
Analyzing Software Updates: Should You Build a
Dynamic Updating Infrastructure?

Bashar Gharaibeh, Hridesh Rajan, and J. Morris Chang

Iowa State University

Abstract. The ability to adapt software systems to fix bugs, add/change fea-
tures without restarting it is becoming important for many domains including
but not limited to finance, social networking, control systems, etc. Fortunately,
many ideas have begun to emerge under the umbrella term “dyanamic updating"
to solve this problem. Dynamic updating is critical to address certain software
evolution needs. Dynamic updating literature evaluates such systems in terms of
coverage (i.e. what type of code changes are supported) and performance. How-
ever, we do not have a technique to analyze whether certain updating solution,
based on its costs and benefits, is suitable for an application.
In this paper, we present a quantitative analysis model to fill this gap. Our model is
parameterized and it can be instantiated with application-specific valuation func-
tions. Given the software evolution history of the application under considera-
tion, our model allows rigorous comparisons of the value of different software
updating schemes (e.g. online vs. offline). We illustrate our model using two case
studies inspired from the the evolution history of Xerces XML parser library and
Apache httpd web server (Other case studies and evaluation examples are pre-
sented in our technical report [Gharaibeh, Rajan and Chang 09]). The proposed
analysis scheme can serve system architects in evaluating their current updating
scheme. For example, to audit the system’s value during previous development
cycles and whether a different updating scheme will generate higher value.

1 Introduction

Software evolution and maintenance is a fact of life [3,14]. Enhancements, security, and
bug fixes are routinely made to a software system during its usable life. Long running
software systems such as web and application servers, financial software, critical con-
trol systems often need to balance evolution and availability requirements. For such sys-
tems downtime due to software update is unacceptable and often very costly [13,16,25].

Dynamic software updating has attracted significant interest in the last few years
[6,19,23]. This is due to the benefits software updating can provide to long running ap-
plications. The interest in dynamic updating is clear from a plethora of research efforts
and a specialized workshop (i.e. HotSwUp). Such interest is only expected to continue
with the industrial trends towards software as long-running services in service-oriented
architectures.

However, adopting any dynamic updating scheme requires deep understanding
about its cost and benefits beyond the stated software engineering benefits. To date,
dynamic updating literature evaluates such systems in terms of coverage (i.e. what type

of code changes are supported) and performance. For example, Chen et al. [6] evaluated
their system over a set of server applications. The evaluation was in terms of average
server’s response time before and during the update process.

What is missing is a formal quantitative analysis that allows us to study such a sys-
tem in comparison to current static update practices or other dynamic updating systems.
We need to answer the question of whether the benefits of dynamic updating justifies its
cost (performance or regular fees). In theory, being online 24/7 is a priceless advantage.
However, this may not apply to all systems. Given the real history of bugs in a particu-
lar software, does the loss of system value due to these bugs justifies the investment in
dynamic updating? The answer depends on many factors related to system operations
and bug’s severity.

The contribution of this work is a quantitative value model that allows us to study
the gain from updating systems. Our model is based on Net option-value (NOV) analy-
sis [28]. NOV has been devised to price options in a financial market and has also been
used to study the cost and benefit of modularity in designs [2, 15, 27]. Our value model
allows us to study the relation between updating system’s operational parameters (e.g.
cost and timing) and value provided to users. To the best of our knowledge, this is the
first attempt to quantitatively formulate and evaluate the costs/benefits of offline and
dynamic updating in software systems.

The proposed model can be used in different scenarios. For example, it can be used
to audit the system’s value during previous development cycles. By using information
about added features and their revenue, developers can compare the current update prac-
tice and whether a different update strategy would provide higher value. It can also be
used to quantitatively compare different dynamic updating schemes. Given the charac-
teristics of two updating schemes such as types of supported updates and performance
characteristics, the two schemes can be quantitatively compared using a set of bench-
mark features.

We have applied our model to two case studies: the evolution of the XML parser
library Xerces [29], and 42 bug fixes for Apache httpd server obtained from Bugzilla
(Section 3). Other case studies are presented in our technical report [Gharaibeh, Rajan
and Chang 09]. Using these case-studies, we studied the model’s trends, relative values
depending on the selected parameters, and assess its precision. These studies also give
us insights on how one would actually go about estimating the parameters that serve as
the input to the model. We believe this to be a very useful aide to system developers and
maintainers. To summarize, our contributions in this paper are:

– A quantitative model for cost/benefit analysis of updating systems and its formula-
tion. The novelty of the model is in its application of net options value theory to the
area of software updates.

