
Intensional Effect Polymorphism

Yuheng Longα , Yu David Liuβ , and Hridesh Rajanγ

α,γ{csgzlong,hridesh}@iastate.edu, βdavidl@cs.binghamton.edu
α,γ Iowa State University, β SUNY Binghamton

Abstract. Type-and-effect systems are a powerful tool for program construction
and verification. We describe intensional effect polymorphism, a new foundation
for effect systems that integrates static and dynamic effect checking. Our system
allows the effect of polymorphic code to be intensionally inspected through a
lightweight notion of dynamic typing. When coupled with parametric polymor-
phism, the powerful system utilizes runtime information to enable precise effect
reasoning, while at the same time retains strong type safety guarantees. We build
our ideas on top of an imperative core calculus with regions. The technical in-
novations of our design include a relational notion of effect checking, the use of
bounded existential types to capture the subtle interactions between static typing
and dynamic typing, and a differential alignment strategy to achieve efficiency in
dynamic typing. We demonstrate the applications of intensional effect polymor-
phism in concurrent programming, memoization, security and UI access.

1 Introduction

In a type-and-effect system [24,33], the type information of expression e encodes and
approximates the computational effects σ of e, such as how memory locations are ac-
cessed in e. Type-and-effect systems — or effect systems for short in this paper—
have broad applications (e.g. [2,26,23,6]). Improving their expressiveness and precision
through static approaches is a thoroughly explored topic, where many classic language
design (e.g. [22,15,32,4]) and program analysis techniques (e.g. [30,3]) may be useful.

Purely static effect systems are a worthy direction, but looking forward, we believe
that a complementary foundation is also warranted, where the default is a system that
can fully account for and exploit runtime information, aided by static approaches for
optimization. Our belief is shaped by two insights. First, emerging software systems
increasingly rely on dynamic language features: reflection, dynamic linking/loading,
native code interface, flexible meta programming in script languages, to name a few.
Second, traditional hurdles defying precise static reasoning — such as expression or-
dering, branching, recursion, and object dynamic dispatch — are often amplified in the
context of effect reasoning.

In this paper, we develop intensional effect polymorphism, a system that integrates
static and dynamic effect reasoning. The system relies on dynamic typing to compen-
sate for the conservativeness of traditional static approaches and account for emerging
dynamic features, while at the same time harvesting the power of static typing to vouch-
safe for programs whose type safety is fundamentally dependent on runtime decision
making. Consider the following example:

Example 1 (Conservativeness of Static Typing for Race-Free Parallelism). Imagine we
would like to design a type system to guarantee race freedom of parallel programs. Let
expression e||e′ denote running e and e′ in parallel, whose typing rule requires that e
and e′ have disjoint effects. Further, let r1 and r2 be disjoint regions. The following
program is race free, even though a purely static effect system is likely to reject it:

(λx.λy.(x := 1)||!y)
(if 1 > 0 then refr10 else refr20)
(if 0 > 1 then refr10 else refr20)

Observe that parametric polymorphism is not helpful here: x and y can certainly
be typed as region-polymorphic, but the program remains untypable. The root cause of
this problem is that race freedom only depends on the runtime behaviors of (x := 1)||!y,
which only depends on what x and y are at runtime.

Inspired by Harper and Morrisett [19], we propose an effect system where poly-
morphic code may intensionally inspect effects at run time. Specifically, expression
assuming e R e′ do e1 else e2 inspects whether the runtime (effect) type of e and that
of e′ satisfy binary relation R, and evaluates e1 if so, or e2 otherwise. Our core calculus
leaves predicate R abstract, which under different instantiations can support a family of
concrete type-and-effect language systems. To illustrate the example of race freedom,
let us consider R being implemented as region disjointness relation #. The previous
example can be written in our calculus as follows.

Example 2 (Intensional Effect Polymorphism for Race-Free Parallelism). The follow-
ing program type checks, with the static system and the dynamic system interacting in
interesting ways. Static typing can guarantee that the lambda abstraction in the first line
is well-typed regardless of how it is applied, good news for modularity. Dynamic typ-
ing provides precise typing for expression (x := 0) and expression !y — exploiting the
runtime type information of x and y — allowing for a more precise disjointness check.

(λx.λy.assuming (x := 0)#!y do (x := 1)||!y)
(if 1 > 0 then refr10 else refr20)
(if 0 > 1 then refr10 else refr20)

Technical Innovations On the highest level, our system shares the philosophy with
a number of type system designs hybridizing static checking and dynamic checking
(e.g., [14,31,18]), and some in the contexts of effect reasoning [5,20]. To the best of our
knowledge however, this is the first time intensional type analysis is applied to effect
reasoning. This combination is powerful, because not only effect reasoning can rely
on run-time type information, but also parametric polymorphism is fully retained. For
example, observe that in the example above, the types for x and y are parametric, not
just “unknowns” or “dynamic”. Let us look at another example:

Example 3 (Parametric Polymorphism Preservation). Here the parallel execution in the
second line is statically guaranteed to be type-safe in our system. Programs written with
intensional effect polymorphism do not have run-time type errors.

let s = λx.λy.assuming (x := 0)#!y do (x := 1)||!y in
(s refr10 refr20) || (s refr30 refr40)

2

In addition, intensional effect polymorphism goes beyond a mechanical adaptation
of Harper-Morrisett, with several technical innovations we now summarize. The most
remarkable difference is that the intensionality of our type system is enabled through
dynamic typing. At run time, the evaluation of expression assuming e R e′ do e1 leads
to the dynamic typing of e and e′. In contrast, the classic intensional type analysis
performs a typecase-like inspection on the runtime instantiation of the polymorphic
type. Our strategy is more general, in that it not only subsumes the former — indeed,
a type derivation conceptually constructed at runtime must have leaf nodes as instances
of value typing — but also allows (the effect of) arbitrary expressions to be inspected
at run time. We believe this design is particularly relevant for effect reasoning, because
it has less to do with the effect of polymorphic variables, and more with where the
polymorphic variables appear in the program at run time.

Second, we design the runtime type inspection through a relational check. In the
assuming expression, the dynamically verified condition is whether R holds, instead
of what the effect of e or e′ is. The relational design does not require programmers
to explicitly provide an “effect specification/pattern” of the runtime type — a task po-
tentially daunting as it may either involve enumerating region names, or expressing
conditional specifications such as “a region that some other expression does not touch.”
Many safety properties reasoned about by effect systems are relational in nature, such
as thread interference.

Third, the subtle interaction between static typing and dynamic typing poses a
unique challenge on type soundness in the presence of effect subsumption. We elaborate
on this issue in §4.4. We introduce a notion of bounded existential types to differentiate
but relate the types assumed by the static system and those by the dynamic system.

Finally, a full-fledged construction of type derivations at run time for dynamic typ-
ing would incur significant overhead. We design a novel optimization to allow for ef-
ficient runtime effect computation, eliminating the need for dynamic derivation con-
struction, while producing the same result. The key insight is we could align the static
type derivation and the (would-be-constructed) dynamic type derivation, and compute
the effects of the latter simply by substituting the difference of the two, a strategy we
call differential alignment. We will detail this design in §5.

We formalize intensional effect polymorphism in λie, an imperative call-by-value
λ -calculus with regions. In summary, this paper makes the following contributions:

– It describes a hybrid type system for effect reasoning centering on intensional poly-
morphism.

– It develops a sound type system and operational semantics where relational effect
inspection is made abstract.

– It illuminates the subtleties resulting from the difference between static effect rea-
soning and dynamic effect reasoning, and proposes bounded existential types to
preserve soundness, and differential alignment to promote efficiency.

– It demonstrates the impact of our design by extending the core calculus to applica-
tions of supporting safe parallelism, memoization, security and UI access.

3

2 Motivating Examples

In this section, we demonstrate the applicability of intensional effects in reasoning about
safe parallelism, information security, consistent UI access and program optimization.
In each of these applications, the type safety is fundamentally dependent on runtime de-
cision making, i.e., whether the relation R is satisfied. We instantiate the effect relation
operator R with different concrete relations between effects of expressions.

As in previous work [17,8], we optionally extend standard Java-like syntax with
region declarations when the client language deems them necessary. In that case, a
variable declaration may contain both type and region annotations, e.g., JLabel j
in ui declares a variable j in region ui. For client languages where regions are not
explicitly annotated, different abstract locations (such as different fields of an object)
are treated as separate regions.

2.1 Safe Parallelism

We demonstrate the application of intensional effects in supporting safe parallelism,
where safety in this context refers to the conventional notion of thread non-interference
(race freedom) [24]. Concretely, Figure 1 is a simplified example of “operation-agnostic”
data parallelism, where the programmer’s intention is to apply some statically unknown
operation (encapsulated in an Op object) — here implemented through reflection — to
a data set, here simplified as a pair of data ft and sd. The programmer wishes to “best
effort” leverage parallelism to process ft and sd in parallel, without sacrificing thread
non-interference. The tricky problem of this notion of safety depends on what Op ob-
ject is. For instance, parallel processing of the pair with the Hash object is safe, but not
when the operation at concern is the prefix sum operator [7], encapsulated as Pref.

