unrelated parameters. To address these limitations, IRepair identifies the relevant portions of the
model responsible for the errors, allowing for more targeted repair and making it an intent-aware

approach. Our method employs a gradient-based technique to select the most relevant parts of the

model by analyzing sensitivity to slicing criteria. Unlike existing slicing routines, our technique is

specifically designed to address transformer-related challenges and to avoid the need for expensive

tuning of selection thresholds. In a case study focused onmodel detoxification, IRepair demonstrated

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 19

its effectiveness in addressing the root causes of toxicity while minimizing the impact on general

performance, outperforming state-of-the-art baselines. Our empirical results also suggest that

errors can be highly concentrated in very limited regions of the model, highlighting the need for

selective repair. We further demonstrate that a dynamic selection-based repair strategy is essential

for effectively addressing errors dispersed throughout the model.

8 Data Availability Statement
The replication package is available here [4] and includes all the results, code, and data, along with

a ‘readme’ file that provides detailed instructions on how to reproduce the results.

References
[1] 2024. GPT Neo Models by Eleuther AI. Retrieved August 31, 2024 from https://www.eleuther.ai/artifacts/gpt-neo

[2] 2024. GPT Neo Models by Eleuther AI: HuggingFace Repository. Retrieved August 31, 2024 from https://huggingface.co/

EleutherAI/

[3] 2024. GPT2 Models by OpenAI: HuggingFace Repository. Retrieved August 31, 2024 from https://huggingface.co/openai

[4] 2024. IRepair - results and replication package. Retrieved August 31, 2024 from https://huggingface.co/datasets/

Anonymous007/IRepair/tree/main

[5] 2024. Perspective API. Retrieved August 31, 2024 from https://perspectiveapi.com/

[6] 2024. PyTorch CUDA API. Retrieved August 31, 2024 from https://pytorch.org/docs/stable/cuda.html

[7] Adam Casson. 2023. Transformer FLOPs. (2023). https://adamcasson.com/posts/transformer-flops

[8] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu.

2019. Plug and play language models: A simple approach to controlled text generation. arXiv preprint arXiv:1912.02164
(2019).

[9] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min

Chan, Weize Chen, et al. 2022. Delta tuning: A comprehensive study of parameter efficient methods for pre-trained

language models. arXiv preprint arXiv:2203.06904 (2022).
[10] Deep Ganguli, Amanda Askell, Nicholas Schiefer, Thomas I Liao, Kamilė Lukošiūtė, Anna Chen, Anna Goldie, Azalia

Mirhoseini, Catherine Olsson, Danny Hernandez, et al. 2023. The capacity for moral self-correction in large language

models. arXiv preprint arXiv:2302.07459 (2023).
[11] Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. 2020. Realtoxicityprompts:

Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462 (2020).
[12] Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. 2022. Transformer feed-forward layers build predictions

by promoting concepts in the vocabulary space. arXiv preprint arXiv:2203.14680 (2022).
[13] Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith.

2020. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964 (2020).
[14] Tibor Gyimóthy, Arpád Beszédes, and Istán Forgács. 1999. An efficient relevant slicing method for debugging. ACM

SIGSOFT Software Engineering Notes 24, 6 (1999), 303–321.
[15] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and

Pascale Fung. 2023. Survey of hallucination in natural language generation. Comput. Surveys 55, 12 (2023), 1–38.
[16] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford,

Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).
[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,

John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural

networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–3526.
[18] Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason Phang, Samuel R

Bowman, and Ethan Perez. 2023. Pretraining language models with human preferences. In International Conference on
Machine Learning. PMLR, 17506–17533.

[19] Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K Kummerfeld, and Rada Mihalcea. 2024. A

mechanistic understanding of alignment algorithms: A case study on dpo and toxicity. arXiv preprint arXiv:2401.01967
(2024).

[20] Youngwan Lee, Joong-wonHwang, Sangrok Lee, Yuseok Bae, and Jongyoul Park. 2019. An energy andGPU-computation

efficient backbone network for real-time object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition workshops. 0–0.

[21] Chak Tou Leong, Yi Cheng, Jiashuo Wang, Jian Wang, and Wenjie Li. 2023. Self-detoxifying language models via

toxification reversal. arXiv preprint arXiv:2310.09573 (2023).

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://www.eleuther.ai/artifacts/gpt-neo
https://huggingface.co/EleutherAI/
https://huggingface.co/EleutherAI/
https://huggingface.co/openai
https://huggingface.co/datasets/Anonymous007/IRepair/tree/main
https://huggingface.co/datasets/Anonymous007/IRepair/tree/main
https://perspectiveapi.com/
https://pytorch.org/docs/stable/cuda.html
https://adamcasson.com/posts/transformer-flops

20 Trovato et al.

[22] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith, and Yejin Choi. 2021.

DExperts: Decoding-time controlled text generation with experts and anti-experts. arXiv preprint arXiv:2105.03023
(2021).

