
On Decomposing a Deep Neural Network into Modules
Rangeet Pan

rangeet@iastate.edu
Dept. of Computer Science, Iowa State University

226 Atanasoff Hall, Ames, IA, USA

Hridesh Rajan
hridesh@iastate.edu

Dept. of Computer Science, Iowa State University
226 Atanasoff Hall, Ames, IA, USA

ABSTRACT
Deep learning is being incorporated in many modern software sys-
tems. Deep learning approaches train a deep neural network (DNN)
model using training examples, and then use the DNN model for
prediction. While the structure of a DNN model as layers is observ-
able, the model is treated in its entirety as a monolithic component.
To change the logic implemented by the model, e.g. to add/remove
logic that recognizes inputs belonging to a certain class, or to re-
place the logic with an alternative, the training examples need to
be changed and the DNN needs to be retrained using the new set of
examples. We argue that decomposing a DNN into DNN modules—
akin to decomposing a monolithic software code into modules—can
bring the benefits of modularity to deep learning. In this work,
we develop a methodology for decomposing DNNs for multi-class
problems into DNN modules. For four canonical problems, namely
MNIST, EMNIST, FMNIST, and KMNIST, we demonstrate that such
decomposition enables reuse of DNN modules to create different
DNNs, enables replacement of one DNN module in a DNN with
another without needing to retrain. The DNN models formed by
composing DNN modules are at least as good as traditional mono-
lithic DNNs in terms of test accuracy for our problems.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Software
and its engineering→ Abstraction and modularity.
KEYWORDS
deep neural network, modularity, decomposition

ACM Reference Format:
Rangeet Pan and Hridesh Rajan. 2020. On Decomposing a Deep Neural
Network into Modules. In Proceedings of The 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE 2020). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
A class of machine learning algorithms known as deep learning has
received much attention in both academia and industry. These algo-
rithms use multiple layers of transformation functions to convert
inputs to outputs, each layer learning successively higher-level of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

abstractions in the data. The availability of large datasets has made
it feasible to train (adjust the weights of) these multiple layers. Since
these layers are organized in the form of a network, this machine
learning model is also referred to as a deep neural network (DNN).
While the jury is still out on the impact of deep learning on overall
understanding of software’s behavior, a significant uptick in its
usage and applications in wide-ranging areas and safety-critical
systems, e.g., autonomous driving, aviation system, medical anal-
ysis, etc, combine to warrant research on software engineering
practices in the presence of deep learning.

A software component and a DNN model are similar in spirit—
both encode logic and represent significant investments. The former
is an investment of the developer’s efforts to encode desired logic in
the form of software code, whereas the latter is an investment of the
modeler’s efforts, an effort to label training data, and computation
time to create a trained DNN model. The similarity ends there,
however. While independent development of software components
and a software developer’s ability to (re)use software parts has
led to the rapid software-driven advances we enjoy today; the
ability to (re)use parts of DNN models has not been, to the best of
our knowledge, attempted before. The closest approach, transfer
learning [14], attempts to reuse the entire DNN model for another
problem. Could we decompose and reuse parts of a DNN model?

To that end, we introduce the novel idea of decomposing a trained
DNN model into DNN modules. Once the model has been decom-
posed, the modules of that model might be reused to create a com-
pletely different DNN model, for instance, a DNN model that needs
logic present in two different existing models can be created by
composing DNN modules from those two models, without having
to retrain. DNN decomposition also enables replacement. A DNN
module can be replaced by another module without having to re-
train the DNN. The replacement could be needed for performance
improvement or for replacing a functionality with a different one.

To introduce our notion of DNN decomposition, we have fo-
cused on decomposing DNN models for multi-label classification
problems. We propose a series of techniques for decomposing a
DNN model for n-label classification problem into n DNN modules,
one for each label in the original model. We consider each label as
a concern, and view this decomposition as a separation of concerns
problem [4, 13, 18]. Each DNN module is created due to its ability
to hide one concern [13]. As expected, a concern is tangled with
other concerns [1, 6, 15] and we have proposed initial strategies to
identify and eliminate concern interaction.

We have evaluated our DNN decomposition approach using 16
different models for four canonical datasets (MNIST [7], Fashion
MNIST [21], EMNIST [3], and Kuzushiji MNIST [2]). We have exper-
imented with six approaches for decomposition, each successively
refining the former. Our evaluation shows that for the majority
of the DNN models (9 out of 16), decomposing a DNN model into

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Rangeet Pan and Hridesh Rajan

modules and then composing the DNN modules together to form a
DNN model that is functionally equivalent to the original model,
but more modular, does not lead to any loss of performance in terms
of model accuracy. We also examine intra- and inter-dataset reuse,
where DNNmodules are used to solve a different problem using the
same training dataset or entirely different problem using an entirely
different dataset. Our results show DNN models trained by reusing
DNN modules are at least as good as DNN models trained from
scratch for MNIST (+0.30%), FMNIST (+0.00%), EMNIST (+0.62%),
and KMNIST (+0.05%), We have also evaluated replacement, where
a DNNmodule is replaced by another and see similarly encouraging
results. In the rest of this paper, we describe our initial steps toward
achieving better modularity for deep neural networks starting with
a motivating example in §2, related work in §3, methodology in §4
and results in §5. §6 concludes.

2 WHY DECOMPOSE A DNN INTO MODULES?
Achieving decomposition of a DNN into modules has the potential
to bring many benefits of modular programming and associated
practices to deep learning. To motivate our objectives, consider Fig-
ure 1 that uses DNNmodels for recognizing digits [7] and letters [3]
to illustrate. The top-half of the figure shows two reuse scenarios.
(1) If we have a DNN model to recognize 0-9, can we extract the
logic to recognize 0-1 and build a DNN model for binary digits? (2)
If we have two DNN models for recognizing 0-9 and A-J, can we
build a DNN model for recognizing 0-9AB, essentially a duodeci-
mal classifier? The bottom-half of the figure shows a replacement
scenario. (3) If we have a DNN model that is doing a satisfactory
job of classifying 0-4 and 6-9, but could improve its performance
for 5, could we take the logic for classifying 5 from another DNN
model and replace the faulty 5 with a new part.

0 1 2 3 4 5 6 7 8 9

DNN Model with English letters (A-J)

A B C D E F G H I

DNN Model with English digits

J

0 1

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 A B

Build a subproblem: Use 0 and 1 to
build a binary digit classifier

Merge two problems: Use 0-9 and A-B to build a
duodecimal number classifier

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Remove the faulty part Identify a better DNN model

Replace the faulty part

DNN Model A DNN Model B

Figure 1: Examples of Fine-grained Reuse and Replacement

If the logic to recognize 0-9 and A-J were implemented as source
code, modern SE practices might consider these reuse and replace-
ment scenarios trivial. These scenarios would be far from trivial in
the current state-of-the-art in deep learning. To realize the reuse
scenarios, first the developer will build a model structure for bi-
nary digits for the first scenario, and duodecimal classifier for the
second scenario. Then, the developer will take the training dataset
for 0-9 and partition it to extract labeled training samples for 0
and 1 for the first scenario and A and B for the second scenario.
Then, these new training datasets will be used to retrain the new
model structures. Realizing the replacement scenario is more com-
plicated, however. The developer might need to change the model

structure of model A to match the structure of model B, which
also has the potential to change model A’s effectiveness for 0-4 and
6-9. Then, they can replace the training samples for 5 used to train
model A with those used to train model B. Finally, the modified
model A would be trained with the modified training data. Even for
these simple scenarios, both reuse and replacement are complicated.
Coarse-grained reuse of the entire DNN model as a black-box is
becoming common. As modern software continues to integrate
DNN models as components, it is important to understand whether
fine-grained reuse/replacement of DNN models can be improved.

3 RELATED IDEAS
We are inspired by the vast body of seminal work on decomposing
software into modules [4, 6, 13, 15, 18]. We believe that there are
ample opportunities to consider a number of these ideas in the
context of DNN, but focus primarily on decomposition in this work.

The decomposition of a DNN into modules has not been at-
tempted before, but coarse-grained reuse (at the level of the entire
DNN) has been. An approach for achieving reusability in deep
learning is transfer learning [14]. In this technique, a DNN model
is leveraged for a different setting by changing the output layer
and input shape of a pre-trained network. Transfer learning can
be either heterogeneous [16, 17] or homogeneous [12, 20] based
on the problem domain. Zhou [22] proposed a specification based
framework that uniquely identifies the goal of the model. These
models can be advertised in the marketplace so that other devel-
opers can take this model as input and utilize them to build other
DNN models on top of those. Li et al. [8] proposed that reusability
can be achieved by adding different AUC metrics as tags that can
help to choose the appropriate model with different parameters.
Compared to the coarse-grained reuse of DNN models, the focus of
this work is on fine-grained reuse and replacement.