1 class Pair {
2 int ft = 1, sd = 2;

4 int applyTwice(Op f) {
5 assuming ft = f.op(0) # sd = f.op(5)
6 do ft = f.op(f.op(ft)) || sd = f.op(f.op(sd));
7 else ft = f.op(f.op(ft)) ; sd = f.op(f.op(sd));
8 }
9 }

11 Pair pr = new Pair();
12 Op o = (Op) newInstance(readFile("filePath"));
13 pr.applyTwice(o);

14 interface Op {int op(int i);}

16 class Pref implements Op {
17 int sum = 0;
18 // effect: write sum
19 int op(int i) { sum += i; }
20 }

22 class Hash implements Op {
23 // effect: pure, no effect
24 int op(int i) { hash(i); }
25 }

Fig. 1: Example illustrating intensional effectss and its usage for safe parallelism.

Static reasoning about the correctness of the parallel composition could be chal-
lenging in this example, because the Op object remains unknown until applyTwice is
invoked at runtime.

The assuming expression (line 5) helps the program retain strong type safety guar-
antees for parallel composition (line 6), while utilizing the runtime information to en-
able precise reasoning. At runtime, the assuming expression intensionally inspects the
effects of the expressions ft = f .op(0) and sd = f .op(5). If they satisfy the binary re-
lation #, parallelism will be enabled. If f points to a Hash object, the # relation will be

4

true and the program enjoys safe concurrency (line 6). On the other hand, if f points to
a Pref object, the program will be run sequentially, desirable for race freedom safety.

2.2 Information Security

As another application of intensional effects, consider its usage in preventing security
vulnerabilities. Figure 2 presents an adapted (wsj.com) example of a real-world secu-
rity vulnerabilities [11]. The page allows users to search information within the site.
Once the search is called, the page will redirect to a web page corresponding to the url
and searchBox strings (the redirection is represented as changing the location variable
for simplicity). The page, when created, inserts a third party advertisement, line 8.

1 class Page {
2 String searchBox = "";
3 String url = "wsj.com/search?";
4 String location = "";

6 String load_adv(ThirdParty adv) {
7 assuming url ♦ adv.show(this)
8 do exec url adv.show(this);
9 else "no advertisement";

10 }

12 int search(ThirdParty adv) {
13 load_adv(adv);
14 location = url + searchBox;
15 }
16 }

17 interface ThirdParty {String show(Page p);}

19 class Good implements ThirdParty {
20 String show(Page p) { "404"; }
21 }

23 class Evil implements ThirdParty {
24 String show(Page p) {
25 p.url = "evil.com";
26 }
27 }

29 ThirdParty adv = (ThirdParty)
30 newInstance(readFile("filePath"));
31 new Page().render(adv);

Fig. 2: An application of intensional effectss in preventing security vulnerabilities.

The third party code can be malicious, e.g., it can modify the search url and redirects
the search to a malicious site, from which the whole system could be compromised, e.g.,
the Evil third party code. Ensuring the key security properties becomes challenging with
the dynamic features because the third party code is only available at runtime, loaded
using reflection. The expression exec e1 e2 (line 7) encodes a check-then-act program-
ming pattern. It executes e2 only if it does not read nor write any object accessible by
e1 and otherwise it gets stuck. The exec expression does not execute e1.

With intensional effects, users can intensionally inspect a third party code e when-
ever e is dynamically loaded. The intensional inspection, accompanied with a relational
policy check, ensures that e does not access any sensitive data (the url), specified using
the relation ♦. It also ensures that the exec expression does not get stuck.

2.3 Consistent Graphical User Interface (GUI) Access

We show how intensional effects can be used to reason about the correctness of a GUI
usage pattern, common in Subclipse, JDK, Eclipse and JFace [16]. Typically, GUI has
a single UI thread handling events in the “event loop”. This UI thread often spawns
separate background threads to handle time-consuming operations. Many frameworks

5

wsj.com

enforce a single-threaded GUI policy: only the UI thread can access the GUI objects
[16]. If this policy is violated, the whole application may abort or crash. Figure 3 shows
a simplified example of a UI thread that pulls an event from the eventloop and handles
it. In the application, all UI elements reside in the ui region (declared on line 14), e.g.,
the field j on line 23.

1 class UIThread {
2 JLabel global in ui = new JLabel();
3 void eventloop(Runnable closure) {
4 assuming global ∅ closure.run()
5 do spawn global closure.run();
6 else closure.run();
7 }
8 }

10 Runnable closure;
11 if (1 > 0) closure = new NonUI();
12 else closure = new UIAccess();
13 new UIThread().eventloop(closure);

14 region ui;

16 interface Runnable { String run(); }

18 class NonUI implements Runnable {
19 String run() { "does nothing"; }
20 }

22 class UIAccess implements Runnable {
23 JLabel j in ui = new JLabel();
24 String run() { j.val = "UI"; }
25 }

Fig. 3: Example showing how UI effect discipline can be enforced by λie.

The safety here refers to no UI access in any background thread. The tricky problem
here is that the events arrive at runtime with different event handlers. Some handlers
may access UI objects while the others do not. Therefore, the correctness of spawning a
thread to handle a new event, depends heavily on what objects the corresponding event
handler has. For instances, the handler containing a NonUI object can be executed in a
background thread, while UIAccess should not. The expression spawn e1 e2, executes
e2 in a background thread only if it does not allocate, read or write any object in the
region specified by e1, otherwise it gets stuck. The spawn expression does not execute
e1.

The assuming expression, used by the UI thread, statically guarantees strong type
safety for the spawn expression, so it wont get stuck. It also utilizes precise runtime
information to distinguish handlers with no UI accesses from other handlers. If a han-
dler satisfies the no UI access relation ∅, it can be safely executed by a background
thread. The relation ∅ is satisfied if the RHS expression does not allocate, read/write
any region denoted by the LHS expression.

2.4 Program Optimization – Memoization

As another application, we utilize intensional effects to implement a proof-of-concept
memoization technique in a sequential program. Memoization is an optimization tech-
nique where the results of expensive function calls are cached and these cached results
are returned when the inputs and the environment of the function are the same.

Figure 4 presents a simplified application where repeated tasks, here the heavy
method calls on line 5 and 8, are performed. These two tasks are separated by a small
computation mutate, forming a compute-mutate pattern [9]. We leave the body of the
method heavy intentionally unspecified, which could represent a set of computationally

6

expensive operations. It could, e.g., generate the power set ps of a set of input elements
and return the size of ps or do the Bogosort.

The second heavy task needs not be recomputed in full if the mutate invocation does
not modify the input nor the environment of heavy. If so, the cached result of the first
call can be reused and the repeated computation can be avoided. The expression lookup
e1 (e2 = e3) executes the expressions e1 and e2 as a sequence expression e1;e2 only if
e1 does not write to objects in the regions read by e3. Otherwise it gets stuck.

1 class Mem {
2 Integer input = new Integer();

4 int comp(Mutate m, Integer x) {
5 int cache = heavy(input);
6 assuming m.mutate(x) \ heavy(input)
7 do lookup m.mutate(x) (cache=heavy(input));
8 else m.mutate(x); heavy(input);
9 }

11 int heavy(Integer i) { /* ... */}
12 }

13 class Integer { int i = 0; }

15 class Mutate {
16 int mutate(Integer input) {
17 input.i = 101;
18 }
19 }

21 Memo mm = new Mem();
22 Mutate mu = new Mutate();
23 if (1>0) mm.comp(mu, mm.input);
24 else mm.comp(mu, new Integer());

Fig. 4: A proof-of-concept memoization technique.

Ensuring that the lookup expression does not get stuck is challenging. This is be-
cause the validity of cache depends on the runtime value of both the mutation m and its
input x. For example, if the parameter x is a new object as the one created on line 24,
the cache is valid, while the one alias with the input (line 23) is not valid.

The assuming expression solves the problem: the safety of the lookup expression
is statically guaranteed. At runtime, with precise dynamic information, the intensional
binary \ relational check ensures that the write accesses of the LHS do not affect the
RHS expression. If this relation is satisfied, the cache is valid and can be reused.

Other optimizations Intensional effect polymorphism can be used for other similar
optimizations, e.g., record and reply style memoization, common sub-expression elimi-
nation, redundant load elimination and loop-invariant code motion. In all these applica-
tions, if the mutation, e.g., m.mutate(x), is infrequent or does not modify a large portion
of the heap, the cached results can avoid repeated expensive computations.