– A case study from software evolution of a real-world application that illustrate the
use of our model. The main benefit of the case studies is that they give insights into
selection of the model parameters.

The rest of this paper is organized as follows. In Section 2 we discuss our quanti-
tative model . We describe our case studies in Section 3. Section 4 presents the related
work while Section 5 discuss various aspects and limitations of our evaluation model.
Section 6 discusses directions for future investigations and concludes.

2 Quantifying Software Update

This section presents our analysis model. The main idea behind the analysis model is the
computation of daily revenue of the system. By understanding how different updating
policies affect the daily value, we can calculate the effect on total revenue made by
these systems.

2.1 Update Models

We will evaluate the following updating models:

– Model 0: Offline update at release time.
– Model 1: Offline update at feature time.
– Model 2: Dynamic Updating.

The first model (Model 0) represents the base case where updates are performed
when a new version is released. The update in this model is performed offline so the
service is stopped until the system finishes the updating process. The disadvantage here
is that severe bugs will not be addressed in a timely manner.

Model Revenue

Model 1 (+) time value of feature.
(-)cost of updating. It depends on cost of disabling and restarting
the service.

Model 2
(+) time value of feature.
(-)cost of online updating, which depends on feature complexity.
(-)cost of using a modified system that supports online updating.

Fig. 1. Value of Updating to Feature i

The costs and benefits of the last two update models are summarized in Figure 1.
Model 1 presents the option for offline updating at feature availability time. In this
model, updates are scheduled on the next system restart and applied when the system
goes offline. Users are able to install these features instead of waiting for the next
release date. Under this model, users will be required to restart their phones, which
might cause users to delay applying the patch until a more suitable time.

Finally, in Model 2 the system is dynamically updated when new features are avail-
able even if availability occurs before the next release time. However, users might suffer
from short-time performance loss during the update process.

In the last two models, we assume that the system is restarted when a new version
is released. Models 1 and 2 allow developers to deploy features quickly rather than
waiting for the new version release time. However, under these models, a restart is still
required at each release.

2.2 Net Options Value Model

Net Options Value (NOV) model quantifies the value of using the system over a certain
period of time. In other words, if the value is represented as a function of time, the total
value is equal to the integration of the value function over the specified period.

f
1

C
vm

T
off

t
fa

C
oa

σ
t
oa

Model 1
Model 2

time
va
lu
e

Fig. 2. Net Option Value of Different Updating Models.

To illustrate, consider the scenario in Figure 2. It shows the revenue generated by
Model 1 (bold line) and Model 2. Each model’s total revenue is equal to the area under
its value function. Model 2 has less value initially due to the cost of supporting dynamic
updates. However, Model 2 gains value by early adoption of feature and reduced cost of
updating. The dip in the Model 2 value represent the cost of the updating process. For
Model 1, the dip is more severe since it incurs complete service disruption. The area in
the figure shaded by diagonal lines represents the gain achieved by offline over dynamic
updating, while areas shaded by horizontal lines represents the gain of dynamic over
offline updating. Intuitively, if the area of diagonally shaded region is larger than the
horizontal region, then offline updating provides better total revenue and the cost of
supporting dynamic updating does not justify its benefits.

In general, net options value [2] is represented as follows:

V = S +
∑
i

NOVi − C

NOVi = Vi − Ci

where S is the base system’s value (i.e. before applying new features), V is the net
value of the model,C is the model cost, which is paid even if no updates were exercised.
NOVi is the value gained by updating to feature i and Ci is the cost of the update. This
formula, although general, does not offer much insight into the specifics of a typical
updating system. Thus, we seek a domain-specific formulation of the net-options value
analysis starting with a quantitative treatment of the value of Model 1 and 2.

Model 0: Static Update at Release Time For this model the system value increases
at release time by an amount equal to added features value. Thus we define the system
value (V) for this model at a future release as:

V = S +
∑
i

σi

where S is the system value at the current release and σi is the technical significance
(value) of feature i. In other words, the value of the system after installing a new release
is equal to its original value (old release value) plus the value of new features.

