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Abstract
In previous work, Rajan and Leavens presented the design of
Ptolemy, a language which incorporates the notion of quan-
tified, typed events for improved separation of concerns. In
this work, we present an empirical study to evaluate the ef-
fectiveness of Ptolemy’s design by applying it to a series of
architectural releases of a software product line (SPL) for
handling multimedia on mobile devices, called MobileMe-
dia, and the comparison and contrast of our findings with a
previous in-depth analysis by Figueiredo et al of the object-
oriented and aspect-oriented designs of the same system.
Our comparative analysis using quantitative metrics pro-
posed by Chidambar and Kemerer (and subsequently used
by Garcia et al) and a net-options value analysis used ear-
lier by Cai, Sullivan and Lopes shows that quantified, typed
events significantly improve the separation of concerns and
further decouple components in the MobileMedia design.

1. Introduction
An important class of separation of concerns techniques [5]
allows programmers to modularize crosscutting concerns.
Implicit invocation (II) languages and aspect-oriented (AO)
languages in the style of pointcut-advice languages [18]
are prominent examples in this class. Quantified, typed
events [20] are also a modularization mechanism in this class
of separation of concerns techniques.

The key idea behind quantified, typed events is to allow
programmers to declare abstract events in the software sys-
tem as event types. Often certain information about an ab-
stract event is useful, thus these event type declarations may
contain context information defined as one or more context
variables. Certain components in the software system may
raise these abstract events. This is done using announce ex-
pressions. An announce expression may name an event type
p. The semantics of an announce expression naming an event
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type p is that when the program execution reaches the event
expression, an event of type p is said to be raised. This is the
key distinction from aspect-oriented languages [15], which
generally do not require events to be explicitly raised.

Certain other components in the system may express an
interest in being notified when one or more abstract events
are raised in the system. This is done using binding dec-
larations. A binding declaration may also name an event
type p. The semantics of a binding declaration naming an
event type p is to express an interest in all raised events of
type p, without having to name the components that are re-
sponsible for raising those events. This is the key distinc-
tion from implicit-invocation languages [17], which do not
directly provide the ability to quantify over all components
raising an event without explicitly naming them.

The benefit of quantified, typed events over II languages
is that observer methods are decoupled from the code that
announces events; instead they only name event types. The
benefit over AO languages is that advice can uniformly ac-
cess reflective information about the join point while pre-
serving its encapsulation, thus it is decoupled from the base
code structure and the names used. In II languages, handlers
(observers) are name dependent on subjects that announce
events. AO languages remove this dependence but the im-
plicit dependence remains [20]. In Ptolemy, event types
(event declarations in syntax) decouple subjects that an-
nounce events from observers that register with these events
via a well-defined interface [20].

In this work we rigorously analyze the software engineer-
ing benefits of Ptolemy. We present a detailed case study to
evaluate the effectiveness of its design by applying it to a se-
ries of architecture releases of a software product line (SPL)
for handling multimedia on mobile devices, called Mobile-
Media [8] and the comparison and contrast of our findings
with a previous in-depth analysis [8].

2. An Example in Ptolemy
To illustrate the key ideas in Ptolemy [20] let us consider
the class LinkedList shown in Figure 1. It maintains
the linked list data structure using a nested class Node and
provides a method add to insert elements in the list.

An example requirement for such a collection could be
to declare and announce addition and removal of elements



1 void event ElementAdded { int element; }

3 class LinkedList {
4 Node h, t; /* Class Node elided */
5 void add(int num) {
6 announce ElementAdded(num) {
7 if (h == null) { h = new Node(num); t = h; }
8 else { t.next = new Node(num); t = t.next; }
9 } } }

10 class Average {
11 long count = 0; double currAverage = 0;
12 Average() { register(this); }
13 void update(thunk void rest, int element) {
14 invoke(rest);
15 currAverage=((currAverage*count) + element)/(++count);
16 }
17 when ElementAdded do update;
18 }

Figure 1. List and incremental averaging in Ptolemy

from the collection. Other components may be interested in
such events, e.g. for implementing incremental functionality
that relies on analyzing the increments. An example of such
a concern for the linked list of integers is the requirement to
keep track of the average of the integers in the list. Such
an average would need to be updated when new integers
are added and removed from the list. Furthermore, such
functionality may not be useful for all applications that use
the linked list class, thus it would be sensible to keep its
implementation separate from that of the linked list class in
order to maximize reuse of the linked list class.

