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Abstract. Implicit invocation (II) and aspect-oriented (AO) languages provide
related but distinct mechanisms for separation of concerns. II languages have ex-
plicitly announced events that run registered observer methods. AO languages
have implicitly announced events that run method-like but more powerful advice.
A limitation of II languages is their inability to refer to a large set of events suc-
cinctly. They also lack the expressive power of AO advice. Limitations of AO
languages include potentially fragile dependence on syntactic structure that may
hurt maintainability, and limits on the available set of implicit events and the
reflective contextual information available. Quantified, typed events, as imple-
mented in our language Ptolemy, solve all these problems. This paper describes
Ptolemy and explores its advantages relative to both II and AO languages.

1 Introduction

For temperance and courage are destroyed both by excess and defect,
but preserved by moderation. – Aristotle, Nicomachean Ethics

The objective of both implicit invocation (II) [1–6] and aspect-oriented (AO) [7]
languages is to improve a software engineer’s ability to separate conceptual concerns.
The problem that they address is that not all concerns are amenable to modularization
by a single dimension of decomposition [8]; instead, some concerns cut across the main
dimension of decomposition. For example, code implementing a visualization concern
would be scattered across the classes of an object-oriented (OO) decomposition. The II
and AO approaches aim to better encapsulate such crosscutting concerns and decouple
them from other code, thereby easing maintenance.

However, both II and AO languages suffer from various limitations. The goal of this
paper is to explain how our language Ptolemy, which combines the best ideas of both
kinds of language, can solve many of these problems.

1.1 Implicit Invocation Languages and their Limitations

The key idea in II languages is that events are used as a way to interface two sets of
modules, so that one set can remain independent of the other. Events promote decou-
pling and can be seen as direct linguistic support for the Observer pattern [9]. The
mechanisms of an II language are also known as “event subscription management.” [3]
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1 abstract class FElement extends Object{
2 event ChangeEvent(FElement changedFE);
3 event MoveUpEvent(FElement targetFE,
4 Number y, Number delta);
5 }
6 class Point extends FElement { /* ... */
7 Number x; Number y;
8 FElement setX(Number x) {
9 this.x = x;

10 announce ChangeEvent(this);
11 this
12 }
13 FElement moveUp(Number delta) {
14 announce MoveUpEvent(this,this.y,delta);
15 this.y = this.y.plus(delta); this
16 }
17 FElement makeEqual(Point other) {
18 other.x = this.x; other.y = this.y;
19 announce ChangeEvent(other); other
20 }
21 }

22 class Update extends Object { /* ... */
23 FElement last;
24 Update registerWith(FElement fe) {
25 fe.register(this, FElement.ChangeEvent);
26 fe.register(this, FElement.MoveUpEvent);
27 this
28 }
29 FElement update(FElement changedFE, Number x){
30 this.last = changedFE;
31 Display.update();
32 changedFE
33 }
34 FElement check(FElement targetFE,
35 Number y, Number delta) {
36 if (delta.lt(100)) { targetFE }
37 else{throw new IllegalArgumentException()}
38 }
39 when FElement.ChangeEvent do update
40 when FElement.MoveUpEvent do check
41 }

Fig. 1. Drawing Editor in an II language.

With declared events, certain modules (subjects) dynamically and explicitly an-
nounce events. Another set of modules (observers) can dynamically register methods,
called handlers. These handlers are invoked (implicitly) when events are announced.
The subjects are thus independent of the particular observers.

Figure 1 illustrates the mechanisms of a hypothetical Java-like II language based on
Classic Java (and thus similar to Ptolemy) for a figure editor that we will use as a run-
ning example in this paper. This code is part of a larger editor that works on drawings
comprising points, lines, and other such figure elements [10, 11]. The code announces
two kinds of events, named ChangeEvent and MoveUpEvent (lines 2–4). The sub-
class Point announces these events using announce expressions (lines 10, 14, and
19). When an instance of the class Update is properly “registered”, by calling the
registerWith method on an instance of the Point class, these announcements
will implicitly invoke the methods of class Update (lines 22–41). The connection be-
tween the events and methods of class Update is made on lines 39–40, where it is
specified that the update method is to be called when the ChangeEvent occurs and
the check method when MoveUpEvent occurs. Dynamic registration (lines 25–26)
allows the receiver of these method calls to be determined (and allows unregistration
and multiple registration).

The main advantage of an II language over OO languages is that it provides consid-
erable automation of the Observer pattern [3], which is key to decoupling subject mod-
ules from observer modules. That is, modules that announce events remain independent
of the modules that register methods to handle their event announcements. Compared to
AO languages, as we will see, II languages also have some advantages. First, event an-
nouncement is explicit, which helps in understanding the module announcing the event,
since the points where events may occur are obvious from the code. Second, event an-
nouncement is flexible; i.e., arbitrary points in the program can be exposed as events.
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However, compared with AO languages, II languages also have three limitations:
coupling of observers to subjects, no ability to replace event code, and lack of quantifi-
cation. We describe these below.

Coupling of Observers to Subjects While subjects need not know about observers in
an II language, the observer modules still know about the subjects. In Figure 1, for
example, the registration code on lines 25–26 and the binding code on lines 39–40
mentions the events declared in FElement. (Mediators, a design style for II languages,
also decouple subjects and observers so that they can be changed independently [6].
However, mediator modules remain coupled to both the subject and observers.)

No Replacement of Event Code The ability to replace the code for an event (what AO
calls “around advice”), is not available, without unnecessarily complex emulation code
(to simulate closures in languages such as Java and C#). Instead, to stop an action, one
must have a handler throw an exception (as on line 37), which does not clearly express
the idea. Similarly, throwing an exception does not support replacing actions with dif-
ferent actions, such as replacing a local method call with a remote method invocation.

No Quantification In II languages describing how each event is handled, which follow-
ing the AO terminology we call quantification, can be tedious. Indeed, such code can
grow in proportion to the number of objects from which implicit invocations are to be
received. For example, to register an Update instance u to receive implicit invocations
when events are announced by both a point p and a line l, one would write the follow-
ing code: u.registerWith(p); u.registerWith(l). One can see that such
registration code has to find all figure element instances. In this case these problems
are not too bad, since all such instances have types that are subtypes of FElement,
where the relevant events are declared. However, if the events were announced in unre-
lated classes, then the registration code (lines 25–26) and the code that maps events to
method calls (lines 39–40) would be longer and more tedious to write.

1.2 Aspect-Oriented Languages and their Limitations

In AO languages [12, 13] such as AspectJ [7, 10, 14, 15] events (called “join points”) are
pre-defined by the language as certain kinds of standard actions (such as method calls)
in a program’s execution. (We emphasize AspectJ for the maturity of its design and
the availability of a workable implementation.) AO events are all implicitly announced.
Pointcut descriptions (PCDs) are used to declaratively register handlers (called “ad-
vice”) with sets of events. Using PCDs to register a handler with an entire set of events,
called quantification [16], is a key idea in AO languages that has no counterpart in II
languages. A language’s set of PCDs and events form its event model (in AO terms this
is a “join point model”).