4 DECOMPOSING A DNN INTO MODULES
Our approach, illustrated in Figure 2, decomposes a trained DNN
model into modules. In this work, we focus on DNN models for
multi-label classification problems.We will refer to the single, black-
box, DNN model for all classes as the monolithic model. Our ap-
proach decomposes such models into DNN modules, one for each
label in the original monolithic model. A DNN module accepts the
same input as the monolithic model, but acts as a binary classifier.
In our example in Figure 2, a multi-label classifier that classifies
input into 0-2 (far-left) is decomposed into three DNN modules
(far-right) that classify whether an input is 0 or 1 or 2.

DNN decomposition has three steps: concern identification (CI),
tangling identification (TI), and concern modularization (CM). By
concern here we mean a specific functionality, e.g. an ability to
determine whether an input is 0. This meaning is consistent with
the prior work on modularity [4, 6, 13, 15, 18]. Concern identifica-
tion (CI) is the process of identifying parts of the monolithic model
that are responsible for that concern. Clearly, as Figure 2 shows,
concerns are tangled (mixed together) within the monolithic model
and parts of the model might contribute to more than one concerns.
Once concern identification is complete and parts of the monolithic
model that contribute to a concern are identified, tangling identifica-
tion (TI) is the process of identify elements among those parts that

On Decomposing a Deep Neural Network into Modules ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

CI: Concern identification
TI: Tangling identification
CM: Concern modularization

Concern 0

Tangled Concerns

0 1 2 0 1 2

Concern 1 Concern 2

Functional Concerns

0 1 2

Concern 0 with tangling

Identify Tangling

...

0 ¬0

Concern 0 after concern
channeling

...
0

1

2

DNN Model
with digit 0-2

Module Decomposition
Graph Based Representation

0

1

2

Modules

TI CMCI

Figure 2: Overview of the approach to decompose a DNN model.

are also contributing to other concerns. Finally, concern modular-
ization (CM) is the process of separating the parts of the monolithic
model belonging to a concern into its own DNN module. CM also
involves concern channeling where the effects of the non-dominant
concerns within the module are channeled appropriately.

4.1 Concern Identification (CI)
Concern identification essentially identifies those parts of the mono-
lithic model that contribute to specific functionality or concern. To
paraphrase Tarr et al. [18], in order to achieve a better DNN quality
and improve the reusability, the concerns of DNN need to be sep-
arated in such a fashion that each concern can perform a specific
functionality without the intervention of the others. To untangle
the concern of the output label, one could obtain a piece of the DNN
that can perform a certain task, e.g., prediction for a single class,
and can hide the non-dominant concern(s) to separate that concern.
To illustrate, consider Figure 2. Here, the monolithic model has
three tangled concerns for 0, 1, and 2. The goal of the concern iden-
tification step is to identify parts of the DNN that are responsible
for classifying an image into 0, 1, and 2. Once we identify parts of
the DNN related to a concern, those parts still might contribute to
other concerns as well. We call those other concerns non-dominant
concern(s). For example, for the concern 0, concerns 1 and 2 are
non-dominant concerns in Figure 2. Before we decompose the DNN
into modules, we need to identify the concerns in a monolithic DNN
and separate them to build sub-networks responsible for individual
concerns.

Our algorithm for concern identification is shown in Algorithm 1.
We monitor the behavior of the nodes by studying the training
examples for that concern (e.g., training examples for 0), and add,
update, remove the edges. This algorithm forms a sub-graph that
can identify the common edges for a single output label. First, the
weight and bias of the DNNmodel are stored. In order to identify the
edges that are responsible for a particular output label, we observe
the behavior with the examples that belong to that label from the
training dataset. With each example, we perform the weight and
bias update operation. In the update operation, we provide the
DNNmodel (model), input example (input), the updated weight (D),
bias (b), and an indicator (indicator). The weight D and bias b are
initialized with the weight and bias of the monolithic DNN model
outside the Algo. 1. With every example, D and b are updated and
they are returned as an output. For the next example, the modified
D and b will be taken as an input. If for some inputs, the common
edges for all the examples that belong to a single concern are very

Algorithm 1 Concern Identification (CI).
1: procedure CI (model , input , indicator , D , b)
2: X = input
3: W , B = extractW B(model) ▷ Extract weight and bias.
4: X0 = X
5: for each i∈ L − 1 do
6: Xi = Xi .Wi
7: Xi = Xi + Bi ▷ Compute the value of the nodes.
8: XL = XL−1 .WL + BL
9: XL = sof tmax (XL)
10: for each i∈ L − 1 do
11: for j = 0 to j = |Xi | do
12: if Xi [j] ≤ 0 then
13: Di [:, j] = 0 ▷ Update the value of the edges to 0 for inactive nodes.
14: if i!=L-1 then
15: Di+1[j, :] = 0
16: bi [j] = 0
17: else
18: if indicator == T rue then
19: Di [:, j] =Wi [:, j] ▷ No change to edge if indicator is set.
20: bi [j] = Bi [j]
21: else
22: for k = 0 to k = |Wi [:, j] | do ▷ Update the common edges.
23: ifWi [j, k] < 0 then
24: Di [j, k] =max (Di [j, k],Wi [j, k])
25: if Di [j, k] < 0 then
26: Di [j, k] = 0
27: else
28: Di [j, k] =min(Di [j, k],Wi [j, k])
29: bi [k] = Bi [k]
30: for j = 0 to j = |XL | do
31: if indicator == T rue then
32: DL[:, j] =WL[:, j]
33: bL[j] = BL[j]
34: else
35: for k = 0 to k = |WL[:, j] | do ▷ Update the output layer edges.
36: ifWL[j, k] < 0 then
37: DL[j, k] =max (DL[j, k],WL[j, k])
38: else
39: DL[j, k] =min(DL[j, k],WL[j, k])
40: bL[k] = BL[k]
41: return D, b

low, then the graph can become very sparsely connected. To avoid
such circumstances, the algorithm stops removing edges from the
graph once it reaches a threshold. We compute the non-negative
edges outside the Algo. 1 and set the the indicator variable. Here,
we evaluate the variable and modifies the edges based on the value.
The detailed discussion is in in the Algo .3. The edge update is
carried out in such a fashion that removing, updating the edges can
help to identify a single concern while removing the other concerns
(output labels). First, we identify the value of the nodes at each layer
by applying the dense operation in the line 5-9. Here, L denotes

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Rangeet Pan and Hridesh Rajan

the total number of hidden and output layers. For nodes belong to
the hidden layer, we monitor the value before applying the ReLU
operation. However, for the output layer, the value computed after
applying the softmax activation function, has been analyzed. At
line 10, we iterate through each hidden layer and monitor the value
of the nodes. From line 12-16, we remove the incoming edges to the
nodes that have value <=0 by applying the ReLU operation. Based
on the definition of ReLU, any negative value will be updated to
zero. We update the bias of the node to be zero as there will not be
any dataflow through that node. Due to the same reason, we remove
the outgoing edges from those nodes to the next layer except the
edges connecting the last hidden layer and the output layer. If the
value corresponding to the node is a positive one, we validate the
indicator. If the indicator is false, the edges are updated by the
minimum value of the DNN model edge (Wi [j,k]) and the updated
edge (Di [j,k]) if the value of the edge is a positive one. If the value
of the edge is negative, we perform the maximum operation. Both
the operation are carried out to store the semantics of the edges
and their impact on the prediction. At line 25, the updated edges
are validated, and if the value is negative, they are updated as zero
based on the activation logic. From line 31-40, we perform a similar
operation on the output layer and return the updated weight (D)
and the bias (b).

4.2 Tangling Identification (CI)
Tangling identification recognizes the parts responsible for other
concerns. While concern identification can separate the part of the
network that contributes to a concern, it may not be able tomake the
separated parts functional. Using concern identification, we identify
the edges that are responsible for a particular concern. However,
the remaining network can only classify a single concern as all the
edges correspond to the other concerns are removed or updated,
and the model predicts the dominant concern irrespective of the
input. Thus, the resulting network becomes a single-class classifier.
This is akin to removing a conditional and a branch from a program
that results in a subprogram that performs the functionality of
the remaining branch but does so unconditionally. For example, in
Figure 1 the concerns for 0, 1, and 2 cannot be used as they cannot
distinguish between different inputs.

