
Information Hiding Interfaces for Aspect-Oriented Design∗

Kevin Sullivanφ William G. Griswoldλ Yuanyuan Songφ Yuanfang Caiφ
Macneil Shonleλ Nishit Tewariφ Hridesh Rajanφ

φComputer Science
University of Virginia

Charlottesville, VA 22903
fsullivan,ys8a,yc7a,nt6x,hr2jg@cs.virginia.edu

λComputer Science & Engineering
UC San Diego

La Jolla, CA 92093-0114
fwgg,mshonleg@cs.ucsd.edu

ABSTRACT
The growing popularity of aspect-oriented languages, such as As-
pectJ, and of corresponding design approaches, makes it important
to learn how best to modularize programs in which aspect-oriented
composition mechanisms are used. We contribute an approach to
information hiding modularity in programs that use quantified ad-
vising as a module composition mechanism. Our approach rests on
a new kind of interface: one that abstracts a crosscutting behavior,
decouples the design of code that advises such a behavior from the
design of the code to be advised, and that can stipulate behavioral
contracts. Our interfaces establish design rules that govern how
specific points in program execution are exposed through a given
join point model and how conforming code on either side should
behave. In a case study of the HyperCast overlay network mid-
dleware system, including a real options analysis, we compare the
widely cited oblivious design approach with our own, showing sig-
nificant weaknesses in the former and benefits in the latter.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Design

General Terms: Design

Keywords: Aspect-oriented programming, design rules, options

1. INTRODUCTION
Aspect-oriented (AO) programming languages aim to improve

the ability of designers to modularize concerns that cannot be mod-
ularized using traditional procedural or object-oriented (OO) meth-
ods. Examples of crosscutting concerns include tracing, logging,
transactionality, caching and resource pooling. The ability to mod-
ularize such concerns is expected to improve comprehensibility,
parallel development, reuse and ease of change, reducing devel-
opment costs, increasing dependability and adaptability and ulti-
mately creating more value for producers and consumers alike.

The most prominent AOP model today is that of AspectJ [2, 12].
AspectJ extends Java with several complementary mechanisms, no-
tably join points (JPs), pointcut descriptors (PCDs), advice and

∗This research was supported in part by NSF grants FCA-0429947
and FCA-0429786.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

aspects. JPs are points in a concrete program execution, such as
method calls and executions, that, by the definition of the join
point model of the AO language, are subject to advising. Advis-
ing extends or overrides the action at a join point with a CLOS-
like [22, Ch. 28] before, after, or around anonymous method called
an advice. A PCD is a declarative expression that matches a set of
JPs. An advice extends or overrides the action at each join point
matched by a given PCD. Because a PCD can select JPs that span
unrelated classes, an advice can have effects that cut across a class
hierarchy. Advice, pointcuts and ordinary data members and meth-
ods are grouped into class-like modules called aspects.1 Aspects
are intended to support the modular representation of crosscutting
concerns [13], although they admit other uses.

Thirty-three years ago, seeing the opportunities afforded by the
new module composition mechanisms of procedural programming
and separate compilation, David Parnas asked the question, by what
criteria should systems be decomposed into modules [19]? Tak-
ing comprehensibility, parallel development and ease of change as
goals, he used a comparative analysis to argue that the prevailing
criterion for modularizing systems according to stages of process-
ing in their flow charts performed poorly relative to his new ap-
proach, information hiding. Under this approach, “one begins with
a list of difficult design decisions or design decisions that are likely
to change. Each module is then designed to hide such a design
decision from the others [19, p. 1058].” The idea is that stable
interfaces should abstract and decouple such decisions. As an ex-
ample Parnas cites the choice of a data representation, the hiding
of which is accomplished by an abstract data type interface. In this
paper, seeing opportunities afforded by the new mechanisms of AO
programming, we revisit Parnas’s question with a twist: by what
criteria should systems be decomposed into aspects?

A widely cited method of aspect-oriented design, popularly called
obliviousness, advocates that the designers and developers of base
functionality2 need not be aware of, anticipate or design code to
be advised by aspects. Filman and Friedman say, “Just program
like always, and we’ll be able to add the aspects later [7, p. 31].”
This idea is widely taken as partially defining, and as a design
process and architectural style for, AO design: first separate base
and crosscutting concerns; next implement base concerns in an OO
style ignoring crosscutting concerns; finally implement the cross-
cutting concerns as aspects that advise the base code directly. Is this
straightforward AO modularization criterion the best to be found?

1Named pointcuts can be declared in classes, but other AspectJ
constructs are restricted to aspects.
2The term base in the AOP community refers to the advised, usu-
ally non-aspect-oriented elements of the system. Base code more
specifically refers to the actual program text, either as implementa-
tion or design.

166

Aided by a case study of a modern OO system—the HyperCast
overlay network middleware implementation [10]—we address this
question by comparing the oblivious method to a new one based on
design rules [3] as generalized information hiding interfaces. We
find that although the oblivious method allows base code design-
ers to ignore aspect design, it leaves important abstractions implicit
in program details and does not decouple design decisions in the
other direction. In particular, the freedom afforded to base code
designers comes at considerable cost to aspect designers, who are
thwarted by a lack of constraints on the code they need to advise.
Results include unnecessarily complex aspects (especially point-
cut descriptors); in some cases the inability to integrate aspect and
base code at all without changes to the base code; the implicit rep-
resentation of important abstractions; and tight coupling of aspect
code to complex and changeable details of base code. AO lan-
guage researchers have sought solutions in extensions to [20] and
constraints on [1] join point models and advising. However, pro-
viding new language features is costly and incurs risks in semantic
complications, runtime costs and ultimately lack of adoption.

Our software engineering approach, by contrast, is to impose de-
sign rules as abstract, design-decoupling interfaces between aspects
and advised code. These interfaces govern how code has to be writ-
ten to reveal specified execution points through the join point model
of a language and how aspects can use these interaces. Concretely,
our rules specify (1) the behaviors to be exposed; (2) constraints on
program implementation to ensure that these behaviors are exposed
by join points with specific properties, including type (e.g., field ac-
cess versus method call) and signature (e.g., method names); and
(3) behavioral contracts subject to enforcement at the discretion of
the engineer. The first point ensures that the join points that as-
pects need are visible. The first two constrain base code designers
and inform aspect designers so that PCDs can be written that re-
main stable as base code evolves. The last allows the engineer to
trade between behavioral assurances at interfaces and the openness
of programs to new advising relationships.

We document these rules in interface specifications that base
code designers “implement” and that aspects may depend upon.
Once these interfaces are defined, designers can develop aspect and
base code independently and concurrently, with each side aware of
the shared rules but “oblivious” to each others’ detailed decisions.
We find that formulating rules in terms of application-specific ab-
stract state and behavior, not just in terms of concrete execution
events (e.g., method calls), helps to reveal important abstractions,
better separate concerns and improve the resilience of designs.

Unlike some alternative approaches, ours does not generally re-
quire any of the following: that auxiliary code be added to base
code (e.g., to signal events); references from base code to aspect or
other code; new programming languages, mechanisms or semantics
(although tools for design rule checking are sometimes valuable);
either extensions to or constrains on join point models (JPMs); or
prior constraints on the ability to advise join points.