The listings in Figure 2 shows an AspectJ-like implementation for the drawing ed-
itor discussed before. (We have adapted the syntax of AspectJ to be more like our lan-
guage Ptolemy, to make comparisons easier.) In this implementation the Point class
is free of any event-related code (as are other figure elements such as Line). Mod-
ularization of display update is done with an aspect. This aspect uses PCDs such as
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1 abstract class FElement extends Object {}
2 class Point implements FElement { /*...*/
3 Number x; Number y;
4 FElement setX(Number x) {
5 this.x = x; this
6 }
7 FElement moveUp(Number delta) {
8 this.y = this.y.plus(delta); this
9 }

10 FElement makeEqual(Point other) {
11 other.x = this.x;
12 other.y = this.y; other
13 }
14 }

15 aspect Update {
16 FElement around(FElement fe) :
17 call(FElement+.set*(..)) && target(fe)
18 || call(FElement+.makeEq*(..)) && args(fe){
19 FElement res = proceed(fe);
20 Display.update(); res
21 }
22 FElement around(FElement fe, Number delta):
23 target(fe)&&(call(FElement+.move*(..))
24 && args(delta){
25 if (delta.lt(100) { proceed(delta) }
26 else { fe }
27 }
28 }

Fig. 2. Drawing editor’s AO implementation.

target(fe) && call(FElement+.set*(..)) to select events that change
the state of figure elements. This PCD selects events that call a method matching set*
on a subtype of FElement and binds the context variable fe (of type FElement) to
that call’s receiver.

AO languages also have several advantages. Quantification provides ease of use.
For example, one can select events throughout a program (and bind them to handlers)
by just writing a simple regular expression based PCD, as on lines 17–18. Moreover,
by not referring to the names in the modules announcing events directly, the handler
code remains, at least syntactically, independent of that code. Implicit event announce-
ment both automates and further decouples the two sets of modules, compared with II
languages. This property, sometimes called obliviousness [16], avoids the “scattering”
and “tangling” [7] of event announcement code within the other code for the subjects,
which can be seen in lines 10, 14, and 19 of Figure 1. In that figure, this explicit an-
nouncement code is mixed in with other code, resulting in tangled code that makes it
harder to follow the main program flow.

However, AO languages suffer from four limitations, primarily because most cur-
rent event models use PCDs based on pattern matching. These languages differ by what
they match. For example, AspectJ-like languages use pattern matching on names [10],
LogicAJ and derivative languages use pattern matching on program structures [17,
18], and, history-based pointcuts use pattern matching on program traces [19]. An
example PCD in languages that match names is call(FElement+.set*(..))
that describes a set of call events in which the name of the called method
starts with “set”. An example PCD in languages that match program structures
is stmt(?if,if(?call){??someStatements}&&fooBarCalls(?call)
that describes a set of call events in which the name of the called method is “foo”
or “bar” and the call occurs within an if condition [17, Fig 4.]. An example
PCD in languages that match program traces would be G(call(∗Line.set(..)) →
F (call(∗Point.set(..)))) that describes every call event in which the name of the called
method is “Line.set” and that is finally followed by another call event in which the
name of the called method is “Point.set” [20, Fig 3.].

Fragile Pointcuts The fragility of pointcuts results from the use of pattern matching as a
quantification mechanism [21, 22]. Such PCDs are coupled to the code that implements
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the implicit events they describe. Thus, seemingly innocuous changes break aspects.
For example, for languages that match based on names, a change such as adding new
methods that match the PCD, such as settled, can break an aspect that is counting
on methods that start with “set” to mean that the object is changing. As pointed out
by Kellens et al. [23], in languages that match based on program structures a simple
change such as changing an if statement to an equivalent statement that used a con-
ditional (?:) expression would break the aspect. For languages that match based on
program traces a simple change such as to inline the functionality of “Point.set”
would break the aspect that is counting on “Line.set” to be eventually followed
by “Point.set” [23]. Conversely, when adding a method such as makeEqual that
does not conform to the naming convention, one has to change the PCD to add the new
method pattern (as shown in line 18 of Figure 2). In the same vein, when adding a new
call such as foo()within a while statement that does not conform to the existing pro-
gram structure, one has to change the PCD to accomodate the new program structure.
Similar arguments apply for trace-based pointcuts. Indeed, to fix such problems PCDs
must often be changed (e.g., to exclude or include added methods). Such maintenance
problems can be important in real examples.

Several recent ideas such as Aspect Aware Interfaces (AAIs) [11], Crosscut Pro-
gramming Interfaces (XPIs) [24, 25], Model-based Pointcuts [23], Open Modules
(OM) [26], etc, have recognized and proposed to address this fragile pointcut prob-
lem. Briefly, AAIs, computed using the global system configuration, allow a developer
to see the events in the base code quantified by a PCD, but do not help with reducing the
impact of base code changes on PCDs, which primarily causes the fragile pointcut prob-
lem. XPIs reduce the scope of fragile pointcut problem to the scope declared as part of
the interface, however, within a scope the problem remains. OMs allow a class to explic-
itly expose the set of events, however, for quantifying such events explicit enumeration
is needed, which couples the PCD with names in the base code. Such enumerations are
also potentially fragile as pointed out by Kellens et al. [23]. A detailed discussion of
these ideas is presented in Section 4.

Quantification Failure The problem of quantification failure is caused by incomplete-
ness in the language’s event model. It occurs when the event model does not implicitly
announce some kinds of events and hence does not provide PCDs that select such events
[24, pp. 170]. In AspectJ-like AO languages there is a fixed classification of potential
event kinds and a corresponding fixed set of PCDs. For example, some language fea-
tures, such as loops or certain expressions, are not announced as events in AspectJ and
have no corresponding PCDs.1 While there are reasons (e.g., increased coupling) for not
making some kinds of potential events available, some practical use cases need to han-
dle them [27, 28]. This fixed set of event kinds and PCDs contributes to quantification
failure, because some events cannot be announced or used in PCDs.

1 Some may view that as a problem of the underlying language rather than the approach to
aspects: e.g., in a language where all computation takes place in methods, this, target and
args are always defined. We argue that it may not be necessary to continue to support such
differentiation between means of computation, instead a unified view of all such means of
computation can be provided to the aspects.
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There are approaches such as LogicAJ that provide a finer-grained event model [17].
For example, in LogicAJ one could match arbitrary program structure in the base code,
which is significantly more expressive compared to matching based on names. However,
as discussed above, a problem with such technique is that the PCDs becomes strongly
coupled with the structure of the base code and therefore become more fragile.

An alternative approach to solving this problem is taken by the technique used in
SetPoint [29]. This technique allows a programmer to select events by attaching anno-
tations to locations of such events. This technique is not fragile in the sense that it does
not depend on names, program structure, or order of events. A problem, however, is that
this technique does not allow arbitrary expressions to be selected, primarily because the
underlying languages do not allow annotations on arbitrary expressions.

Limited Access to Context Information Current AO languages provide a limited inter-
face for accessing contextual (or reflective) information about an event [24]. For exam-
ple, in AspectJ, a handler (advice) can access only fixed kinds of contextual information
from the event, such as the current receiver object (this), a call’s target, its arguments,
etc. Again there are good reasons for limiting this interface (e.g., avoiding coupling),
but the fundamental problem is that, in current languages, this interface is fixed by the
language designer and does not satisfy all usage scenarios. For example, when modu-
larizing logging, developers need access to the context of the logging events, including
local variables. However, local variables are not available in existing AO event models.

Approaches such as LogicAJ [17] allow virtually unlimited reflective access to the
program context surrounding code using meta-variables, which is more expressive than
AspectJ’s model; e.g., a local variable can be accessed by associating it with a meta-
variable. However, as we discuss in detail below, this unlimited access is achieved with
ease only in cases where the events form a regular structure.

Uniform Access to Irregular Context Information A related problem occurs when con-
textual information that fulfills a common need (or role) in the handlers is not available
uniformly to PCDs (and handlers). For example, in Figure 2 setX and makeEqual
contribute to the event “changing a figure element,” however, they are changing differ-
ent figure element instances: this and other in the case of setX and makeEqual
respectively. In this simple case, it is possible to work around this issue by writing a
PCD that combines (using ||, as in lines 17–18 of Figure 2) two separate PCDs, as
shown in Figure 2. Each of these PCDs accesses the changed instance differently (one
using target, the other using args). However, each such PCD depends on the par-
ticular code features that it needs to access the required information.