Typically such a requirement would be implemented us-
ing the observer design pattern [10], that is directly sup-
ported in implicit invocation (II) languages [17]. In II lan-
guages, events are seen as a decoupling mechanism that is
used to interface two sets of modules, so that they can be
independent of each other. Certain modules, often called
subjects, dynamically and explicitly announce events. An-
other set of modules, often called observers, can dynamically
register methods, called handlers. These handlers are in-
voked (implicitly) when events are announced. The subjects
are thus independent of the particular observers. Aspect-
oriented (AO) languages [15] such as AspectJ [14] can also
be used to implement this requirement. However, both II and
AO languages have several limitations as described in [20].

In II languages, observers remain coupled with subjects,
no support for overriding is available, and specifying how
each event is handled can grow in proportion to the num-
ber of objects from which implicit invocations are to be
received [20]. AO languages have a fragile pointcut prob-
lem [22], language-imposed limits on the types of events an-
nounced, and a limited interface for accessing contextual (or
reflective) information about an event [20]. Quantified, typed
events in Ptolemy are designed to solve these problems [20].

In Ptolemy, event declarations allow programmers to
declare named event types. An event type declaration p has
a return type, a name, and zero or more context variable
declarations. These context declarations specify the types
and names of reflective information communicated between

announcement of events of type p and handler methods.
These declarations are independent from the modules that
announce or handle these events. The event types thus pro-
vide an interface that completely decouples subjects and ob-
servers. An example event type declaration is shown on line
1 in Figure 1. The event ElementAdded declares that
an event of this type makes one piece of context available:
the item (element) that is being inserted in the list.

Events are explicitly announced using announce state-
ments. These expressions enclose a body, which can be re-
placed by a handler. This functionality is akin to around
advice in AO languages. The class LinkedList declares
and announces an event of type ElementAdded using an
announce statement (lines 6–9). Arbitrary blocks can be de-
clared as the body of the announce statement, which requires
the context variables to be bound in the lexical scope of their
declaration. Event type ElementAdded declares one con-
text variable. Thus the announce statement binds num to
the name element (line 6).

Finally, the names of event declarations can be utilized
for quantification, which simplifies binding and avoids cou-
pling observers with subjects. Bindings in Ptolemy asso-
ciate a handler method to a set of events identified by an
event type. The binding in Figure 1, line 17 says to run
method update when events of type ElementAdded are
announced. This allows selecting a number of event state-
ments with just one succinct binding declaration without de-
pending on the modules that announce events.

Each handler method in Ptolemy takes an event closure as
the first actual argument. An event closure [20, 21] contains
code needed to run the applicable handlers and the original
event’s code. An event closure is run by an invoke expres-
sion. The invoke expression in the implementation of the
handler method update in Figure 1, line 14, causes all ap-
plicable handlers and the original event’s code to run before
computing the average incrementally.

3. Case Study: MobileMedia Application
To evaluate the software engineering benefits of Ptolemy, we
applied the language design in the context of an existing soft-
ware product-line application called MobileMedia [8]. This
section introduces MobileMedia, details observations from
our implementation of MobileMedia in Ptolemy and gives a
quantitative analysis of the design in terms of standard soft-
ware engineering metrics and a net options value analysis.

3.1 MobileMedia Software Product Line Overview
MobileMedia [8] is an extension of the MobilePhoto [25] ap-
plication, which was developed to study the effect of aspect-
oriented designs on software product lines (SPL). Mobile-
Media is an SPL for applications that manipulate photos,
music and videos on mobile devices.

MobileMedia extends MobilePhoto to add new manda-
tory, optional and alternative features. There are a total of 8



releases and descriptions of each is shown in Figure 2. For
example in release 7 (R7) a new feature is added to manage
music and an optional feature added in a previous release to
manage photos is turned into an alternative feature.

Release Description Type of Change
R1 MobilePhoto core
R2 Exception handling included (in the AspectJ

and Ptolemy versions, exception handling
was implemented according to [9])

Inclusion of
non-functional
concern

R3 New feature added to count the number of
times a photo has been viewed and sorting
photos by highest viewing frequency. New
feature added to edit the photo’s label

Inclusion of
optional and
mandatory
features

R4 New feature added to allow users to specify
and view their favourite photos.