Summary The essence of intensional effect polymorphism lies in the interesting inter-
play between static typing and dynamic typing. Static typing guarantees that the poten-
tially unsafe expressions are only used under runtime “safe” contexts (i.e., those that
pass the relational effect inspection), in highly dynamic scenarios such as parallel com-
position, loading third party code, handling I/O events, and data reuse. Dynamic typing
exploits program runtime type information to allow for more precise effect reasoning,
in that “safe” contexts can be dynamically decided upon based on runtime type/effect
information.

7

v ::= b | λx : T.e values
e ::= v | x | e e | let x = e in e | ref ρ T e |!e | e:=e | if e then e else e expressions

| assuming e R e do e else e | SAFE e e
T ::= α | Bool | T σ−→ T′ | Refρ T types
ρ ::= ζ region
ζ ::= r | γ region element
σ ::= ω effect
ω ::= ς | accρ T effect element
acc ::= init | rd | wr access right

Fig. 5: λie Abstract Syntax (Throughout the paper, notation • represents a set of • ele-
ments, and notation

→• represents a sequence of • elements.)

3 λie Abstract Syntax

To highlight the foundational nature of intensional effect polymorphism, we build our
ideas on top of an imperative region-based lambda calculus. The abstract syntax of λie is
defined in Figure 5. Expressions are standard for an imperative λ calculus, except the
last two forms which we will soon elaborate. We do not model integers and unit values,
even though our examples may freely use them. Since if e then e else e plays a non-
trivial role in our examples, we choose to model it explicitly. As a result, boolean values
b ∈ {true, false} are also explicitly modeled.

Our core syntax is expressive enough to encode the examples in §2. However, it
does not model objects for simplicity without the loss of generality. Addition of objects
is mostly standard [27] and is included in our technical report.

We introduced expression assuming e R e′ do e0 else e1, which from now on we call
e and e′ the condition expressions, and e0 the do expression. In this more general form,
programmers also define the behaviors when the effect check does not hold, specified by
the else expression e1. At runtime, this expression retrieves the concrete effects of e and
e′ through dynamic typing, i.e., evaluating neither e nor e′. The timing of gaining this
knowledge is important: the conditions will not be evaluated and the do expression is
not evaluated yet. In other words, even though our system relies on runtime information,
it is not an a posteriori effect monitoring system.

A General Framework Effect reasoning has diverse applications, such as enforcing
thread non-interference, immutability, purity, to name a few. We aimed to design a
general framework for effect reasoning, which can be concretized to different “client”
languages. To achieve this goal, we choose to (1) leave the definition of the binary re-
lation R abstract; (2) include an abstract SAFE e e′ expression, which is type-safe iff
e R e′ holds. The R relation and the SAFE expression can be concretized to different
“client” languages to capture different application domain goals. For example, possi-
ble R implementations are effect non-interference, effect disjointness, or degenerate
unary properties such as purity and immutability. When R is concretized to thread non-
interference, one possible concretization of SAFE e e′ is parallel composition e||e′. The
instantiations of R of the applications in §2 are shown in Figure 6.

8

Safe Parallel Composition, §2.1

e R e′ def
= e#e′ “Two effects do not interfere.”

SAFE e e′ def
= (e || e′) “Run the two expressions in parallel.”

is defined as:

/0 # σ
σ # σ

′′
σ
′ # σ

′′

σ ∪σ
′ # σ

′′
σ
′ # σ

σ # σ
′ rdρ T # rdρ ′T

′ ρ 6= ρ
′

rdρ T # wrρ ′T
′

ρ 6= ρ
′

wrρ T # wrρ ′T
′

Information Security, §2.2

e R e′ def
= e♦e′ “Expression e′ does not read/write regions accessible by e.”

SAFE e e′ def
= exec e e′ “Execute e′ if it does not read/write the regions by e.”

♦ is defined as:

σ ♦ /0
σ ♦ σ

′′
σ
′ ♦ σ

′′

σ ∪σ
′ ♦ σ

′′
σ
′′ ♦ σ σ

′′ ♦ σ
′

σ
′′ ♦ σ ∪σ

′
ρ 6= ρ

′

accρ T ♦ rdρ ′T
′

ρ 6= ρ
′

accρ T ♦ wrρ ′T
′

UI Access, §2.3

e R e′ def
= e∅e′ “Expression e′ does not access regions accessible by e.”

SAFE e e′ def
= spawn e e′ “Execute e′ in another thread if it accesses no region by e.”

∅ is defined as:

σ ∅ /0
σ
′′ ∅ σ σ

′′ ∅ σ
′

σ
′′ ∅ σ ∪σ

′
σ ∅ σ

′′
σ
′ ∅ σ

′′

σ ∪σ
′ ∅ σ

′′
ρ 6= ρ

′

accρ T ∅ accρ ′T
′

Memoization, §2.4

e R e′ def
= e\e′ “RHS’s read has no dependcy on the LHS’s write”

SAFE e (e0 = e1)
def
= lookup e (e0 = e1) “Execute e;e0 if e writes no region read by e1.”

\ is defined as:

/0 \ σ
σ \ σ

′′
σ
′ \ σ

′′

σ ∪σ
′ \ σ

′′ rdρ T \ σ σ \ wrρ T
ρ 6= ρ

′

wrρ T \ rdρ ′T
′

Fig. 6: Client implementation of R and SAFE e e.

Types, Regions, and Effects Programmer types are either primitive types, reference
types Refρ T for store values of type T in region ρ , or function types T σ−→ T′, from T
to T′ with σ as the effect of the function body. Last but not least, as a framework with
parametric polymorphism, types may be type variables α .

Our notion of regions is standard [33,24], an abstract collection of memory loca-
tions. A region in our language can either be demarcated as a constant r, or parametri-
cally as a region variable γ .

9

Γ ::= # »x 7→ τ type environment
τ ::= ∀ #»g .∃Σ .T type scheme
g ::= α | γ | ς generic variable
gs ::= T | ρ | σ generic structure

Φ ::= Λ relationship set
Σ ::= g�: gs subsumption set
Λ ::= σ R σ | ∀ #»g .Σ relationship

Fig. 7: λie Type System Definitions

An effect is a set of effect elements, either an effect variable ς , or accρ T, represent-
ing an access acc to region ρ whose stored values are of type T. Access rights init, rd,
wr represent allocation, read, and write, respectively.

As the grammar suggests, our framework is a flexible system where a type, a region,
or an effect may all be parametrically polymorphic.

4 The Type System

This section describes the static semantics for our type-and-effect system. Overall, the
type system associates each expression with effects, a goal shared by all effect systems.
The highlight is how to construct a precise and sound effect system to support dynamic-
typing-based intensionality. The precision of this type system is rooted at the R relation
enforcement, at assuming time, based on effects computed by dynamic typing over
runtime values and their types. Our static type system is designed so that any SAFE
expression appearing in the do branch does not need to resort to runtime enforcement
and the R relation is guaranteed to hold by the static type system. As we shall see, this
leads to non-trivial challenges to soundness, as static typing and dynamic typing make
related — yet different — assumptions on effects.

4.1 Definitions

Relevant structures of our type system are defined in Figure 7.

Type Environment and Type Scheme Type environment Γ maps variables to type schemes,
and we use notation Γ (x) to refer to T where the rightmost occurrence of x : T′ for any
T′ in Γ is x : T.

A type scheme is similar to the standard notion where names may be bound through
quantification [13]. Our type scheme, in the form of ∀ #»g .∃Σ .T, supports both universal
quantification and existential quantification. Our use of universal quantification is mun-
dane: the same is routinely used for parametric polymorphism systems. Observe that
in our system, type variables, region variables, and effect variables may all be quanti-
fied, and we use a metavariable g for this general form, and call it a generic variable.
Similarly, we use a unified variable gs to represent either a type, a region, or an effect,
and call it a generic structure for convenience. Existential quantification is introduced
to maintain soundness, a topic we will elaborate in a later subsection. For now, only ob-
serve that existentially quantified variables appear in the type scheme as a sequence of
g�: gs, each of which we call a subsumption relationship. Here we also informally say
g is existentially quantified, with bound gs. When #»g is a sequence of 0 and Σ is empty,
we also shorten the type scheme ∀ #»g .∃Σ .T as T . Type schemes are alpha-equivalent.

10

Relationship Set Another crucial structure to construct our type system is the relation-
ship set Φ . On the high level, this structure captures the relationships between generic
structures. Concretely, it is represented as a set whose element may either be an ab-
stract effect relationship σ R σ ′ — denoting two effects σ and σ ′ conform to the R
relation — or a subsumption context relationship. The latter is represented as ∀ #»g .Σ .
Intuitively, a subsumption context relationship is a collection of subsumption relation-
ships, except some of its generic variables may be universally quantified. Subsumption
context relationships are alpha-equivalent.