To solve this problem, our insight is to identify some edges and
nodes back to the concern that helps us identify inputs that don’t
need classification by the dominant concern. In our approach, we do
so by adding parts of the non-dominant concerns. By doing so, the
problem of classification becomes akin to the one against all (OAA)
classification problem. In OAA, a classifier is built from the scratch
that predicts a particular output label (positive example) and can
still detect any negative ones. There are a few techniques that have
been proposed by prior works [9, 23] that includes introducing an
imbalance between the positive and negative examples, punishing
the negative example, assign higher priority to the negative exam-
ples while modifying the edges. We propose another technique that
keeps the most relevant edges related to the negative examples.
Before describing these techniques, we discuss the approach to add
edges related to non-dominant concerns in Algorithm 2.

Algorithm 2 works as follows. First, the value of the nodes is
computed similarly to the Algorithm 1. After that, the edges incident

Algorithm 2 Tangling Identification (TI).
1: procedure TI(model ,input ,indicator ,D , b)
2: X = input
3: W , B = extractW B(model)
4: X0 = X
5: for each i∈ L − 1 do
6: Xi = Xi .Wi ▷ Compute the value of the nodes.
7: Xi = Xi + Bi
8: XL = XL−1 .WL + BL
9: XL = sof tmax (XL)
10: for each i∈ L − 1 do
11: for j = 0 to j = |Xi | do ▷ Update the negative edges.
12: if Xi [j] ≤ 0 then
13: Di [:, j] = Di [:, j]
14: else
15: Di [:, j] =Wi [:, j]
16: bi [j] = Bi [j]
17: for j = 0 to j = |XL | do ▷ Update the output layer edges.
18: if XL[j] > 0.0001 then
19: DL[:, j] =WL[:, j]
20: bL[j] = BL[j]
21: return D, b

to the nodes with positive value (at lines 12-16), are added. For the
output layer, we reintroduce the edges responsible for the negative
output label classification (at lines 17-20).

Next, we discuss four different approaches for non-dominant
edge addition techniques.

Tangling Identification: Imbalance (TI-I). Recall that concern iden-
tification works using training examples for a particular concern. In
this approach, an imbalance is introduced while adding the number
of examples from the positive and the negative output labels [11].
In the Algorithm 3, we discuss the steps followed to include the pos-
itive and negative examples and carry the edge update operations.
First, weight and the bias of the DNN model are extracted at line 2.
Then, training examples belonging to the positive output label are
filtered. To identify the concern, the positive examples are used

Algorithm 3 Tangling Identification: Imbalance (TI-I).
1: procedure TII (model , Xtrain , Ytrain , class , neдativeclass)
2: W , B = extractW B(model) ▷ Extract weight and bias.
3: D =W , b = B , indicator = False
4: Xclass = Xtrain [Ytrain == class] ▷ Filter positive examples.
5: for i = 0 to i = |Xclass [0 : 1000] | do
6: D, b = CI (model , Xclass [i], indicator , D , b) ▷ Update the positive

edges.
7: if countnonzero(DL) ≤ .1 ∗ |DL | then
8: indicator = False ▷ Stop the update if graph is very sparse.
9: for each i ∈ neдativeclass do ▷ Update negative edges.
10: Xneдative = Xtrain [Ytrain == i]
11: for i = 0 to i = |Xneдative [0 : ⌊10/ |neдativeclass |]⌋ | do
12: D, b = T I (model , Xneдative [i], indicator , D , b)
13: return D, b

to find the common edges that correspond to them based on the
approach depicted in the Algorithm 1 Our concern identification
algorithm relies on an indicator to halt the process of eliminating
edges. At line 7, such an indicator has been utilized that is set when
the total number of nonzero edges (active) at the last layer is less
than 10% of the total edges. Then, negative examples are added (we
perform a floor operation to remove the floating-point value) at
lines 8-11 using the Algorithm 2. Finally, the edges corresponding

On Decomposing a Deep Neural Network into Modules ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

to the non-dominant concerns are updated or added based on the
approach discussed in the Algorithm 2.

Tangling Identification: Punish Negative Examples (TI-PN). Sim-
ilar to the previous approach of introducing imbalance to tackle
the OAA problem, here we punish the negative output labels by
letting the positive output label update the edges first [10]. The
process is similar to Algorithm 3. However, the input examples
are balanced. In this approach, if 100 examples are utilized for the
positive output label, then a same number of examples for the nega-
tive labels are taken e.g., for an MNIST classification problem with
ten output labels, if we want to decompose a module for label 0,
then we choose the ratio being 100:99 (11 from each negative la-
bel). To stop the negative edges being introduced in a module, the
approach for identifying the common edges has been updated. In
Algorithm 1, the edges between the output layer and the last hidden
layer are updated based on the value of the weight. In addition to
that, validation has been introduced before line 31, where the edges
that incident to the nodes at the output layer having a value at
least 0.0001 (0.01% as the last layer represents the probability value)
have been added. This helps to remove the edges responsible for
the negative examples leaving more edges related to the positive
output label.

Tangling Identification: Higher Priority to Negative Examples (TI-
HP). In this approach, the negative output labels are assigned more
priority over the dominant concern by swapping the order of the
edge update. For this, we update the edges correspond to the domi-
nant concern first (lines 9-12 from Algorithm 3) and then update
the edges responsible for the non-dominant concerns (lines 5-8). To
keep the ratio of positive and negative examples the same, the total
negative examples are equally distributed to the number of negative
output labels and floor operation has been performed to avoid any
floating-point number (at line 12 from Algorithm 3, we replace the
number 10 with 1000 that is same as the positive examples). Other
than that, everything has been kept the same.

Tangling Identification: Strong Negative Edges (TI-SNE). In this
approach, the edges related to the positive label are updated, then
the negative labels. Furthermore, the strong negative edges are
added by introducing a validation to the Algorithm 2 at line 18 by
updating the check imposed on the output node value associated
with the negative examples. To do so, the value of the probability
has been changed from 0.01% to 50% while keeping the other parts
of the algorithm unchanged.

4.3 Concern Modularization (CM)
Concern modularization partitions the concerns into parts and
builds DNN modules for each concern.

Concern Modularization: Channeling (CM-C). Concern modu-
larization includes the abstraction of the non-dominant concerns.
In this approach, we propose an approach to abstract the non-
dominant concerns by combining the non-dominant nodes at the
output layer. In the Algorithm 4, we discuss the methodology to
channel the output nodes into one for all the non-dominant nodes.
At lines 2-8, the edges between the last hidden layer and the positive
node at the output layer are updated. The input class indicates the

Algorithm 4 Concern Modularization: Channeling (CM-C).
1: procedure CMC (D , b , class)
2: for i = 0 to i = |DL | do
3: temp = DL[i, :]
4: if class = 0 then ▷ Assign the 2nd node as the negative.
5: temp[1] =mean(temp[1, :])
6: temp[2, :] = 0
7: dL[1] =mean(dL[1, :]) ▷ Compute the mean of negative edges.
8: dL[2, :] = 0 ▷ Update all edges to other negative nodes.
9: else ▷ Assign the 1st node as the negative.
10: tempW , tempB = [], k = 0
11: for j = 0 to j = |bL | do ▷ |bL | represents the size of the output layer.
12: if j ! = class then ▷ Perform for all negative nodes.
13: tempW [k] = temp[j]
14: tempB[k] = bL[j]
15: k = k + 1
16: temp[0] =mean(tempW) ▷ Compute the mean of negative edges.
17: dL[0] =mean(dL[1, :]) ▷ Assign the mean value.
18: for j = 1 to j = |bL | do ▷ Update all edges to other negative nodes.
19: if j ! = class then
20: temp[j] = 0
21: dL[2, :] = 0
22: DL[i, :] = temp
23: return D, b

concerned output label. The position of the non-dominant node at
the output label after the concern channeling depends on the posi-
tion of the dominant node. If the dominant node is the first node,
thenwe assign the 2nd node at the output label as the non-dominant
node (lines 5-8). If not, we choose the 1st node as the non-dominant
node and keep the position of the dominant node as it is (lines
12-21). All the edges incident on the pre-channeling non-dominant
nodes are replaced by edges directed towards the non-dominant
node after channeling with the value being the average of the edges.
The remaining edges (incident on the non-dominant nodes other
than the channelized one) are updated to be 0.