This problem is present in even significantly more expressive approaches based on
pattern matching such as LogicAJ [17]. For irregular context information, the best so-
lution in these techniques also need to resort to explicit enumeration of base code struc-
ture to identify meta-information that need to be accessed. Note that such enumeration
increases the coupling between the PCDs and the details of the base code.
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1.3 Contributions

In this work, we present a new language, Ptolemy, which adds quantified, typed events
to II languages, producing a language that has many of the advantages of both II and
AO languages, but suffers from none of the limitations described above.

Ptolemy declares named event types independently from the modules that announce
or handle these events. These event types provide an interface that completely decou-
ples subject and observer modules. An event type p also declares the types of informa-
tion communicated between announcements of events of type p and handler methods.
Events are explicitly announced using event expressions. Event expressions enclose a
body expression, which can be replaced by a handler, providing expressiveness akin to
around advice in AO languages. Event type names can also be used in quantification,
which simplifies binding and avoids coupling observers with subjects.

Key differences between Ptolemy and II languages are thus:

– separating event type declarations from the modules that announce events,
– the ability to treat an expression’s execution as an event,
– the ability to override that execution, and
– quantification by the use of PCDs.

Key differences between Ptolemy and AO languages are:

– events are explicitly announced, but quantification over them does not require enu-
meration unlike techniques such as Open Modules [26],

– an arbitrary expression can be identified as an event (unlike Setpoint [29]) without
exacerbating the fragile pointcut problem (unlike languages like LogicAJ [17]),

– events can communicate an arbitrary set of reflective information to handlers with-
out coupling handlers to program details (cf. [23]), and

– PCDs can use declared event types for quantification.

The benefit of Ptolemy’s new features over II languages is that the separation of
event type declarations allows further decoupling, and that the ability to replace events
completely is more powerful. The benefit over AO languages is that handler methods
(advice) can uniformly access reflective information from the context of events without
breaking encapsulation of the code that announces events. Furthermore, event types also
permit further decoupling over AO languages, since PCDs are decoupled from the code
announcing events (the “base code”).

These benefits make Ptolemy an interesting point in the design space between II
and AO languages. Since event announcement is explicit, announcing modules are not
completely “oblivious” to the presence of handlers, and hence by some definitions [16]
Ptolemy is not aspect-oriented. However, this lack of obliviousness is not fatal for in-
vestigating its utility as a language design, and indeed highlights the advantages and
disadvantages of obliviousness, as we will explain Sections 3.3 and 4.

In summary, this work makes the following contributions. It presents:

– a language design with simple and flexible event model;
– a precise operational semantics and type system for the language’s novel constructs;
– an implementation of the language as an extension of Eclipse’s Java compiler; and,
– a detailed analysis of our approach and the closely related ideas.
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2 Ptolemy’s Design

Ptolemy (Claudius Ptolemaeus), fl. 2d cent. A.D.,
celebrated Greco-Egyptian mathematician, astronomer, and geographer.

In this section, we describe Ptolemy’s design. Its use of quantified, typed events
extends II languages with ideas from AO languages. Ptolemy features new mechanisms
for declaring event types and events. It is inspired by II languages such as Rapide [3]
and AO languages such as AspectJ [10]. It also incorporates some ideas from Eos [30]
and Caesar [31]. As a small, core language, its technical presentation shares much in
common with MiniMAO1 [32, 33]. The object-oriented part of Ptolemy has classes,
objects, inheritance, and subtyping, but it does not have super, interfaces, exception
handling, built-in value types, privacy modifiers, or abstract methods. The novel fea-
tures of Ptolemy are found in its event model and type system.

Like Eos [30], Ptolemy does not have special syntax for “aspects” or “advice”.
Instead it has the capability to replace all events in a specified set (a pointcut) with a
call to a handler method. Each handler takes an event closure as its first argument. An
event closure [30] contains code needed to run the applicable handlers and the original
event’s code. An event closure is run by an invoke expression.

Like II languages a class in Ptolemy can register handlers for events. However,
unlike II languages, where one has to write an expression for registering a handler
with each event in a set, Ptolemy allows a handler to be declaratively registered for
a set of events using one succinct PCD in a binding (which is similar to declaring
AO “around advice”). At runtime, one can use Ptolemy’s register expression to
activate such relationships. The register expression supplies an observer instance
(an object) that becomes the receiver in calls to its handler methods that are made when
the corresponding events are announced.2 It is thus easy to make individual observer
instances that handle event announcements (“instance-level advising”) [34]. Singleton
“aspects” could be easily added as syntactic sugars.

2.1 Syntax

Ptolemy’s syntax is shown in Figure 3 and explained below. A program in Ptolemy
consists of a sequence of declarations followed by an expression. The expression can
be thought of as the body of a “main” method. In Figure 4 we illustrate the syntax using
the example from Section 1.

Declarations The two top-level declaration forms, classes and event type declarations,
may not be nested. A class has exactly one superclass, and may declare several fields,
methods, and bindings. Bindings associate a handler method to a set of events described
by a pointcut description (PCD). The binding in Figure 4, line 47 says to run update
when events of type FEChange are announced. Similarly, the binding on line 48 says
to run check when events of type MoveUpEvent are announced.

2 In AO languages such as Eos [34] and Caesar [31] register expressions correspond to “deploy-
ing aspects.”
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prog ::= decl* e
decl ::= c evtype p { form* }
| class c extends d { field* meth* binding* }

field ::= c f;
meth ::= t m (form*) { e }
t ::= c | thunk c
binding ::= when pcd do m
form ::= t var, where var 6=this
pcd ::= p | pcd ‘||’ pcd
e ::= new c() | var | null | e.m(e*) | e.f
| e.f = e | cast c e | form = e; e | e; e
| register(e) | event p { e } | invoke(e)

where
c, d ∈ C, a set of class names
p ∈ P, a set of evtype names
f ∈ F, a set of field names
m ∈ M, a set of method names

var ∈ {this} ∪ V,V is
a set of variable names

Fig. 3. Ptolemy’s abstract syntax, based on Clifton’s dissertation [32, Figures 3.1, 3.7].

1 FElement evtype FEChange{
2 FElement changedFE;
3 }
4 FElement evtype MoveUpEvent{
5 FElement targetFE; Number y; Number delta;
6 }
7 class FElement extends Object{}
8 class Point extends FElement{ /* ... */
9 Number x; Number y;

10 FElement setX(Number x) {
11 FElement changedFE = this;
12 event FEChange{ this.x = x; this }
13 }
14 FElement moveUp(Number delta){
15 FElement movedFE = this;
16 event MoveUpEvent{
17 this.y = this.y.plus(delta); this
18 }
19 }
20 FElement makeEqual(Point other){
21 FElement changedFE = other;
22 event FEChange{
23 other.x = this.x;
24 other.y = this.y; other
25 }
26 }
27 }

28 class Update extends Object{
29 FElement last;
30 Update init(){
31 register(this)
32 }
33 FElement update(thunk FElement next,
34 FElement changedFE){
35 FElement res = invoke(next);
36 this.last = changedFE;
37 Display.update(); res
38 }
39 FElement check(thunk FElement next,
40 FElement targetFE,
41 Number y, Number delta){
42 if (delta.lt(100)){
43 FElement res = invoke(next)
44 };
45 targetFE
46 }
47 when FEChange do update
48 when MoveUpEvent do check
49 }

Fig. 4. Drawing Editor in Ptolemy

An event type (evtype) declaration has a return type (c), a name (p), and zero or
more context variable declarations (form*). These context declarations specify the types
and names of reflective information exposed by conforming events. Two examples are
given in Figure 4 on lines 1–6. The intention of the first event type declaration (lines
1–3) is to provide a named abstraction for a set of events, with result type FElement,
that contribute to an abstract state change in a figure element, such as moving a point.
This event type declares only one context variable, changedFE, which denotes the
FElement instance that is being changed. Similarly, the event type MoveUpEvent
(lines 4–6) declares three context variables, targetFE, which denotes the FElement
instance that is moving up, y, the current Cartesian co-ordinate value for that instance,
and delta, the displacement of the instance.