As we shall see, the relationship set plays a pivotal role during type checking. At
each step of derivation, this structure represents what one can assume about effects. For
example, the interplay between assuming and SAFE is represented through whether
the relationship set constructed through typing assuming can entail the relationship
that makes the SAFE expression type-safe. Our relationship set may have a distinct
structure, but effect system designers should be able to find conceptual analogies in
existing systems, such as privileges in Marino et al. [25].

Notations and Convenience Functions We use (overloaded) function ftv to compute the
set of free (i.e., neither universally bound nor existentially bound) variables in T, ρ and
σ . We use fv(e) to compute the set of free variables in expression e. We use dom and
ran to compute the domain and the range of a function. All definitions are standard.
Substitution θ is a mapping function from type variables α to types T, region variables
γ to regions ρ and effect variables ς to effects σ . The composition of substitutions,
written θθ ′, if θθ ′(g) = θ(θ ′(g)). We further use notation Θ to denote a substitution
from variables to values.

We use comma for sequence concatenation. For example, Γ ,x 7→ τ denotes append-
ing sequence Γ with an additional binding from x to τ.

4.2 Subsumption and Entailment

Figure 8 defines subsumption relations for types, effects, and regions. All three forms
of subsumption are reflexive and transitive. For function types, both return types and
effects are covariant, whereas argument types are contra-variant. For Ref types, the
regions are covariant, whereas the types for what the store holds must be invariant [34].

(EFF-INST) and (REG-INST) capture the instantiation of universal variables in sub-
sumption context relationship. After all, the latter is a collection of “parameterized”
subsumption relationships which can be instantiated.

Finally, we define a simple relation Φ àr Λ to denote that relationship set Φ can
entail Λ . (REL-IN) says any relationship set may entail its element. (REL-CLOSED) intu-
itively says that R is closed under taking subsetting.

4.3 Typing Judgment Overview

Typing judgment in our system takes the form of Φ ;Γ ` e : T,σ , which consists of a
type environment Γ , a relationship set Φ , an expression e, its type T and effect σ . When

11

Subtyping: Φ ` T�: T’

(TYPE-REFL)
Φ ` T�: T

(TYPE-TRAN)
Φ ` T�: T0
Φ ` T0 �: T′

Φ ` T�: T′

(TYPE-REF)
Φ r̀eg ρ �: ρ

′

Φ ` Refρ T�: Refρ ′ T

(TYPE-FUN)
Φ ` T′0 �: T0 Φ ` T1 �: T′1

Φ èff σ �: σ
′

Φ ` T0
σ−→ T1 �: T′0

σ ′−→ T′1

Effect Subsumption: Φ èff σ �: σ ′

(EFF-REFL)
Φ èff σ �: σ

(EFF-TRAN)
Φ èff σ �: σ0 Φ èff σ0 �: σ

′

Φ èff σ �: σ
′

(EFF-SUB)
σ ⊆ σ

′

Φ èff σ �: σ
′

(EFF-CONS)
σ �: σ

′ ∈Φ

Φ èff σ �: σ
′

(EFF-ACC)
Φ r̀eg ρ �: ρ

′

Φ èff {accρ T} �: {accρ ′T}
(EFF–INST)

∀ #»g .Σ ∈Φ σ �: σ
′ ∈ θΣ for some θ

dom(θ) = #»g ran(θ)∩ ftv(Σ) = /0
Φ èff σ �: σ

′

Region Subsumption: Φ r̀eg ρ �: ρ ′

(REG-REFL)
Φ r̀eg ρ �: ρ

(REG-TRANS)
Φ r̀eg ρ �: ρ0 Φ r̀eg ρ0 �: ρ

′

Φ r̀eg ρ �: ρ
′

(REG-SUB)
ρ ⊆ ρ

′

Φ r̀eg ρ �: ρ
′

(REG-CONS)
ρ �: ρ

′ ∈Φ

Φ r̀eg ρ �: ρ
′

(REG–INST)
∀ #»g .Σ ∈Φ ρ �: ρ

′ ∈ θΣ for some θ dom(θ) = #»g ran(θ)∩ ftv(Σ) = /0
Φ r̀eg ρ �: ρ

′

Relationship Entailment: Φ àr Λ

(REL–IN)
Λ ∈Φ

Φ àr Λ
(REL-CLOSED)

Φ àr σ R σ
′

Φ èff σ0 �: σ Φ èff σ1 �: σ
′

Φ àr σ0 R σ1

Fig. 8: λie Subsumption and Entailment.

the relationship set and the type environment are empty, we further shorten the judg-
ment as ` e : T,σ for convenience. The judgment is defined in Figure 9, with auxiliary
definitions related to universal and existential quantification deferred to Figure 11.

The rules (T-LET) and (T-VAR) follow the familiar let-polymorphism (or Damas-
Milner polymorphism [13]). Universal quantification is introduced at let boundaries,
through function Gen(Γ ,σ)(T). Its elimination is performed at (T-VAR), via ���. Both
definitions are standard, and appear in Figure 11. The let-polymorphism in let x = e in e′

expression is sound because of the Gen function in the rule (T-LET). The Gen function
enforces the standard value restriction [33]. That is, if e is a value, its type could be
generalized and thus be polymorphic, otherwise its type will be monomorphic.

(T-SUB) describes subtyping, where both (monomorphic) type subsumption and ef-
fect subsumption may be applied. Rules (T-REF), (T-GET) and (T-SET) for store opera-

12

Typing: Φ ;Γ ` e : T,σ

(T-BOOL)
Φ ;Γ ` b : Bool, /0

(T-VAR)
T� Γ (x)

Φ ;Γ ` x : T, /0

(T-LET)
Φ ;Γ ` e : T,σ Φ ;Γ ,x 7→ Gen(Γ ,σ)(T) ` e′ : T′,σ ′

Φ ;Γ ` let x = e in e′ : T′,σ ∪σ
′

(T-SUB)
Φ ;Γ ` e : T,σ Φ ` T�: T′ Φ èff σ �: σ

′

Φ ;Γ ` e : T′,σ ′

(T-ABS)
/0;Γ ,x 7→ T ` e : T′,σ

Φ ;Γ ` λx : T.e : T σ−→ T′, /0

(T-APP)
Φ ;Γ ` e : T σ−→ T′,σ ′ Φ ;Γ ` e′ : T,σ ′′

Φ ;Γ ` e e′ : T′,σ ∪σ
′∪σ

′′

(T-REF)
Φ ;Γ ` e : T,σ

Φ ;Γ ` ref ρ T e : Refρ T,σ ∪ initρ T

(T-GET)
Φ ;Γ ` e : Refρ T,σ

Φ ;Γ `! e : T,σ ∪ rdρ T

(T-SET)
Φ ;Γ ` e : Refρ T,σ Φ ;Γ ` e′ : T,σ ′

Φ ;Γ ` e := e′ : T,σ ∪σ
′∪wrρ T

(T-IF-THEN-ELSE)
Φ ;Γ ` e : Bool,σ Φ ;Γ ` e0 : T,σ0 Φ ;Γ ` e1 : T,σ1

Φ ;Γ ` if e then e0 else e1 : T,σ ∪σ0∪σ1

(T-ASSUME)

x = fv(e)∪ fv(e′) Γ (x) = τ Φ
′′ ` EGen(τ)⇒ τ′ Γ

′ = Γ ,x 7→ τ′ Φ
′ = Φ ,Φ ′′

Φ
′;Γ ′ ` e : T,σ Φ

′;Γ ′ ` e′ : T′,σ ′

Φ
′,σ R σ

′;Γ ′ ` e0 : T′′′,σ2 Φ ` T′′′ ↑ T′′ Φ ` σ2 ↑ σ0 Φ ;Γ ` e1 : T′′,σ1

Φ ;Γ ` assuming e R e′ do e0 else e1 : T′′,σ0∪σ1

(T-SAFE)
Φ ;Γ ` e : T0,σ0 Φ ;Γ ` e′ : T1,σ1 Φ àr σ0 R σ1 clientT(T,σ ,T0,σ0,T1,σ1)

Φ ;Γ ` SAFE e e′ : T,σ

Fig. 9: λie Typing Rules

Parallelism: || clientT(T,σ ,T0,σ0,T1,σ1)
def
= (T = T0 = T1)∧ (σ = σ0∪σ1)

Security: exec clientT(T,σ ,T0,σ0,T1,σ1)
def
= (T = T1)∧ (σ = σ1)

UI: spawn clientT(T,σ ,T0,σ0,T1,σ1)
def
= (T = void)∧ (σ = /0)

Memoization: lookup clientT(T,σ ,T0,σ0,T1,σ1)
def
= (T = T1)∧ (σ = σ0)

Fig. 10: Client Implementation of Predicate clientT

tions produce the effects of access rights init, rd and wr, respectively. All other rules
other than (T-ASSUME) and (T-SAFE) carry little surprise for an effect system.