The rest of this paper is organized as follows. The next section
provides background on the concept of obliviousness and on the use
of design structure matrices and design rules in modeling modular-
ity in design. Next we introduce the HyperCast case study, includ-
ing its design considerations and crosscutting concerns. Then we
consider designing, developing, and extending HyperCast through
the oblivious aspect-oriented design approach. We then repeat the
exercise with the information-hiding design-rules approach. Fi-
nally, we compare the two approaches, first qualitatively, from the
designer’s perspective, then quantitatively using an economic anal-
ysis based on the theory of real options [3].

2. BACKGROUND

2.1 Obliviousness
Obliviousness as a distinguishing characteristic of AOP was first

proposed by Filman and Friedman [6, p. 2]:
AOP can be understood as the desire to make quanti-
fied statements about the behavior of programs, and to
have these quantifications hold over programs written
by oblivious programmers.

The above-cited paper, whose purpose is to justify this definition,
has at least 50 citations in the literature. The vast majority use this
paper’s definition of AOP, while a few distinguish their work from
this definition.

Quantification needs to be understood before obliviousness can
be discussed. One distinguishing feature of AspectJ is the abil-
ity to select sets of join points declaratively. For example, the
PCD, call(* *State(..)), refers to all calls to methods with
names ending in State and having any parameter list. Not only do
PCDs save programming effort, but to the extent that they exploit
coding conventions they automatically match desired join points in
new code that follows the conventions. Some have referred to this
intensional property of properly quantified aspects as shyness [18].
In the terminology of obliviousness, such aspects are oblivious of
base code.

Quantification’s link to obliviousness is that more expressive-
ness in the quantification language—for example extending the join
point model and pointcut language of AspectJ—provides for more
obliviousness. That is, more power in the hands of aspect design-
ers means that less help is required from base code developers to
add aspects to a system. As often is the case, greater power can be
a double-edged sword, as we discuss in Section 4. The desire for
greater expressiveness in the quantification language and its atten-
dant difficulties have been drivers of aspect-oriented programming
language research.

Many variants and degrees of obliviousness can be found in the
literature, each of which carries different implications. We list the
definitions most relevant to the current paper in an approximate
hierarchy from weakest to strongest, and give them appropriate
names:

Language-level obliviousness is what is allowed when advis-
ing constructs are introduced to a programming language. Filman
and Friedman provide an apt definition, arguing that “...the distin-
guishing characteristic of aspect-oriented programming (AOP) lan-
guages is that they allow quantified programmatic assertions over
programs that lack local notation indicating the invocation of these
assertions” [7, p. 21]. Specifically, the language enables the base
code developer to write code without needing to use callback hooks
or macros.

Feature obliviousness is when the base code developer is un-
aware of the features that aspects implement. A base code designer
can prepare code for aspects, e.g., with event hooks, sacrificing
language-level obliviousness but retaining feature obliviousness.
From an information-hiding perspective [19], feature obliviousness
matches the classic notion of obliviousness: services are unaware
of their clients, but are obliged to serve clients that meet the given
preconditions. Our approach provides for what amounts to a com-
bination of both language-level and feature obliviousness as well
as shyness through naming, syntactic, procedure calling and simi-
lar conventions. One result is that aspects can be more “base code
shy” and hence not have to change when the base code evolves.

Designer obliviousness is when the designers of the base code
can be oblivious to the existence of aspects; in particular, not de-
signing any differently than they normally would. As Filman and

167

Friedman say “For true AOP, we want our system to work with
oblivious programmers—ones who don’t have to expend any addi-
tional effort to make the AOP mechanism work” [6, p. 2]. In ad-
dressing the properties of AOP that aid decoupling (i.e., separation
of concerns), Erad, Filman, and Bader note [5, p. 31]:

This includes obliviousness, whether the writer of the
main code be aware that aspects will be applied to
it; intimacy, what the programmer has to do to pre-
pare code for aspects; and globality versus locality,
whether aspects apply to the program as a whole or
only parts of it.

Intimacy, as used here, is at the other end of the spectrum from
obliviousness: the oblivious base code developer would not prepare
code for aspects. To satisfy designer obliviousness, however, the
developer has to meet the stronger criterion of not even needing to
be aware that aspects will be applied to it. This would generally
rule out communication with aspect designers.

The adoption of this definition of AOP has reached the popular
press. In Laddad’s widely acclaimed book on programming with
AspectJ, he says of AspectJ, “AOP modularizes the individual as-
pects and makes core modules oblivious to the aspects. Adding a
new functionality is now a matter of including a new aspect and
requires no change to the core modules” [14, p. 28].

Pure obliviousness is the limit where perfect obliviousness and
shyness are achieved, allowing for total, symmetric separation of
concerns. Filman and Friedman laid it out as the ultimate goal to
be sought by AOP researchers [7, p. 31]:

It’s a really nice bumper sticker to say “Just program
like always, and we’ll be able to add the aspects later.”
(And change policies later, and we’ll painlessly trans-
form the code for that, too.)3

Such a degree of obliviousness is viewed as a far-off ideal by oth-
ers [4]. In the presence of “harmful aspects” [11], however, com-
plete obliviousness might not be desirable.

2.2 Design Structure
The analysis in this paper depends heavily on the notion of de-

pendences between elements in a software design, and especially
on the structure of dependences in a given design. We say that an
element B depends upon an element A iff B makes assumptions
about A that, if invalid, can cause B not to satisfy its specifica-
tion. Invalid assumptions can arise for many reasons, including
the following: A’s developer misimplements A’s specification; A’s
specification changes but A’s developer is not aware of the change;
B’s developer misunderstands A’s specification; or B is unaware of
changes in properties of A on which B depends.

These design dependences are de facto dependences among the
developers involved in the system design and evolution task. The
depends-upon relation is critical for our analysis because changes
to any property of A on which B depends create possible obliga-
tions for B to change. The structure of dependences on design ele-
ments largely determines the dynamics of the design task.

We say that a design or a part of a design is modular if its ele-
ments do not depend on each other (although they may depend on
external design rules that serve to decouple them). The correspond-
ing work in realizing the design is parallel in that these elements can
be developed or changed independently, modulo their conformance
to any prevailing rules. A design and its corresponding implemen-
tation process are said to be hierarchical if elements are linked in

3A similar quotation can be found in their 2000 paper [6, p. 6].

a chain of dependences. In such a structure, upstream design deci-
sions have to be resolved before downstream decisions that depend
on them. A design and its implementation process are called cou-
pled if its elements depend on each other in cyclic relations.

It is common for different dependence structures to prevail in
different stages of a software process and in different parts or at
different levels of a design. In a waterfall process, for example, the
relationship between the architectural design and implementation
processes is hierarchical, but the implementation task is modular, in
that the identified modules can be developed independently subject
to the prevailing rules (e.g., the syntax, behavioral, performance,
and dependability specifications).

Following Baldwin and Clark [3] and the subsequent work of
Sullivan et al. [24], we represent design dependence structures us-
ing Design Structure Matrices (DSMs) [23]. DSMs present in a
graphical form the pair-wise dependence structures of designs and
and of their corresponding development and evolution process.