Model 1: Static Update at Feature Time For this model the system value increases at
next restart time by an amount proportional to added features time value. The cost has
two components. First, the cost of delaying the update. Second, the cost of restarting
the service. Thus we define the system value (V) for this model at a future release time
(ti) until the new version is released T , as follows:

V =
n∑

i=1

NOVi

NOVi = E[U]
T∫

ti+Ti
off

σi(t)dt− CR (1)

CR =

0 ti + T i

off = ti−1 + T i−1
off

UL

tfa∫
0

dt

∗︷ ︸︸ ︷
i−1∑
j=1

σj(ti) otherwise

(2)

(3)

The value function we will use represent the value gained by a single user. It is often
necessary to multiply the gained value by the expected number of users to obtain the
total value. In the value model, E[U] represents the expected number of users, UL is
the number of users at low-demand time. Toff is expected value of time until update
is applied, and tfa is the time needed to complete offline update. This value model has
two parts. The first part describes how the deployment of a feature increases the system
value. The value is equal to the summation of daily revenue of a feature represented by
(σ(t)). The integration bounds represents the period of time the new feature is active.
Since this model relies on scheduled restarts, the feature will not be deployed at its
release time (ti) but rather after certain number of days (Toff). The second part of the
formula presents the cost associated with offline updating. The first case states that if
two features are scheduled on the same restart period, we only need to pay the cost once.
The second case presents the cost of the restart in terms of lost value (system value so
far, labeled with (*)) and the time needed to finish the restart of the system after update
(tfa).

Model 2: Dynamic Updating For this model the system value increases at feature
availability time by an amount proportional to added feature’s time value. The cost has
two components. First, the long-running cost of using the updating system. Second, the
cost of performing the update. Thus we define the system value (V) for this model at a
future release as:

V = E[U]Cvm

n∑
i=1

NOVi

where Cvm is the ratio of the performance of a dynamic-updating system relative to
an offline-updating system and ranges over the period [0, 1], where having the value of
one means that there are no long-running overhead. Thus, as Cvm 1, the operating
cost of the system with dynamic updating decreases. Like Model 1,E[U] is the expected
number of users. The value gained by Model 2 is offset by the cost of using the updating
system.

The per-feature value (NOVi) is defined as follows:

NOVi =

T∫
ti

σi(t)dt−
toa∫
0

Coa(t)dt

i−1∑
j=1

σj(ti) (4)

where ti is the time of release for feature i, T is the time of next release, σi(t)
the value function of the feature, toa is time needed to finish the dynamic update, and
Coa represents the reduction in system’s value during the dynamic updating. Again, this
value model represents the gain from deploying the feature (integration of σ(t)) minus
the cost of the dynamic update which is related to update duration and value loss during
the update.

2.3 Effect of Operational Parameters

Operational parameters are those used to describe the cost and timing of the update pro-
cess. Based on the previous valuation models, we will now construct a set of relations
that describes the bounds on these parameters that guarantees profitable operation. The
original value models can be used to compare total revenue, while this set of relations
can be used to calculate the system parameters based on known constraints.

Effect of Updating Overhead In our model, both update systems suffer a value loss
during the update. However, the dynamic update system also pays the continuous cost
of supporting dynamic updates (Cvm). The value of Cvm represents the performance
overhead from using the dynamic update system. It is known that such overhead must
be kept at minimum. However, the question is when does the overhead reverse any gains
from the modified system.

In general, the relation between Cvm and gain in comparison to the other system
can be modeled by equating equations (4) and (3). By assuming n dispersed features,
dynamic updating has higher value when its value is higher than the value offered by
static updating. After simplification, the effect of update overhead is presented in the
following formula:

n∑
i=1

[

effect of dynamic update︷ ︸︸ ︷
E[U](1− Cvm)

T∫
ti

σi(t)dt+ E[U]Cvm

toa∫
0

Coa(t)dt

i−1∑
j=1

σj(ti)dt

−E[U]

Ti
off∫
0

σi(t)dt− UL

tfa∫
0

dt

i−1∑
j=1

σj(ti)dt

︸ ︷︷ ︸
effect of static update

] < 0

The first half represents the cost of the dynamic update system which consists of
the long-running cost and the update cost. The second half shows the offline updating
cost consisting of delayed feature deployment and service disruption at update time.
Notice that as Cvm increases to reach the value of one (no long-running costs), the cost
of dynamic update is reduced to the cost of the update process at update time. As Cvm
decreases, the long running cost increases in a similar amount. Also, note that as either
Toff or tfa increases, lower values of Cvm can be tolerated.