4.4 Static Typing for Dynamic Intensional Analysis

To demonstrate how intensional effect analysis works, let us first consider an unsound
but intuitive notion of assuming typing in (T-ASSUME-UNSOUND):

13

∀ Introduction: Gen Gen(Γ ,σ)(T) = ∀ #»g .T where #»g = ftv(T)\(ftv(Γ)∪ ftv(σ))

∀ Elimination:��� T′ � ∀ #»g .T if T′ = θT for some θ

∃ Introduction: EGen

P ::= − | RefPR T | T PE−−→ T | T σ−→ P pack context
PE ::= − | ω,PE,ω ′ | accPR T | accρ P
PR ::= − | ζ ,PR,ζ ′

EGen(∀ #»g .T)
4
= ∀ #»g .EGenM(T, /0)

EGenM(PE[σ], #»g)
4
= ∃ς �: σ .EGenM(PE[ς �: σ], #»g ∪{ς}) if σ /∈ #»g , ftv(σ)⊆ #»g ,ς fresh

EGenM(PR[ρ], #»g)
4
= ∃γ �: ρ.EGenM(PR[γ �: ρ], #»g ∪{γ}) if ρ /∈ #»g , ftv(ρ)⊆ #»g ,γ fresh

EGenM(T, #»g)
4
= T if σ ∈ #»g for any T = PE[σ]

ρ ∈ #»g for any T = PR[ρ]

∃ Elimination:⇒⇒⇒ ∀ #»g .(θΣ) ` ∀ #»g .∃Σ .T⇒∀ #»g .θT for some θ ∧ dom(θ)⊆ #»g

Lifting: ↑↑↑

Φ ` P[ς �: σ] ↑ P[σ ′] if ∀ #»g .Σ ∈Φ , ς �: σ ∈ θΣ for some θ , Φ ` σ ↑ σ ′

Φ ` P[γ �: ρ] ↑ P[ρ ′] if ∀ #»g .Σ ∈Φ , γ �: ρ ∈ θΣ for some θ , Φ ` ρ ↑ ρ ′

Φ ` T ↑ T if ∀ #»g .Σ ∈Φ , ftv(T)∩ (∀ #»g .Σ) = /0

Φ ` PE[ς �: σ] ↑ PE[σ ′] if ∀ #»g .Σ ∈Φ , ς �: σ ∈ θΣ for some θ , Φ ` σ ↑ σ ′

Φ ` PE[γ �: ρ] ↑ PE[ρ ′] if ∀ #»g .Σ ∈Φ , γ �: ρ ∈ θΣ for some θ , Φ ` ρ ↑ ρ ′

Φ ` σ ↑ σ if ∀ #»g .Σ ∈Φ , ftv(σ)∩ (∀ #»g .Σ) = /0

Φ ` PR[γ �: ρ] ↑ PR[ρ ′] if ∀ #»g .Σ ∈Φ , γ �: ρ ∈ θΣ for some θ , Φ ` ρ ↑ ρ ′

Φ ` ρ ↑ ρ if ∀ #»g .Σ ∈Φ , ftv(ρ)∩ (∀ #»g .Σ) = /0

Fig. 11: Definitions for ∀ and ∃ Introduction and Elimination

(T-ASSUME-UNSOUND)

Φ ;Γ ` e : T,σ Φ ;Γ ` e′ : T′,σ ′

Φ ,σ R σ
′;Γ ` e0 : T′′,σ0 Φ ;Γ ` e1 : T′′,σ1

Φ ;Γ ` assuming e R e′ do e0 else e1 : T′′,σ0∪σ1

To type check the do expression e0, the static type system takes advantage of the
fact that expressions e and e′ satisfy the relation R, i.e., in the third condition of the
rule, we strengthen the current Φ with σ R σ ′. The (T-SAFE) rule in Figure 9 says that
the expression type checks iff Φ entails the abstract effect relationship R. As a result, a
SAFE expression whose safety happens to rely on σ R σ ′ can be statically verified to
be safe by the static system.

Albeit tempting, the rule above is unsound. To illustrate, consider the safe paral-
lelism discipline in the following example, i.e., we instantiate the R relation with non-
interference relation # and the SAFE expression with parallel expression ||.

14

Example 4 (Soundness Challenge). In the following example, the variables x and y have
the same static (but different dynamic) type. Thus, the expression x 3 and y 3 have the
same static effect. Should the parallel expression at line 5 typecheck with the assump-
tion expression at line 4, there would be a data race at run time.

1 let buff = ref 0 in
2 let x = if 1 > 0 then λλλz. !buff else λλλz. buff := z in
3 let y = if 0 > 1 then λλλz. !buff else λλλz. buff := z in
4 assuming !buff # x 3
5 do !buff || y 3
6 else !buff ; x 2

In this example, we have an imperative reference buff , and two structurally similar
but distinct functions x and y. The code intends to perform parallelization, i.e., !buff ||y 3,
line 5. Let us review the types of the variables and the effects of the expressions:

buff : Refρ Int

x : Int
{rdρ Int,wrρ Int}
−−−−−−−−−−−→ Int

y : Int
{rdρ Int,wrρ Int}
−−−−−−−−−−−→ Int

!buff : {rdρ Int}
x 3 : {rdρ Int,wrρ Int}
y 3 : {rdρ Int,wrρ Int}

According to the static system, the types of x and y are exactly the same. Thus, by
the third condition of (T-SAFE), the expression !buff || y 3 in line 5, is well-formed.
This is because the assuming expression has placed {rdρ Int} # {rdρ Int,wrρ Int} as an
element of the relationship set, after typechecking !buff # x 3 on line 4.

At runtime, the initialization expression of the let expressions will be first evalu-
ated before being assigned to the variables (call-by-value, details in §5). Therefore, x
becomes λ z.!buff and y becomes λ z.buff := z before the assuming expression. Infor-
mally, we refer to the effect computed at runtime through dynamic typing (e.g., right
before the assuming expression) as dynamic effect, as opposed to the static effect com-
puted at compile time. The dynamic types and effects of the relevant expressions are:

x : Int
{rdρ Int}
−−−−−−→ Int

y : Int
{wrρ Int}
−−−−−−→ Int

!buff : {rdρ Int}
x 3 : {rdρ Int}
y 3 : {wrρ Int}

Clearly, the dynamic effect computed for !buff and that for x 3 on line 4 do not
conflict. Therefore, the do expression !buff || y 3 will be evaluated. However, the effects
of the expressions !buff and y 3 on line 5 do conflict, which causes unsafe parallelism.

The root cause of the problem is that the static and the dynamic system make deci-
sions based on two related but different effects: one with the static effect, and the other
with the dynamic effect. A sound type system must be able to differentiate the two.

A Sound Design with Bounded Existentials The key insight from the discussion above
is that the static system must be able to express the dynamic effect that the assuming
expression makes decision upon. Before we move on, let us first state several simple
observations:

(i) (Dynamic effect refines static effect) The static effect of an expression e is a con-
servative approximation of the dynamic effect.

15

(ii) (Free variables determine effect difference) Improved precision of intensional ef-
fect polymorphism is achieved by using the more precise types for the free vari-
ables, see e.g., dynamic and static type of the variable x in Example 4.

Observation (i) indicates the possibility of referring to the dynamic effect as “there
exists some effect that is subsumed by the static effect.” Observation (ii) further suggests
that dynamic effect can be computed by treating all free variables existentially: “there
exists some type T which is a subtype of the static type T′ for each free variable, to help
mimic the type environment while dynamic effect is computed”. Bounded existential
types provide an ideal vehicle for expressing this intention.

In (T-ASSUME), the type checking of an assuming expression, we substitute the type
of each free variable with (an instance of) its existential counterpart. Let us revisit Ex-
ample 4, this time with (T-ASSUME). The free variables of the assuming expression on
line 4, in Example 4 are x and buff. The original types of the free variables are:

buff : Refρ Int and x : Int
{rdρ Int,wrρ Int}
−−−−−−−−−−→ Int

The existential types used to type check the assuming expressions are:

buff : Refρ Int and x : ∃ς1 �: {rdρ Int},ς2 �: {wrρ Int}.Int
ς1,ς2−−−→ Int

The relationship set is:

Φ = ς1 �: rdρ Int,ς2 �: wrρ Int (1)

The effects of the condition expressions are:

!buff : rdρ Int and x 3 : ς1 �: rdρ Int,ς2 �: wrρ Int

To type check the do expression, Φ is strengthened as:

Φ
′ = {rdρ Int # {ς1 �: rdρ Int,ς2 �: wrρ Int},ς1 �: rdρ Int,ς2 �: wrρ Int} (2)

When type checking the expression on line 5, y 3 has effect {rdρ Int,wrρ Int}. We can-
not establish `ar (as Figure 8). A type error is correctly induced against the potential
unsafe parallel expression.

