Nu: Preserving Design Modularity in Object Code

Robert Dyer

Harish Narayanappa

Hridesh Rajan

Dept. of Computer Science, lowa State University
226 Atanasoff Hall, Ames, IA, 50011, USA

{rdyer, harish, hridesh}@iastate.edu

ABSTRACT

For a number of reasons, such as to generate object code
that is compliant with the existing virtual machines (VM),
current compilers for aspect-oriented languages sacrifice de-
sign modularity when transforming source to object code by
losing textual locality and intermingling concerns in the ob-
ject code. Sacrificing design modularity has significant costs,
especially in terms of the speed of incremental compilation.
We present an intermediate language design that preserves
aspect-oriented design modularity in Java byte code. We
briefly describe our extensions to the Sun Hotspot VM to
support the new intermediate language design.

1. INTRODUCTION

Aspect-oriented (AO) languages [6] support novel mecha-
nisms for separation of traditionally non-modular concerns.
The problem that we address in this work is that AO compil-
ers sacrifice this separation of concerns, while transforming
source code to object code. The design modularity that AO
languages bring is lost in object code (see Figure 1). There
are real opportunity costs to losing design modularity in
object code. Ome particular cost comes from the resulting
complicated mapping between modularized concerns at the
source code level and the object code fragments. Compilers
currently have to perform this forward mapping. Debuggers
and analysis tools do this mapping in reverse.

These costs are visible in the performance of incremen-
tal AO compilers. The best AO compilers available to-
day take significantly more time and memory compared to
their object-oriented counterparts for incremental compila-
tion. Techniques such as Smartest Recompilation [11] have
shown improvement to incremental compilation times; how-
ever, these techniques are not always applicable to the AO
paradigm. Recently, Lesiecki [7] observed that incremental
compilation using the AspectJ compiler for 700 classes and
70 aspects usually takes at least 2-3 seconds longer than near
instant compilation using a standard Java compiler.

These are not new problems. The compilers for the past

Permission to make digital or hard copies of all or part of this work for

Domain —— Reaquirement —— Design — Code ——— Executable —
Concerns Concerns Concerns Concerns

C

Requirement Analysis

o]
H H
Design
Q
E H E E
Implementation
o
H E
Compilation

Post-Compilation Phases

L

Cr Scattered,
Concerns Concerns Concerns Concerns Tangled

— <>
Traceability Dependence
of Concerns of Concerns

Figure 1: Tracing Concerns through the Life Cycle

two successful modularization techniques, structured pro-
gramming [2] and object-oriented (OO) programming [1],
have shown similar traits. In the absence of a call instruction
in the instruction set architecture, early implementations of
a procedural language compiler would translate modularized
procedures into a monolithic set of instructions by in-lining
the procedure bodies.

These programs would get the benefits of separation of
concerns in the analysis, design and implementation phases,
however, in later phases, such as incremental compilation
and debugging, the benefits were lost with the loss of de-
sign modularity. For example, consider changing an in-lined
procedure. This change will have to be reflected at all call
sites in the object code because the method is now in-lined
by the compiler. This in turn makes incremental compila-
tion of procedures complicated and inefficient. Similarly, the
reader is encouraged to think about incremental compilation
of OO programs into intermediate code languages that do
not support invoke virtual as an instruction.

Our key observation is that for structured programming
and OO programming, the invention and refinement of inter-
mediate languages (or instruction set architectures) helped
preserve design modularity in object code and brought
the benefits of separation of concerns to post-compilation
processes such as incremental compilation, debugging, etc.
Based on this observation, we present an approach for pre-

personal or classroom use is granted without fee provided that copies areserving design modularity in object code for aspect-oriented
not made or distributed for profit or commercial advantage and that copies programs. Our approach consists of an improved intermedi-
bear this notice and the full citation on the first page. To copy otherwise, 10 4te Janguage model and a virtual machine design to support
republish, to post on servers or to redistribute to lists, requires prior specific 41 . 1 o 110del. We show in our presentation that repre-

permission and/or a fee. -
FSE '06Portland, OR sentation of concerns remains modular in our intermediate
language model.

Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

2. OUR APPROACH

To preserve the separation of concerns after AO compila-
tion, we proposed a new intermediate language model called
Nu [9, 3, 8]. The Nu language model adds two new primi-
tives: bind and remove. These primitives expect a pattern
and a delegate as arguments. Similar to pointcuts, the pat-
tern serves to select a subset of the join points in the pro-
gram. Pointcuts and join points have the same meaning as
in AspectlJ-like languages. The delegate or the delegate chain
— similar to an AspectJ advice [5], specifies a list of methods
that is to execute at these join points. The bind primitive as-
sociates the supplied delegate with the join points matched
by the corresponding pattern. A successful pattern match
with a join point results in the related delegate chain being
invoked when the program execution reaches that join point.
The remove primitive eliminates this association. Our prim-
itives are similar to the previous work of Rajan and Sullivan
[10]. They showed that extending OO classes with a new
declarative construct, binding, unifies OO and AO program
design, enabling the modularization of hierarchical integra-
tion concerns. Our experiments described elsewhere [3] have
shown that the bind and remove primitives are able to sup-
port most constructs in existing aspect languages.