Quantification: Pointcut Descriptions PCDs have two forms. The named PCD de-
notes the set of events identified by the programmer using event expressions with the
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given name. Two examples appear on lines 47–48 of Figure 4. The first, FEChange,
denotes events identified with the type FEChange. The context exposed by this PCD
is the subset of the lexical context named by that event type and available at event
expressions that mention that type.

The disjunction (||) of two PCDs gives the union of the sets of events denoted by
the two PCDs. The context exposed by the disjunction is the intersection of the context
exposed by the two PCDs. However, if an identifier I is bound in both contexts, then
I’s value in the exposed context is I’s value from the right hand PCD’s context.

Expressions Ptolemy is an expression language, thus the syntax for expressions in-
cludes several standard object-oriented (OO) expressions [32, 33, 35].

There are three new expressions: register, invoke, and event. The expres-
sion register(e) evaluates e to an object o, registers o by putting it into the pro-
gram’s list of active objects, and returns o. The list of active objects is used in the
semantics to track registered objects. Only objects in this list are capable of advising
events. For example lines 30–32 of Figure 4 is a method that, when called, will register
the method’s receiver (this). The expression invoke(e) evaluates e, which must
denote an event closure, and runs that event closure. This runs the handlers in the event
closure or, if there are no handlers, the event closure’s original expression.

The expression event p {e} announces e as an event of type p and runs any han-
dlers of registered objects that are applicable to p, using a registered object as the re-
ceiver and passing as the first argument an event closure. This event closure contains the
rest of the handlers, the original expression e, and its lexical environment. In Figure 4
the event expression on line 10 has a body consisting of a sequence expression. Notice
that the body of the setX method contains a block expression, where the definition on
line 11 binds this to changedFE, and then evaluates its body, the event expression.
This definition makes the value of this available in the variable changedFE, which
is needed by the context declared for the event type FEChange. In this figure, the event
declared on line 22–25 also encloses a sequence expression. As required by the event
type, the definition on line 21 of Figure 4 makes the value of other available in the
variable changedFE. Thus the first and the second event expressions are given differ-
ent bindings for the variable changedFE, however, code that advises this event type
will be able to access this context uniformly using the name changedFE.

The II syntax “announce p” can be thought of as sugar for “event p {null}.”
Thus Ptolemy’s event announcement is strictly more powerful than that in II languages.

2.2 Operational Semantics of Ptolemy

This section defines a small step operational semantics for Ptolemy. The semantics is
based on Clifton’s work [32, 33, 36], which builds on Classic Java [37].

The expression semantics relies on four expressions that are not part of Ptolemy’s
surface syntax as shown in Figure 5. The loc expression represents locations in the
store. The under expression is used as a way to mark when the evaluation stack needs
popping. The two exceptions record various problems orthogonal to the type system.

Figure 5 also describes the configurations, and the evaluation contexts in the op-
erational semantics, most of which is standard and self-explanatory. A configuration
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Added Syntax:

e ::= loc | under e | NullPointerException | ClassCastException
where loc ∈ L, a set of locations

Domains:

Γ ::= 〈e, J, S,A〉 “Configurations”
J ::= ν + J | • “Stacks”
ν ::= lexframe ρ Π | evframe p ρ Π “Frames”
ρ ::= {j : vk}k∈K , whereK is finite,K ⊆ I “Environments”
v ::= loc | null “Values”
S ::= {lock 7→ svk}k∈K , whereK is finite “Stores”
sv ::= o | pc “Storable Values”
o ::= [c.F ] “Object Records”
F ::= {fk 7→ vk}k∈K , whereK is finite “Field Maps”
pc ::= eClosure(H, θ) (e, ρ,Π) “Event Closures”
H ::= h+H | • “Handler Record Lists”
h ::= 〈loc,m, ρ′〉 “Handler Records”
A ::= loc + A | • “Active (Registered) List”

Evaluation contexts:

E ::= − | E .m(e . . .) | v.m(v . . .E e . . .) | cast t E | E .f | E ;e | E .f=e
| v.f=E | t var=E; e | E; e | register(E) | under E | invoke(E)

Fig. 5. Added syntax, domains, and evaluation contexts used in the semantics, based on [32].

contains an expression (e), a stack (J), a store (S), and an ordered list of active objects
(A). Stacks are an ordered list of frames, each frame recording the static environment
(ρ) and some other information. (The type environments Π are only used in the type
soundness proof [35].) There are two types of stack frame. Lexical frames (lexframe)
record an environment ρ that maps identifiers to values. Event frames (evframe) are
similar, but also record the name p of the event type being run. Storable values are ob-
jects or event closures. Event closures (eClosure) contain an ordered list of handler
records (H), a PCD type (θ), an expression (e), an environment (ρ), and a type envi-
ronment (Π). The type θ and the type environment Π (see Figure 7) are maintained
by but not used by the operational semantics; they are only used in the type soundness
proof [35]. Each handler record (h) contains the information necessary to call a handler
method: the receiver object (loc), a method name (m), and an environment (ρ′). The en-
vironment ρ′ is used to assemble the method call arguments when the handler method
is called. The environment ρ recorded at the top level of the event closure is used to run
the expression e when an event closure with an empty list of handler records is used in
an invoke expression.

Figure 6 presents the key rules. The details about standard OO rules are omitted
here, however, interested reader can refer to our technical report on Ptolemy [35]. The
rules all make implicit use of a fixed (global) list, CT , of the program’s declarations.

The (EVENT) rule is central to Ptolemy’s semantics, as it starts the running of
handler methods. In essence, the rule forms a new frame for running the event, and
then looks up bindings applicable to the new stack, store, and list of registered (ac-
tive) objects. The resulting list of handler records (H) is put into an event closure
(eclosure(H, θ) (e, ρ′, Π))), which is placed in the store at a fresh location. This
event closure will execute the handler methods, if any, before the body of the event
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Evaluation relation: ↪→: Γ → Γ

(EVENT)
ρ = envOf (ν) Π = tenvOf (ν) (c evtype p{t1 var1, . . . , tn varn}) ∈ CT

ρ
′
= {vari 7→ vi | ρ(vari) = vi} π = {vari : var ti | 1 ≤ i ≤ n}

loc 6∈ dom(S) π
′
= π∪−{loc : var (thunk c)} ν

′
= evframe p ρ′ π′

H = hbind(ν
′
+ ν + J, S,A) θ = pcd c, π S

′
= S ⊕ (loc 7→ eclosure(H, θ) (e, ρ,Π))

〈E[event p {e}], ν + J, S,A〉 ↪→
˙
E[under (invoke(loc))], ν

′
+ ν + J, S

′
, A

¸
(UNDER)
〈E[under v], ν + J, S,A〉

↪→ 〈E[v], J, S,A〉

(REGISTER)
〈E[register(loc)], J, S,A〉
↪→ 〈E[loc], J, S, loc + A〉

(INVOKE-DONE)
eclosure(•, θ) (e, ρ,Π) = S(loc) ν = lexframe ρ Π

〈E[invoke(loc)], J, S,A〉 ↪→ 〈E[under e], ν + J, S,A〉

(INVOKE)
eclosure((〈loc′,m, ρ〉+H), θ) (e, ρ

′
, Π) = S(loc)

[c.F ] = S(loc
′
) (c2, t m(t1var1, . . . , tnvarn){e′}) = methodBody(c,m)

n ≥ 1 ρ
′′

= {vari 7→ vi | 2 ≤ i ≤ n, vi = ρ(vari)} loc1 6∈ dom(S)
S
′
= S ⊕ (loc1 7→ eclosure(H, θ) (e, ρ

′
, Π)) ρ

′′′
= ρ

′′ ⊕ {var1 7→ loc1} ⊕ {this 7→ loc
′}

Π
′
= {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2} ν = lexframe ρ′′′ Π′

〈E[invoke(loc)], J, S,A〉 ↪→
˙
E[under e′], ν + J, S

′
, A

¸

Fig. 6. Operational semantics of Ptolemy, based on [32]. Standard OO rules are omitted.

expression (e) is evaluated. Since a new (event) frame is pushed on the stack, the
invoke expression that starts running this closure is placed in an under expression.
The (UNDER) rule pops the stack when evaluation of its subexpression is finished.