Rule (T-ASSUME) first computes the free variables from the two condition expres-
sions, written x = fv(e)∪ fv(e′). With assumption Γ (x) = τ, all free variables x are
considered for type environment strengthening. It then applies the existential introduc-
tion function EGen to strengthen τ′, the bounded existential with the original type τ
as the bound. The definition of EGen is in Figure 11. It then eliminates (or open) the
existential quantification using⇒. In a nutshell, this predicate Φ ′′ ` EGen(τ)⇒ τ′ in-
troduces an existential type and eliminates it right away (a common strategy in building
abstract data types [27]). Subsumption relationship information is placed into the rela-
tionship set, Φ ′ = Φ ,Φ ′′. The new environment Γ ′ has the new types τ′ for the free
variables, an instantiation of the bounded existential type.

Function EGen uses the EGenM function to quantify effects and regions. Here, to
produce the existential type, function EGen maintains the structure of the original type,

16

e.g., if the original type is a function type, it produces a new function type with all
covariant types/effects/regions quantified. Observe that contravariant types/effects/re-
gions are harmless: their dynamic counterpart (which also refines the static one) does
not cause soundness problems. To facilitate the quantification, three pack contexts, P,
PE, PR, are defined, representing the contexts to contain a type, an effect, or a region,
respectively.

Finally, the type of the do expression needs to be lifted, weakening types that
may potentially contain refreshed generic variables of existential types, through a self-
explaining ↑ definition in Figure 11. For example, the effect computed for the ex-
pression x 3 is ς1 �: rdρ Int,ς2 �: wrρ Int. The ↑ function applies the substitution
of {ς1 7→ rdρ Int,ς2 7→ wrρ Int} on the precomputed effect and produces static effect
rdρ Int,wrρ Int.

The typing of (T-SAFE) relies on the client function clientT. clientT(T,σ ,T0,σ0,T1,σ1)
defines the conditions where a safe expression should typecheck, as shown in Figure 10.

5 Dynamic Semantics

This section describes the dynamic semantics of λie. The highlight is to support a highly
precise notion of effect polymorphism via a lightweight notion of dynamic typing,
which we call differential alignment.

Operational Semantics Overview The λie runtime configuration consists of a store s,
the to be evaluated expression e, and a trace f , defined in Figure 12. The store maps
references (or locations) l to values v. In addition to booleans and functions, locations
themselves are values as well. Each store cell also records the region (ρ) and type (T)
information of the reference. A trace informally can be viewed as “realized effects,”
and it is defined as a sequence of accesses to references, with init(l), rd(l), and wr(l),
denoting the instantiation, read, and write to location l respectively. Traces are only
needed to demonstrate the properties of our language. This structure and its runtime
maintenance is unnecessary in a λie implementation.

The small-step semantics is defined by relation s; e; f → s′; e′; f ′, which says that
the evaluation of an expression e with the store s and trace f results in a value e′, a new
store s′, and trace f ′. We use notation [x 7→ v]e to define the substitution of x with v of
expression e. We use→∗ to represent the reflexive and transitive closure of→.

Dynamic Effect Inspection Most reduction rules are conventional, except (asm) and
(safe). The (asm) rule captures the essence of the assuming expression, which relies
on dynamic typing to achieve dynamic effect inspection. Dynamic typing is defined
through type derivation s;Φ ;Γ D̀ e : T,σ , defined in the same figure, which extends
static typing with one additional rule for reference value typing.

At runtime, the assuming expression retrieves the more precise dynamic effect of
expression e1 and e2, and checks whether relation R holds. Observe that at run time, e1
and e2 in the assuming expression is not identical to their respective forms when the
program is written. Now, the free variables in the static program has been substituted
with values, which carries more precise information on types, regions, and effects. This

17

Definitions:

s ::= l→〈ρ,T〉 v store

f ::= acc(l) trace
v ::= . . . | l (extended) values
E ::= − | E e | v E | let x = E in e | let x = v in E | ref ρ T E evaluation context

| !E | E := e | v := E | if E then e else e

Dynamic Typing: s;Φ ;Γ D̀ e : T,σ (DT-LOC)
{l 7→〈ρ,T〉v} ∈ s

s;Φ ;Γ D̀ l : Refρ T, /0

For all other (DT-*) rules, each is isomorphic to its counterpart (T-*) rule, except that every
occurrence of judgment Φ ;Γ ` e : T,σ in the latter rule should be substituted with

s;Φ ;Γ D̀ e : T,σ in the former.

Evaluation relation: s; e; f → s′; e′; f ′

(cxt) s;E[e]; f → s′;E[e′]; f , f ′ if s; e⇒ s′; e′; f ′

(asm) s;assuming e1 R e2 ⇒ s; e0; /0 if s; /0; /0 D̀ ei : Ti,σi for i = 1, 2

do e else e′ and e0 =

{
e if σ1 R σ2
e′ otherwise

(safe) s;SAFE e e′ ⇒ clientR(s,e,e′)
(set) s; l := v ⇒ s,{l 7→〈ρ,T〉v};v;wr(l) if {l 7→〈ρ,T〉v′} ∈ s

(ref) s;ref ρ T v ⇒ s,{l 7→〈ρ,T〉v}; l; init(l) if l fresh

(get) s; !l ⇒ s;s(l);rd(l)
(app) s;λx : T.e v ⇒ s; [x 7→ v]e; /0
(let) s; let x = v in e ⇒ s; [x 7→ v]e; /0
(ifT) s; if true then e else e′ ⇒ s; e; /0
(ifF) s; if false then e else e′ ⇒ s; e′; /0

Fig. 12: λie Operational Semantics

is the root cause why intensional effect polymorphism can achieve higher precision than
a purely static effect system.

It should be noted that we evaluate neither e1 nor e2 at the evaluation of the assum-
ing expression. In other words, λie is not an a posteriori effect monitoring system.

The reduction of (safe) relies on an abstract function clientR. clientR(s,e,e′) com-
putes the runtime configuration after the one-step evaluation of the the SAFE expres-
sion. The abstract treatment of this function allows λie to be defined in a highly modular
fashion, similar to previous work [25]. We will come back to this topic, especially its
impact on soundness, in Sec. 6.

Optimization: Efficient Effect Introspection through Differential Alignment The reduc-
tion system we have introduced so far may not be efficient: it requires full-fledged
dynamic typing, which may entail dynamic construction of type derivations to compute
the dynamic effects. In this section, we introduce one optimization.

18

Abstract Syntax in Optimized λie

d ::= v | x | d d | let x = d in d | ref ρ T d |!d | d:=d | if d then d else d annotated expressions
| assuming (# »x : τ) d : σ R d : σ do d else d | SAFE d d

Transformation: e
Φ ,Γ
 d

x
Φ ,Γ
 x

e e′
Φ ,Γ
 d d′ if e

Φ ,Γ
 d,e′

Φ ,Γ
 d′

...

assuming e1 R e2
Φ ,Γ
 assuming (# »x : τ) d1 : σ1 R d2 : σ2 if x = fv(e1)∪ fv(e2), Γ (x) = τ′

do e3 else e4 do d3 else d4 Φ ′′ ` EGen(τ′)⇒ τ, Φ ′ = Φ ,Φ ′′

Φ ′;Γ ,x 7→τ ` di : Ti,σi for i = 1,2

ei
Φ ,Γ
 di for i = 1,2,3,4

Operational Semantics in Optimized λie: s;d; f →O s;d; f

(Ocxt) s;E[d]; f →O s′;E[d′]; f , f ′ if s;d; f ⇒O s′;d′; f ′

(Oasm) s;assuming(# »v : τ) ⇒O s;d0; /0 if s; /0; /0 D̀O v : T, /0
d1 : σ1 R d2 : σ2 and θτ= Gen(/0, /0)(T)

do d else d′ and d0 =

{
d if θσ1 R θσ2
d′ otherwise

For all other⇒O rules, each is isomorphic to its counterpart⇒ rule, except that every
occurrence of metavariable e in the latter rule should be substituted with d in the former.

Fig. 13: Optimized λie with Differential Alignment

As observed in §4.4, the (sub)expressions that do not have free variables will have
the same static effects (i.e., via computed static typing) and dynamic effects (i.e., com-
puted via dynamic typing). Our key insight is that, the only “difference” between the
two forms of effects for the same expression lies with those introduced by free variables
in the expression. As a result, we define a new dynamic effect computation strategy with
two steps:

1. At compile time, we compute the static effects of the two expressions used for the
effect inspection of each assuming expression in the program. In the meantime,
we record the type (which contains free type/effect/region variables) of each free
variable that appears in these two expressions.