Concern Modularization: Remove Irrelevant Edges (CM-RIE). Be-
fore applying the concern channeling, we remove the irrelevant
nodes at the last hidden layer that only contributes to non-dominant
concerns. The edges that are connected with the negative output
nodes (before channeling the output nodes) and not connected
(weight is zero) with the positive output node are combined into
one node. The outgoing edge(s) from the combined node to a par-
ticular negative output node, is updated with the average of the all
the edges incident to that negative output node from nodes that are
connected only with the negative output labels. In the Algorithm 5,
we discuss the steps carried out to remove the edges picked based
on the filtering criteria. At lines 4-18, the edges from the last hidden
to output layer are updated if a node n from the last layer is only
connected to the any of the negative output nodes. These edges
are replaced by a single edge with the weight and bias value as the
average of the edges. If the number of such nodes is more than one,
we replace all the nodes by one node by removing all the edges
from those nodes with one edge with the average weight and bias.
We perform this operation at lines 22-28. Updating the edges and
removing the connection to some nodes is similar to changing the
flow of the data. In this process, the path that data flows has been
updated, not the amount of the flow. Since the flow with the edges
from the last hidden layer and the output layer has been updated,
the same flow needs to be adjusted at the preceding layer. This

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Rangeet Pan and Hridesh Rajan

Algorithm 5 Concern Modularization: Remove Irrelevant Edges
(CM-RIE).
1: procedure CM-RIE (D , b , class)
2: tempD=[], tempCount=0
3: for i = 0 to i = |DL | do
4: temp1, temp2=[]
5: if DL[i, class]==0 then
6: for j = 0 to |dL | do
7: if j ! = class then
8: if DL[i, j]! = 0 then ▷ Identify the irrelevant nodes.
9: temp1.add (DL[i, j]); temp2.add (j)
10: ▷ Compute the mean of the negative edges for the irrelevant nodes.
11: if class == 0 then
12: DL[i, 1] =mean(temp1)
13: else
14: DL[i, 0] =mean(temp1)
15: for k ∈ temp2 do
16: DL[i, k] = 0
17: tempD .add (i)
18: if class == 0 then
19: neдativenode = 1
20: else
21: neдativenode = 0
22: if len(tempD) > 1 then ▷ Merge the edges if more than 1 irrelevant nodes.
23: for i ∈ tempD do
24: if class == 0 then
25: tempCount+ = DL[i, 1]
26: else
27: tempCount+ = DL[i, 0]
28: DL[tempD[0], neдativenode] =mean(tempCount)
29: for x ∈ tempD[1 : count (tempD)] do
30: DL[x, neдativenode] = 0 ▷ Update the removed edges.
31: for i = 0 to |DL−1 | do ▷ Compensate the flow.
32: tempDL−1 = []
33: for j ∈ tempD do
34: tempDL−1 .add (DL−1[i, j]) ▷ Update the merged edges.
35: DL−1[i, tempD[0]] =mean(tempDL−1)
36: for x ∈ tempD[1 : count (tempD)] do
37: DL−1[i, x] = 0 ▷ Update the removed edges.
38: D, b = CMC (D, b, class) ▷ Apply the concern channeling approach.
39: return D, b

update operations is shown at lines 31-37. The edges from the pre-
ceding layer to the last hidden layer that incident on the removed
nodes are removed and updated the edges incident to a replaced
node at the last hidden layer.

1 0

Module 1 with negative
nodes Remove edge at the last layer

 2 1 0 2 1 0 2

Remove irrelevant node(s)

Figure 3: ConcernModularization: Remove Irrelevant Edges

In Figure 3, an example of such an operation is shown, where
two nodes are connected with the negative output nodes, not with
the positive output label. First, edges from the last hidden layer to
the output layer are replaced with a single edge for each node. Then,
all such nodes are replaced with a single node with the updated
value associated with the edges. Furthermore, to compensate for

the flow, all the edges that are incident on the removed nodes are
removed and the value of the edges to the replaced node at the
last hidden layer is updated. After this operation, we channel the
behavior of the negative output label using the approach described
in the Algorithm 4.

5 EVALUATION
5.1 Experimental Setup
In this section, we discuss the datasets, models, and the evaluation
metrics utilized to evaluate our approach. For concern identification
algorithm, we take the threshold value to be 10% of the total number
of edges from the last hidden layer to the output layer, i.e. we stop
removing edges at that point to prevent network from becoming too
sparse. For tangling identification imbalance (TI-I) technique, we
choose the imbalance to be 100:1, where for a 10-class classification
problem, if 1000 examples were taken from the positive output label,
1 example from each of the other output labels (remaining nine
labels) are taken for modifying the edges of the neural network.

5.1.1 Datasets. MNIST [7]. This dataset comprises of various ex-
amples of handwritten digits (0-9). It is divided into the training
and testing section. There are 60,000 training and 10,000 testing
examples, and each output label has an equal number of data.
ExtendedMNIST (EMNIST) [3]. Similar to theMNIST, this dataset
has two-dimensional images from the English alphabets (A-Z). As
our approach is based on the dense hidden layer, training a DNN
model with only dense layers does not achieve high testing accuracy.
To remedy that problem and fixing the number of output labels for
all the datasets under experiment, A-J letters (10) are taken from
the dataset. Training and testing dataset contains 48000 and 8000
examples of A-J letters, respectively.
Fashion MNIST (FMNIST) [21]. This dataset is similar to the
structure of the MNIST in terms of the training, testing example
division, and the number of output labels. However, this dataset
has 2D images from different clothes- T-shirt/top, Trouser, Pullover,
Dress, Coat, Sandal, Shirt, Sneaker, Bag, and Ankle boot.
Kuzushiji MNIST (KMNIST) [2]. The structure of the dataset is
similar to the MNIST. It contains images from Japanese digits.

MNIST and FMNIST have been taken from Keras [5] and the
other two datasets are extracted from Tensorflow [19].

5.1.2 Models. To evaluate our approach, we build 16 different
models. These models are trained with corresponding datasets with
50 epochs, and they have 1, 2, 3, and 4 hidden layers (size of each
layer is 49), respectively. The name of the DNN model has been
represented as < dataset–# of hidden layers>, e.g., for the KMNIST
dataset with 2 hidden layers, the model is referred as KMNIST-2.
The testing accuracy of each model is given in Table 1.

5.1.3 Evaluation Metrics. Accuracy. For measuring the perfor-
mance of the DNN model, we use the accuracy metrics. However,
in the case of the composition of the decomposed modules, we
use the same metrics based on voting. We execute N decomposed
modules for a N classification problem in parallel and measure the
output of each module. If only one module votes for the input, we
assign the label of the input based on the dominant output label of
the module, e.g., if we execute 10 modules for an MNIST problem

On Decomposing a Deep Neural Network into Modules ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

and for input, module 0 only votes for the positive output label,
then we label that input as 0. If more than one or no module votes
for the positive output label, then we choose the most confident one
by picking the module with the highest probability for the positive
output label. Based on this, we compute the accuracy over the test
dataset. We refer to the composed accuracy of the decomposed
modules as DM and the accuracy of the trained model TMA.

Jaccard Index (JI). We use the Jaccard Index to measure the
similarities between the decomposed modules. First, we transform
the weight and bias from all the layers into a 1-dimensional array
and compare the similarities between two modules. Finally, we
compute the average value of the metric and report in Table 1. If
the Jaccard Index is 0, then there is no commonality between two
compared objects, and if it is 1, then they are exactly the same.

5.2 Results
In this section, we validate our techniques to decompose DNN into
modules and answer our research questions.

5.2.1 How efficient are the decomposed modules? To answer this re-
search question, we evaluate the four different proposed techniques
to identify tangling concern. We utilized the best approach based
on the accuracy and the Jaccard index and used that technique
to apply concern modularization to build modules. To do so, we
decompose the DNN models into modules before channeling the
non-dominant concerns, and run them in parallel and compute the
accuracy. Finally, we compare the accuracy among different tech-
niques and the pre-trained DNN model. Furthermore, we compute
the average Jaccard index (JI) over all the decomposed modules for
each technique. The results have been depicted in Table 1.

We measure the Jaccard index to identify tangling concerns
amongmodules.We found that utilizing the TI-HP technique, where
higher priority has been given to the negative examples to update
the edges, the lowest Jaccard index can be achieved. This suggests
that the decomposed modules have the least overlap among them-
selves and are significantly different in structure. However, the
composed accuracy of the decomposed modules is very low (aver-
age accuracy is 22.93%). To understand the reason, we investigate
the structure of the modules and find that the edges responsible for
predicting the negative output labels are updated by the positive
ones. As the edges related to the negative examples are updated
first, then the positive ones, the edges that are responsible for neg-
ative output labels, are removed or modified by the edges from the
positive output labels. Therefore, the network can only classify the
dominant output label correctly not the non-dominant ones (7 out
16 scenarios have accuracy ∼10% that explains the decomposed
modules are not able to classify the rest of the 9 output labels). For
other scenarios, especially for MNIST-3 and EMNIST-3, where all
the edges related to the negative output labels are not updated or
removed, that results in higher accuracy.