Figures 1, 2, and 4 in the following sections are examples. The
rows and columns of a DSM are labeled with design variables.
These are the design elements or dimensions for which the design-
ers must make design decisions: e.g., the selection of an algorithm,
the naming of a class, the formulation of an interface or the choice
of minimum acceptable reliability. Cells in a DSM are marked
to represent dependences among these decisions. For a given row
(e.g., a design variable A), the marks in that row show which de-
sign decisions A depends upon. The choices made for, or changes
to, those design variables influence the best choice for A. In Fig-
ure 1, for example, variable 28, socket impl, depends on 3, 14, 29,
and 30 (socket spec, socket interface, exception logging impl and
non exception logging impl, respectively). For a given column for
B, the marks show which variables depend upon B.

Carefully ordering and clustering the rows and columns of a
DSM can reveal large- and small-scale dependence structures in
patterns of marked cells. Consider as an example Figure 1, which
we discuss in detail in the next section. At the outermost level of
aggregation, the upper left part of the DSM represents abstract de-
sign concerns, and the lower right, the code base that implements
them. The code base comprises both interface and implementation
elements. The marks below the concerns and to the left of the code
base indicate a hierarchical structure: the code base depends on the
abstract concerns. Similarly, within the code base, the implemen-
tation modules depend on the interfaces. The block diagonal struc-
ture of the implementation reveals a modular structure. The ab-
sence of off-diagonal marks indicates no dependences between the
nested smaller boxes (each representing the interdependent design
decisions within an implementation module). The dense marks in
each implementation module reflect internally coupled structures.

An interface is an agreement about properties that an element B
should have and that other elements, such as A, may depend upon.
An interface thus comprises a set of design rules to which B is sub-
ject and which A may assume to be followed. One of the central
operations in a design activity is to create interfaces to decouple
otherwise coupled design elements and corresponding processes.
Both elements come to depend on an interface, but are made in-
dependent of each other. This property is what would commonly
be called a modular design. However, by Parnas’s criterion, a de-
sign exhibits information hiding modularity only if the interfaces
themselves are relatively immune to change. By modeling the ex-
ternal forces of change on a system as a special class of design vari-
ables that we call environment variables, it is possible to literally
see whether the design is modular in this sense [24]. The interface
cluster should not depend on the environment cluster; only imple-
mentation variables should depend on the environment variables.

168

In Figure 1 the environment variables are modeled as elements of
the system requirements specification (or concerns) that the Hyper-
cast designers believe will change.

3. THE HYPERCAST CASE STUDY
This paper centers around a comparative analysis of three de-

signs for HyperCast, a scalable, self-organizing overlay network
system [10, 15, 16]. The three designs are (1) its actual OO design,
(2) an oblivious AO design that we produced by moving scattered
code into aspects using oblivious design, and (3) one based on the
design rules approach. HyperCast is a real system developed inde-
pendently of the analysis reported in this paper. It includes scat-
tered code fragments for classic crosscutting concerns, including
logging. The placement of each fragment indicates objectively and
precisely where aspects need to advise in order to factor concern-
related code into aspects using an oblivious approach.

3.1 What HyperCast Does
The key abstraction provided by HyperCast is the overlay socket.

An overlay socket supports point-to-point and multicast commu-
nication in overlay networks. HyperCast integrates overlay sock-
ets, viewed as nodes, into networks in a decentralized manner. It
also offers network services including naming, reliable transport
and network management.

Key concerns in the design of HyperCast include the follow-
ing: Socket—the design of the overlay socket API; Protocol—the
protocols for maintaining various network topologies; Monitor—
a HyperCast network management capability; Service—network
mechanisms for end-to-end service; Adapter—a layer that virtu-
alizes underlying networks; Logging—a mechanism to record se-
lected events. These concerns map to loosely coupled classes in the
implementation.

There are several areas in which scattering and tangling of code
is evident. In this case study we address two. The first is log-
ging. A careful study of the logging code in HyperCast revealed
three sub-concerns: logging of informational messages, of raised
exceptions, and of errors that do not raise exceptions. Second, sev-
eral HyperCast modules use implicit invocation to notify clients of
key events. The protocol module, for example, announces events
for some transitions in the state machine that implements the self-
organizing behavior of HyperCast. The Service module announces
end-to-end service-related events. We thus inferred the following
additional concerns: Information logging, Exception logging, Non-
exception error logging, State machine events, and Service events.

3.2 The Design Structure of HyperCast
Each concern leads to specification and corresponding imple-

mentation decisions, which we model as design variables. For ex-
ample, one must specify a set of supported underlay networks. This
information is passed to the Adapter developer who then produces
an implementation. Figure 1 presents a DSM showing that design
structure in terms of these design variables. We view the specifi-
cations as environment parameters. They are grouped as the first
major module, in the block on the upper left. We distinguish the
crosscutting concerns from non-crosscutting concerns. Implemen-
tation decisions are grouped in the lower right.

In terms of these large blocks, we have a classic hierarchical
(lower triangular) structure: Specification precedes implementa-
tion. The implementation block, by contrast, is classically mod-
ular (block diagonal). Once the specifications are fixed, the im-
plementations can be developed and changed independently. How-
ever, each implementation module exhibits serious scattering and
tangling internally due to the influences of the crosscutting con-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
1.protocol_spec .
2.service_spec .
3.socket_spec .
4.monitor_spec .
5.adapter_spec .
6.event_spec .
7.protocol_event_policy .
8.service_event_policy .
9.info_logging_policy .
10.exception_logging_policy .
11.non_exception_logging_policy .
12.protocol_interface .
13.service_interface .
14.socket_interface .
15.monitor_interface .
16.adapter_interface .
17.event_interface .
18.protocol_impl x x x x . x x x x
19.protocol_event_impl x x . x x x
20.info_logging_impl x x x . x x
21.exception_logging_impl x x x x . x
22.non_exception_logging_impl x x x x x .
23.service_impl x x x x . x x x x
24.services_event_impl x x . x x x
25.info_logging_impl x x x . x x
26.exception_logging_impl x x x x . x
27.non_exception_logging_impl x x x x x .
28.socket_impl x x . x x
29.exception_logging_impl x x . x
30.non_exception_logging_impl x x x .
31.monitor_impl x x x x x x . x x
32.exception_logging_impl x x . x
33.non_exception_logging_impl x x x .
34.adapter_impl x x x . x x
35.exception_logging_impl x x . x
36.non_exception_logging_impl x x x .
37.event_impl x x x x .

Basic
Concerns

Crosscutting
Concerns

OO modules tangled with
Crosscuting Concerns

OO Interfaces

Figure 1: Basic Object-Oriented Design of HyperCast.

cerns. Tangling is seen by reading rows. For example, the protocol
implementation module depends on the protocol specification but
also on that of protocol events and each of the logging concerns.
Scattering is seen by reading columns. Changes in the exception
logging policy (parameter 10), for example, would likely effect ev-
ery implementation module in the system. AOP is meant to enable
improved modularity.