Effect of Delayed Updates For two features fi, fj where tj > ti, applying the two
features at tj has higher value than applying each feature at its time for Model 1 if (here
terms have their previously defined meanings):

UL

tfa∫
0

dt

i−1∑
k=1

σk(ti) > E[U]

tj+T
j
off∫

ti+Ti
off

σi(t)dt

and for Model 2 if
toa∫
0

Coa(t)dt

i−1∑
k=1

σk(ti) >

tj∫
ti

σi(t)dt

On the other hand, if σ(t), Coa(t) do not depend on time (i.e. constant values), these
conditions are simplified to:
Model 1:

σi <
UL

E[U]

tfa

∑i−1
k=1 σk(ti)

(tj + T j
off)− (ti + T i

off)

Model 2:
σi <

toaCoa
∑i−1

k=1 σk(ti)

tj − ti
(5)

The later condition relates the value of σi to the cumulative system value, update
cost and period between features. For example, under Model 2 (5), a feature that is
equal to 10% of cumulative value and with a period of one week until next feature, the
dynamic update time should be more than 8 hours and 24 min to justify combining the
update of these two features.

Coverage of Dynamic Updating Many dynamic updating systems do not support all
types of code updates. Therefore, even a dynamic update system requires occasional
restarts to serve certain update requests. Generally, we can include this factor as a ran-
dom event xi that is related to the ratio of supported updates. Assuming that for any
certain feature, there is a probability p(xi) that the feature can not be updated dynami-
cally. Therefore, the valuation model of Model 2 is changed as follows:

NOVi =p(xi)NOV
1
i (6)

+ (1− p(xi|xi−1))max{NOV 1
i , NOV

2
i } (7)

+ (1− p(xi|xi−1))NOV
2
i (8)

(9)

In the new model, the NOV of feature i has two factors. First, there is a probability
of xi that a static update is required (i.e. NOV 1

i). Second, if the feature can be applied
dynamically, the NOV is the maximum of the dynamic and static NOV. We are using
the maximum aggregate to cover the possibility that feature i−1 was updated statically
(i.e. p(xi|xi−1)) and that the new feature is released within the Toff period. In this case,
we have the option of upgrading feature i dynamically at the regular cost or statically
at reduced cost since the restart is already required. Otherwise, the regular NOV of
dynamic update is used (i.e. p(xi|xi−1))

3 Applying Our Analysis Model

This section applies our analysis model for comparing software updating schemes to
Apache httpd [1], a well-known web server. The main objective is to study our model’s

trends, relative values depending on the selected parameters, and assess its precision.
The Apache httpd case we collected information about bug fixes over a five years period.

We will start by describing the process of selecting the evaluation parameters. Then
we will present detailed information about the case study. Finally, we will study the
effect of operating parameters on gains achieved by different updating models and how
the timing of applying updates affect the system’s value.

3.1 Selecting Analysis Parameters

The main challenge in the application of our model is selection of proper value func-
tions. Each feature contributes to the value of a release and each bug reduces the system
value until it is fixed. However, assigning proper values of σ(t) is not trivial as it re-
quires an understanding of the technical importance of a feature and how it affects the
whole system’s value. Here, we use a simple heuristic to evaluate a feature’s impor-
tance. For evaluation purposes, we used a constant value for σ(t). However, if more
information is available regarding a feature effect on system’s value, this information
should be represented using a more appropriate function. The value of Toff equals the
number of days until offline updates are performed (i.e. Sundays). The value of toa is
approximated by αtfa. The value of α depending on code modifications required to
implement the feature and was computed by studying code changes. Finally, the value
of Coa is set to 0.5. This value indicates that the system loses half of its performance
(which is very conservative) during the dynamic update process.