Inclusion of op-
tional feature

R5 New feature added to allow users to keep
multiple copies of photos

Inclusion of op-
tional feature

R6 New feature added to send photo to other
users by SMS

Inclusion of op-
tional feature

R7 New feature added to store, play, and organ-
ise music. The management of photo (e.g.
create, delete and label) was turned into an
alternative feature. All extended functionali-
ties (e.g. sorting, favourites and SMS trans-
fer) were also provided

Changing of
one mandatory
feature into two
alternatives

R8 New feature added to manage videos Inclusion of al-
ternative feature

Figure 2. Summary of Change Scenarios in the MobileMe-
dia SPL (based on Figueiredo et al.’s work [8, Tab.1])

For this case study, we implemented the 7 changed re-
leases (R2–R8) using Ptolemy. For each release we started
with the AO version and used it as a template for the Ptolemy
release, creating one handler class for each aspect in the
system. For each advice body in the aspect, a new handler
method was added to the handler class. Event types were
created and event announcement added to emulate AspectJ’s
pointcut-advice semantics.

An overview of the MobileMedia architecture in Ptolemy
is shown in Figure 3. For each component, the release it first
appears in is marked with a +R notation. If the component is
changed in any release it is marked with a ∼R notation. For
example, MusicAccessor class in model was added in R7
and is marked in Figure 3 with a +R7 while PhotoAccessor
was changed in the same release as it is marked with a ∼R7.

Since we used the AO releases as a template for the
Ptolemy releases, the architecture is similar to the architec-
ture for the AO releases [8, Fig.4]. The key difference is that
aspects are represented in our figure as classes and we have
additional components shown for the event types (shaded).
By adding quantified, typed events we made the implicit
coupling of the aspects to the base components explicit and
provided an interface between them.

3.2 Key Observations
We used the AO version of MobileMedia as a guide to
creating the Ptolemy version. This allowed us to gain some
interesting insights into the benefits of using each language,
which we discuss in this section.

3.2.1 Observed Benefits of Aspect-oriented Design
The observed benefits of using aspect-oriented approaches
come from the static crosscutting features of AspectJ, such
as inter-type declarations and declare statements.

Inter-Type Declarations. A static feature of AspectJ that
allows adding fields/methods to other classes is inter-type
declarations (ITDs) [12, 14]. This feature allowed modular
extensions of existing classes for the AO versions, but was
not available for the Ptolemy versions (although this would
be a reasonable extension to include in the future).

For the Ptolemy versions, ITDs were emulated as follows.
For any field f introduced into a class C, a hashtable was
added to the event handler. Getters and setters were gener-
ated that take an additional argument of type C, which was
used as a key in the hashtable. For any methods introduced,
a similar pattern was applied by placing the methods in the
event handler and adding an additional parameter of type C.

In certain cases this required either increasing the visibil-
ity of fields in C or adding getters/setters for the field (which
would typically be done by declaring the aspect as privileged
in AspectJ). This pattern occurred frequently for releases 7
and 8 and as will be shown in Section 3.5 had a negative
impact on our design.

Declare Parents. Similar to ITDs, type hierarchies in the
base components can be extended in a modular manner us-
ing AspectJ’s declare parents [12]. In the case of Mobile-
Media, two type hierarchies were extended by adding a new
super-class to two base components. The effects of these ex-
tensions are easily modeled as inter-type declarations and
handled in the Ptolemy version as previously described.

Softened Exceptions. AspectJ also has the ability to
soften exceptions thrown in the base components [14] us-
ing declare soft statements. This was used in MobileMedia
to help modularize the exception handling feature in release
2, allowing the base components to no longer declare that it
throws checked exceptions handled by the aspects.

The current implementation of Ptolemy does not have any
similar constructs and thus the base components must still
declare that these checked exceptions are thrown. There are
both pros and cons of these declarations. The con is that a
programmer must write these additional annotations. On the
positive side, having these annotations makes the features in
Ptolemy completely (un)pluggable [12]. In the AO version,
if a feature that relies on softening exceptions is unplugged
the compilation of the base components will fail.