3.3 Comparative Methodology
We compare the actual HyperCast design with two AO alterna-

tives: an oblivious design and one produced using the design rule
method. We produced and tested both alternatives by refactoring
HyperCast. We produced an oblivious design by assuming that,
had the developers been able to ignore crosscutting concerns, they
would have written the same code but with code for the crosscutting
concerns left out. The results is a perfectly reasonable design for
the base concerns. We then wrote aspects that advise this code in
precisely the places where scattered fragments appear in the origi-
nal design.

It was easy to find scattered code for the concerns of interest:
they made explicit calls to methods for logging or event notifica-
tion. We refactored the system to move such code (or functional
equivalents) into aspects using AspectJ 1.2 [2]. The aspects had to
advise the new base code with PCDs that caused the given frag-
ments, now in the form of advice bodies, to be executed at the
points from which they had been removed.

The design rules approach is different: Here we asked the ques-
tion, what constraints on the code would shape it to make it rela-
tively easy to write the aspects at hand, as well as support future
aspects? We thus not only moved fragments from the original code
to aspects, but refactored the original code in ways dictated by the
design rule interfaces that we designed. In the following sections,
we compare the results in order to gain insights into the properties
of the respective design methods and resulting designs.

The phenomena we sought to understand include the difficulty
of writing the aspects in the first place, their sensitivity to changes
in the base code, and the value of the oblivious approach relative
to the design rule interfaces method. For our design rule method,
we also ask how intrusive it is into the developer’s practice and the
resulting code.

169

4. THE OBLIVIOUS APPROACH
We first explore the benefits and costs of a commitment to the

notion of oblivious design. Following the method outlined in the
previous section, we refactored HyperCast into an oblivious aspect-
oriented design. We assume—reasonably, we believe—that the
developers could plausibly have written essentially the same OO
code, just leaving out the scattered parts that implement crosscut-
ting concerns. We removed the scattered fragments and localized
them in new aspect modules: ao protocol events, ao service events,
ao info logging, ao exception logging, and ao non exception logging.
With implicit invocation now replaced by aspect-oriented advising,
we also eliminated the whole OO events module.

In writing aspects that would result in these fragments being wo-
ven back into the base code we encountered a number of issues,
which we describe below. We give code for each example in its
original form to convey what behavior is required and where.

We studied the HyperCast code to try to characterize the join
points that we’d have to advise to weave the extracted code frag-
ments back into the system. We found out that the context of these
join points was in one of the following four categories.

1. Private join points. In many cases, fragments had to be wo-
ven where there were no public join points (e.g., calls to public
methods). In some cases, code had to be woven into nested switch
or if statements, but join points were available, such as setting of a
data member. To identify these join points, we often used the set
and withincode pointcut designators. Below is an example.

pointcut HCLogicalAddrChanged(HC_Node node):
set(I_LogicalAddress HC_Node.MyLogicalAddress)
&& (withincode(void HC_Node.

messageArrivedFromAdapter(I_Message))
|| withincode(void HC_Node.timerExpired(Object))
|| withincode(void HC_Node.resetNeighborhood()))
&& target(node);

The pointcut works, but tightly couples the aspect to hidden de-
tails that the base code developer is free to change. If the devel-
oper changes the field name, MyLogicalAddress, the aspect will
not compile, and the aspect must be rewritten. In other words, the
base code change is non-modular. Unless the base code developer
can wait for the aspect developer to discover that the application no
longer compiles, the base code developer will need to either make
the change herself or notify the aspect developer. Here we high-
light either the lack of obliviousness of the base code developer
or the potential for high coordination costs, and chaotic, continual
introduction of incompatibilities (bugs) into code.

2. State–point separation. In many cases, the setting of a vari-
able of interest and the join point at which weaving is needed are
separated, and the given variable is not accessible to advice through
the AspectJ join point model. For example, we need to access an IP
address error at certain place in order to construct a log message.
The required value is stored in the local variable addrStr, which
advice cannot access. It is computed earlier by an inlined block
of code, which is neither governed by the same nesting of if and
switch statements as the logging code, nor solely reserved for use
by the logging concern:

String addrStr;
InetAddress ipAddr
if (AddrString != null) {

addrStr = AddrString;
}
else {

String addrType = config.getStringProperty
(PROPERTY_NAME_PREFIX + ".PhyAddr",
"INETV4AndTwoPorts");

addrStr = config.getStringProperty

(PROPERTY_NAME_PREFIX + "." + addrType +
".Address",":0:0");

}
String[] paFields = addrStr.split(":");
...
for (int i = 0; i < paFields.length; i++) {

paStr[i] = paFields[i].trim();
}
if (paFields.length > 3) {

//logging code
config.err("String" + addrStr + "
has wrong format for a physical address.");

}

There are a few possible ways to capture the IP address. First,
a two-stage advising sequence could be programmed, in which
one advice advises calls to config.getStringProperty to
save the IP address, and a separate advice advises the logging join
point. Not only is this possibly computationally costly, but its
complexity is sensitive to both whether the local variable com-
putation dominates the logging statement and whether such a se-
quence could be nested (which would require a stack to capture all
the relevant state). Two, the aspect developer could perhaps write
a method in the aspect to compute the IP address from scratch.
This would introduce unwanted scattering of IP address compu-
tations: in essence, base code is being copied in the aspect code.
Finally, stepping outside the options available to the developer, the
join point model of AspectJ could be extended for access to local
variables. However, this approach would only exacerbate the cou-
pling problems observed in category 1.

3. Inaccessible join point. This category includes join points
within nested switch and if statements, where there is no proxy
join point to advise. The check-and-branch sequence alone defines
the join point. Here is an example:
switch(MyState) {
case WaitforACK: {
switch(e.getType()) {

case FULL_E2E_ACK: {
processAck(msg.getSourceAddress());
if(ACKExpected.isEmpty()) {

MyState = Done;
MStore.setTimer(...);
/* Notification concern - removed
if(mylogicaladdress==root) {

notifyApplication();
}
*/

}
}
break;
case {
...

}

Here notifyApplication() notifies the application of cer-
tain events. We want to replace the use of event notification with
advising. The AspectJ JPM does not provide visibility into branches
taken by a program. The solution of recreating these conditionals
in the advice body at best only scatters the concern, would make
advice complex and hard to understand, and might not always be
feasible.

4. Quantification failure. Many join points that have to be ad-
vised in the same way cannot be captured by a quantified PCD, e.g.,
using wild-card notations. A separate PCD is required for each join
point. There were about 180 places in the base code where logging
was required. Most of the join points do not follow a common pat-
tern. Not only is there a lack of meaningful naming conventions
across the set of join points, but also variation in syntax: method
calls, field setting, etc. One failure mode here is that creating many

170

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1.protocol_spec .
2.service_spec .
3.socket_spec .
4.monitor_spec .
5.adapter_spec .
6.protocol_event_policy .
7.service_event_policy .
8.info_logging_policy .
9.exception_logging_policy .
10.non_exception_logging_policy .
11.protocol_interface .
12.service_interface .
13.socket_interface .
14.monitor_interface .
15.adapter_interface .
16.protocol_impl x x x .
17.service_impl x x x .
18.socket_impl x x .
19.monitor_impl x x x x x x .
20.adapter_impl x x x .
21.ao_protocol_events x x x .
22.ao_services_events x x x .
23.ao_info_logging x x x x x .
24.ao_exception_logging x x x x x x x x x x x .
25.ao_non_exception_logging x x x x x x x x x x x .