3.2 Xerces Case Study

We selected ten features from two consecutive releases of Xerces XML parsing library.
The features provide additional capabilities (e.g. A3: Japanese characters serialization
, B4: support for <redefine> attribute), performance enhancement (e.g. A4: improve
Deterministic Finite Automaton(DFA) build-time performance) or resolve bugs (e.g.
B1). Deploying these features allows the system to increase its revenue through faster
processing, wider customer base and support additional types of XML documents. We
approximated σi values for studied features through a point system. We assume that
a system value (

∑
i σi) doubles at every release. Any security-related features is as-

signed four points, bug fixes and added features are assigned three points, performance
enhancement are assigned two points, and finally, any remaining features are assigned
one point. Using this approach, each feature’s σi is equal to its share of points.

For simplicity, we are assuming that a release consists of these features only. Fig-
ure 3 shows the parameter values for selected features. The table shows the number
of points assigned to each feature as points are used to approximate value gained by
deploying a feature (σ). The table also shows the feature’s relative complicity (α) as
derived from code modification logs. Feature complexity is used to derive the dynamic
updating time (toa). A complex feature requires more updating time than a simpler fea-
ture. The table also lists the time in days until the next release is available (T − t) and
the wait period from the feature release time until the next Sunday (Toff) which we
used as waiting period for the offline updating.

Feature Points σ α T − t Toff

A1 3 0.214 0.185 54 2
A2 3 0.214 0.012 50 5
A3 3 0.214 0.235 48 3
A4 2 0.143 0.136 20 3
A5 3 0.214 0.432 13 3
B1 3 0.214 0.4 43 3
B2 3 0.214 0.36 42 2
B3 2 0.143 0.1 38 5
B4 3 0.214 0.08 28 2
B5 3 0.214 0.05 11 6

Fig. 3. Xerces Feature’s Parameters

We can note that feature complexity follows the trend of feature’s value for Xerces.
In other words, important features are complex. Therefore, supporting a high-value fea-
ture comes at higher cost than a simpler feature, but will provide higher value.

3.3 Apache httpd Case Study

In this case study, we analyzed the history of bug fixes for Apache httpd for versions
from 2.0 to 2.3. Figure 4 shows an overview of bugs timeline and their effect on sys-
tem value. Each bug has a severity level that represents its effect on the system and is
assigned by users reporting the bug. In the figure, the system value is decreased by the
weight of the bug severity (Figure 5) starting from bug discovery date until it was fixed.
In this study, bugs that can be fixed by changing configuration files rather than source
code, and bugs that caused a crash at startup were excluded. These bugs require a restart
in any update model and thus, will not be included in the analysis between dynamic and
static updating. Furthermore, we excluded bugs with severity below normal. The reason
behind excluding these bugs is that users do not usually update their servers for below
normal bugs.

The value of each bug fix (W) is proportional to its severity. Since severity is se-
lected by users reporting the bug, it reflects the value of the bug fix more accurately
compared to value assigned by an external observer. However, it is less obvious how
bug severity affects the system quantitatively. For httpd, we assigned different weights
to different severity levels (Figure 5)1. To compute σi, the severity weight is multiplied
by β, which is an estimate of value loss. For example, a packet monitoring service may
be employed to record transactions affected by the bug. Such system can affect the
overall throughput, and thus, reduces the system value (i.e. hits per day).

The value of a bug fix depends on its severity level (user supplied) and its estimated
value loss (β). We later show the effect of β and bug severity on system values of
different updating models.

3.4 Analysis

We will now apply our analysis model to evaluate the two update models (Model 1
and Model 2). We will study the difference and the effect of operational parameters on
revenue.

1 https://issues.apache.org/bugzilla/page.cgi?id=fields.html

Apr 1, 2002 Aug 14, 2003 Dec 26, 2004 May 10, 2006 Sep 22, 2007 Feb 3, 2009 Jun 18, 2010
86

88

90

92

94

96

98

100

102

Date

V
a

lu
e

Fig. 4. History of httpd Value

Category W Description
Critical 3 crashes, loss of data, memory leak
Major 2 major loss of function

Normal 1 some loss of functionality under specific circum-
stances

Fig. 5. Apache httpd Bug Categories. Taken from ASF Bugzilla: A Bug’s Life Cycle

Revenue Analysis Assuming E[U] = UL = 1, Figure 6 presents the revenue values
for Model 2 and Model 1. These values reflect the expected benefits for a single con-
tinues user. Note that increasing the number of expected users (E[U]) will increase the
absolute revenue. However, it has minimum effect on the difference between Model 1
and Model 2 update systems. The main cause of increased value in Model 2 for Xerces
is the wait period until restart required by Model 1. For Apache httpd, the wait pe-
riod for receiving a bug fix is manifolds longer than that for the next scheduled restart.
Therefore, in the case of httpd, the long running cost of Model 2 makes it less beneficial
on the long run.