3.2.2 Observed Benefits of Quantified, Typed Events
Quantification Failure. Ptolemy gives the programmer
the ability to add event announcement for any arbitrary state-
ment in the base components. AspectJ can only advise join
points available in the provided pointcut language, such as
method executions or calls. This often results in what Sul-
livan et al. have called quantification failure [23, pp.170]



Figure 3. Ptolemy MobileMedia Architecture.

and is caused by incompleteness in the language’s event
model. Quantification failure occurs when the event model
does not implicitly announce some kinds of events and hence
does not provide pointcut definitions that select such events
[23, pp.170]. In AspectJ-like AO languages there is a fixed
classification of potential event kinds and a corresponding
fixed set of pointcut definitions. For example some language
features, such as loops or certain expressions, are not an-
nounced as events in AspectJ and have no corresponding
pointcut definitions [23, pp.170].

In the MobileMedia application, we observed several in-
stances of quantification failure. For example, in R2 the as-
pects needed to advise a while loop and similarly in R3 the
aspects needed to advise a for loop. To accomodate this,
the AO version refactors the base components, for example
moving these loops into newly added methods. The Ptolemy
version of MobileMedia did not suffer from this problem and
thus these refactorings were not necessary.

Fragile Pointcut Problem. As mentioned by Figueiredo et
al. [8], the AO version of MobileMedia suffers from a fragile
pointcut problem [8,20,23]. This could be easily observed in
release 7, where a mandatory feature PHOTO is generalized

into two alternative features PHOTO or MUSIC. This gen-
eralization required modifying many pointcuts, previously
relying on an implicit matching of signatures in the base.

The renaming of the base components itself is not a prob-
lem in the Ptolemy release and in fact requires no modifi-
cation of events or handlers; the handlers will match on the
event type which is not changed. If the event type is renamed
(for example, to remain consistently named to the base com-
ponents) then all handlers and events for that event type must
be updated accordingly. The key difference in these two sce-
narios is that in the AO case, the developer must be aware of
which pointcuts matched the given join point (which can be
aided with tools such as AJDT) while in the case of Ptolemy,
the compiler will specify type errors for every handler and
publisher for that event type. This avoids the fragile pointcut
problem entirely.

Advising Advice. As Rajan and Sullivan observed, the cur-
rent implementation of AspectJ considers each advice body
anonymous and thus they are not individually available for
selection in pointcuts [21]. The pointcut designator advice-
execution is available in the language, however it selects ev-
ery advice in the system. This can be narrowed to all ad-



vice in a single aspect, but not to a single, specific advice
body. For MobileMedia this led to a problem for the AO
version maintaining modularized exception handling in later
revisions. Some advice bodies added in later revisions con-
tain exception handling which could not be modularized. For
Ptolemy this problem does not exist due to the ability to an-
nounce events inside event handlers. The newly added event
handling code representing the advice body can simply an-
nounce an event, which will be handled by the exception
event handlers.

3.3 Effect on Change Propagation
A key benefit of a modular software design is in its abil-
ity to hide design decisions that are likely to change [19].
Thus, we consider the number of changed components as a
result of a change in a design decision to be an important
comparator for a software design. To quantify this, similar
to Figueiredo et al. [8], we measured the number of added
and removed components in the system for each version as
well as the number of components changed. The results are
shown in Figure 4 with additional Ptolemy-specific (PTL)
results for the number of event types added, changed or
removed. For comparison we also include the AO-specific
number of pointcuts (PCs) added, changed or removed.

For all releases, new components added to the AO version
are also added to the Ptolemy version. The impact on the
analysis for these components is approximately the same for
both AO and PTL versions. The remaining differences in the
number of added components is due to our refactoring of the
command pattern in the base components to use quantified,
typed events.

R2 R3 R4 R5 R6 R7 R8

C
om

po
ne

nt
s

Added
OO 9 1 0 5 7 17 6
AO 12 2 3 6 8 21 16
PTL 13 4 2 6 8 23 18

Removed
OO 0 0 0 0 0 10 1
AO 1 0 0 0 0 8 0
PTL 1 1 0 1 0 7 2

Changed
OO 5 8 5 8 6 12 22
AO 5 10 2 8 5 16 9
PTL 11 8 1 9 5 16 8

P
C

s

Added AO 43 6 7 2 7 19 26
Removed AO 0 0 0 0 0 0 5
Changed AO 0 8 0 16 2 50 2

Added PTL 25 9 1 5 5 9 4
Removed PTL 0 1 0 1 0 3 0
Changed PTL 0 0 0 0 0 13 0E

ve
nt

Ty
pe

s

Figure 4. Change propagation in MobileMedia for each
release (based on Figueiredo et al.’s work [8, Tab.3]).