Basic
Concerns

Crosscutting
Concerns

Aspects

OO Interfaces

OO
Implementations

Figure 2: Obliviousness Aspect-Oriented Design of HyperCast.

PCDs is costly. More seriously, extensions to the base code that
should be logged will require the logging pointcut to be updated to
capture the new logging points. If the pointcut is not updated, it
will silently malfunction, as the non-advising of a join point does
not manifest a syntax or type error that can be reported at compile
time. In this case, then, it is imperative that the base code developer
communicate the changes to the aspect developer.

The common theme that runs through all of these problems is
that the oblivious approach might simplify the task of the base code
designer, but it can significantly complicate overall system devel-
opment because there is no agreement between the base and aspect
code developers about how their respective parts will be integrated.
Rather, the base code developer proceeds to blithely implement “as
he would anyway,” and the resulting design decisions then dictate
the conditions to which the aspect developers must conform.

In a nutshell, the oblivious design process is a hierarchical pro-
cess. Specifications are provided for base and aspect code modules.
Then the base code is written. Finally the aspect code is written un-
der the constraints imposed by both the external specifications and
the coding decisions made by the base developer.

Figure 2, which presents a DSM for the oblivious AO version of
HyperCast, highlights this design structure. The base code mod-
ules no longer depend on the crosscutting concerns, but the aspect
modules now strongly depend on the base implementation mod-
ules. The cell for (row 21, column 16), for example, indicates
that ao protocol event depends on protocol impl. This dependence
arises because the PCD of the aspect module depends on the form
of the join points that signal protocol events in the base code, en-
tirely under the control of an oblivious base code designer.

5. THE DESIGN RULES APPROACH
The oblivious design process assumes that it’s bad for base de-

velopers to be aware of aspects, and that intimacy—the explicit
preparation of code for advising by aspects—is even worse. Why?
For one, the comprehensibility of the base code could be compro-
mised: it might not manifest a design that matches the designer’s
conceptions of the base functionality. Two, the base code could
contain tangled concern code, compromising ease of change. Sim-
ilarly, explicit measures in the base code to anticipate certain exten-
sions might effectively exclude others. Three, parallel development
could be compromised, in that the base code designers would have

to coordinate with the aspect developers on the proper way to pre-
pare the base code for aspects.

Yet, as the previous section highlights, obliviousness in the de-
sign of the base code can cause numerous problems. The question,
then, is whether a new method can be devised that realizes the ben-
efits of AO design and yet minimizes or eliminates these problems.
The first two issues could be addressed with a method that molds
base code in ways that help aspect designers but without the need
for any auxiliary code, such as event notifications, method calls, or
tags. The OO design would be uncompromised, and there would
be no tangling. The third problem in fact highlights an opportunity:
the freedom afforded to base code designers by obliviousness de-
lays aspect design because it flows precisely from the hierarchical
nature of the design process. In the oblivious approach, pointcuts
cannot be written and advice parameter lists cannot be formulated
until the base code is written. A short design phase that establishes
symmetric separation of concerns between base designers and as-
pect designers could actually increase overall parallel development.

The design rules methodology provides the basis for such a method.
An essential idea is that for each crosscutting concern, a crosscut-
ting design rule interface is established to decouple the base design
and the aspect design. The constraints imposed by a design rule
govern three things: (1) which execution phenomena must be ex-
posed as join points, (2) how they are exposed through the JPM
of the given language (e.g., in AspectJ, rules could govern syntax,
name, and stack shapes), (3) constraints on behavior across join
points (e.g., pre- and post-conditions for the execution of advice
compositions). These elements ensure two important properties.
One, the PCDs required by aspects can be constructed and will not
have to change when the base code is evolved. Two, the state at
a join point is the actual behavioral point in the execution of in-
terest to the aspect, and that the system state after advice has re-
turned is not compromised. Our method is thus an instance of the
information hiding approach, but for crosscutting join-point-based
interfaces.

A base/aspect design rule should result in easy-to-use join points
that give base designers considerable implementation freedom. For
ADT design, the key to an easy-to-use interface that provides free-
dom in implementation is that the interface should place reasonably
minimal assumptions (constraints) on both the implementation and
the clients. For example, an associative memory abstraction should
not have an accessor method that reports the average collision chain
length. Nor should the interface make assumptions about clients’
intents, say by calling it a Dictionary and limiting use to short string
inputs and outputs. For base/aspect design rules, then, we provide
the dictum that the quantification of join points and the states at
those points should be characterized in terms of the application’s
own concepts and abstractions, rather in terms of implementation-
dependent aspect or base code details that are subject to change.

In HyperCast, for example, the design rules are best stated not
in terms of the logging or notification aspects, but rather in terms
of interesting abstract states and behaviors of the system, e.g., the
abstract states of the finite state machine that tracks and manages
the configuration and use of the overlay network. This reflective,
application-centric view allows the base code designer to be obliv-
ious to logging and other aspects, per se, and creates options for
several possible aspect-oriented extensions to HyperCast such as
mirroring and caching. Because design rules are formulated in
terms of the abstract system model, the resulting syntactic, nam-
ing and other constraints are consistent with the base code’s natural
OO ontology. Although there is scattered work that has to be car-
ried out to satisfy the rule, and the result is a crosscutting interface,
we hypothesize that the result is practically indistinguishable from

171

pure OO design. The following is a description and comparative
evaluation of our method through our case study application.

5.1 Experimental application to HyperCast
To create interfaces for the two crosscutting concerns of logging

and notification, we formulated eight major design rules. They con-
stitute five interfaces (with rules 1–4 comprising one interface).

1. State Update. DR1: HyperCast’s functionality is driven by
the abstract state transitions of the protocol’s finite state ma-
chine (FSM). This rule ensures that these transitions are vis-
ible to clients of HyperCast and it prohibits clients from in-
terfering with HyperCast’s core FSM behavior.

2. Update Logical Address. DR2: The changing of a Node’s
logical address is essential to the transition function. This
rules ensures that the changes of logical address are visible,
and it prohibits interference with base behavior.

3. Update Neighborhood. DR3: The changing of overlay topol-
ogy is essential to the transition function. This rule ensures
that changes of topology are visible to HyperCast clients, and
it prohibits them from interfering with base protocol behav-
ior.

4. Join and Leave Overlay. DR4: Expose the leaving and join-
ing of the overlay

5. Update Message Store State. DR5: HyperCast’s services
are driven by abstract state transitions in a component called
the MessageStore FSM. This rule ensures that these transi-
tions are visible to clients of HyperCast.

6. Throw Exception. DR6: Expose exceptions with context
information. This rule ensures that context information for
exceptions is available to clients, and it prohibits clients from
interfering with the base code behavior.

7. Error Handler. DR7: This design rule provides a unified
error handling approach in HyperCast.

8. Non-Exception Error Handling. DR8: This rule ensures
that error handling is done by the approach defined in DR7.
Thus all error states are exposed to HyperCast clients.