Cycle Model 1 Model 2
Xerces 1.2.3-1.3.0 34.86 37.73
Xerces 1.3.0-1.3.1 28.43 31.64
httpd 2285.15 2269.66

Fig. 6. NOV Calculation when E[U] = UL = 1 and tfa = one min. Cvm = 0.99. β = 0.05

Effect of Updating Overhead Figure 7 shows the gain percentage from using Model
2 compared to Model 1 for the studied features from Xerces and bug fixes of Apache
httpd. It shows that for Xerces, dynamic updating can provide benefit as long as its
performance is above 90% of Model 1 performance. In other words, the long running
costs of using dynamic updating for Xerces must not exceed 10% of the system revenue.
If supporting the dynamic update system reduces a server’s performance (e,g, satisfied

requests per second) by 10%, then this performance loss translates into lost customers,
and thus a loss in revenue by 10%. Any gain from early adoption of features will be
eliminated by the constant high cost of supporting dynamic updating. Apache httpd
presents a different story. Even at highest Cvm ratio, there is no benefit from using
Model 2. While as expected, the loss of value increases as Cvm decreases.

0.99 0.95 0.9 0.85 0.8
-30

-25

-20

-15

-10

-5

0

5

10

15

20
Xerces 1.3.0
Xerces 1.3.1
httpd

Fig. 7. Effect of Cvm. E[U] = UL = 1 and tfa = one min.

Effect of Restart Schedule The main reason that Model 2 can generate better value
compared to Model 1 is delayed updates in Model 1, which is related to Toff . This
parameter represents the period of maintenance cycle in model 1. High value indicates
longer periods without restarts and thus reduced cost due to service interruption. On the
other hand, low values of Toff brings required updates at a faster rate. Figure 8 shows
the relation between the value of Toff and the gain of model 2 compared to Model 1.
At higher Toff values, the static update model losses most of its benefits and become
closer to Model 0. Xerces case is very sensitive to varying the value of Toff due to
the short period between features. As Toff increases, many features will be delayed.
However, Apache httpd bug fixes are well-dispersed in time. Therefore, higher Toff
barely affect Model 2 gain (from -1% to 1.5%).

With low Toff (i.e. daily restarts), the system will closely follow the value of Model
2. It is worthy to note that in all cases, we assumed that static updates occur on low
demand times (i.e. restart cost multiplied by UL rather than E[U]). In reality, this as-
sumption may not hold for low values of Toff .

3.5 Summary

In this section, we investigated the value of different update models on a set of real-
world applications (Xerces and Apache httpd). Our main objective was to study our
model’s trends and values depending on the selected parameters. Several key insights
are worthy to note. First, the long running cost of dynamic updating has an influential
role in determining the total revenue. Another observation is the relation between bug
fix history and benefits from dynamic updating.

1 7 14 30
-50

0

50

100

150

200
Xerces 1.3.0
Xerces 1.3.1
httpd

Days

G
a

in
 %

Fig. 8. Effect of toff . E[U] = UL = 1 and tfa = one min. Cvm = 0.99

4 Related Work

Dynamic updating is gaining increased interest from research and industry. Several re-
search projects have proposed, designed and implemented dynamic updating systems.
However, the main evaluation tasks in the literature were performance and coverage.
Chen et al. [6] and Subramanian et al. [26] evaluated their systems in terms of service
disruptions during the update process. Evaluation of runtime aspect-weaving tools [7]
have also focused on runtime overhead. In this paper, we explored a different evalua-
tion goal and methods. To the best of our knowledge, this is the first exposition into
evaluating update systems in terms of running costs and added options value.