[23] Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2023. Chain of hindsight aligns language models with feedback. arXiv
preprint arXiv:2302.02676 (2023).

[24] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 2018. MODE: automated neural network

model debugging via state differential analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 175–186.

[25] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking for simple program repairs. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 448–458.

[26] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating and editing factual associations in GPT.

Advances in Neural Information Processing Systems 35 (2022), 17359–17372.
[27] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016. Pointer sentinel mixture models. arXiv

preprint arXiv:1609.07843 (2016).
[28] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. 2021. Fast model editing at

scale. arXiv preprint arXiv:2110.11309 (2021).
[29] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. Semfix: Program repair via

semantic analysis. In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 772–781.
[30] Tong Niu, Caiming Xiong, Semih Yavuz, and Yingbo Zhou. 2024. Parameter-Efficient Detoxification with Contrastive

Decoding. arXiv preprint arXiv:2401.06947 (2024).

[31] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini

Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback.

Advances in neural information processing systems 35 (2022), 27730–27744.
[32] Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, andWilliam YangWang. 2023. Automatically

correcting large language models: Surveying the landscape of diverse self-correction strategies. arXiv preprint
arXiv:2308.03188 (2023).

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in pytorch. (2017).

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are

unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. 2024. Direct

preference optimization: Your language model is secretly a reward model. Advances in Neural Information Processing
Systems 36 (2024).

[36] Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021. Self-diagnosis and self-debiasing: A proposal for reducing

corpus-based bias in nlp. Transactions of the Association for Computational Linguistics 9 (2021), 1408–1424.
[37] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and BryanCatanzaro. 2019. Megatron-

lm: Training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).
[38] Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber, and Lijuan Wang. 2022.

Prompting gpt-3 to be reliable. arXiv preprint arXiv:2210.09150 (2022).
[39] Irene Solaiman and Christy Dennison. 2021. Process for adapting language models to society (palms) with values-

targeted datasets. Advances in Neural Information Processing Systems 34 (2021), 5861–5873.
[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
[41] Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Bo Li, Anima Anandkumar,

and Bryan Catanzaro. 2022. Exploring the limits of domain-adaptive training for detoxifying large-scale language

models. Advances in Neural Information Processing Systems 35 (2022), 35811–35824.
[42] Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi, Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi Yang, Jin-

dong Wang, and Huajun Chen. 2024. Detoxifying Large Language Models via Knowledge Editing. arXiv preprint
arXiv:2403.14472 (2024).

[43] Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. Deepdiagnosis: automatically diagnosing

faults and recommending actionable fixes in deep learning programs. In Proceedings of the 44th international conference
on software engineering. 561–572.

[44] Mark Weiser. 1984. Program slicing. IEEE Transactions on software engineering 4 (1984), 352–357.

[45] Ming Wen, Jun jie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for

better automated program repair. In Proceedings of the 40th international conference on software engineering. 1–11.
[46] Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao. 2023. Large

language models are better reasoners with self-verification. In Findings of the Association for Computational Linguistics:

, Vol. 1, No. 1, Article . Publication date: January 2018.

IRepair : An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models 21

EMNLP 2023. 2550–2575.
[47] Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl, Lingjuan Lyu, Qifeng Chen, Xing Xie, and FangzhaoWu. 2023. Defending

chatgpt against jailbreak attack via self-reminders. Nature Machine Intelligence 5, 12 (2023), 1486–1496.
[48] Canwen Xu, Zexue He, Zhankui He, and Julian McAuley. 2022. Leashing the inner demons: Self-detoxification for

language models. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 11530–11537.
[49] Zonghan Yang, Xiaoyuan Yi, Peng Li, Yang Liu, and Xing Xie. 2022. Unified detoxifying and debiasing in language

generation via inference-time adaptive optimization. arXiv preprint arXiv:2210.04492 (2022).
[50] Hao Zhang and WK Chan. 2019. Apricot: A weight-adaptation approach to fixing deep learning models. In 2019 34th

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 376–387.
[51] Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. 2021. Autotrainer: An automatic dnn training problem detection

and repair system. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 359–371.
[52] Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2020. Dynamic slicing for deep neural networks.

In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 838–850.

[53] Ziqi Zhang, Yuanchun Li, Jindong Wang, Bingyan Liu, Ding Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2022. ReMoS:

reducing defect inheritance in transfer learning via relevant model slicing. In Proceedings of the 44th International
Conference on Software Engineering. 1856–1868.

[54] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie

Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv preprint arXiv:2303.18223 (2023).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

, Vol. 1, No. 1, Article . Publication date: January 2018.

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Problem Formulation
	3.2 Slicing Intent
	3.3 Repairing Intent

	4 Evaluation
	4.1 Experimental setup
	4.2 RQ1: How effectively can IRepair repair the model?
	4.3 RQ2: What is the computational overhead of IRepair?
	4.4 RQ3: Does the dynamic selection employed by IRepair offer any advantage?

	5 Related work
	6 Threats To Validity and Limitations
	7 Conclusion
	8 Data Availability Statement
	References