Figure 3 presents the resulting structure, with base code on the
left, design rules in the middle, aspects on the right, and depen-
dences of base and aspect codes on DRs indicated by arcs.

We refactored HyperCast to implement these rules. We modified
65 places in the Protocol module to follow DRs 1–4, mostly in six
classes, especially in MessageArrivedFromAdapter. We modified
21 places in the service classes to follow DR 5. All the modifi-
cations are simple, as the finite state machines were already im-
plemented and we only used methods with naming conventions to
expose them. We also removed the old event notification method,
which occurred in 41 places across 10 classes. For DRs 7–8, we
first identified 14 error types according to the specification. We
then create a template to implement DR 7 and DR 8. The refactor-
ing involved 55 error occurrences across 18 classes.

Such design rules would be used extensively by the aspect de-
signers. Unlike APIs, our interfaces do not have any explicit rep-
resentation in the source code. Rather, they simply constrain the
manner in which the code is written. We document these interfaces
in a style reminiscent of design patterns [8], as shown in Figure 5.

Figure 4 shows how the design rules decouple the base and as-
pect elements. Compared to the oblivious design’s DSM in Fig-
ure 2, we observe that all dependences between the basic modules

Protocol

S e rv i ce s

S ock e t

M on i tor

A d a p te rs

Protocol

E v e n ts

I n f o L og g i n g

S e rv i ce s

E x cp t L og g i n g

N on - E x cp t

log g i n g

�

�

�

�

�

�

�

�

Figure 3: The crosscutting interface in HyperCast. The de-
pendences of base and aspects on DRs is indicated by the arcs.
Base functionality is on the left, design rules in the middle, and
aspects on the right.

and aspect modules are removed. Instead, both the aspect modules
and the basic modules now depend on the design rules.

We now compare the aspects implemented over the two different
versions of the base code. In the oblivious AO design, the aspect
modules are an average 240 lines each in length, whereas for the
design-rules AO design the aspects average only 30 lines each for
the same functionality. For example, Figure 6 shows the aspects
for handling logical address events, using the two approaches. We
observe that the aspect in design rules approach is much simpler
because specific naming conventions were followed and interest-
ing abstract states were implicitly exposed in all protocol modules.
Without design rules, the aspect had to compute complex pointcuts
by going through lots of details of base code. Moreover, the design-
rule pointcut will capture newly-coded address changes, because it
is quantified and base code designers are constrained to write new
code following the design rule.

6. QUANTITATIVE ANALYSIS WITH NET
OPTION VALUE

Sullivan et al. [24] and Lopes [17], have previously used the
net option value model of Baldwin and Clark [3] to characterize
and quantitatively compare modular software designs modeled by
DSMs. In this section, we evaluate HyperCast similarly based on
the DSMs introduced in previous sections.

Given a product, the visible properties of which have a market
value of S0, the model estimates the additional value due to mod-
ularity in its hidden design. The idea is that modularity creates a
portfolio of valuable real options, one per module—options to re-
place existing modules with ones that capture new sources of value.
The model treats the cost of attaining modularity as sunk. The
model thus gives a partial picture—of the value of the flexibilty
created by modularity but not of the costs of designing a modular-
ization. The value of a product including the value of m options
embedded in its design is modeled as follows.

V = S0 + NOV 1 + . . . + NOV m, where
NOV i = maxki

{σin
1/2

i Q(ki) − Ci(ni)ki − Zi}

The value of modularity is modeled as the sum of the net options

172

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1.protocol_spec .
2.service_spec .
3.socket_spec .
4.monitor_spec .
5.adapter_spec .
6.protocol_event_policy .
7.service_event_policy .
8.info_logging_policy .
9.exception_logging_policy .
10.non_exception_logging_policy .
11.StateUpdate .
12.UpdateLogicalAddress .
13.UpdateNeighborhood .
14.LeaveAndJoinOverlay .
15.UpdateMessageStoreState .
16.ThrowException .
17.ErrorHandler .
18.NonExceptionErrorHandling .
19.protocol_interface x x x x x x x .
20.service_interface x x x x .
21.socket_interface x x x .
22.monitor_interface x x x .
23.adapter_interface x x x .
24.protocol_impl x x x x x x x x x x .
25.service_impl x x x x x x x .
26.socket_impl x x x x x .
27.monitor_impl x x x x x x x x x .
28.adapter_impl x x x x x x .
29.ao_protocol_events x x x x x .
30.ao_services_events x x .
31.ao_info_logging x x x x x x .
32.ao_exception_logging x x .
33.ao_non_exception_logging x x x .

Basic
Concerns

Crosscutting
Concerns

OO
Implementations

Aspects

Design Rules
Interfaces

OO Interfaces

Figure 4: Design Rules Aspect-Oriented Design of HyperCast.

Name: State Update

Rationale: HyperCast’s functionality is driven by the abstract
state transitions of the protocol FSM. This de-
sign rule ensures that these transitions are visible
to clients of HyperCast and alert clients that they
may not interfere with HyperCast’s code behavior.

Depends upon: none

Base code scope: implements
edu.virginia.cs.mng.hypercast.I Node+

Design Rule: Provides: Call to void setState(byte) at the
conclusion of performing a state transition.
Requires: No changes to the trace of
edu.virginia.cs.mng.hypercast.I Node+

Example: A pointcut for advising all state transitions might
be:
pointcut NodeStateChanged () :
call (void I Node+.setState(*));

Figure 5: Specification of DR 1, Update State.

values (NOV i, i = 1 . . . m) of the modules. The NOV of a mod-
ule is defined as the payoff on a research and development (R&D)
investment that, for an optimal choice of k explores k candidate re-
placements for the current module and that replaces it with the best
provided that a better one is found. The NOV formula assumes that
as k increases, the R&D costs increase linearly but that the benefits
diminish. In detail, the model assumes a normal distribution, cen-
tered at 0, on the values of the k R&D experimental results. Q(k)
is the expected maximum positive of k draws from a standard nor-
mal distribution. For module i, σin

1/2

i Q(ki) is the expected value
of the best of k positive-valued new candidates relative to the value
of the current module. The standard deviation, σin

1/2

i , models the
richness of the design space around the current module as the prod-
uct of a factor, the technical potential, σi, of the module, and the
square root of its complexity, ni, viewed as the number of major
design decisions in the module. Ci(ni)ki models the cost to run
ki experiments as a function Ci of the module’s complexity ni.
Zi = Σjseesicnj models the cost to substitute in a module given

privileged aspect EventTest {
// have to compute pointcuts for each protocols
pointcut DTLogicalAddrChanged():
(execution(* DT_Neighborhood.