The auxiliary function hbind [35] uses the program’s declarations, the stack, store,
and the list of active objects to produce a list of handler records that are applicable for
the event in the current state. When called by the (EVENT) rule, the stack passed to it
has a new frame on top that represents the current event.

The (REGISTER) rule simply puts the object being activated at the front of the list of
active objects. The bindings in this object are thus given control before others already
in the list. An object can appear in this list multiple times.

The evaluation of invoke expressions is done by the two invoke rules. The
(INVOKE-DONE) rule handles the case where there are no (more) handler records. It
simply runs the event’s body expression (e) in the environment (ρ) that was being re-
membered for it by the event closure.

The (INVOKE) rule handles the case where there are handler records still to be run
in the event closure. It makes a call to the active object (referred to by loc) in the first
handler record, using the method name and environment stored in that handler record.
The active object is the receiver of the method call. The first formal parameter is bound
to a newly allocated event closure that would run the rest of the handler records (and
the original event’s body) if it used in an invoke expression.



13

θ ::= OK| OK in c | var t | exp t | pcd τ, π “type attributes”
τ ::= c | ⊥ “class type exps”
π,Π ::= {I : θI}I∈K , “type environments”

whereK is finite,K ⊆ (L ∪ {this} ∪ V)

Fig. 7. Type attributes.

2.3 Ptolemy’s Type System

Type checking uses the type attributes defined in Figure 7. The type checking rules
themselves are shown in Figure 8. Standard rules for OO features are omitted [35]. The
notation τ ′ 4 τ means τ ′ is a subtype of τ . It is the reflexive-transitive closure of the
declared subclass relationships [35].

As in Clifton’s work [32, 33], the type checking rules are stated using a fixed class
table (list of declarations)CT , which can be thought of as an implicit (hidden) inherited
attribute. This class table is used implicitly by many of the auxiliary functions. For ease
of presentation, we also follow Clifton in assuming that the names declared at the top
level of a program are distinct and that the extends relation on classes is acyclic.

(CHECK BINDING)
(c2, c

′
m(t1 var1, . . . , tn varn){e}) = methodBody(c,m) ` pcd : pcd c′, π isClass(c′)

n ≥ 1 t1 = thunk c′ (∀i ∈ {2..n} :: isType(ti)) {var2 : var t2, . . . , varn : var tn} ⊆ π
Π ` (when pcd dom) : OK in c

(CHECK EVTYPE)
isClass(c) (∀i ∈ {1..n} :: isType(ti))

` c evtype p {t1 var1; . . . tn varn;} : OK

(EV ID PCD TYPE)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT π = {var1 : var t1, . . . varn : var tn}

` p : pcd c, π

(DISJUNCTION PCD TYPE)
` pcd : pcd τ, π ` pcd′ : pcd τ ′, π′ τ

′′
= τ u τ ′ π

′′
= π ∩ π′

` pcd || pcd′ : pcd τ ′′, π′′

(UNDER EXP TYPE)
Π ` e : exp t

Π ` under e : exp t

(REGISTER EXP TYPE)
Π ` e : exp c

Π ` register(e) : exp c

(INVOKE EXP TYPE)
Π ` e : exp (thunk c)

Π ` invoke(e) : exp c

(EVENT EXP TYPE)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT

{var1 : var t1, . . . , varn : var tn} ⊆ Π Π ` e : exp c′ c
′ 4 c

Π ` event p {e} : exp c

Auxiliary Functions:
isClass(t) = (class t . . .) ∈ CT
isThunkType(t) = (t = thunk c ∧ isClass(c))
isType(t) = isClass(t) ∨ isThunkType(t)

Fig. 8. Type-checking rules for Ptolemy. Rules for standard OO features are omitted.
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The type checking of method and binding declarations within class c produces a
type of the form OK in c, in which c can be considered an inherited attribute. Thus the
rule (CHECK BINDING) works with such an inherited attribute c. It checks consistency
between c’s method m and the PCD. PCD types contain a return type c′ and a type
environment π, and all but the first formal parameter of the method m must be names
defined in π with a matching type. The first formal parameter must be a thunk type that
returns the same type, c′, as the result type of the method.

Checking event type declarations involves checking that each type used is declared.
The type checking of PCDs involves their return type and the type environment that

they make available [32, 35]. The return type and typing context of a named PCD are
declared where the event type named is declared. For example, the FEChange PCD
has FElement as its return type and the typing context that associates changedFE
to the type FElement.

For a disjunction PCD, the return type is the least upper bound of the two PCDs’
return types, and the typing context is the intersection of the two typing contexts. For
each name I in the domain of both contexts, the type exposed for I is the least upper
bound of the two types assigned to I by the two PCDs.

Expressions are type checked in the context of a local type environment Π , which
gives the types of the surrounding method’s formal parameters and declared local vari-
ables. Type checking of under and register is straightforward.

In an expression of the form invoke(e), emust have a type of the form thunk c,
which ensures that the value of e is an event closure. The type c is the return type of
that event closure, and hence the type returned by event(e).

In an event expression, the result type of the body expression, c′, must be a sub-
type of the result type c declared by the event type, p. Furthermore, the lexical scope
available (at e) must provide the context demanded by p.

The proof of soundness of Ptolemy’s type system uses a standard preservation and
progress argument [38]. The details are contained in our technical report [35].

2.4 Ptolemy’s Compiler

We designed an extension of Java to have quantified, event types and implemented a
compiler for this extension using the Eclipse’s JDT core package [39]. Our prototype
compiler [40] is backwards compliant; i.e., all valid Java code is valid Ptolemy code.
It also generates standard Java byte-code. In the rest of the section, we describe the
extensions to the Eclipse JDT Core we used to support quantified, event types.

We modified the scanner and parser of Eclipse JDT (contained in the package
org.eclipse.jdt.internal.compiler.parser) to parse Ptolemy’s new
constructs (namely evtype, event, register, and bindings). Events were added
as both expressions and statements, since Java makes this distinction. These modifica-
tions were fairly modular and did not require changing the existing structure of Eclipse’s
Java grammar; however, for automating the (extremely manual and error prone) parser
building process of Eclipse some modifications to the type-hierarchy of the parser and
its parser generation tool (jikespg) were made.

Eclipse’s Java document object model (JDOM) was extended to include
EventTypeDeclaration as a new TypeDeclaration, EventStatement
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as a new Statement, EventExpression and RegisterExpression
as new subclasses of Expression, and BindingDeclaration as a new
TypeMemberDeclaration.

Standard OO type checking rules are already implemented in Eclipse JDT. The se-
mantic analysis is organized in a style similar to the composite design pattern [9], where
both the composite and the leaf nodes provide uniform interface and the operation in
the composite is implemented by recursively calling the operation on components. A
visitor structure (ASTVisitor) is also provided, but the internal semantic analysis
and code generation process does not use this structure. To add the type-checking rules
for Ptolemy described in Section 2.3, we simply implemented them in the new AST
nodes. The code generation for new AST nodes was also implemented similarly. These
two steps also did not require modifications to implementation of other AST nodes.