In R7 a mandatory feature was turned into two alternative
features, leading to changes in the base components which
propagated to the event types and event handlers. 11 of the
13 resulting event type changes were due to the renaming of
base components that were passed as context in those events
types. Consider on the other hand the AO version which
required changing 35 of the 50 pointcuts due to the fragility
of the pointcuts.

In R8, several new alternate features were added to the
system. The Ptolemy version was able to re-use several ex-
isting event types leading to the addition of only 4 new event
types. The AO version however required adding 26 new
pointcuts to the system.

Releases 7 and 8 both added alternate features to the sys-
tem. The AO solutions for these revisions relied heavily on
inter-type declarations where previous versions mostly re-
lied on pointcuts and advice. Our method of emulating the
ITDs required changing the aspect handler to insert hashta-
bles and the introduced fields/methods. For R7 and R8 these
changes occur in new handlers and thus do not affect the
number of changed components.

In summary, for some versions quantified, typed events
showed an improved ability to withstand change in compo-
nents. In particular, for versions where significant refactor-
ing in the base components took place, Ptolemy’s design was
able to reduce the impact of these changes in the base code
from the handlers.

3.4 Effect on Coupling
As previously discussed, the main difference between AO
languages and Ptolemy is that the dependency between com-
ponents that announce events is explicitly stated using event
statements that name event types. In AO languages this de-
pendency is implicitly defined by the language semantics.
Explictly naming event types introduces coupling. The aim
of this section is to study the change in coupling between
components. In order to evaluate this we used a subset of the
metrics suite proposed by Chidambar and Kemerer [4] and
Fenton and Pfleeger [7] and subsequently refined by Gar-
cia et al. [11].

R2 R3 R4 R5 R6 R7 R8

LC
O

O

Average
OO 6.38 10.08 10.88 8.83 10.24 12.04 11.80
AO 5.67 8.69 8.50 6.97 8.24 9.39 8.03
PTL 3.30 3.36 3.21 2.86 2.83 2.77 2.96

Max
OO 64 70 71 73 96 113 114
AO 64 94 94 64 85 109 111
PTL 84 122 122 66 66 112 153

C
B

C

Average
OO 1.46 2.00 2.36 3.17 3.30 3.54 3.96
AO 1.30 1.72 1.84 2.50 2.65 2.76 2.69
PTL 0.80 0.94 1.06 1.43 1.57 1.71 2.01

Max
OO 9 13 13 11 11 15 20
AO 9 13 12 10 13 14 14
PTL 9 14 14 12 13 14 14

Figure 5. Coupling and Cohesion for MobileMedia.

Lack of cohesion in operations (LCOO) and coupling be-
tween components (CBC) for each component of all 7 mod-
ified releases was measured for each design. Figure 5 shows
the maximum value and the average across all components,
while the minimum values were the same for each design
and are thus omitted. The total coupling is higher for PTL
versions, however the max CBC remains consistent with AO
versions.

Figure 6 shows the number of components (NOC) and
total lines of code (LOC) for each version. Since the implicit



coupling between pointcuts and base components in the AO
versions was made explicit using event types in the Ptolemy
version, the number of components for the Ptolemy version
is now increased over the AO version by the number of event
types in the system.

Note the number of attributes (NOA) is higher due to the
explicit naming of context information but the number of
operations (NOO) is lower than AO versions due to the lack
of refactoring to expose join points.

R2 R3 R4 R5 R6 R7 R8

LO
C

OO 1159 1314 1363 1555 2051 2523 3016
AO 1276 1494 1613 1834 2364 3068 3806
PTL 1605 1923 2049 2374 2969 3655 4508

N
O

C

OO 24 25 25 30 37 46 51
AO 27 29 32 38 46 59 75
PTL 56 67 70 79 92 112 132

N
O

A

OO 62 71 74 75 106 132 165
AO 62 72 76 77 111 139 177
PTL 72 82 86 88 121 146 185

N
O

O

OO 124 140 143 160 200 239 271
AO 158 187 199 230 285 345 441
PTL 143 169 179 197 247 308 369

Figure 6. The measured size metrics for MobileMedia.