DT_randomShiftMyCoordinates())||
execution(* DT_Neighborhood.

updateNodeAddress(DT_LogicalAddress)));

pointcut HCLogicalAddrChanged():
set(I_LogicalAddress HC_Node.MyLogicalAddress)&&
(withincode (void HC_Node.

messageArrivedFromAdapter(I_Message))||
withincode(void HC_Node.timerExpired(Object))||
withincode(void HC_Node.resetNeighborhood()));

pointcut SPTLogicalAddrChanged():
execution (* SPT_Node.setLogicalAddress

(I_LogicalAddress));

// advice
after() : DTLogicalAddrChanged() || ... {

// handle address changes here
}

// for other events...
}

(a)

privileged aspect DREventTest {
pointcut logicalAddrChanged(I_LogicalAddress):
execution(* I_Node+.

setMyLogicalAddress(I_LogicalAddress));

after() : logicalAddrChanged() {
// handle address changes here

}
// for other events...
}

(b)

Figure 6: Aspect for LogicalAddressChanged Events, (a) with-
out design rules, and (b) with design rules.

the dependences on the current module. Finally, the max selects
the value of ki that maximizes the gain for module i. In a nutshell,
this is an options pricing formula meant to estimate the value of the
real option created by a module in a design.

The two key parameters are technical potential, σ, and complex-
ity, n. In this paper, we operationalize technical potential as a
stream of change demands, with a percentage of demands imping-
ing on base modules and the rest on the aspect modules. A choice
of σ thus models a judgment as to where value can be created by
changing modules: in the base code or in the aspects.

We estimate complexity using lines of code (LOC) relative to
the LOC of the overall system as a proxy. Recognizing that code
can have siginificant inessential complexity, we used the LOC of
the smallest version of each module amongst our three systems.
Oblivious aspects were, on average, eight times larger than design
rule aspects. We thus used the design-rules version sizes to estimate
essential complexity.

We computed the value of the embedded options for each design,
varying σ, the change demands impinging on the base concerns rel-
ative to crosscutting concerns, from low to high. Table 1 presents
our results. The OO row presents the summed NOV “value of mod-
ularity” as a fraction of the base system value S0 for each value of
σ. The next two rows present value of modularity for the oblivi-
ous and design rule designs, respectively (the upper number in each
row), and this number as a percentage of the corresponding number
for the base OO design.

173

The values cannot be taken as economic truths but only as indi-
cators. The development and validation of Baldwin and Clark’s
model is still at an early stage, even in the economics commu-
nity, and it remains an open problem to justify precise estimates
for σ, both in general and for software design [24], in particular.
The model does provide for back-of-the envelope exploration of
the consequences of various assumptions, plausibly valid ordinal
comparisons and useful insights.

We first observe that the more likely it is for the crosscutting
concerns to change (the left side of the table), the more relative
value is added by either AO design. The value of the modularity in
the OO design goes to zero because its modularity is unused. The
value of the two AO designs similarly converges to the same value,
because they only differ in how they relate to the base code.

Towards the right of the table, as the relative change rate of the
base functionality goes above 90%, the oblivious design becomes
even worse than the OO design. This is because the oblivious de-
sign’s aspects are dependent on the base modules, which are chang-
ing at a high rate, thus producing a high Z.

In the middle to upper middle part of the table, presumably closer
to where the relative base change rate is likely to lie, we see that the
design-rule design outperforms oblivious design, chiefly because
its Z is zero when the base functionality evolves due to the join
point design rules. Both aspect-oriented designs outperform the
OO design in the value of flexibility.

7. CONCLUSION
In his seminal paper on information hiding [19], Parnas showed

the deleterious effects of dependences on design decisions that are
complex or likely to change. They make programs hard to under-
stand, develop in parallel, and change at a reasonable, predictable
cost. Parnas then showed designers how to do better using abstract
interfaces to decouple such design decisions. In this paper, we
revisited Parnas’s ideas in light of the addition of join points and
quantified advising to the programmer’s toolkit. The question we
have addressed is straightforward: what form of information hid-
ing interface is needed to expose crosscutting abstract behaviors to
AO quantified advising while hiding the complex, changeable and
inessential design decisions on either side?

An AOP language like AspectJ implicitly publishes a vast array
of join points for any given program. Unless their use is managed
carefully, complex integration problems and proliferating depen-
dences of PCDs on unstable, complex and arbitrary implementa-
tion decisions result. The oblivious approach dictates that design-
ers make no preparations for aspects. The problem is that aspect
code then has to conform to the arbitrary decisions of the base code
designer and cannot count on the presence, regularity or semantics
of join points.

Our approach provides an alternative design criterion. Identify
the important, abstract crosscutting behaviors whose implementa-
tions are complex or likely to change. For each, define an interface
that at once constrains the exposure of join points and the behavior
expected and allowed by the interface. Our study of HyperCast sug-
gests this approach provides qualitatively and quantitatively better
modularity than obliviousness (or regular OO design). Our inter-
faces modularize base and aspect code, decoupling them symmet-
rically. Oblivious design creates hierarhical dependence of aspect
code on base code. Our interfaces also make important crosscutting
concerns explicit, that remain implicit in oblivious and OO design.
Our approach abandons design obliviousness but preserves feature
obliviousness. Base code designers must be aware of and adapt
their code to crosscutting interfaces, but need not be aware of the
aspects that use these interfaces.

Of course our approach is not a panacea. No approach on the
horizon is likely to accommodate unplanned changes at a predictably
reasonable cost. It is thus not surprising that our study does not sup-
port the obliviousness proposition, that AOP fulfills a promise that
at a predictable and reasonable cost one can “Just program like al-
ways, and . . . add the aspects later.” Nor will our approach. Rather,
ours promises benefits when relevant crosscutting behaviors are an-
ticipated and when new code, anticipated or not, can be written
against existing interfaces.

If existing interfaces are inadequate, the designer will, as always,
have no choice but to dig into existing code to determine how best
to integrate the new code. Oblivious AO design provides an op-
tion to integrate new code without changing existing code, pro-
vided that the relevant behaviors are exposed through the join point
model (which is not assured in general). However, integration can
be complex and the resulting code subject to disruption by seeming
innocuous changes in implementation. Our approach would have
the designer develop a new interface and refactor the code to bring
it into conformance. In the face of unanticipated change we thus
trade non-invasiveness for much simpler aspect code (PCDs) and
the preservation of a modular design with abstract interfaces. Of
course, our approach does not preclude an oblivious approach.

Parnas’s interfaces are procedural and hierarchical. Ours fall in
the more general class of design rules: constraints that serve to
decouple otherwise coupled design decisions. Our interfaces are
non-procedural and non-hierarchical. They modularize decisions
that generally would be scattered by OO design or subject to change
when base code changes in oblivious design. It’s better for our
interfaces to crosscut than the design decisions themselves. First,
our interfaces are stable and simple; the design decisions are not.
Second, our interfaces say only how to write code, not to write
more code. No extra or tangled code is left in the base code.

Recently, in a paper on the nature of crosscutting interfaces and
modularity in AO design, Kiczales and Mezini wrote [13]:

Aspects cut new interfaces through the primary decom-
position of a system. This implies that in the pres-
ence of aspects, the complete interface of a module can
only be determined once the complete configuration of
modules in the system is known. While this may seem
anti-modular, it is an inherent property of crosscutting
concerns, and using aspect-oriented programming en-
ables modular reasoning in the presence of such con-
cerns.

This definition supposes that aspects change the interfaces of ad-
vised modules by the join points they use. What Kiczales and
Mezini really compute and document are dependences on join points
in a given system configuration. In the absence of agreement on
the assumptions that aspect designers may make about join points,
revealing those they do make is an important enabler of modular
reasoning and change. With our approach, sets of permissible as-
sumptions are specified explicitly as interfaces. There is no need
for a concept of unstable interfaces inferred ex post from system
configurations.