Our evaluation model is based on the NOV analysis [5, 12]. NOV analysis is based
on the problem of pricing financial options. A financial option presents the opportunity
to purchase a commodity at a strike price in the future regardless of price fluctuations,
provided that the buyer pays a premium in the present (also known as Call Option). In
this paper we used the basics of options analysis to evaluate the benefits of dynamic
updating. Updating has a significant resemblance with the problem of option pricing.
As options, dynamic updating provides the opportunity to perform a future update at a
possibly reduced price given that a premium (i.e. cost of using the dynamic update sys-
tem) is paid. The body of literature describing this financial instruments is extensive and
out of the scope of this paper. However, we note the application of options to software
design and especially to design modularity. Baldwin and Clark [2] showed the benefits
of modular design in increasing a system’s value. They conclude that a set of options
over modules are more valuable than options on the whole system. This idea is further
utilized in software design research by analyzing which modularization provides the
best value. Sullivan et al. [27] show the value of design based on information hiding
principles by combining NOV analysis and design information.

Similar uses of option analysis can be found in [4,11,15]. Our work shares the basic
analysis techniques since the problem of quantifying updating benefits can be translated
into a modular design evaluation problem (i.e. Updatable systems are modular). How-
ever, the case for software updating presents a different set of operational parameters
and dependencies on time that are not considered for option analysis for software de-
sign. Ji et al. [10] used option analysis to evaluate the benefits from designing and issu-

ing new software releases in relation to market uncertainty. Their analysis is concerned
with the software developer perspective and analyze the preferred market conditions
for releasing an upgrade (additional features). In this paper, we were mainly concerned
with how to decide between different upgrading policies. In contrast, our analysis as-
sists system users and updatable systems designers, rather than feature providers, with
deriving decisions related to upgrading policies.

The problem of designing dynamically updatable systems has also received consid-
erable attention in the last decade. Oreizy et al. [21, 22, 24] and Garlan et al. [8] have
presented and studied dynamic software architectures. These systems were evaluated
based on the performance of resulting application and other code metrics. The model
presented in this paper can be applied to evaluate different online updating schemes
including those presented by Oreizy et al. and Garlan et al.. Evaluating dynamic de-
ployment architectures were also presented Mikic-Rakic in her PhD thesis [17], where
the goal was to reduce service disruption (i.e. increase value) in distributed systems
through better deployment strategies. In this paper, we are not concerned with enhanc-
ing a specific updating system, but rather on providing a mechanism to evaluate and
compare their benefits.

5 Discussion

We have illustrated how our proposed model can be used to evaluate updating systems
and to understand the effect of some operational parameters. This evaluation model is
advantageous since it accounts for the value of time and supports the study of time
dependent value functions. In our evaluation (Section 3), we treated the feature value
function as a constant. In general, assigning values to features is often subjective. How-
ever, it would be of interest to study value functions that directly depend on time. For
example, functions that model compound interest on feature’s value.

We assumed that each applied update is correct and does not fail (i.e. bug-free). This
assumption simplifies the formulation. However, a more practical model will incorpo-
rate the possibility of failed updates. A failed update can be considered as a feature
with negative gain to model value loss during the use of the malfunctioning code. Since
failures are unknown before their occurrence, this additional negative-gain feature will
depend on a probability distribution that describes bug probability over time. The issue
of failed updates have been extensively studied by Mokous and Weiss [18].

Finally, this study evaluated two update models, static(offline) and dynamic. An in-
teresting question is to try to evaluate a combination of several dynamic update schemes
depending on the nature of the feature and how they compare in provided value.

6 Conclusions and Future Work

Software updating has several advantages such as runtime monitoring, bug fixes or
adding features to long running applications. Therefore, dynamic software updating
has attracted significant interest in the last few years [6, 19, 20, 23, 25]. To date, dy-
namic updating literature evaluates such systems in terms of coverage (i.e. what type of
code changes are supported) and performance. For example, Chen et al. [6] evaluated

their system in terms of service disruptions during the update process and noted the
types of code changes that their system can not handle. Such evaluation is sufficient to
understand the system performance and coverage. However, we often need other met-
rics to compare different updating systems. For example, what would be the gain from
dynamic updating over offline updating, or what is the gain difference between two dy-
namic updating systems. To answer these questions, we formalized a quantitative model
to evaluate the net revenue gained by the use of different updating models. Using this
model, we were able to evaluate the gain from online updating vs. offline updating based
on the evolution history of real-world applications. Furthermore, the model can also be
used to compare two, updating schemes that differ in their coverage and performance.