Utilizing TI-PN, where we punish the negative examples more
than the positive examples by removing edges related to the nega-
tive output labels, achieves a lower accuracy for most of the cases
(10 out 16 scenarios have accuracy <50%). In comparison to the
TI-HP technique, we let the negative examples to add or update the
edges responsible for the negative output labels after the positive
examples identify the common edges. Here, we can see that the

Jaccard index is higher than the TI-HP that indicates that there is
a higher commonality among the modules, which are mostly the
negative edges. However, we found that letting the negative exam-
ples add or update all the relevant edges, the composed accuracy
of the decomposed modules is significantly lower than the DNN
model (average loss of accuracy is 44.15%).

This problem has been partially remedied by allowing only the
edges that are strongly coupled with the prediction of the negative
examples. If a negative example for a module (e.g., for MNIST, any
input digit other than 0 for a module responsible for 0) has been
taken as input to the system, that particular model can process the
input and predict as one of the non-dominant class as the strong
edges still remain intact in the modules. However, this technique
increases the Jaccard index, which depicts that the modules are be-
coming similar to each other. This results in increasing the overlap
between the concerns. However, in comparison to the other three
techniques, adding the strong negative edges performs the best in
terms of the accuracy (average loss -0.29% and median loss +0.00%).
We move forward with this technique and select this approach for
utilizing our concern channeling and remedy the tangling of the
concerns. To do so, we update, add, and remove edges (CM-C). The
concern channelization achieves the best accuracy and better Jac-
card index for 37.5% and 25% scenarios, respectively. However, to
identify more tangled concerns, we utilized the CM-RIE approach,
where we remove irrelevant nodes only connected with the nega-
tive output nodes and update the edges to reflect the change at the
last hidden layer. We apply this technique before channelizing non-
dominant concerns. From Table 1, we can validate that the CM-RIE
decreases the Jaccard index from the prior techniques (CM-C), and
this approach can produce modules that perform the best in terms
of the accuracy for 56.25% (9 out of 16) of the cases.

With the accuracy achieved using the CM-RIE technique, we
found that the accuracy after decomposing loses 0.01% on average
(median is 0.00%). Also, in 9 out of 16 cases, we were able to increase
or able to get the same accuracy as the trained model. To validate
whether there is a significant difference between the DNN models
and decomposed modules, the average number of edges with value
zero (inactive) have been computed for each scenario. This metric
validates how the edge removal technique to decompose the DNN
model into modules performs in practice. We found that for cases
where decomposing a DNN model into modules either gain accu-
racy or remain the same, there are, on average, 33.79% of the edges
are inactive. This result shows that the modules generated are not
the same as the DNN model. However, our decomposition tech-
nique can be modified in the future to increase the inactive nodes
and remove the tangled concerns more efficiently. For further RQs,
we evaluate our proposed approach with the decomposed modules
build with the CM-RIE technique.

5.2.2 Does modularity in DNN enable reuse? In this research ques-
tion, we validate whether fine-grained reuse can be achieved by
utilizing the decomposed modules. To validate the reusability and
answer this RQ, we evaluate decomposed modules from 16 different
DNN models and reuse them in two different settings.

Intra-Dataset Reuse. In this scenario, we study two modules
decomposed from the sameDNNmodel and execute them in parallel
to build a smaller problem and validate against a DNN model built

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Rangeet Pan and Hridesh Rajan

Table 1: Accuracy and Similarity of Decomposed Modules; Acc: Accuracy, JI: Mean Jaccard index

Model
TI-I TI-PN TI-HP TI-SNE CM-C CM-RIE

Model Accuracy Acc JI Acc JI Acc JI Acc JI Acc JI Acc JI
MNIST-1 94.91% 94.91% 0.47 9.79% 0.46 23.09% 0.04 94.91% 0.47 94.91% 0.45 94.90% 0.43
MNIST-2 98.39% 96.83% 0.64 6.19% 0.64 13.09% 0.02 96.83% 0.65 96.83% 0.63 96.82% 0.63
MNIST-3 98.47% 69.19% 0.44 9.01% 0.44 96.27% 0.45 96.30% 0.45 96.30% 0.44 96.33% 0.43
MNIST-4 96.79% 96.44% 0.53 7.50% 0.54 9.80% 0.01 96.79% 0.55 96.79% 0.54 96.75% 0.53
FMNIST-1 85.82% 85.82% 0.78 69.21% 0.78 10.72% 0.09 85.82% 0.78 85.82% 0.76 85.85% 0.75
FMNIST-2 87.58% 87.58% 0.64 9.28% 0.64 18.69% 0.14 87.58% 0.65 87.58% 0.63 87.56% 0.63
FMNIST-3 87.09% 77.55% 0.52 61.95% 0.52 9.96% 0.05 87.09% 0.53 85.64% 0.5 87.10% 0.51
FMNIST-4 87.79% 87.51% 0.56 81.11% 0.57 10% 0.01 87.79% 0.57 87.79% 0.56 87.95% 0.55
KMNIST-1 76.02% 64.29% 0.51 76.32% 0.51 23.17% 0.03 76.32% 0.51 76.02% 0.50 76.03% 0.48
KMNIST-2 83.29% 83.29% 0.72 70.63% 0.72 10.00% 0.02 82.09% 0.73 83.29% 0.72 83.29% 0.7
KMNIST-3 83.02% 83.02% 0.48 42.70% 0.47 11.41% 0.01 83.02% 0.49 83.02% 0.47 82.97% 0.47
KMNIST-4 83.63% 82.89% 0.54 39.50% 0.56 10.50% 0.01 83.63% 0.57 83.63% 0.56 83.63% 0.54
EMNIST-1 89.00% 89.00% 0.43 81.06% 0.41 13.85% 0.04 89.00% 0.43 89.00% 0.41 89.01% 0.4
EMNIST-2 92.27% 92.10% 0.61 76.89% 0.61 10.07% 0.02 92.27% 0.62 92.27% 0.61 92.28% 0.61
EMNIST-3 92.20% 62.48% 0.53 37.90% 0.53 83.84% 0.54 92.20% 0.55 92.20% 0.54 92.16% 0.53
EMNIST-4 91.88% 84.33% 0.53 42.74% 0.54 12.38% 0.01 91.89% 0.55 91.89% 0.54 95.33% 0.53

Table 2: Intra-Dataset Reuse. All results in %.

MNIST and Fashion MNIST. MN: MNIST, FM: FMNIST.
MN 1 2 3 4 5 6 7 8 9

FM
MN MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA

T-shirt/top 0 100 99.9 99.1 99.4 99.6 99.8 99.6 99.6 99.4 98.8 98.7 99.0 99.2 99.6 99.4 99.2 97.6 99.2
Trouser 1 98.2 98.5 99.7 99.4 99.8 99.6 99.9 99.9 100 99.7 99.6 99.5 99.5 99.0 99.5 99.2 99.8 99.5
Pullover 2 93.7 95.2 99.3 98.9 99.0 97.6 99.4 98.5 99.9 98.5 99.5 99.0 98.9 97.4 98.9 99.1 99.6 99.2
Dress 3 92.2 91.5 98.4 97.5 97.1 97.3 99.9 99.4 98.6 97.7 99.8 99.5 99.3 98.6 98.8 97.5 99.2 98.6
Coat 4 97.2 98.3 99.3 99.5 88.0 86.3 96.0 95.1 99.8 99.0 99.2 99.3 99.5 98.6 99.5 99.2 98.2 97.7
Sandal 5 97.3 99.7 99.7 100 100 100 100 99.9 100 99.8 99.0 98.1 99.6 99.3 99.1 97.6 99.1 98.7
Shirt 6 52.4 84.7 99.1 98.4 88.0 86.1 95.4 93.6 90.3 87.3 100 99.9 99.7 99.7 99.2 99.1 99.5 99.7
Sneaker 7 97.4 99.7 99.7 100 100 100 100 100 100 100 98.0 96.1 100 100 99.6 98.6 98.6 98.4
Bag 8 97.2 98.1 99.4 99.7 99.1 98.4 99.1 99.1 99.2 99.0 99.6 99.6 98.2 97.7 99.6 99.0 99.2 97.9
Ankle boot 9 97.4 100 99.6 100 99.9 99.9 99.9 99.9 100 100 98.5 98.0 100 100 96.5 96.4 99.8 99.6

FM T-Shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag
Blue represents the intra module combinations for F-MNIST and Yellow represents the the intra module combinations for MNIST.