2. At run time, we “align” the static type of each free variable with the dynamic type
associated with the corresponding value that substitutes for that free variable. The
alignment will compute a substitution of (static) type/effect/region variables to their
dynamic counterparts. The substitution will then be used to substitute the effect we
computed in Step 1 to produce the dynamic effect.

19

For Step 1, we define a transformation from expression e to an annotated expression
d, defined in Figure 13. The two forms are identical, except that the the assuming
expression in the “annotated expression” now takes the form of assuming (# »x : τ) e1 :
σ1 R e2 : σ2 do e else e′, which records the free variables of expressions e1 and e2
and their corresponding static types, denoted as # »x : τ. The same expression also records
the statically computed effects σ1 and σ2 for e1 and e2. The free variable computation
function fv and variable substitution function are defined for d elements in an analogous
fashion as for e elements. We omit these definitions.

Considering all the annotated information is readily available while we perform
static typing of the the assuming expression— as in (T-Assume) — the transformation

from expression e to annotated expression d under Φ and Γ , denoted as e
Φ ,Γ
 d, is rather

predictable, defined in the same Figure.
The most interesting part of our optimized system is its dynamic semantics. Here

we define a reduction system →O, at the bottom of the same figure. We further use
→∗O to represent the reflexive and transitive closure of →O. Upon the evaluation of
the annotated assuming expression, the types associated with the free variables —
now substituted with values — are “aligned” with the types associated with the cor-
responding values. The latter is computed by judgment s;Φ ;Γ `DO d : T,σ , defined

as s;Φ ;Γ D̀ e : T,σ where e
Φ ,Γ
 d. In other words, we only need to dynamically type

values in the optimized λie. The alignment is achieved through the computation of the
substitution θ . As we shall see in the next section, such a substitution always exists for
well-typed programs.

6 Meta-Theories

In this section, we establish formal properties of λie. We first show our type system
is sound relative to sound customizations of the client effect systems (§6.1). We next
present important soundness results for intensional effect polymorphism in §6.2. We
next present a soundness and completeness result on differential alignment in §6.3.
The proofs of these theorems and lemmas can be found in the accompanying technical
report. Before we proceed, let us first define two simple definitions that will be used for
the rest of the section.

Definition 1. [Redex Configuration] We say < s;e; f > is a redex configuration of pro-
gram e′, written e′D<s,e, f>, iff /0;e′; /0→∗ s;E[e]; f .

Next, let us define relation s` f : σ, which says that dynamic trace f realizes static
effect σ under store s:

Definition 2. [Effect-Trace Consistency] s` f :σ holds iff acc(l)∈ f implies accρ T ∈σ

where {l 7→〈ρ,T〉v}∈s.

6.1 Type Soundness

Our type system leaves the definition of R and SAFE e e′ abstract, both in terms of syn-
tax and semantics. As a result, the soundness of our type system is conditioned upon

20

how these definitions are concretized. Now let us explicitly define the sound concretiza-
tion condition:

Definition 3. [Sound Client Concretization] We say a λie client is sound if under that
concretization, the following condition holds: if s;Φ ;Γ D̀ e0 : T0,σ0, s;Φ ;Γ D̀ e1 :
T1,σ1, clientT(T,σ ,T0,σ0,T1,σ1) and (s′,e, f) = clientR(s,e0,e1), then s′;Φ ;Γ D̀ e :
T,σ and s′` f :σ.

All lemmas and theorems for the rest of this section are implicitly under the as-
sumption that Definition 3 holds, which we do not repeatedly state.

Our soundness proof is constructed through subject reduction and progress:

Lemma 1 (Type Preservation). If s;Φ ;Γ D̀ e : T,σ and s;e; f → s′;e′; f ′, then s′;Φ ;Γ D̀
e′ : T′,σ ′ and T′ �: T and σ ′ ⊆ σ .

Lemma 2 (Progress). If s;Φ ;Γ D̀ e : T,σ then either e is a value, or s;e; f → s′;e′; f ′

for some s′, e′, f ′.

Theorem 1 (Type Soundness). Given an expression e, if /0; /0 ` e : T,σ , then either the
evaluation of e diverges, or there exist some s, v, and f such that /0;e; /0→∗ s;v; f .

6.2 Soundness of Intensional Effect Polymorphism

The essence of intensional effect polymorphism lies in the fact that through intensional
inspection (dynamic typing at the assuming expression), every instance of evaluation of
the SAFE e0 e1 expression in the reduction sequence must be “safe,” where “safety” is
defined through the R relation concretized by the client language. To be more concrete:

Definition 4 (Effect-based Soundness of Intensional Effect Polymorphism). We say
e is effect-sound iff for any redex configuration such that e D <s,e′, f> and e′ =
SAFE e0 e1, it must hold that s; /0; /0 D̀ e0 : T0,σ0 and s; /0; /0 D̀ e1 : T1,σ1 and σ0 R σ1.

Effect-based soundness is a corollary of type soundness:

Corollary 1 (λie Effect-based Soundness). If /0; /0 ` e : T,σ , then e is effect-sound.

There remains a gap between this property and why one intuitively believes the
SAFE e0 e1 execution is “safe”: ultimately, what we hope to enforce is at runtime, the
“monitored effect” — i.e. the trace through the evaluation of e1 and that of e2 — do not
violate what R represents. The definition above falls short because it relies on the dy-
namic typing of e1 and e2. To rigorously define the more intuitive notion of soundness,
let us first introduce a trace-based relation induced from R:

Definition 5 (Induced Trace Relation). RTR is a binary relation defined over traces.
We say RTR is induced from R under store s iff RTR is the smallest relation such that if
σ1 R σ2, then f1 RTR f2 where s` f1:σ1 and s` f2:σ2.

One basic property of our reduction system is the trace sequence is monotonically
increasing:

21

Lemma 3 (Monotone Traces). If s;e; f → s′;e′; f ′, then f ′ = f , f ′′ for some f ′′.

Given this, we can now define the more intuitive flavor of soundness over traces:

Definition 6 (Trace-based Soundness of Intensional Effect Polymorphism). We say
e is trace-sound iff for any redex configuration such that e D <s,e′, f> and e′ =
SAFE e0 e1, it must hold that for any s0, e′0, and f0 where s;e0; f →∗ s0;e′0; f , f0 and
any s1, e′1, and f1 where s;e1; f →∗ s1;e′1; f , f1, then condition f0 RTR f1 holds.

To prove trace-based soundness, the crucial property we establish is:

Lemma 4 (Effect-Trace Consistency Preservation). If s;Φ ;Γ D̀ e : T,σ and s` f :σ
and s;e; f → s′;e′; f ′ then s′` f ′ :σ ′.

Finally, we can prove the intuitive notion of soundness of intensional effect poly-
morphism:

Theorem 2 (λie Trace-Based Soundness). If /0; /0 ` e : T,σ , then e is trace-sound.

6.3 Differential Alignment Optimization

In §5, we defined an alternative “optimized λie” to avoid full-fledged dynamic typing,
centering on differential alignment. We now answer several important questions: (1)
static completeness: every typable program in λie has a corresponding program in opti-
mized λie. (2) dynamic completeness: for every typable program in λie, its correspond-
ing program at run time cannot get stuck due to the failure of finding a differential
alignment. (3) soundness: for every program in λie, its corresponding program in opti-
mized λie should behave “predictably” at run time. We will rigorously define this notion
shortly; intuitively, it means that “optimized λie” is indeed an optimization of λie, i.e.,
without altering the results computed by the latter.

Optimization static completeness is a simple property of
Φ ,Γ
 :

Theorem 3 (Static Completeness of Optimization). For any e such that Φ ;Γ ` e :

T,σ , there exists d such that e
Φ ,Γ
 d.

To correlate the dynamic behaviors of λie and optimized λie, first recall that the→
reduction system and→O reduction system are identical, except for how the assuming
expression is reduced. The progress of (Oasm) relies on the existence of substitution
θ that aligns the dynamic type associated with values and the static type. Dynamic
completeness of differential alignment thus can be viewed as the “correspondence of
progress” for the two reduction systems to reduce the corresponding assuming expres-
sions. This is indeed the case, which can be generally captured by the following lemma:

Theorem 4 (Dynamic Completeness of Optimization). If s;Φ ;Γ D̀ e : T,σ and e
/0, /0

d, then given some s and f , the following two are equivalent:

– there exists some s′, e′ and f ’ such that s;e; f → s′;e′, f ′.
– there exists some s′′, d′ and f ′′ such that s;d; f →O s′′;d′, f ′′.