Detailed description is beyond the scope of this paper, however, briefly the code
generation proceeds as follows. Corresponding to an event type a set of classes and
interfaces are generated that serve to model event frames, event closures, and event
handlers. A closure object containing the body of event expression or statement is cre-
ated as an inner class that replaces the original expression or statement. This inner
class implements the interface that represents the event type at runtime and provides
an implementation of the invoke method, which contains the original event’s body. The
replacement of the body requires a def-use analysis [41] with respect to its original
environment and some name and reference mangling to propagate side-effects.

The class representing the event frame creates a chain of linked frames during reg-
istration that are parametrized with event closures during event invocation, as in the
(EVENT) and (INVOKE) rules in Figure 6. Much of this is similar to the intuition dis-
cussed in Ptolemy’s operational semantics in Section 2.2.

3 Comparisons with II and AO Langauges

The most perfect political community must be amongst those
who are in the middle rank. – Aristotle, Politics

In this section we compare Ptolemy with II and AO languages. We start with an ex-
tended example that illuminates some differences between Ptolemy and AO languages.

3.1 An Extended Example in Ptolemy

In the extended example presented in this section, we use notations closer to a full-
fledged language such as Java, such as if statements. Such constructs can be easily
added to Ptolemy’s core language.

The example shown in Figure 9 extends the example from Section 1. A set of classes
are added to facilitate storing several figure elements in collections, e.g. as a linked
list (FEList), as a set (FESet), and a hash table (FEHashtable). Furthermore,
Counter implements the policy that whenever an FElement is added to the system
a count must be incremented.
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1 FElement evtype FEAdded {FElement addedFE;}

3 class FEList extends Object {
4 Node listhead; /*head of linked list*/
5 FElement add(FElement addedFE) {
6 event FEAdded {
7 Node temp = listhead;
8 listhead = new Node();
9 listhead.data = addedFE;

10 listhead.next = temp; addedFE
11 }
12 }
13 FElement remove(FElement fe) { /*...*/ }
14 boolean contains(FElement fe) { /*...*/ }
15 }
16 class FESet extends FEList { /* ... */
17 FElement add(FElement addedFE) {
18 if(!this.contains(addedFE)) {
19 event FEAdded {
20 Node temp = listhead;
21 listhead = new Node();

22 listhead.data = addedFE;
23 listhead.next = temp; addedFE
24 }
25 } else { null }
26 }
27 }

29 class Counter extends Object {
30 Number count;
31 Counter init() {
32 register(this)
33 }
34 FElement increment(thunk FElement next,
35 FElement addedFE) {
36 this.count = this.count.plus(1);
37 invoke(next)
38 }
39 when FEAdded do increment
40 }

42 Counter u = new Counter().init();
43 /* ... */

Fig. 9. Figure Element Collections in Ptolemy

The notion of “adding an element” differs among the different types of collection.
For example, calling add on a FEList always extends the list with the given ele-
ment. However, calling add on a FESet only inserts the element if it is not already
present, as shown on lines 16–20. Therefore, an AO-style syntactic method of selecting
events such as “an FElement is being added” will need to distinguish which calls will
actually add the element. In a language like AspectJ, one could use an if PCD. A
PCD such as call(* FESet.add(FElement fe)) && this(feset) &&
if(!feset.contains(fe)) would filter out undesired call events.

However, there are two issues with using such an if PCD. The first issue is that
it exposes the internal implementation details of FESet.add (in particular that its
representation does not allow duplicates). Second, such a PCD should only be used if
the expression feset.contains(fe) does not have any side-effects. (Side-effects
would usually be undesirable when used solely for filtering out undesired events.)

Other possibilities for handling such events include: (1) testing the condition in the
handler body and (2) rewriting the code for FESet.add to make the body of the if
a separate method call. The first has problems that are similar to those described above
with using an if PCD. Rewriting the code to make a separate method call obscures
the code in a way that may not be desirable and may cause maintenance problems,
since nothing in the syntax would indicate why the body of the called method was not
used inline. There may also be problems in passing and manipulating local variables
appropriately in such a body turned into a method, at least in a language like Java or C#
that uses call by value.

Such workarounds are also necessary in more sophisticated AO languages such as
LogicAJ [17]. These have PCDs that describe code structure, but that does not prevent
undesirable exposure of internal implementation details, since the structure of the code
is itself such a detail.
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By contrast, Ptolemy easily handles this problem without exposing internal details
of FESet’s add method, since that method simply indicates the occurence of event
FEAdded. In essence, Ptolemy’s advantage is that it can explicitly announce the body
of an if as an event. Doing so precisely communicates the event without the problems
of using if PCDs or extra method calls described above.

3.2 Advance over Implicit Invocation Languages

Consider the II implementation of our drawing editor example (Figure 1). Compared
to that implementation, in Ptolemy registration is more automated (see Figure 4), so
programmers do not have to write code to register an observer for each separate event.

Ptolemy’s registration also better separates concerns, since it does not require nam-
ing all classes that announce an event of interest. This is because events are not consid-
ered to be attributes of the classes that announce them. Thus, event handlers in Ptolemy
need not be coupled with the concrete implementation of these subclasses. Further-
more, naming an event type, such as FEChange, in a PCD hides the details of event
implementation and allows succinct quantification.

Ptolemy can also replace (or override) code for an event (like AO’s “around ad-
vice”). Although similar functionality can be emulated, Ptolemy’s automation signifi-
cantly eases the programmer’s task.

3.3 Advance over AO Languages

Some of the advantages of named event types would also be found in a language like
AspectJ 5, which can advise code tagged with various Java 5 annotations. If one only
advises code that has certain annotations, then join points become more explicit, and
more like the explicitly identified events in Ptolemy. However, Java 5 cannot attach
annotations to arbitrary statements or expressions, and in any case such annotations do
not solve the problems described in the rest of this section.

Robust Quantified, Typed Events If instead of lexical PCDs Ptolemy’s event expres-
sions are used to announce events and PCDs are written in terms of these event names,
innocuous changes in the code that implements the events will not change the meaning
of the PCDs. For further analysis of robustness against such changes, let us compare the
syntactic version of the PCD target(fe) && call(FElement+.set*(..))
with Ptolemy’s version in Figure 4. The syntactic approach to selecting events pro-
vides ease of use, i.e., by just writing a simple regular expression one can select events
throughout the program. But this also leads to inadvertent selection of events: set*
may select setParent, which perhaps does not change the state of a figure element.
AO languages with sopisticated matching, based on program structure [17] or event
history [20], have more possibilities for precise description of events, but can still inad-
vertently select unintended events. Ptolemy’s quantified typed events do not have this
problem.
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Flexible Quantification The event expression in Ptolemy allows one to label any
expression as an event expression and all such events can be selected by using the
event type name in a PCD. Significant flexibility comes from giving developers the
ability to decide what expressions constitute events and making them all available for
quantification purposes. This largely solves the quantification failure problem [24]. The
events that can be made available to handlers are no longer limited to interface elements,
and the implementations of these events are not exposed to handlers. Handlers only rely
on event type declarations. In contrast to implicitly announced events in AO languages,
Ptolemy’s event expression allows one to announce any expression as an event.

Flexible Access to Context Information The third problem that we considered in Sec-
tion 1 was the difficulty of retrieving context information from a join point. Event types
in Ptolemy solve this problem. To make the reflective information at the event available,
a programmer only needs to define, in the lexical scope surrounding the event expres-
sion, values for the names declared in that event’s type. For example, in Figure 4 in the
setX method a block expression assigns this to changedFE. Note that this flex-
ibility does not introduce additional coupling between events and handlers. Handlers
are only aware of the context variable declaration changedFE made available by the
event type FEChange and not of the concrete mapping to the variables available in the
lexical scope of the event expression.