Extended MNIST (EMNIST) and Kuzushiji MNIST (KMNIST). EM: EMNIST, KM: KMNIST.
EM A B C D E F G H I

KM
EM MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA

Japanese 0 A 97.8 97.9 96.6 97.8 94.8 94.9 95.1 97.4 98.4 98.4 95.3 92.9 94.2 96.5 98.5 98.8 97.8 98.6
Japanese 1 B 97.5 98.2 98.9 98.0 97.6 96.8 98.6 98.4 98.9 98.8 96.1 95.2 96.8 97.0 99.4 98.2 98.9 97.9
Japanese 2 C 98.3 97.9 94.2 94.1 98.9 98.4 95.5 93.1 98.8 98.8 98.4 97.8 99.3 97.8 99.1 99.0 99.4 99.4
Japanese 3 D 97.8 97.0 98.4 97.2 93.5 93.8 99.3 98.0 99.0 98.3 97.9 95.2 97.8 97.3 99.3 98.1 97.4 97.2
Japanese 4 E 87.7 94.3 93.4 93.4 95.3 95.1 97.2 97.1 98.2 98.1 98.5 98.1 99.2 98.1 99.1 98.8 99.5 98.5
Japanese 5 F 93.8 96.4 95.2 94.5 91.5 91.3 97.3 97.0 95.9 96.1 97.7 97.1 98.9 97.8 98.4 96.6 98.8 97.1
Japanese 6 G 97.6 99.0 93.6 91.6 95.1 96.3 97.9 97.0 96.3 95.0 96.0 95.5 98.6 97.8 98.9 97.0 97.3 97.9
Japanese 7 H 93.1 94.3 95.4 94.2 95.7 93.9 97.8 98.0 92.7 89.7 97.1 96.3 94.8 96.8 99.3 97.9 99.3 97.3
Japanese 8 I 92.8 96.9 94.6 94.8 93.1 95.7 96.9 96.0 96.2 95.6 95.0 96.3 97.6 97.7 95.2 96.2 96.0 94.5
Japanese 9 J 97.3 97.6 93.3 95.2 92.2 94.6 96.9 97.2 95.0 94.9 95.6 97.0 96.4 94.4 95.1 92.7 95.7 96.7

KM Japanese 0 Japanese 1 Japanese 2 Japanese 3 Japanese 4 Japanese 5 Japanese 6 Japanese 7 Japanese 8
Blue represents the intra module combinations for EMNIST and Yellow represents the the intra module combinations for KMNIST.

with the dominant examples for the picked modules. In Figure 1,
we describe a similar example, where we take module responsible
for the digits 0 and 1 from a pre-trained DNN model and reuse
them to build a binary classifier. To validate such scenarios, we
train a DNN model with the same examples (based on the example,
digit 0 and 1) and the same structure as the DNN model that has
been decomposed to obtain the modules. Finally, we compare the
composed accuracy of the modules and the accuracy of the trained
DNN model. In Table 2, we show various scenarios of intra dataset
reuse. While performing this evaluation, we use the modules build

from the model with the 4 hidden layers (MNIST-4, EMNIST-4,
FMNIST-4, and KMNIST-4). As the total number of the output labels
in each dataset is ten, choosing two modules responsible for one
output label can have 45 scenarios (

(10
2
)
). In Table 2 (upper half),

we combine the results from MNIST and FMNIST datasets. The
cells with blue and yellow have been taken from the FMNIST and
MNIST datasets, respectively. We perform similar operations on
KMNIST and EMNIST and depict the results in Table 2 (bottom
half). Our results suggests that for 80% (36 out of 45), 68.89% (31
out of 45), 80% (36 out of 45), and 51.11% (23 out of 45) scenarios for

On Decomposing a Deep Neural Network into Modules ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

Table 3: Inter Dataset Reuse. All results are in %

MNIST vs Extended MNIST (EMNIST). MN: MNIST, EM: EMNIST
EM A B C D E F G H I J
MN MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA
0 74.8 99.3 95.7 99.6 97.2 99.7 89.7 98.9 98.8 99.1 99.2 99.9 97.6 98.5 99.0 99.7 99.4 99.6 93.7 99.4
1 98.9 99.7 97.6 99.9 99.7 100.0 99.4 99.8 99.7 99.7 99.5 99.8 99.4 99.8 99.3 99.8 57.0 96.3 98.6 99.6
2 82.0 98.5 98.5 99.4 85.2 99.3 94.7 98.6 98.6 99.1 98.5 99.1 96.9 98.7 98.3 99.2 96.3 98.1 97.8 97.2
3 90.7 98.7 97.1 99.5 97.1 99.8 54.8 99.5 98.5 99.4 98.6 99.4 88.7 99.8 99.3 99.1 97.3 99.6 87.5 98.5
4 88.8 98.9 99.7 99.9 99.4 99.8 99.3 99.3 86.3 99.0 99.0 99.8 99.2 99.7 96.5 99.2 98.9 99.6 99.8 99.7
5 93.7 99.2 95.6 99.1 96.5 99.2 98.6 99.5 96.5 99.0 66.8 99.8 88.7 99.0 98.1 99.3 98.0 99.2 92.8 98.5
6 97.0 99.7 95.4 99.8 98.0 99.6 98.4 99.8 98.7 99.7 87.9 99.8 81.8 99.5 93.6 99.6 98.4 99.1 98.9 99.5
7 96.9 99.7 99.2 99.7 99.3 99.7 98.9 99.6 99.3 99.6 99.3 99.3 98.6 99.7 78.0 99.6 98.1 99.3 96.3 99.6
8 89.0 99.4 93.9 99.3 98.9 99.7 97.5 99.9 95.2 99.2 93.7 99.8 90.9 99.4 96.8 99.6 56.9 98.7 98.0 99.4
9 85.4 99.2 99.5 99.9 99.4 99.5 99.4 99.9 99.2 99.7 99.2 99.9 95.3 99.0 98.7 99.8 98.8 99.6 61.8 99.9

MNIST vs Kuzushiji MNIST (KMNIST). MN: MNIST, KM: KMNIST
KM Japanese 0 Japanese 1 Japanese 2 Japanese 3 Japanese 4 Japanese 5 Japanese 6 Japanese 7 Japanese 8 Japanese 9
MN MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA
0 86.0 99.9 93.6 99.8 98.4 99.9 97.8 99.9 95.6 99.7 96.9 99.9 97.6 99.9 91.5 99.5 93.0 99.9 98.7 99.9
1 91.8 100.0 66.0 100.0 98.5 100.0 97.1 99.8 98.8 100.0 98.4 100.0 97.3 99.9 99.6 100.0 98.5 100.0 98.7 100.0
2 73.4 99.7 93.9 100.0 77.8 99.7 93.0 99.8 86.0 99.8 93.8 99.9 87.1 100.0 88.9 99.8 95.0 100.0 93.3 100.0
3 80.3 99.9 71.7 99.9 78.1 100.0 82.1 99.9 88.0 99.8 87.5 99.9 74.0 99.9 92.9 100.0 77.1 100.0 84.4 99.1
4 95.6 99.9 99.6 99.8 99.3 99.9 99.7 99.9 73.1 99.7 99.3 99.8 99.6 100.0 99.1 99.9 99.6 99.9 99.3 100.0
5 82.7 99.9 91.0 99.8 85.8 99.6 85.8 99.8 90.1 99.8 78.5 99.9 90.9 99.7 90.3 99.5 93.9 99.8 88.2 99.9
6 95.5 100.0 98.1 99.9 97.0 99.9 98.8 99.8 94.1 99.9 97.8 99.8 79.7 99.9 95.8 99.8 98.9 99.9 97.7 99.9
7 87.8 99.9 96.6 99.9 97.6 100.0 97.4 99.9 96.7 99.8 98.3 99.9 97.2 99.9 84.1 98.4 97.1 100.0 95.1 100.0
8 92.3 99.9 90.1 99.9 81.0 100.0 98.1 99.9 93.8 99.8 94.3 99.8 90.3 99.9 91.5 99.6 71.4 100.0 87.3 99.9
9 95.8 100.0 94.8 99.9 94.6 100.0 96.6 100.0 98.0 99.7 95.8 100.0 95.5 100.0 96.4 99.8 91.6 100.0 73.7 100.0

Table 4: Intra Dataset Replacement. RM: Replaced module.