An interesting outcome of this analysis was an insight into the perceived value of
performance overheads for dynamic update systems. Generally, researchers have been
concerned about two kinds of such overheads [7]: first, during update time, and sec-
ond, constant overhead during the system’s normal execution. Our analysis provides a
method to analyze and compare these overheads based on their perceived values, which
has the potential to aid in the selection of an updating system during software design.

Future work involves extending our analysis model in two main directions. First,
the formulation can be extended to model the effect of bug discovery. Often after a
feature release a bug is discovered and a second patch is needed to resolve the bug. The
extension can model the revenue loss from such activity. Second, in terms of evaluation,
we used simple constants to represent feature values. However, modeling real-world
economics would require more complex valuation functions.

References

1. Apache httpd. http://httpd.apache.org/.
2. C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modularity Volume 1. MIT

Press, Cambridge, MA, 1999.
3. K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: a roadmap. In the

Conference on The Future of Software Engineering, pages 73–87, 2000.
4. Y. Cai. Modularity in Design: Formal Modeling and Automated Analysis. PhD thesis, U. of

Virginia, 2006.
5. A. D. Chandler. Strategy and Structure. MIT Press, Cambridge, MA., 1962.
6. H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. POLUS: A POwerful Live Updating

System. In ICSE, 2007.
7. R. Dyer and H. Rajan. Nu: a dynamic aspect-oriented intermediate language model and

virtual machine for flexible runtime adaptation. In AOSD ’08, 2008.
8. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow: Architecture-

based self-adaptation with reusable infrastructure. Computer, 37:46–54, 2004.
9. B. Gharaibeh, H. Rajan, and J. M. Chang. A quantitative cost/benefit analysis for dynamic

updating. Technical report, Iowa State University, 2009.
10. Y. Ji, V. Mookerjee, and S. Radhakrishnan. Real options and software upgrades: An eco-

nomic analysis. In International Conf. on Information Systems (ICIS), pages 697–704, 2002.
11. K. Sullivan et al.. Modular aspect-oriented design with XPIs. ACM TOSEM, 2009.
12. S. Klepper. Entry, exit, growth and innovation over the product life cycle. American Eco-

nomic Review, 86(30):562–583, 1996.
13. G. Kniesel. Type-safe delegation for run-time component adaptation. In ECOOP, 1999.

14. M. Lehman. Software’s future: managing evolution. Software, IEEE, 15(1):40–44, Jan/Feb
1998.

15. C. V. Lopes and S. K. Bajracharya. An analysis of modularity in aspect oriented design. In
AOSD ’05, pages 15–26, 2005.

16. K. Mätzel and P. Schnorf. Dynamic component adaptation. Technical Report 97-6-1, Union
Bank of Swizerland, 1997.

17. M. Mikic-Rakic. Software architectural support for disconnected operation in distributed
environments. PhD thesis, University of Southern California, 2004.

18. A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5:169–180, 2000.

19. I. Neamtiu and M. Hicks. Safe and timely updates to multi-threaded programs. SIGPLAN
Not., 44(6):13–24, 2009.

20. I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic software updating for c.
PLDI, 2006.

21. P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime software adaptation: framework, ap-
proaches, and styles. In ICSE Companion ’08: Companion of the 30th international confer-
ence on Software engineering, pages 899–910, 2008.

22. P. Oreizy and R. Taylor. On the role of software architectures in runtime system reconfigu-
ration. In Intl. Conf. on Configurable Distributed Systems,, 1998.

23. A. Orso, A. Rao, and M. Harrold. A technique for dynamic updating of Java software. 2002.
24. P. Oreizy et al.. An architecture-based approach to self-adaptive software. IEEE Intelligent

Systems, 14(3):54–62, 1999.
25. S. Malabarba et al.. Runtime support for type-safe dynamic java classes. In ECOOP ’00,

pages 337–361, 2000.
26. S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic software updates: a VM-centric

approach. In PLDI, pages 1–12, 2009.
27. K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure and value of modularity

in software design. In ESEC/FSE ’01, pages 99–108, 2001.
28. O. E. Williamson. The Economic Institutions of Capitalism. Free Press, New York, NY,

1985.
29. Xerces. XML library: http://xerces.apache.org/xerces-j/.