Aldrich recently proposed scoping constructs and a formal se-
mantics that relate to our design rules. The Open Modules system
focuses on the exposure of join points such that module state that is
intended to be hidden cannot be advised [1]. A module has to de-
clare a pointcut to export join points on private state. This approach
permits the evolution of module implementations without rework
of aspects. The semantics also supports checking these properties.
However, the resulting interfaces pertain to individual modules and
are not crosscutting, so Open Modules do not directly support ex-

174

σ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

OO 0 0 0 0.00164 0.077 0.17 0.31 0.50 0.78 1.09 1.26 1.402
Oblivious 0.537 0.483 0.423 0.375 0.375 0.41 0.49 0.62 0.83 1.10 1.255 1.391
% impr. N/A N/A N/A 2179.55 386.89 141.18 58.06 24.00 6.41 0.92 -0.40 -0.78
Design Rules 0.537 0.483 0.423 0.385 0.389 0.42 0.51 0.66 0.87 1.14 1.29 1.422
% impr. N/A N/A N/A 2244.62 404.78 147.06 64.52 32.00 11.54 4.59 2.38 1.43

Table 1: Net option values for the base OO, oblivious, and design rule designs as a function of the fraction of change demand
impinging on base as opposed to crosscutting concerns.

posure of join points across non-hierarchical parts of a system.
Today, prominent industrial development teams are reporting suc-

cesses with AOP. How can this be if the oblivious approach has
such problems? Our informal discussions with insiders suggest that
some do formulate and follow coding rules that aspect designers de-
pend upon. Our approach recognizes such good practice, raises it
to the level of a principle, and has the benefit of producing explicit
abstractions of important crosscutting concerns behaviors against
which aspects are written.

Crosscutting interfaces are not wholly new. Designers of dis-
tributed and real-time systems have long provided programming
rules to ensure that protocols, although not modularized, are writ-
ten in a consistent manner so as to achieve the desired result. Nam-
ing and coding rules enforced on a project also serve as implicit
crosscutting interfaces, aiding comprehension and the use of tools
to manipulate crosscutting code [9]. Our work with HyperCast sug-
gests that the consistency imposed by our designs rules can have
similar positive effects on comprehensibility.

The need for the aspect as distinct from the class is a matter
of on-going debate in the AOP community. Our study shows that
distinguishing between base and aspect code can be counterproduc-
tive. Rajan and Sullivan similarly showed that in the programming
language context, the dichotomy might have helped promote early
adoption of AOP but it also has drawbacks [21]. Not all approaches
manifest a dichotomy: e.g., Eos [21], HyperSlices [25]. In either
case, the question remains: how to modularize designs when ad-
vising over join points is available as a programming mechanism?
Our work provides a basis for an answer.

Open questions remain, constituting our future research agenda.
With what notations and semantics should our interfaces be speci-
fied? Section 5 suggests a possibility, but it has not been fleshed out
or tested. To what extent and how can our interfaces be checked?
AspectJ’s declare error construct can be used to check some
rules, especially prohibitions. Can environments such as Eclipse’s
AJDT make crosscutting rules more visible and ease their mainte-
nance? AJDT has an effective model for exposing advising; what
about rules governing advising, if written as pointcut descriptors?
Forthcoming work will address syntactic and behavioral contract
specification and checking, in particular.

8. REFERENCES
[1] J. Aldrich. Open modules: Modular reasoning about advice. In 2005 European

Conference on Object-Oriented Programming (ECOOP’05, to appear), July
2005.

[2] AspectJ project. http://www.eclipse.org/aspectj/.
[3] C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modularity. MIT

Press, Cambridge, MA, 2000.
[4] C. Constantinides and T. Skotiniotis. Reasoning about a classification of

cross-cutting concerns in object-oriented systems. In P. Costanza, G. Kniesel,
K. Mehner, E. Pulvermüller, and A. Speck, editors, Second Workshop on
Aspect-Oriented Software Development of the German Information Society.
Institut für Informatik III, Universität Bonn, Feb. 2002. Technical report
IAI-TR-2002-1.

[5] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming:
Introduction. Commun. ACM, 44(10):29–32, 2001.

[6] R. E. Filman and D. P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Workshop on Advanced Separation of
Concerns (OOPSLA 2000), Oct. 2000.

[7] R. E. Filman and D. P. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Aspect-Oriented Software Development,
pages 21–35. Addison-Wesley, 2005.

[8] E. Gamma, R. Helm, J. Vlissides, and R. E. Johnson. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[9] W. G. Griswold. Coping with crosscutting software changes using information
transparency. In Reflection 2001: The Third International Conference on
Metalevel Architectures and Separation of Crosscutting Concerns, pages
250–265, Kyoto, Sept. 2001.

[10] Hypercast project. http://www.cs.virginia.edu/ mngroup/hypercast/.
[11] S. Katz. Diagnosis of harmful aspects using regression verification. In

C. Clifton, R. Lämmel, and G. T. Leavens, editors, FOAL: Foundations Of
Aspect-Oriented Languages, pages 1–6, Mar. 2004.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In 15th European Conference on Object-Oriented
Programming (ECOOP 2001), pages 327–353, June 2001.

[13] G. Kiczales and M. Mezini. Aspect-oriented programming and modular
reasoning. In ICSE ’05: Proceedings of the 27th international conference on
software engineering, 2005.

[14] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications, 2003.

[15] J. Liebeherr and T. K. Beam. Hypercast: A protocol for maintaining multicast
group members in a logical hypercube topology. In Networked Group
Communication, pages 72–89, 1999.

[16] J. Liebeherr, M. Nahas, and W. Si. Application-layer multicasting with
delaunay triangulation overlays. EEE Journal on Selected Areas in
Communications, 20(8), oct 2002.

[17] C. V. Lopes and S. K. Bajracharya. An analysis of modularity in aspect oriented
design. In AOSD ’05: Proceedings of the 4th international conference on
Aspect-oriented software development, pages 15–26. ACM Press, 2005.

[18] J. Marshall, D. Orleans, and K. J. Lieberherr. DJ: Dynamic structure-shy
traversal in pure Java. Technical report, Northeastern University, May 1999.

[19] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, Dec. 1972.

[20] H. Rajan and K. Sullivan. Aspect language features for concern coverage
profiling. In the Fourth International Conference on Aspect-Oriented Software
Development (AOSD 2005), March 2005.

[21] H. Rajan and K. Sullivan. Classpects: Unifying aspect- and object-oriented
language design. In Proceedings of the 27th International Conference on
Software Engineering ICSE 2005), page To appear, May 2005.

[22] G. Steele. Common LISP: The Language. Digital Press, 2nd edition, 1990.
[23] D. V. Steward. The design structure system: A method for managing the design

of complex systems. IEEE Transactions on Engineering Management,
28(3):71–84, 1981.

[24] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The structure and value
of modularity in software design. SIGSOFT Softw. Eng. Notes, 26(5):99–108,
2001.

[25] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the 1999
International Conference on Software Engineering, pages 107–119, May 1999.

175