DataSet TMA Prior MA RM0 RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8 RM9
MNIST 94.91% 94.90% 94.91% 94.59% 94.83% 92.26% 94.40% 93.68% 95.11% 94.46% 93.72% 93.29%
FMNIST 85.82% 85.93% 85.36% 85.84% 85.41% 85.82% 84.91% 85.87% 84.10% 85.88% 85.98% 85.78%
KMNIST 76.02% 76.03% 76.32% 74.18% 74.43% 75.64% 73.74% 73.77% 75.54% 76.90% 74.44% 76.53%
EMNIST 89.00% 89.01% 87.81% 87.6% 87.89% 88.40% 86.42% 89.36% 88.73% 88.51% 86.23% 85.57%

MNIST, FMNIST, EMNIST, and KMNIST respectively, the composed
accuracy usingmodules is more or the same compared to the trained
DNNmodels. Our result suggests that there is no significant change
of accuracy considering all the cases (4 datasets). Average gain of
accuracy is 0.03% (+0.22% median).

Inter-Dataset Reuse. While the prior experiments were done
on the same dataset and model, these experiments are carried on
different datasets with models build with similar architecture (same
number of hidden layers). We evaluate the MNIST vs. EMNIST and
MNIST vs. KMNIST with the same choice of the models. Similar to
the prior experimental setup, we evaluate the composed accuracy
of two decomposed modules taken from two different datasets and
models and execute them on the dominant examples of the modules,
e.g., we take one module from MNIST (MNIST-4 model) that can
classify English 0 and one module from KMNIST (KNIST-4 model)
that is responsible for Japanese 2. In this example, we validate
the accuracy against the inputs and test with the example taken
from the test dataset where the output label is either English 0 or
Japanese 2. Also, we train a model with the same number of hidden
layers (four) with the same output labels (English 0 and Japanese
2) from the training dataset and compare them. In Table 3 (upper
half), we take two modules for each experiment and compare the
trained DNN model build from the examples from the output labels.
We report the evaluation for 100 combinations (10x10) of re(use)
from MNIST and E-MNIST modules. Our result suggests that for

only six scenarios, reusing the modules can perform the same as
the trained model. Reusing the modules between different datasets
can cause a loss of accuracy 5.36% on average (median 1.41%) in
comparison to DNN models trained with those examples. Similarly,
we evaluate with MNIST and KMNIST and report the results in
Table 3 (bottom half). Our result suggests that loss of accuracy is
8.28% on average (-5.67% median).

Also, we build a duodecimal classifier based on our motivating
example depicted in the Figure 1, where all themodules decomposed
from MNIST-4 and decomposed modules responsible for English
letter A and B run in parallel, and the composed accuracy of the
decomposed module is 83.40%. Furthermore, a DNN model has
been trained based on the 0-9 and A-B, and the testing accuracy
of that model is 91.45%. This shows that decomposing the DNN
into modules and reusing them to build a problem to recognize the
duodecimal (0-9AB) digits is possible. However, the accuracy of the
composition of the modules is lower (8.05%) than the model trained
from scratch. This could be a potential direction for future work.

5.2.3 Does modularity in DNN enable replacement? In this research
question, we answerwhether the decomposedmodules decomposed
can be replaced by other modules. Replacing a module from a set
of modules built by decomposing a DNN model can help in either
of these two directions. First, referring to the bottom half of the
Figure 1, where the faulty part of the DNN has been replaced with
a better-fitted part from a different DNN model trained on the

ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States Rangeet Pan and Hridesh Rajan

Table 5: Inter-Dataset Replacement. All results are in %

MNIST vs Extended MNIST (EMNIST). MN: MNIST, EM: EMNIST
EM A B C D E F G H I J
MN MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA
0 94.0 94.8 93.7 94.2 94.7 95.5 94.4 95.0 94.4 95.3 94.3 94.9 93.9 94.8 94.1 95.4 94.4 95.1 94.6 95.7
1 94.3 94.4 94.0 94.2 94.5 94.5 94.7 95.7 94.4 95.8 94.9 94.7 94.7 95.2 94.4 95.6 95.2 95.8 94.6 96.0
2 95.5 95.2 94.0 96.1 94.5 94.5 94.8 95.5 94.4 95.3 94.9 95.1 94.4 95.2 94.4 95.6 94.7 95.8 94.7 96.0
3 94.8 94.5 93.4 94.7 94.5 95.8 94.4 95.3 93.8 95.5 94.0 95.4 93.7 94.7 93.8 95.1 94.3 94.9 94.1 95.9
4 95.1 94.7 94.9 94.3 95.4 94.9 95.5 95.3 95.3 95.7 95.7 95.2 95.1 93.9 95.3 96.0 96.1 96.3 95.5 95.4
5 92.6 94.9 92.5 95.3 93.0 95.2 93.0 95.1 92.9 95.8 94.0 95.5 94.4 91.5 92.9 96.0 93.7 96.1 93.2 96.6
6 91.8 95.7 91.4 94.7 92.1 95.7 92.8 95.1 91.9 95.4 92.9 95.6 91.8 95.4 91.9 94.1 92.8 96.0 92.4 96.0
7 94.6 94.9 94.4 93.8 95.0 94.9 94.9 95.3 95.3 95.5 94.9 96.0 95.4 95.2 94.9 95.5 95.3 95.3 95.1 95.4
8 86.8 93.8 94.9 94.3 87.5 94.6 87.5 93.9 87.1 93.9 87.4 94.7 87.0 94.7 87.2 94.2 87.5 94.2 87.3 94.5
9 93.2 94.8 93.2 94.6 93.7 95.0 95.1 95.4 93.2 95.7 94.0 95.6 93.1 94.9 93.6 95.2 93.5 95.6 93.4 95.0

MNIST vs Kuzushiji MNIST (KMNIST). MN: MNIST, KM: KMNIST
KM Japanese 0 Japanese 1 Japanese 2 Japanese 3 Japanese 4 Japanese 5 Japanese 6 Japanese 7 Japanese 8 Japanese 9
MN MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA MA TMA
0 90.3 95.9 89.9 94.2 93.0 94.6 91.1 95.4 90.4 96.0 91.1 96.3 90.3 94.9 90.4 95.5 90.7 95.1 90.6 96.5
1 88.7 96.2 88.2 95.4 89.0 95.7 92.0 95.9 88.6 94.8 89.2 96.4 88.5 94.9 88.9 95.9 89.5 96.4 89.0 96.2
2 88.9 94.7 88.6 94.9 89.3 95.9 90.1 95.7 89.0 96.1 89.5 96.1 89.0 96.1 89.2 95.3 90.8 96.1 89.4 95.8
3 90.8 94.8 90.1 95.5 91.3 95.1 92.1 95.7 90.5 95.9 91.6 96.4 90.4 95.5 90.6 96.6 90.8 95.9 90.8 96.2
4 90.3 95.5 89.4 96.1 91.4 95.4 90.4 94.9 89.8 95.2 90.7 95.8 90.1 95.5 89.9 96.0 90.2 96.2 90.1 96.5
5 91.7 95.6 90.8 95.3 91.9 94.6 91.9 94.9 91.2 95.8 92.2 95.7 91.1 95.8 91.3 95.7 91.5 95.9 91.5 96.6
6 88.7 95.2 88.3 94.9 89.6 95.7 90.8 95.5 88.7 96.1 89.3 96.0 88.8 95.6 88.8 96.2 89.4 96.0 89.1 96.2
7 91.1 94.7 89.9 95.0 91.6 95.6 90.6 95.6 90.4 95.2 91.2 94.7 90.4 95.5 90.8 95.3 90.9 95.8 90.7 96.4
8 90.3 95.6 88.8 94.7 89.6 96.0 91.3 95.2 89.1 95.9 89.5 96.0 89.0 95.2 89.2 95.4 89.6 96.0 89.6 96.6
9 89.9 95.4 89.7 95.2 90.7 95.7 91.1 95.7 90.1 95.1 90.9 96.2 90.1 95.6 90.3 96.0 91.4 96.5 90.6 95.9

same problem, and this scenario we refer to as the intra dataset
replacement. Second, a part of the DNN model can be replaced by
a part from a DNN model that represents a different concern. We
represent these scenarios as inter problem replacement, where the
dataset of the problems is different. These broader categories of the
replaceability study have discussed in the next few paragraphs.