22

Finally, we wish to study soundness. The most important insight is that the trans-

formation relation
Φ ,Γ
 can be preserved through the corresponding reductions of λie

and optimized λie. In other words, one can view the reduction of optimized λie as a
simulation of λie:

Lemma 5 (→O Simulates→ with Φ ,Γ
 Preservation). If s;Φ ;Γ D̀ e : T,σ and e

/0, /0
 d

and s;e; f → s′;e′, f ′ and s;d; f →O s′′;d′, f ′′, then s′ = s′′, and f ′ = f ′′, and e′
/0, /0
 d′.

Finally, let us state our soundness of differential alignment:

Theorem 5 (Soundness of Optimization). Given some expression e such that /0; /0 `
e : T,σ , and e

/0, /0
 d then

– there exists a reduction sequence such that /0;e; /0→∗ s;v; f iff there exists a reduc-
tion sequence such that /0;d; /0→∗O s;v; f .

– there exists a reduction sequence such that the evaluation of e diverges according
to → iff there exists a reduction sequence such that the evaluation of d diverges
according to→O.

Observe that we are careful by not stating the two reduction systems must diverge at
the same time, or reduce to the same value at the same time. That would be unrealistic
if the client instantiations of our calculus introduce non-determinism.

7 Related Work

Static type-and-effect systems are well-explored. Earlier work includes Lucassen [24],
and Talpin et al. [33], and more recent examples such as Marino et al. [25] , Task
Types [21], Bocchino et al. [8] and Rytz et al. [29]. There are well-known language
design ideas to improve the precision and expressiveness of static type systems, and
many may potentially be applied to effect reasoning, such as flow-sensitive types [15],
typestates [32] and conditional types [4]. Classic program analysis techniques such as
polymorphic type inference, nCFA [30], CPA [3], context-sensitive, flow-sensitive, and
path-sensitive analyses, are good candidates for effect reasoning of programs written in
existing languages.

Bañados et al. [5] developed a gradual effect (GE) type system based on gradual
typing [31], by extending Marino et al.[25] with ? (“unknown”) types. As a gradual
typing system, GE excels in scenarios such as prototyping. The system is also unique
in its insight by viewing ? type concretization as an abstract interpretation problem.
Our work shares the high-level philosophy of GE — mixing static typing and dynamic
typing for effect reasoning — but the two systems are orthogonal in approaches. For
example, GE programs may run into runtime type errors, whereas our programs do not.
Foundationally, the power of intensional effect polymorphism lies upon how parametric
polymorphism and intensional type analysis interact — a System F framework on the
famous lambda cube — whereas frameworks based on gradual typing are not. Other
than gradual typing, other solutions to mix static typing and dynamic typing include

23

the Dynamic type [1], soft typing [10] and Hybrid Type Checking [14]. From the
perspective of the lambda cube, their expressiveness is on par with gradual typing.

Intensional type analysis by Harper and Morrisett [19] is a framework with many
extensions (e.g., [12]). We apply it in the context of effect reasoning, and the intention-
ality in our system is achieved through dynamic typing, instead of typecase-style
inspection on polymorphic types. To the best of our knowledge, our system is the first
hybrid effect type system built on top of the intensional type analysis.

Existential types are commonly used for type abstraction and information hiding.
They are also suggested [19,28] to capture the notion of Dynamic type [1]. Our use of
existential types are closer to the latter application, except that we aim to differentiate
(and connect) the types at compile time and the types at run time, instead of pessimisti-
cally viewing the former as Dynamic. We are unaware of the use of bounded existential
types to connect the two type representations.

Effect systems are an important reasoning aid with many applications. For example,
beyond the application domains we described in §2, they are also known to be useful
for safe dynamic updating [26] and checked exceptions [23,6].

8 Conclusion

In this paper, we develop a new foundation for type-and-effect systems, where static
effect reasoning is coupled with intensional effect analysis powered by dynamic typing.
We describe how a precise, sound, and efficient hybrid reasoning system can be con-
structed, and demonstrate its applications in concurrent programming, memoization,
information security and UI access.

References

1. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically-typed lan-
guage. In: Proceedings of the Symposium on Principles of Programming Languages (1989)

2. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection for Java.
ACM Trans. Program. Lang. Syst. 28(2), 207–255 (2006)

3. Agesen, O.: Concrete type inference: delivering object-oriented applications. Ph.D. thesis,
Stanford University, Stanford, CA, USA (1996)

4. Aiken, A., Wimmers, E.L., Lakshman, T.K.: Soft typing with conditional types. In: Proceed-
ings of the ACM SIGPLAN Symposium on Principles of Programming Languages (1994)

5. Bañados, F., Garcia, R., Tanter, É.: A theory of gradual effect systems. In: Proceedings of
the 19th ACM SIGPLAN Conference on Functional Programming (2014)

6. Benton, N., Buchlovsky, P.: Semantics of an effect analysis for exceptions. In: Proceedings
of the international workshop on Types in languages design and implementation (2007)

7. Blelloch, G.E.: Prefix sums and their applications
8. Bocchino, R.L., Adve, V.S.: Types, regions, and effects for safe programming with object-

oriented parallel frameworks. In: Proceedings of the 25th European Conference on Object-
oriented Programming (2011)

9. Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., Ball, T.: Two for the price of one: A model
for parallel and incremental computation. In: Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applications (2011)

24

10. Cartwright, R., Fagan, M.: Soft typing. In: Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (1991)

11. Chugh, R., Meister, J.A., Jhala, R., Lerner, S.: Staged information flow for JavaScript. In:
Proceedings of Conference on Programming Language Design and Implementation (2009)

12. Crary, K., Weirich, S., Morrisett, G.: Intensional polymorphism in type-erasure semantics.
In: Proceedings of the International Conference on Functional Programming (1998)

13. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Proceedings of
the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (1982)

14. Flanagan, C.: Hybrid type checking. In: Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (2006)

15. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (2002)

16. Gordon, C.S., Dietl, W., Ernst, M.D., Grossman, D.: JavaUI: Effects for controlling UI object
access. In: the European Conference on Object-Oriented Programming (2013)

17. Greenhouse, A., Boyland, J.: An object-oriented effects system. In: Proceedings of the 13th
European Conference on Object-Oriented Programming (1999)

18. Hackett, B., Guo, S.y.: Fast and precise hybrid type inference for JavaScript. In: Proceedings
of the Conference on Programming Language Design and Implementation (2012)

19. Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analysis. In: Pro-
ceedings of the Symposium on Principles of Programming Languages (1995)

20. Heumann, S.T., Adve, V.S., Wang, S.: The tasks with effects model for safe concurrency. In:
Proceedings of the Symposium on Principles and Practice of Parallel Programming (2013)

21. Kulkarni, A., Liu, Y.D., Smith, S.F.: Task types for pervasive atomicity. In: the conference
on Object-oriented programming, systems, languages, and applications (2010)

22. Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., Popek, G.J.: Report on the pro-
gramming language Euclid. SIGPLAN Not. 12(2), 1–79 (1977)

23. Leroy, X., Pessaux, F.: Type-based analysis of uncaught exceptions. ACM Trans. Program.
Lang. Syst. 22(2) (2000)

24. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (1988)

25. Marino, D., Millstein, T.: A generic type-and-effect system. In: Proceedings of the 4th inter-
national workshop on Types in language design and implementation (2009)

26. Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.: Contextual effects for version-consistent
dynamic software updating and safe concurrent programming. In: Proceedings of the ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (2008)

27. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
28. Rossberg, A.: Dynamic translucency with abstraction kinds and higher-order coercions. Elec-

tron. Notes Theor. Comput. Sci. 218, 313–336 (2008)
29. Rytz, L., Odersky, M., Haller, P.: Lightweight polymorphic effects. In: Proceedings of the

26th European Conference on Object-Oriented Programming (2012)
30. Shivers, O.G.: Control-flow Analysis of Higher-order Languages or Taming Lambda. Ph.D.

thesis (1991)
31. Siek, J., Taha, W.: Gradual typing for objects. In: Proceedings of the 21st European Confer-

ence on Object-Oriented Programming (2007)
32. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software

reliability. IEEE Trans. Softw. Eng. 12(1) (1986)
33. Talpin, J.P., Jouvelot, P.: The type and effect discipline. Inf. Comput. 111(2) (1994)
34. Tofte, M.: Type inference for polymorphic references. Inf. Comput. 89(1) (1990)

25

	
	Introduction
	Motivating Examples
	Safe Parallelism
	Information Security
	Consistent Graphical User Interface (GUI) Access
	Program Optimization – Memoization

	ie Abstract Syntax
	The Type System
	Definitions
	Subsumption and Entailment
	Typing Judgment Overview
	Static Typing for Dynamic Intensional Analysis

	Dynamic Semantics
	Meta-Theories
	Type Soundness
	Soundness of Intensional Effect Polymorphism
	Differential Alignment Optimization

	Related Work
	Conclusion