Without support for bind, an AO compiler inserts calls in
other modules to produce the desired behavior when gener-
ating the object code, sacrificing the semantic and syntactic
separation of the concerns defined by the aspects. With sup-
port for bind, the compiler translates the pointcuts defined
by the aspect into instructions to construct equivalent pat-
terns. It then generates instructions to bind the delegate
to the join points defined by the pointcuts. The translation
with support for bind preserves the textual locality of the
aspects in the object code. The base classes are free of scat-
tering and tangling and any changes to their corresponding
source code will be local to their own byte code. Similarly,
any changes to the source code of aspect classes will be local
to their corresponding byte code. This maintains the sepa-
ration of concerns for Nu programs at the byte code level.

As a proof of our concept, we realized the bind and remove
primitives by providing support for these at the Java Vir-
tual Machine (JVM) level and a corresponding Java API.
These primitives accept a pattern and a delegate as their
arguments. After compiling both the base classes and the
aspects (aspects here are first class entities, containing the
bindings), there is no scattering or tangling in the generated
class files. Instead of weaving instructions in at various join
points in the Java byte code of other classes, the instructions
are localized to the aspect’s byte code.

At runtime, the join points in the program are matched
against previously bound patterns. To accomplish this, the
Java Hotspot VM was modified by adding an implemen-
tation of a join point dispatcher and changing the JVM
code to notify the dispatcher of join point executions. To
reduce the overhead incurred when pattern matching, the
JVM attempts to limit the number of calls to the join point
dispatcher based on analysis performed at class load time.
This analysis efficiently determines if a join point possibly
matches a bound pattern. The dispatcher then attempts to
match the join point against all bound patterns in the join
point’s delegate chain. For each matched join point, the
corresponding delegate chain is invoked. Our current dis-
patching mechanism is inefficient; however, we are exploring
methods to decrease the overhead.

3. CONCLUSION AND FUTURE WORK

The new invocation mechanism attempts to improve con-
ceptual integrity of AO programming models. We are cur-
rently investigating other related areas to improve the exist-
ing infrastructure - better run-time support for the existing
execution model, support for high-level AO constructs in the
intermediate language [4], providing a formal semantics for
Nu, etc. The decoupling between language compilers and
the virtual machine achieved by the interface provided by
our invocation mechanism also has the potential to enable
independent research in these areas. Simpler aspect lan-
guage designs and compiler implementations might be real-
ized without spending significant time on the optimization
of the underlying AO execution models. Novel optimization
mechanisms for the underlying execution models can be de-
veloped independent of the language design, as long as it
conforms to the interface.

4. REFERENCES

[1] O.-J. Dahl and K. Nygaard. Simula: an algol-based
simulation language. Commun. ACM, 9(9):671-678,
1966.

[2] E. W. Dijkstra. Notes on Structured Programming.
circulated privately, April 1970.

[3] R. Dyer, H. Narayanappa, Y. Hanna, and H. Rajan.
Nu: Improving aspect oriented incremental
compilation. In Submission.

[4] R. Dyer and H. Rajan. Modular compilation strategies
for aspect-oriented constructs. In Submission.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,

J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP ’01: 15th European Conference
on Object-Oriented Programming, pages 327-353,
Budapest, Hungary, June 2001.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
FEuropean Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.

[7] N. Lesiecki. Applying AspectJ to J2EE application
development. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, New York, NY, USA, 2005. ACM Press.

[8] Nu web site.
http://www.cs.iastate.edu/~nu.

[9] H. Rajan, R. Dyer, Y. Hanna, and H. Narayanappa.
Preserving separation of concerns through
compilation. In L. Bergmans, J. Brichau, and
E. Ernst, editors, Software Engineering Properties of
Languages and Aspect Technologies (SPLAT 06), A
workshop affiliated with AOSD 2006, March 2006.

[10] H. Rajan and K. J. Sullivan. Classpects: unifying
aspect- and object-oriented language design. In ICSE
’05: Proceedings of the 27th international conference
on Software engineering, pages 59-68, New York, NY,
USA, 2005. ACM Press.

[11] Z. Shao and A. W. Appel. Smartest recompilation. In
POPL ’93: Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 439-450, New York,
NY, USA, 1993. ACM Press.