Uniform Access to Irregular Context Information AO join point models currently do
not provide uniform access to irregular contextual information. But Ptolemy’s event
expressions allow uniform access to such context information. For example, in Figure 4,
the event expression in the setX method and in the makeEqual method are given
different bindings for the context variable changedFE, yet the handler update is able
to access this context information uniformly using the event type name changedFE.
The implementation details are also hidden from PCDs, which can uniformly access the
context provided at the event (e.g., using the event type changedFE).

Concern and Obliviousness Both AO languages and Ptolemy have advantages for cer-
tain programming tasks. Consider first whether the concern needs to affect the code in
which the events happen — the base code in AO terminology. “Spectator” concerns,
like tracing, do not affect the base code’s state [42, 36, 43]. Since spectators do not af-
fect reasoning about the base code, explicit announcements in the base code give little
benefit. Hence the determining factor is whether PCDs are easier to write lexically (in
the AO style) or using explicitly named events (as in Ptolemy). For syntactically un-
related pieces of code, e.g., the locations of the event FEAdded in Figure 9, explicit
announcement makes writing such PCDs more convenient. However, if the events oc-
cur in sections of the base code that are syntactically related (by a naming convention,
placement in a common package, etc.), then lexical PCDs are preferable.

Besides the availability of uniform context (as described above) another property
that affects how easy it is to write lexical PCDs is whether events in the base code
are explicit at a module’s interface, e.g., calls or executions of a public method. As
pointed out by Aldrich [26] internal events should not be implicitly exported, hence
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explicit announcement should be used for such events to force negotiation about the
commitments involved in having spectators rely on these events.

“Assistants” (i.e., non-spectators [42]) have handlers that affect the base code’s
state. Hence events handled by assistants are important for reasoning about the base
code’s state. With implicit announcement it is difficult to see these events and take them
into account during reasoning. Furthermore, conclusions drawn about the base code
will change depending on which assistants are added to the program. Thus we believe
that events that are of concern to assistants should always be explicitly announced.

In conclusion, implicit announcement—obliviousness—is useful for spectator con-
cerns when it is easy to write lexical PCDs. In other cases, Ptolemy’s explicit event
announcement and its event model are better.

4 Comparative Analysis with Related Work

“There is no other royal path which leads to geometry,” said Euclid to Ptolemy I.

In this section, we compare Ptolemy with other mechanisms that address similar
problems in AO language design. The other mechanisms we selected for analysis in-
clude Aspect-Aware Interfaces (AAIs) [11], Open Modules (OMs) [26], and Crosscut
Programming Interfaces (XPIs) [24] [25]. The next section summarizes these ideas.

4.1 Overview of Related Ideas

Aspect Aware Interfaces (AAIs) [11] show dependencies between code and handlers.
The whole program’s configuration, which contains all classes and bindings (includ-
ing PCDs) is first used to compute dependencies between events and handlers (called
the “global step” [11]). The result of this global step is similar in some ways to code
in Ptolemy, since one can look at an AAI and see where events may occur that will
call handlers, and what handlers may be called for such events. However, whenever
the program’s bindings are changed, the global step must be repeated and an entirely
new set of implicitly announced events might be handled, causing new dependencies.
Ptolemy’s event expressions do not declare what handlers are applicable for the event
they explicitly announce, but the use of explicit announcement ensures that changing
a program’s bindings will not advise other (previously unanticipated) program points.
AAIs also give no help with the problems discussed in Section 1.

Aldrich’s Open Modules (OMs) proposal [26] is closely related to this work and has
similar advantages. Like our work, OMs also allows a class developer to explicitly ex-
pose the sets of events that are announced. The implementations of these events remain
hidden from PCDs and handlers. As a result, the impact of code changes within the class
on PCDs is reduced. However, in OMs each explicitly exposed PCD has to be enumer-
ated when binding handlers to sets of events (i.e., when writing advice). By contrast,
Ptolemy’s event types provide significantly simpler quantification. In Ptolemy, instead
of enumerating the events of interest, one can use the event types for more convenient
non-syntactic quantification to select join points. As with OMs, a programmer using
Ptolemy’s event types must systematically modify modules in a system that a given
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Criteria Description AAIs OMs XPIs Ptolemy
Abstraction Supports abstraction? Yes Yes Yes Yes
Aspect/Base IH Is information hiding supported for aspect / base? Aspect Base Aspect + Base Aspect + Base
Reasoning What is the granularity of reasoning? Join point Module XPI’s Scope Expression
Configuration Requires complete system configuration? Yes No No No
Decoupling Decouples aspects from base code? No Yes Yes Yes
Locality Are interface definitions textually localized? No No Yes Yes
Stable Is it stable against code changes? Low High Medium High
Pattern Allows pattern-based quantification? Yes in modulein XPI’s scope No
Type Allows quantification based on type hierarchy? No No No Yes
Scope What is the scope of the interface? Program Module User defined User defined
Scope control Has fine-grained control over scope? No No No Yes
Adaptation Requires base code adaption / refactoring? No Yes Yes Yes
Oblivious Is it purely oblivious? No No No No
Lexical hints Provides lexical hints in a module? Yes Yes No Yes

Fig. 10. Results of comparative analysis

concern crosscuts to expose events that are to be advised, by using event expressions.
For example, the module Point in Figure 4 had to be modified to expose events of type
FEChange. However, unlike OMs, once modules have incorporated such event ex-
pressions, no awkward enumeration of explicitly exposed join points is necessary for
quantification. Instead, one simply uses the event type FEChange in a PCD. Further-
more, in Ptolemy one can expose events that are internal to a module, such as the bodies
of if statements (Figure 9, lines 17–20), which is not possible in OMs.

Sullivan et al. [24] proposed a methodology for aspect-oriented design based on
design rules. The key idea is to establish a design rule interface that serves to decouple
the base design and the aspect design. These design rules govern exposure of execu-
tion phenomena as join points, how they are exposed through the join point model of
the given language, and constraints on behavior across join points (e.g. provides and
requires conditions [25]). These design rule interfaces were later called crosscut pro-
gramming interface (XPI) by Griswold et al. [25]. XPIs prescribe rules for join point
exposure, but do not provide a compliance mechanism. Griswold et al. have shown
that at least some design rules can be enforced automatically. In Ptolemy, enforcing
design rules is equivalent to type checking of programs, because Ptolemy’s event types
automatically provide the interfaces needed to decouple different modules.

4.2 Criteria and Analysis Results

The criteria and the analysis results are summarized in Figure 10. The rest of this section
presents our analysis in detail.

Abstraction, Information Hiding The first criterion is whether the approach supports
abstraction. All four approaches support abstraction. AAIs abstract the advice that is
being executed at the join point, while providing information about the advising struc-
tures in a specific system deployment scenario. Their automatically computed abstrac-
tion is useful for the developer of the base code in hiding the details of the aspects that
may come to depend on the base code. OMs abstract the join point implementation
by providing an explicitly declared pointcut as part of the module description. Their
abstraction is useful for the aspect code and hides the details of the base code. XPIs
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provide an abstraction for a set of join points to the aspects, and an abstraction for the
possible cumulative behavior of all advice constructs to the base program through their
requires/provides clauses. Ptolemy provides an abstraction for a set of events to the
handlers. It also provide a two-way abstraction for all context information exchanged
between an event expression and the handler.