In summary, our results show the total coupling is slightly
higher in Ptolemy versions due to increased separation of
functionality into different components. This is the cost re-
quired for the improved change propogation gained by the
Ptolemy design.

3.5 Net Options Value Analysis of Design
In this section, we use Baldwin and Clark’s design rule the-
ory and design structure matrix modeling to compare the AO
and Ptolemy versions of the MobileMedia software product
line in terms of their ability to accommodate mandatory, op-
tional, and alternative features. This analysis builds on the
prior work of Sullivan et al. [23, 24] and Lopes et al. [16],
among others.

Design Rule (DR) Theory and Design Structure Matrix
(DSM). Baldwin and Clark’s theory is based on the idea
that modularity adds value in the form of real options. An op-
tion provides the right to make an investment in the future,
without a symmetric obligation to make that investment. Be-
cause an option can have a positive payoff but need never
have a negative one, an option has a positive present value.
Baldwin and Clark proposed that a module creates an option
to invest in a search for a superior replacement and to re-
place the currently selected module with the best alternative
discovered, or to keep the current one if it is still the best
choice. Intuitively, the value of such an option is the value
realized by the optimal experiment-and-replace policy.

Baldwin and Clark used design structure matrices
(DSMs) [6] as the fundamental model of their option-based
modularity theory. DSMs represent and depict, in matrix
form, pair-wise dependencies between dimensions of a de-
sign space. The columns and rows of a DSM are labeled with

design variables modeling design dimensions in which deci-
sions are needed. A mark in a cell indicates that the decision
on the row depends on the decision on the column.

Baldwin and Clark’s theory defines a model for reasoning
about the value added to a base system by modularity. This
model states that splitting a design intommodules increases
its base value S0 by a fraction obtained by summing the net
option values (NOV) (NOV i) of the resulting options. NOV
is the expected payoff of exercising a search and substitute
option optimally, accounting for both the benefits and cost of
exercising options. The value of a software with m modules
is calculated as:

V = S0 + NOV 1 + NOV i + ...+ NOV m, where
NOV i = maxki{σin

1/2
i Q(ki)− Ci(ni)ki − Zi}

For module i, σin
1/2
i Q(ki) is the expected benefit to

be gained by accepting the best positive-valued candidate
generated by ki independent experiments. Ci(ni)ki is the
cost to run ki experiments as a function Ci of the module
complexity ni. Zi = Σjseesicnj is the cost of changing
the modules that depend on module i. The max picks the
experiment that maximizes the gain for module i.

Our NOV Analysis Approach. In order to apply NOV
analysis to compare the modularity differences between OO,
AspectJ, and Ptolemy, we generated DSMs for each of the
eight releases of MobileMedia using each paradigm and cal-
culated the NOV values based on these 24 DSMs. Instead
of generating DSMs directly from source code using reverse
engineering tools, we use DSMs generated from UML com-
ponent diagrams for a number of reasons.

First, as a new programming language, there is no static
analysis tool that can faithfully extract dependency relations
from Ptolemy. Second, there are a number of implicit but
critical design decisions in OO an AspectJ versions that are
not extractable from the source code. Last and the most
important, using component diagrams allows us to compute
one critical parameter easily, the technical potential, which
measures how likely a module is subject to change.

Following the previous work of Sullivan et al. [23,24] and
Cai et al. [1, 2, 13], we relate environmental variables with
its technical potential. The rationale is that: the more envi-
ronmental conditions influence a module, the more likely it
is going to change. In this paper, we use features as envi-
ronmental variables. That is, for any component, the more
features influence it, the more technical potential it has. Us-
ing component diagrams allow us to assess which compo-
nents are influenced by which feature easily and uniformly.
To avoid mistakes caused by manually generating DSMs, we
automatically translate a component diagram into an aug-
mented constraint network [1–3], from which a DSM can be
automatically generated.

Our Assumptions. We make the following assumptions
in order to calculate NOV values and to make comparisons.
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Following Baldwin and Clark, we use the number of vari-
ables to represent complexity. The complexity of a module
can be measured as the size of the module as a proportion
of the overall system. For example, in Figure 7 that shows
the MobileMedia DSMs automatically generated from their
component diagrams, there are 22 design variables shown
in the lower right corner. Each component is modeled us-
ing two variables, the interface variable and the implemen-
tation variable. We thus model the complexity of the whole
system as 1, model the complexity of a component as 2/22,
and model the complexity of an aspect module as 1/22. The
number of modules are the number of blocks of diagonal in a
DSM, that is, the number of components, aspects, and event
handlers. We assume that the cost of each experiment on a
module with unit complexity is 1.