Intra Dataset Replacement. In this scenario, we replace a
module from a set of modules decomposed from a DNN model with
a module built on the same dataset but with different configurations
(decomposed from a different DNN model). To evaluate these sce-
narios, we replace eachmodule from the least complexmodel (based
on the number of hidden layers (1)) from each dataset and replace
that with a module of same output label from amore complex model
(model with four hidden layers). Finally, we compute the composed
accuracy of the modules and compare them with the accuracy of
the DNN model from which the modules were decomposed and
the prior accuracy of the modules. Table 4 depicts the scenarios
for four datasets and we report the composed accuracy for MNIST-
1, FMNIST-1, KMNIST-1, and EMNIST-1 with modules replaced
from MNIST-4, FMNIST-4, KMNIST-4, and EMNIST-4, respectively.
We found that replacing modules with decomposed modules from
more complex models can increase the composed accuracy of the
decomposed modules for 10 out of 40 scenarios. On average, there
is an average 0.76% (median is 0.50%) drop in the accuracy when
compared to the composed accuracy of the modules before replace-
ment. Furthermore, we evaluate the inter dataset replacement on
the example depicted in Figure 1. To make a part of the model
faulty, we impose bias in the training dataset. We build a DNN
model with 6000 training examples for all the output labels except
the output label 5, where we use 500 examples. The trained DNN
model achieves testing accuracy of 96.82%. Then, we decompose
the DNN model intro modules and replace the module 5 with a

module responsible for the same output label, decomposed from
MNIST-4. Our result shows that the accuracy after the replacement
is 98.66% (+1.84%). Thus, we can conclude that our approach can be
utilized to replace a faulty piece of DNN model with a part taken
from a better DNN model.

Inter Dataset Replacement. While a module can be replaced
with a module with the same concern, there can be a situation
that needs a module to be replaced with a different concern. Here,
we replace one module from each dataset and replace that with a
module taken from a different dataset, e.g., the module responsible
for classifying English 1 replaced with a module for classifying
Japanese 1. We validate our approach to replacing the modules
from different datasets by conducting the experiments on the mod-
ules decomposed from the DNN models with four hidden layers
(MNIST-4, EMNIST-4, and KMNIST-4). Our scenarios involve re-
placing modules from MNIST with KMNIST and modules from
MNIST with EMNIST. Our results suggest that the accuracy of the
replaced modules perform worse than the DNN models trained
with the same structure (four hidden layers) with the training ex-
amples from the same output classes. In Table 5, we depict such
scenarios. Our evaluation shows that by replacing modules from
MNIST with Extended MNIST, the accuracy is decreased 1.62% on
average (median 1.16%) in comparison to the DNN models trained
with the same configurations. In the case of substituting modules
from MNIST with Kuzushiji MNIST, the accuracy drop is 5.44%
(median 5.40%) compare to the models trained from scratch.

Based on the overall evaluation, we found that replacing a mod-
ule with similar concerns and different concerns can be achieved.
However, there is a loss of accuracy in comparison to the models
trained from scratch.

On Decomposing a Deep Neural Network into Modules ESEC/FSE 2020, 8 - 13 November, 2020, Sacramento, California, United States

6 CONCLUSION
In this work, we explored whether a DNN can be decomposed so
that parts of the DNN, which we call DNN modules, can be reused
to build different DNNs or replaced with better DNN modules. We
described our technique that relies on concern identification to
identify the sub-network, identifying tangling of other concerns,
and finally decomposing the sub-network into DNN modules. We
described four different techniques for reducing tangling. We have
evaluated our approach using four canonical datasets and sixteen
different models. Often decomposition into modules has some costs,
but we find that the costs for DNN decomposition is already very
minimal. In 56.25% of cases, decomposed modules are slightly more
accurate (0.00%-3.45%), and in remaining cases lose very little accu-
racy (0.01%-2.14%). The benefits of decomposition are observed in
enabling reuse and replacement. We observe that for our datasets
and models both reuse and replacement is possible. Based on these
results, we believe that this work takes the first step toward enabling
more modular designs for deep learning.

ACKNOWLEDGMENTS
This work was supported in part by US NSF under grants CNS-15-
13263, and CCF-19-34884. All opinions are of the authors and do
not reflect the view of sponsors. We thank ESEC/FSE’20 reviewers
for constructive comments that were very helpful.

REFERENCES
[1] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. 2003.

Feature Interaction: A Critical Review and Considered Forecast. Comput. Netw.
41, 1 (Jan. 2003), 115–141. https://doi.org/10.1016/S1389-1286(02)00352-3

[2] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki
Yamamoto, and David Ha. 2018. Deep Learning for Classical Japanese Literature.
arXiv:cs.CV/cs.CV/1812.01718

[3] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
EMNIST: Extending MNIST to handwritten letters. 2017 International Joint
Conference on Neural Networks (IJCNN) (2017). https://doi.org/10.1109/ijcnn.
2017.7966217

[4] Edsger W Dijkstra. 1982. On the role of scientific thought. In Selected writings on
computing: a personal perspective. Springer, 60–66.

[5] Keras. 2020. Keras Dataset. https://keras.io/datasets/.
[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. 1997. Aspect-oriented programming. In

ECOOP’97 — Object-Oriented Programming, Mehmet Akşit and Satoshi Matsuoka
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 220–242.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[8] Nan Li, Ivor W Tsang, and Zhi-Hua Zhou. 2012. Efficient optimization of perfor-
mance measures by classifier adaptation. IEEE transactions on pattern analysis
and machine intelligence 35, 6 (2012), 1370–1382.

[9] Yi Liu and Yuan F Zheng. 2005. One-against-all multi-class SVM classification
using reliability measures. In Proceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., Vol. 2. IEEE, 849–854.

[10] Eneldo Loza Mencía and Johannes Furnkranz. 2008. Pairwise learning of multil-
abel classifications with perceptrons. In 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE,
2899–2906.

[11] Guobin Ou and Yi Lu Murphey. 2007. Multi-class pattern classification using
neural networks. Pattern Recognition 40, 1 (2007), 4–18.

[12] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2010. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural Networks
22, 2 (2010), 199–210.

[13] D. L. Parnas. 1972. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.1145/
361598.361623

[14] Lorien Y. Pratt, Jack Mostow, and Candace A. Kamm. 1991. Direct Transfer
of Learned Information among Neural Networks. In Proceedings of the Ninth
National Conference on Artificial Intelligence - Volume 2 (AAAI’91). AAAI Press,
584–589.

[15] Christian Prehofer. 1997. Feature-oriented programming: A fresh look at ob-
jects. In ECOOP’97 — Object-Oriented Programming, Mehmet Akşit and Satoshi
Matsuoka (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419–443.

[16] Peter Prettenhofer and Benno Stein. 2010. Cross-language text classification using
structural correspondence learning. In Proceedings of the 48th annual meeting of
the association for computational linguistics. 1118–1127.

[17] Xiaoxiao Shi, Qi Liu, Wei Fan, S Yu Philip, and Ruixin Zhu. 2010. Transfer
learning on heterogenous feature spaces via spectral transformation. In 2010 IEEE
international conference on data mining. IEEE, 1049–1054.

[18] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. 1999. N degrees of separation:
multi-dimensional separation of concerns. In Proceedings of the 21st Interna-
tional Conference on Software Engineering (ICSE ’99). IEEE Computer Society, Los
Alamitos, CA, USA, 107–119. https://doi.ieeecomputersociety.org/

[19] Tensorflow. 2020. Tensorflow Dataset. https://www.tensorflow.org/datasets.
[20] Rui Xia, Chengqing Zong, Xuelei Hu, and Erik Cambria. 2013. Feature ensemble

plus sample selection: domain adaptation for sentiment classification. IEEE
Intelligent Systems 28, 3 (2013), 10–18.

[21] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[22] Zhi-Hua Zhou. 2016. Learnware: on the future of machine learning. Frontiers
Comput. Sci. 10, 4 (2016), 589–590.

[23] Weiwei Zong and Guang-Bin Huang. 2011. Face recognition based on extreme
learning machine. Neurocomputing 74, 16 (2011), 2541–2551.

https://doi.org/10.1016/S1389-1286(02)00352-3
https://doi.org/10.1109/ijcnn.2017.7966217
https://doi.org/10.1109/ijcnn.2017.7966217
https://keras.io/datasets/
https://doi.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
https://doi.ieeecomputersociety.org/
https://www.tensorflow.org/datasets

	Abstract
	1 Introduction
	2 Why Decompose a DNN into Modules?
	3 Related Ideas
	4 Decomposing a DNN into Modules
	4.1 Concern Identification (CI)
	4.2 Tangling Identification (CI)
	4.3 Concern Modularization (CM)

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