Modular Reasoning and the Role of the System Configuration All four approaches
support different mechanisms for modular reasoning. AAIs are different from OMs,
XPIs and Ptolemy in that they require that dependencies between base code and aspects
be computed before modular reasoning can begin. This may preclude reasoning about
a module until all aspects and classes are known. OMs are geared towards supporting
reasoning about a change inside a module without knowing about all aspects and classes
present in the system. By ensuring that no aspects come to depend upon the changeable
implementation details the need to pre-compute all base-aspect dependencies is elim-
inated. XPIs are geared towards supporting reasoning about a change inside a scope.
Ptolemy allows reasoning at the expression level; in particular, only event expressions
require any special treatment compared with OO programs.

Locality This criterion evaluates whether the AO interface definitions are textually lo-
calized. AAIs are computed for each point where advice might apply, and thus are not
localized. OMs are similar in that the interface of each module explicitly specifies the
join points exposed by that module. In XPIs, the AO interface definitions are localized
as an abstract aspect. In Ptolemy the event expressions are not localized but the type
definition that serves as an interface to the handlers is localized.

Pattern-based Quantification, Scope, and Scope Control Mechanisms AAIs, OMs and
XPIs all support pattern-based quantification. The difference lies in the scope of appli-
cation of the pattern-based quantification techniques. The scope in the case of AAIs is
generally the entire program, but can be limited to specific regions using lexical pointcut
expressions such as within and withincode. In OMs, they are applicable to inside
a module only if used to declare explicitly exposed pointcut and to the entire program
if used to select interface elements of modules. XPIs have an explicit scope component
that can serve to limit the effect of pattern-based quantification, which in turn is imple-
mented using the within and withincode PCDs. In Ptolemy, one can only select
program execution events that are declaratively identified. A much finer-grained scope
control is available in the case of Ptolemy. In other approaches scope control depends
on the language’s expressiveness.

Base Code Adaptation and Obliviousness Obliviousness is a widely accepted tenet for
aspect-oriented software development [16]. In an oblivious AO process, the designers
and developers of base code need not be aware of, anticipate or design code to be
advised by aspects. This criterion, although attractive, has been questioned by many [26,
42, 43, 25, 11, 44, 24]. All four approaches limit the notion of obliviousness to some
extent. In Ptolemy adapting base code is necessary.
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5 Other Related Ideas

advertise, annunciate, broadcast, declare, proclaim, promulgate, publish
– entry for “announce” in Roget’s II

In some AO langauges quantification is not based on pattern matching of lexi-
cal names. For example, in LogicAJ [17] and similar languages such as LogicAJ2,
Sally [45], quantification is based on program structures, in languages that support
trace-based pointcuts [46], quantification is based on program traces. As mentioned
before, such languages, although significantly expressive compared to the AspectJ-like
languages that quantify based on names, also exhibit fragile pointcut problem. Com-
pared to this entire class of such AO languages, which quantify based on pattern match-
ing, Ptolemy’s quantified event types in Ptolemy further decouple event handlers and
the code that signals events and encapsulates the details of the signaller’s code. How-
ever, upfront efforts will be required in Ptolemy to anticipate and announce events.

Explicitly labeling methods for use in quantification is not a new idea and has ap-
peared previously in SetPoint [29] and Model-based Pointcuts [23]. In SetPoint explic-
itly placed annotations are used for quantification. In Model-based Pointcuts, explictly
created models, which express the relationship between names in the model and the pro-
gram’s structure, are used for quantification. Compared to these approaches, the novelty
of our approach lies in: allowing arbitrary expressions to be announced as events, in
providing explicitly announced events with types, in formalizing the language’s sound,
static type system, and in providing access to the context of event announcements. Com-
pared to model-based pointcuts, our technique does not require a model construction
step. Furthermore, keeping such model consistent with the code can be challenging.

Steimann and Pawlitzki have independently advanced ideas that are very similar
[47]. Their language has event types and explicitly announced events that contain arbi-
trary statements. Their event types are similar to Ptolemy’s. Their language is a mod-
ification of AspectJ, and has both implicit (AO style) and explicit announcement of
events, whereas Ptolemy only has explicit announcement. In their language explicit
announcement passes context positionally (as in a Java constructor call), whereas in
Ptolemy context is passed by name matching. Their language is also somewhat similar
to Open Modules in that the event types that are exported by a class must be declared
by that class. They also have a prototype implementation, but do not formally present
their language’s semantics or type system.

Delegates in .NET languages such as C# and Java’s EventObject class are also
related to our approach. They are type-safe mechanism for implementing call back func-
tions that can also be used to abstract event declaration code; however, these mecha-
nisms do not provide the quantification feature of Ptolemy’s PCDs.

Another related area is mediator-based design styles [6]. In this design style mod-
ules tell mediators about event declarations and announcements. Other modules can
register with mediators to have their methods invoked by event announcements. An
invocation relation is thus created without introducing name dependencies. In our ap-
proach, event types play the role of mediators. However, in Ptolemy, one can also use
event types for quantification, which simplifies registration and binding. By contrast,
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in mediator based designs a developer has to resort to explicit and possibly error-prone
enumerations to register handlers with events.

Consider a language with closures and the ability to reflectively get the run time
context of a statement or expression. In such language, one could achieve the same
effect as Ptolemy’s quantified event types by declaring classes to represent events, an-
nouncing events by creating a closure after reflectively accessing the event body’s run
time context and then looping over a set of registered handler methods, passing each a
closure (that it could invoke). Ptolemy provides three advantages over this emulation:

– Static typechecking of bindings, which ensures that PCDs only associate handlers
with events that provide the necessary context.

– A considerable amount of automation. Ptolemy’s register, event, and
invoke expressions hide the details of registration, announcement, and running
handlers. Furthermore PCDs provide quantification, which is not easy to emulate.

– Improved compiler optimizations. Since Ptolemy controls the details of how reg-
istration, announcement, and running handlers are implemented, there is more po-
tential for optimization then when these features are emulated.

6 Future Work and Conclusions

Onward and upward. — Abraham Lincoln

We designed Ptolemy to be a small core language, in order to clearly communicate
its novel ability to announce arbitrary expressions as events and its use of quantified,
event types, and in order to avoid complications in its theory. However, this means that
many practical and useful extensions had to be omitted from the language. The most
important future work in the area of Ptolemy’s semantics is subtyping of event types
and investigating the possible advantages of positional context exposure (instead of
Ptolemy’s name-based context exposure). We have already extended Ptolemy’s opera-
tional semantics to include control flow (“cflow”) PCDs [35], which are not discussed
in this paper due to lack of space. It would also be interesting to combine Ptolemy’s
type system with an effect system, to limit the potential side effects of handler methods
[32, 36]. This might allow more efficient reasoning. One could also imagine combining
specifications of handler methods into code at event expressions, thus allowing veri-
fication of code that uses event types to be more efficient and maintainable than directly
reasoning about the compiled code’s semantics. In general, a detailed investigation of
specification and verification issues for Ptolemy would be very interesting.

In conclusion, the main contribution of this work is the design of a language,
Ptolemy, with quantified, typed events. In addition to a precise operational semantics
and formal definition of Ptolemy’s type system (see our technical report for a sound-
ness proof [35]), we have carefully examined how Ptolemy fits in the design space of
languages that promote separation of concerns. The main new feature of Ptolemy is
event types, which contain information about the names and types of exposed context.
In Ptolemy’s new event model, events are explicitly announced by event expressions,
which declaratively identify the type of event being announced. These event types are
used in PCDs to associate handlers with sets of events. Such PCDs are robust against
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code changes, since they are only affected by changes to event expressions. The event
types used in PCDs make it easier for handlers to uniformly access reflective informa-
tion about the events without breaking encapsulation. Ptolemy has been implemented
as a compiler, and an implementation is available for free download [40].

Ptolemy’s ability to announce any expression as an event, which permits one to
expose internal states in a principled way, promises real value. For example, this would
help the integration of components when hidden internal states and transitions must be
accessed in order to achieve proper composition.
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