The visibility cost measures the cost incurred by depen-
dencies between modules. From the automatically derived
DSM model, for any module, we can automatically calcu-
late which and how many other variables depend on it. All
the ripple dependencies are already taken into account by
the underlying constraint network. As a result, we model the
visibility cost of a module as the sum of the cost of redesign-
ing each dependent module, calculated by multiplying the
complexity and unit cost of each dependent module.

The most important parameter for NOV analysis is tech-
nical potential, σ. Technical potential is the expected vari-
ance on the rate of return on an investment in producing vari-
ants of a module implementation. On the assumption that the
prevailing implementation of a module is adequate, the ex-
pected variance in the results of independent experiments is
proportional to changes in requirements that drive the evolu-
tion of the module’s specification. We relate this estimation
with the number of features that influence the module. For

example, if all features influence a module, then this module
is highly likely to change.

R1 R2 R3 R4 R5 R6 R7 R8
OO 0.77299 0.77299 0.77299 0.77299 1.62165 2.05698 2.67292 3.94591
AO 0.77299 0.94178 0.78183 0.82255 1.83999 2.50879 3.13572 4.78385
PTL 0.77299 1.19178 0.94179 0.89245 1.86611 2.58423 2.82729 3.83676

Figure 8. Net option values for the three designs: note the
high values for R7 and R8, which show the usefulness of
ITDs in AO languages compared to workarounds in Ptolemy.

Results. Given the above assumptions, we calculate the
NOV values for each release and each paradigm. These
are shown in Figure 8. It is important to put these results
in the perspective of language features most valuable for
each of these releases. From R2 to R6, when mandatory
and optional features are added, most used features in the
AO design were pointcuts and advice. In R7 and R8, when
alternative features are added, most used language features
in the AO design were ITDs. In R2 to R6, in Ptolemy’s
design, pointcut-advice were replaced by quantified, typed
events. In R7 and R8, we extensively worked around the lack
of inter-type declarations in the Ptolemy designs.

From the results, it is clear that for R2 to R6 the Ptolemy
designs generate higher NOV values compared to the AO
designs. This is because in the Ptolemy designs, there are
less dependencies between base code and the event handler,
which allows for their independent evolution. In R7 and R8,
the AO designs generate higher NOV values compared to
the Ptolemy designs. The primary reason for this result is
that in the Ptolemy designs, due to the workaround to em-
ulate ITDs, the dependencies increase significantly between
source code and event handlers. It is clear from the result
of R7 and R8 that ITDs are a beneficial feature and that our
workaround in the Ptolemy designs is not satisfactory. These



results show that the quantified, typed events as supported by
Ptolemy are more suitable for mandatory and optional fea-
tures. It would be interesting to explore the NOV values for
a language design that supports both quantified, typed events
and inter-type declarations.

4. Conclusion and Future Work
Finding a good separation of concerns is an important prob-
lem [5]. It is vital for improving the reliability and evolution
of software systems. New modularization mechanisms en-
able improved separation of concerns. Their invention and
refinement is thus equally important for maintaining intel-
lectual control on the growing complexity of software sys-
tems [5]. Quantified, typed events [20] is one such modular-
ization mechanism.

In this paper, we presented a rigorous evaluation of quan-
tified, typed events on an already well-substantiated case
study [8]. The results of our analysis using standard de-
sign metrics [4, 7, 11] show that even though quantified,
typed events make coupling between components explicit,
the overall coupling and cohesion of the system does not
increase significantly (Section 3.4). We also found several
instances of the quantification failure and fragile pointcut
problem, where Ptolemy’s use of quantified, typed events
helped reduce the impact of change (Section 3.3). The re-
sults of our net-options value analysis [1, 2, 13, 16, 23, 24]
demonstrate that the lack of AO-style inter-type declarations
degrades the separation of concerns in Ptolemy. However,
quantified, typed events improve the separation of concerns
for mandatory and optional features thereby increasing the
value of the software design (Section 3.5).
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